1
|
Fan X, Sun H. Exploring Agrobacterium-mediated genetic transformation methods and its applications in Lilium. PLANT METHODS 2024; 20:120. [PMID: 39123215 PMCID: PMC11313100 DOI: 10.1186/s13007-024-01246-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 07/27/2024] [Indexed: 08/12/2024]
Abstract
As a typical bulb flower, lily is widely cultivated worldwide because of its high ornamental, medicinal and edible value. Although breeding efforts evolved over the last 10000 years, there are still many problems in the face of increasing consumer demand. The approach of biotechnological methods would help to solve this problem and incorporate traits impossible by conventional breeding. Target traits are dormancy, development, color, floral fragrance and resistances against various biotic and abiotic stresses, so as to improve the quality of bulbs and cut flowers in planting, cultivation, postharvest, plant protection and marketing. Genetic transformation technology is an important method for varietal improvement and has become the foundation and core of plant functional genomics research, greatly assisting various plant improvement programs. However, achieving stable and efficient genetic transformation of lily has been difficult worldwide. Many gene function verification studies depend on the use of model plants, which greatly limits the pace of directed breeding and germplasm improvement in lily. Although significant progress has been made in the development and optimization of genetic transformation systems, shortcomings remain. Agrobacterium-mediated genetic transformation has been widely used in lily. However, severe genotypic dependence is the main bottleneck limiting the genetic transformation of lily. This review will summarizes the research progress in the genetic transformation of lily over the past 30 years to generate the material including a section how genome engineering using stable genetic transformation system, and give an overview about recent and future applications of lily transformation. The information provided in this paper includes ideas for optimizing and improving the efficiency of existing genetic transformation methods and for innovation, provides technical support for mining and identifying regulatory genes for key traits, and lays a foundation for genetic improvement and innovative germplasm development in lily.
Collapse
Affiliation(s)
- Xinyue Fan
- Key Laboratory of Protected Horticulture of Education Ministry, College of Horticulture, Shenyang Agricultural University, Shenyang, 110866, China
| | - Hongmei Sun
- Key Laboratory of Protected Horticulture of Education Ministry, College of Horticulture, Shenyang Agricultural University, Shenyang, 110866, China.
- National and Local Joint Engineering Research Center of Northern Horticultural Facilities Design and Application Technology, Shenyang, 110866, China.
| |
Collapse
|
2
|
Niu F, Rehmani MS, Yan J. Multilayered regulation and implication of flowering time in plants. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 213:108842. [PMID: 38889533 DOI: 10.1016/j.plaphy.2024.108842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 06/13/2024] [Accepted: 06/14/2024] [Indexed: 06/20/2024]
Abstract
Initiation of flowering is a key switch for plants to shift from the vegetative growth to the phase of reproductive growth. This critical phase is essential not only for achieving successful reproduction, but also for facilitating environmental adaptation and maximizing yield potential. In the past decades, the environmental factors and genetic pathways that control flowering time have undergone extensive investigation in both model plant Arabidopsis and various crop species. The impact of environmental factors on plant flowering time is well documented. This paper focuses on the multilayered modulation of flowering time. Recent multi-omics approaches, and genetic screens have revealed additional components that modulate flowering time across various levels, encompassing chromatin modification, transcriptional and post-transcriptional control, as well as translational and post-translational regulation. The interplay between these various layers of regulation creates a finely-tuned system that can respond to a wide variety of inputs and allows plants to adjust flowering time in response to changing environmental conditions. In this review, we present a comprehensive overview of the recent progress made in understanding the intricate regulation of flowering time in plants, emphasizing the pivotal molecular components and their intricate interactions. Additionally, we provide an exhaustive list of key genes implicated in the intricate modulation of flowering time and offer a detailed summary of regulators of FLOWERING LOCUS T (FT) and FLOWERING LOCUS (FLC). We also discuss the implications of this knowledge for crop improvement and adaptation to changing environments.
Collapse
Affiliation(s)
- Fangfang Niu
- School of Life Sciences, Centre for Cell and Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | | | - Jingli Yan
- College of Plant Protection, Henan Agricultural University, Zhengzhou, 450002, China.
| |
Collapse
|
3
|
Iiyama CM, Vilcherrez-Atoche JA, Germanà MA, Vendrame WA, Cardoso JC. Breeding of ornamental orchids with focus on Phalaenopsis: current approaches, tools, and challenges for this century. Heredity (Edinb) 2024; 132:163-178. [PMID: 38302667 PMCID: PMC10997592 DOI: 10.1038/s41437-024-00671-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 01/09/2024] [Accepted: 01/11/2024] [Indexed: 02/03/2024] Open
Abstract
Ornamental orchid breeding programs have been conducted to develop commercially valuable cultivars with improved characteristics of commercial interest, such as size, flower color, pattern, shape, and resistance to pathogens. Conventional breeding, including sexual hybridization followed by selection of desirable characteristics in plants, has so far been the main method for ornamental breeding, but other techniques, including mutation induction by polyploidization and gamma irradiation, and biotechnological techniques, such as genetic transformation, have also been studied and used in ornamental breeding programs. Orchids are one of the most commercially important families in floriculture industry, having very particular reproductive biology characteristics and being a well-studied group of ornamentals in terms of genetic improvement. The present review focuses on the conventional and biotechnological techniques and approaches specially employed in breeding Phalaenopsis orchids, the genus with highest worldwide importance as an ornamental orchid, highlighting the main limitations and strengths of the approaches. Furthermore, new opportunities and future prospects for ornamental breeding in the CRISPR/Cas9 genome editing era are also discussed. We conclude that conventional hybridization remains the most used method to obtain new cultivars in orchids. However, the emergence of the first biotechnology-derived cultivars, as well as the new biotechnological tools available, such as CRISPR-Cas9, rekindled the full potential of biotechnology approaches and their importance for improve ornamental orchid breeding programs.
Collapse
Affiliation(s)
- Carla Midori Iiyama
- Laboratory of Plant Physiology and Tissue Culture, Department of Biotechnology, Plant and Animal Production, Centro de Ciências Agrárias, Universidade Federal de São Carlos (CCA/UFSCar), Rodovia Anhanguera, km 174, CEP13600-970, Araras, SP, Brazil.
- Graduate Program in Plant Production and Associated Bioprocesses, CCA/UFSCar, Araras, Brazil.
| | - Joe Abdul Vilcherrez-Atoche
- Laboratory of Plant Physiology and Tissue Culture, Department of Biotechnology, Plant and Animal Production, Centro de Ciências Agrárias, Universidade Federal de São Carlos (CCA/UFSCar), Rodovia Anhanguera, km 174, CEP13600-970, Araras, SP, Brazil
- Graduate Program in Plant Production and Associated Bioprocesses, CCA/UFSCar, Araras, Brazil
| | - Maria Antonietta Germanà
- Dipartimento Scienze Agrarie, Alimentari e Forestali (SAAF), Università degli Studi di Palermo, Palermo, Italy
| | - Wagner Aparecido Vendrame
- Environmental Horticulture Department, University of Florida, 2550 Hull Rd., Gainesville, FL, 32611, USA
| | - Jean Carlos Cardoso
- Laboratory of Plant Physiology and Tissue Culture, Department of Biotechnology, Plant and Animal Production, Centro de Ciências Agrárias, Universidade Federal de São Carlos (CCA/UFSCar), Rodovia Anhanguera, km 174, CEP13600-970, Araras, SP, Brazil.
- Graduate Program in Plant Production and Associated Bioprocesses, CCA/UFSCar, Araras, Brazil.
| |
Collapse
|
4
|
Xie S, Luo G, An G, Wang B, Kuang H, Wang X. Lskipk Lsatpase double mutants are necessary and sufficient for the compact plant architecture of butterhead lettuce. HORTICULTURE RESEARCH 2024; 11:uhad280. [PMID: 38371637 PMCID: PMC10873588 DOI: 10.1093/hr/uhad280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 12/11/2023] [Indexed: 02/20/2024]
Abstract
Lettuce, an important leafy vegetable crop worldwide, has rich variations in plant architecture. Butterhead lettuce, a popular horticultural type, has a unique plant architecture with loose leafy heads. The genetic and molecular mechanisms for such a compact plant architecture remain unclear. In this study we constructed a segregating population through crossing a butterhead cultivar and a stem lettuce cultivar. Genetic analysis identified the LsKIPK gene, which encodes a kinase, as the candidate gene controlling butterhead plant architecture. The Lskipk gene in the butterhead parent had a nonsense mutation, leading to a partial predicted protein. CRISPR/Cas9 and complementation tests verified its functions in plant architecture. We showed that the loss of function of LsKIPK is necessary but not sufficient for the butterhead plant architecture. To identify additional genes required for butterhead lettuce, we crossed a butterhead cultivar and a crisphead cultivar, both with the mutated Lskipk gene. Genetic mapping identified a new gene encoding an ATPase contributing to butterhead plant architecture. Knockout and complementation tests showed that loss of function of LsATPase is also required for the development of butterhead plant architecture. The Lskipk Lsatpase double mutation could reduce leaf size and leaf angle, leading to butterhead plant architecture. Expression and cytology analysis indicated that the loss of function of LsKIPK and LsATPase contributed to butterhead plant architecture by regulating cell wall development, a regulatory mechanism different from that for crisphead. This study provides new gene resources and theory for the breeding of the crop ideotype.
Collapse
Affiliation(s)
- Sai Xie
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops; Hubei Hongshan Laboratory; College of Horticulture and Forestry Sciences, Huazhong Agricultural University, 430070 Wuhan, China
| | - Guangbao Luo
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops; Hubei Hongshan Laboratory; College of Horticulture and Forestry Sciences, Huazhong Agricultural University, 430070 Wuhan, China
| | - Guanghui An
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops; Hubei Hongshan Laboratory; College of Horticulture and Forestry Sciences, Huazhong Agricultural University, 430070 Wuhan, China
- College of Horticulture, Henan Agricultural University, 450002 Zhengzhou, China
| | - Bincai Wang
- North Park, Wuhan Academy of Agricultural Sciences, Wuhu Eco-park, Huangpi District, Wuhan, China
| | - Hanhui Kuang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops; Hubei Hongshan Laboratory; College of Horticulture and Forestry Sciences, Huazhong Agricultural University, 430070 Wuhan, China
| | - Xin Wang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops; Hubei Hongshan Laboratory; College of Horticulture and Forestry Sciences, Huazhong Agricultural University, 430070 Wuhan, China
| |
Collapse
|
5
|
Penna S, Jain SM. Editorial: Innovative technologies and advancements in designing custom-made ornamental plants. FRONTIERS IN PLANT SCIENCE 2023; 14:1348949. [PMID: 38152145 PMCID: PMC10751918 DOI: 10.3389/fpls.2023.1348949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Accepted: 12/04/2023] [Indexed: 12/29/2023]
Affiliation(s)
- Suprasanna Penna
- Amity Centre for Nuclear Biotechnology, Amity Institute of Biotechnology, Amity University of Maharashtra, Mumbai, India
| | - Shri Mohan Jain
- Department of Agricultural Sciences, University of Helsinki, Helsinki, Finland
| |
Collapse
|
6
|
Mekapogu M, Song HY, Lim SH, Jung JA. Genetic Engineering and Genome Editing Advances to Enhance Floral Attributes in Ornamental Plants: An Update. PLANTS (BASEL, SWITZERLAND) 2023; 12:3983. [PMID: 38068619 PMCID: PMC10707928 DOI: 10.3390/plants12233983] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 11/20/2023] [Accepted: 11/24/2023] [Indexed: 10/16/2024]
Abstract
The ornamental horticulture industry is a highly dynamic and rapidly changing market. Constant development of novel cultivars with elite traits is essential to sustain competitiveness. Conventional breeding has been used to develop cultivars, which is often laborious. Biotechnological strategies such as genetic engineering have been crucial in manipulating and improving various beneficial traits that are technically not possible through cross-breeding. One such trait is the highly desired blue-colored flower in roses and chrysanthemums, which can be achieved through transgenic technology. Advances in genome sequencing platforms have enhanced the opportunities to access the whole genome sequence in various ornamentals, facilitating the dissection of the molecular genetics and regulatory controls of different traits. The recent advent of genome editing tools, including CRISPR/Cas9, has revolutionized plant breeding. CRISPR/Cas9-based gene editing offers efficient and highly precise trait modification, contributing to various beneficial advancements. Although genome editing in ornamentals is currently in its infancy, the recent increase in the availability of ornamental genome sequences provides a platform to extend the frontiers of future genome editing in ornamentals. Hence, this review depicts the implication of various commercially valuable ornamental attributes, and details the research attempts and achievements in enhancing floral attributes using genetic engineering and genome editing in ornamental plants.
Collapse
Affiliation(s)
| | | | | | - Jae-A Jung
- Floriculture Research Division, National Institute of Horticultural & Herbal Science, Rural Development Administration, Wanju 55365, Republic of Korea
| |
Collapse
|
7
|
Partap M, Verma V, Thakur M, Bhargava B. Designing of future ornamental crops: a biotechnological driven perspective. HORTICULTURE RESEARCH 2023; 10:uhad192. [PMID: 38023473 PMCID: PMC10681008 DOI: 10.1093/hr/uhad192] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 09/14/2023] [Indexed: 12/01/2023]
Abstract
With a basis in human appreciation of beauty and aesthetic values, the new era of ornamental crops is based on implementing innovative technologies and transforming symbols into tangible assets. Recent advances in plant biotechnology have attracted considerable scientific and industrial interest, particularly in terms of modifying desired plant traits and developing future ornamental crops. By utilizing omics approaches, genomic data, genetic engineering, and gene editing tools, scientists have successively explored the underlying molecular mechanism and potential gene(s) behind trait regulation such as floral induction, plant architecture, stress resistance, plasticity, adaptation, and phytoremediation in ornamental crop species. These signs of progress lay a theoretical and practical foundation for designing and enhancing the efficiency of ornamental plants for a wide range of applications. In this review, we briefly summarized the existing literature and advances in biotechnological approaches for the improvement of vital traits in ornamental plants. The future ornamental plants, such as light-emitting plants, biotic/abiotic stress detectors, and pollution abatement, and the introduction of new ornamental varieties via domestication of wild species are also discussed.
Collapse
Affiliation(s)
- Mahinder Partap
- Floriculture Laboratory, Agrotechnology Division, Council of Scientific and Industrial Research (CSIR), Institute of Himalayan Bioresource Technology (IHBT), Post Box No. 6, 176 061 (HP) Palampur, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, Uttar Pradesh, India
| | - Vipasha Verma
- Floriculture Laboratory, Agrotechnology Division, Council of Scientific and Industrial Research (CSIR), Institute of Himalayan Bioresource Technology (IHBT), Post Box No. 6, 176 061 (HP) Palampur, India
| | - Meenakshi Thakur
- Floriculture Laboratory, Agrotechnology Division, Council of Scientific and Industrial Research (CSIR), Institute of Himalayan Bioresource Technology (IHBT), Post Box No. 6, 176 061 (HP) Palampur, India
| | - Bhavya Bhargava
- Floriculture Laboratory, Agrotechnology Division, Council of Scientific and Industrial Research (CSIR), Institute of Himalayan Bioresource Technology (IHBT), Post Box No. 6, 176 061 (HP) Palampur, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, Uttar Pradesh, India
| |
Collapse
|
8
|
Álvarez S, Acosta-Motos JR, Sánchez-Blanco MJ. Morphological performance and seasonal pattern of water relations and gas exchange in Pistacia lentiscus plants subjected to salinity and water deficit. FRONTIERS IN PLANT SCIENCE 2023; 14:1237332. [PMID: 37731979 PMCID: PMC10508188 DOI: 10.3389/fpls.2023.1237332] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 08/16/2023] [Indexed: 09/22/2023]
Abstract
Soil water deficit and salinity represent a major factor impacting plant survival and agricultural production. The frequency and severity of both abiotic stresses are expected to increase in a context of climate change, especially in arid and semi-arid regions. This work studied the growth pattern, biomass and mineral distribution and the seasonal pattern of water status, photosynthetic rate and stomatal conductance in plant of Pistacia lentiscus grown under different levels of water deficit and salinity. P. lentiscus plants growing under greenhouse conditions were subjected to four irrigation treatments during 11 months: control (C, 1 dS m-1), moderate water deficit (MW, 1dS m-1, 60% of the control), severe water deficit (SW, 1 dS m-1, 40% of the control) and saline (S, 4dS m-1). The results show that Pistacia lentiscus plants were more affected by deficit irrigation than salinity. Deficit irrigation and salinity inhibited plant height, with reductions of 20%, 22% and 35% for S, MW and SW, respectively. Total leaf area was not modified by effect of the treatments, with the result that plant compactness increased in MW. The salt stressed plants only showed lower relative growth rate at the end of the experiment. Plants responded to saline or drought stress by increasing their osmotic adjustment, which was more pronounced under salinity. Saline plants had the highest values in Na+ and Cl- ions and the lowest values for K+/Na+ and Ca2+/Na+ ratios in leaves and stems, which is correlated with a decrease in growth, stomatal conductance, photosynthesis and stem water potential, and can be used as a diagnostic tool to assess plant tolerance to salinity stress. As a measure of plant hydration, relative water content was more sensitive to deficit irrigation than salinity, being a good indicator of water stress. P. lentiscus plants subjected to both deficit irrigation treatments exhibited an increase in their intrinsic water use efficiency, which is an important adaptation for plants growing in environments with water scarcity.
Collapse
Affiliation(s)
- Sara Álvarez
- Unidad de Cultivos Leñosos y Hortícolas, Instituto Tecnológico Agrario de Castilla y León (ITACyL), Valladolid, Spain
| | - Jose Ramon Acosta-Motos
- Grupo de Biotecnología Vegetal para la Agricultura y la Alimentación (BioVegA), Universidad Católica San Antonio de Murcia, Murcia, Spain
| | | |
Collapse
|
9
|
Rogers HJ. How far can omics go in unveiling the mechanisms of floral senescence? Biochem Soc Trans 2023; 51:1485-1493. [PMID: 37387359 PMCID: PMC10586764 DOI: 10.1042/bst20221097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 06/12/2023] [Accepted: 06/13/2023] [Indexed: 07/01/2023]
Abstract
Floral senescence is of fundamental interest in understanding plant developmental regulation, it is of ecological and agricultural interest in relation to seed production, and is of key importance to the production of cut flowers. The biochemical changes occurring are well-studied and involve macromolecular breakdown and remobilisation of nutrients to developing seeds or other young organs in the plant. However, the initiation and regulation of the process and inter-organ communication remain to be fully elucidated. Although ethylene emission, which becomes autocatalytic, is a key regulator in some species, in other species it appears not to be as important. Other plant growth regulators such as cytokinins, however, seem to be important in floral senescence across both ethylene sensitive and insensitive species. Other plant growth regulators are also likely involved. Omics approaches have provided a wealth of data especially in ornamental species where genome data is lacking. Two families of transcription factors: NAC and WRKY emerge as major regulators, and omics information has been critical in understanding their functions. Future progress would greatly benefit from a single model species for understanding floral senescence; however, this is challenging due to the diversity of regulatory mechanisms. Combining omics data sets can be powerful in understanding different layers of regulation, but in vitro biochemical and or genetic analysis through transgenics or mutants is still needed to fully verify mechanisms and interactions between regulators.
Collapse
|
10
|
Yoon WS, Kim CK, Kim YK. The First Complete Chloroplast Genome of Campanula carpatica: Genome Characterization and Phylogenetic Diversity. Genes (Basel) 2023; 14:1597. [PMID: 37628648 PMCID: PMC10454809 DOI: 10.3390/genes14081597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 07/28/2023] [Accepted: 08/06/2023] [Indexed: 08/27/2023] Open
Abstract
Campanula carpatica is an ornamental flowering plant belonging to the family Campanulaceae. The complete chloroplast genome of C. carpatica was obtained using Illumina HiSeq X and Oxford Nanopore (Nanopore GridION) platforms. The chloroplast genome exhibited a typical circular structure with a total length of 169,341 bp, comprising a large single-copy region of 102,323 bp, a small single-copy region of 7744 bp, and a pair of inverted repeats (IRa/IRb) of 29,637 bp each. Out of a total 120 genes, 76 were protein-coding genes, 36 were transfer RNA genes, and eight were ribosomal RNA genes. The genomic characteristics of C. carpatica are similar to those of other Campanula species in terms of repetitive sequences, sequence divergence, and contraction/expansion events in the inverted repeat regions. A phylogenetic analysis of 63 shared genes in 16 plant species revealed that Campanula zangezura is the closest relative of C. carpatica. Phylogenetic analysis indicated that C. carpatica was within the Campanula clade, and C. pallida occupied the outermost position of that clade.
Collapse
Affiliation(s)
- Won-Sub Yoon
- Department of Mechanical Design Engineering, Wonkwang University, Iksan 54538, Republic of Korea
| | - Chang-Kug Kim
- Genomics Division, National Institute of Agricultural Sciences, Jeonju 54874, Republic of Korea;
| | - Yong-Kab Kim
- Department of Information Communication Engineering, Wonkwang University, Iksan 54538, Republic of Korea
| |
Collapse
|
11
|
Yang X, Li A, Xia J, Huang Y, Lu X, Guo G, Sui S. Enhancement of the anthocyanin contents of Caladium leaves and petioles via metabolic engineering with co-overexpression of AtPAP1 and ZmLc transcription factors. FRONTIERS IN PLANT SCIENCE 2023; 14:1186816. [PMID: 37416877 PMCID: PMC10320811 DOI: 10.3389/fpls.2023.1186816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 06/05/2023] [Indexed: 07/08/2023]
Abstract
Introduction Metabolic engineering of anthocyanin synthesis is an active research area for pigment breeding and remains a research hotspot involving AtPAP1 and ZmLc transcription factors. Caladium bicolor is a desirable anthocyanin metabolic engineering receptor, with its abundant leaf color and stable genetic transformation system. Methods We transformed C. bicolor with AtPAP1 and ZmLc and successfully obtained transgenic plants. We then used a combination of metabolome, transcriptome, WGCNA and PPI co-expression analyses to identify differentially expressed anthocyanin components and transcripts between wild-type and transgenic lines. Results Cyanidin-3-O-glucoside, cyanidin-3-O-rutinoside and peonidin-3-O-rutinoside are the main components of anthocyanins in the leaves and petioles of C. bicolor. Exogenous introduction of AtPAP1 and ZmLc resulted in significant changes in pelargonidins, particularly pelargonidin-3-O-glucoside and pelargonidin-3-O-rutinoside in C. bicolor. Furthermore, 5 MYB-TFs, 9 structural genes, and 5 transporters were found to be closely associated with anthocyanin synthesis and transport in C. bicolor. Discussion In this study, a network regulatory model of AtPAP1 and ZmLc in the regulation of anthocyanin biosynthesis and transport in C. bicolor was proposed, which provides insights into the color formation mechanisms of C. bicolor, and lays a foundation for the precise regulation of anthocyanin metabolism and biosynthesis for economic plant pigment breeding.
Collapse
|
12
|
Wang C, Li Y, Wang N, Yu Q, Li Y, Gao J, Zhou X, Ma N. An efficient CRISPR/Cas9 platform for targeted genome editing in rose (Rosa hybrida). JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2023; 65:895-899. [PMID: 36460630 DOI: 10.1111/jipb.13421] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 11/30/2022] [Indexed: 06/17/2023]
Abstract
The clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-related nuclease 9 (Cas9) system enables precise, simple editing of genes in many animals and plants. However, this system has not been applied to rose (Rosa hybrida) due to the genomic complexity and lack of an efficient transformation technology for this plant. Here, we established a platform for screening single-guide RNAs (sgRNAs) with high editing efficiency for CRISPR/Cas9-mediated gene editing in rose using suspension cells. We used the Arabidopsis thaliana U6-29 promoter, which showed high activity for driving sgRNA expression, to modify the CRISPR/Cas9 system. We used our highly efficient optimized CRISPR/Cas9 system to successfully edit RhEIN2, encoding an indispensable component of the ethylene signaling pathway, resulting in ethylene insensitivity in rose. Our optimized CRISPR/Cas9 system provides a powerful toolbox for functional genomics, molecular breeding, and synthetic biology in rose.
Collapse
Affiliation(s)
- Chengpeng Wang
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, China Agricultural University, Beijing, 100193, China
| | - Yang Li
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, China Agricultural University, Beijing, 100193, China
| | - Na Wang
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, China Agricultural University, Beijing, 100193, China
| | - Qin Yu
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, China Agricultural University, Beijing, 100193, China
| | - Yonghong Li
- School of Applied Chemistry and Biotechnology, Shenzhen Polytechnic, Shenzhen, 518038, China
| | - Junping Gao
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, China Agricultural University, Beijing, 100193, China
| | - Xiaofeng Zhou
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, China Agricultural University, Beijing, 100193, China
| | - Nan Ma
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, China Agricultural University, Beijing, 100193, China
| |
Collapse
|
13
|
Jin C, Dong L, Wei C, Wani MA, Yang C, Li S, Li F. Creating novel ornamentals via new strategies in the era of genome editing. FRONTIERS IN PLANT SCIENCE 2023; 14:1142866. [PMID: 37123857 PMCID: PMC10140431 DOI: 10.3389/fpls.2023.1142866] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 03/27/2023] [Indexed: 05/03/2023]
Abstract
Ornamental breeding has traditionally focused on improving novelty, yield, quality, and resistance to biotic or abiotic stress. However, achieving these goals has often required laborious crossbreeding, while precise breeding techniques have been underutilized. Fortunately, recent advancements in plant genome sequencing and editing technology have opened up exciting new frontiers for revolutionizing ornamental breeding. In this review, we provide an overview of the current state of ornamental transgenic breeding and propose four promising breeding strategies that have already proven successful in crop breeding and could be adapted for ornamental breeding with the help of genome editing. These strategies include recombination manipulation, haploid inducer creation, clonal seed production, and reverse breeding. We also discuss in detail the research progress, application status, and feasibility of each of these tactics.
Collapse
Affiliation(s)
- Chunlian Jin
- Floriculture Research Institute, Yunnan Academy of Agricultural Sciences, National Engineering Research Center for Ornamental Horticulture, Key Laboratory for Flower Breeding of Yunnan Province, Kunming, China
| | - Liqing Dong
- Floriculture Research Institute, Yunnan Academy of Agricultural Sciences, National Engineering Research Center for Ornamental Horticulture, Key Laboratory for Flower Breeding of Yunnan Province, Kunming, China
- School of Agriculture, Yunnan University, Kunming, China
| | - Chang Wei
- Floriculture Research Institute, Yunnan Academy of Agricultural Sciences, National Engineering Research Center for Ornamental Horticulture, Key Laboratory for Flower Breeding of Yunnan Province, Kunming, China
- School of Agriculture, Yunnan University, Kunming, China
| | - Muneeb Ahmad Wani
- Department of Floriculture and Landscape Architecture, Faculty of Horticulture, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Srinagar, India
| | - Chunmei Yang
- Floriculture Research Institute, Yunnan Academy of Agricultural Sciences, National Engineering Research Center for Ornamental Horticulture, Key Laboratory for Flower Breeding of Yunnan Province, Kunming, China
| | - Shenchong Li
- Floriculture Research Institute, Yunnan Academy of Agricultural Sciences, National Engineering Research Center for Ornamental Horticulture, Key Laboratory for Flower Breeding of Yunnan Province, Kunming, China
- *Correspondence: Fan Li, ; Shenchong Li,
| | - Fan Li
- Floriculture Research Institute, Yunnan Academy of Agricultural Sciences, National Engineering Research Center for Ornamental Horticulture, Key Laboratory for Flower Breeding of Yunnan Province, Kunming, China
- *Correspondence: Fan Li, ; Shenchong Li,
| |
Collapse
|
14
|
Verdonk JC, Ferrante A, Beruto MI, Batt P, Paiva R, Schouten RE, Paiva PDDO. Editorial: Quality of Ornamental Crops: Effect of Genotype, Preharvest, and Improved Production Chains on Quality Attributes of Ornamental Crops. FRONTIERS IN PLANT SCIENCE 2022; 13:918864. [PMID: 35991438 PMCID: PMC9382913 DOI: 10.3389/fpls.2022.918864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 07/14/2022] [Indexed: 06/15/2023]
Affiliation(s)
- Julian C. Verdonk
- Horticulture and Product Physiology, Plant Science Group, Wageningen University and Research, Wageningen, Netherlands
| | | | | | | | - Renato Paiva
- Departamento de Biologia, Instituto de Ciências Biológicas, Universidade Federal de Lavras, Lavras, Brazil
| | - Rob E. Schouten
- Food and Bio Based Research, Wageningen University and Research, Wageningen, Netherlands
| | | |
Collapse
|
15
|
Sirohi U, Kumar M, Sharma VR, Teotia S, Singh D, Chaudhary V, Yadav MK. CRISPR/Cas9 System: A Potential Tool for Genetic Improvement in Floricultural Crops. Mol Biotechnol 2022; 64:1303-1318. [PMID: 35751797 PMCID: PMC9244459 DOI: 10.1007/s12033-022-00523-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 06/09/2022] [Indexed: 11/25/2022]
Abstract
Demand of flowers is increasing with time worldwide. Floriculture has become one of the most important commercial trades in agriculture. Although traditional breeding methods like hybridization and mutation breeding have contributed significantly to the development of important flower varieties, flower production and quality of flowers can be significantly improved by employing modern breeding approaches. Novel traits of significance have interest to consumers and producers, such as fragrance, new floral color, change in floral architecture and morphology, vase life, aroma, and resistance to biotic and abiotic stresses, have been introduced by genetic manipulation. The clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein (Cas) system has recently emerged as a powerful genome-editing tool for accurately changing DNA sequences at specific locations. It provides excellent means of genetically improving floricultural crops. CRISPR/Cas system has been utilized in gene editing in horticultural cops. There are few reports on the utilization of the CRISPR/Cas9 system in flowers. The current review summarizes the research work done by employing the CRISPR/Cas9 system in floricultural crops including improvement in flowering traits such as color modification, prolonging the shelf life of flowers, flower initiation, and development, changes in color of ornamental foliage by genome editing. CRISPR/Cas9 gene editing could be useful in developing novel cultivars with higher fragrance and enhanced essential oil and many other useful traits. The present review also highlights the basic mechanism and key components involved in the CRISPR/Cas9 system.
Collapse
Affiliation(s)
- Ujjwal Sirohi
- Present Address: National Institute of Plant Genome Research (NIPGR), New Delhi, 110067 India
- Department of Agricultural Biotechnology, College of Agriculture, SVPUAT, Meerut, Uttar Pradesh 250110 India
| | - Mukesh Kumar
- Department of Horticulture, College of Agriculture, SVPUAT, Meerut, Uttar Pradesh 250110 India
| | - Vinukonda Rakesh Sharma
- Plant Genetic Resources and Improvement, CSIR-National Botanical Research Institute, Lucknow, Uttar Pradesh 226001 India
| | - Sachin Teotia
- Department of Biotechnology, Sharda University, Greater Noida, Uttar Pradesh 201306 India
| | - Deepali Singh
- School of Biotechnology, Gautam Buddha University, Gautam Budh Nagar, Greater Noida, Uttar Pradesh 201308 India
| | - Veena Chaudhary
- Department of Chemistry, Meerut College, Meerut, Uttar Pradesh 250003 India
| | - Manoj Kumar Yadav
- Department of Agricultural Biotechnology, College of Agriculture, SVPUAT, Meerut, Uttar Pradesh 250110 India
| |
Collapse
|
16
|
Li Y, Gao R, Zhang J, Wang Y, Kong P, Lu K, Adnan , Liu M, Ao F, Zhao C, Wang L, Gao X. The biochemical and molecular investigation of flower color and scent sheds lights on further genetic modification of ornamental traits in Clivia miniata. HORTICULTURE RESEARCH 2022; 9:uhac114. [PMID: 35929604 PMCID: PMC9343915 DOI: 10.1093/hr/uhac114] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 05/01/2022] [Indexed: 05/13/2023]
Abstract
Clivia miniata is renowned for its evergreen and strap-like leaves, whereas its floral color and scent are lacking diversity. Here, anthocyanin, volatile terpene, and carotenoid metabolisms were integrally investigated in C. miniata flowers. The results showed that pelargonidins and lutein might cooperate to confer orange or yellow color to C. miniata flowers, but only a trace amount of (+)-limonene was detected. The expression levels of CmF3'H and CmDFR appeared to be responsible for the ratio of cyanidin and pelargonidin derivatives in C. miniata, and the low expression of CmF3'H was responsible for the lack of cyanidins in flowers. Moreover, the CmF3'H promoter could not be activated by CmMYBAs, suggesting that it was controlled by novel regulators. Only two CmTPSs were functional, with CmTPS2 responsible for (+)-limonene synthesis, contributing to the monotonous flower volatile terpenes of C. miniata. CmCCD1a and CmCCD1b were able to cleave carotenoids at the 5,6 (5',6'), and 9,10 (9',10') positions to generate volatile apocarotenoids, whereas the substrates found in low-quantities or specific subcellular localizations of CmCCD1s might constrain volatile apocarotenoid release. Consequently, activating F3'H and introducing novel F3'5'H or versatile TPS may be effective ways to modify the floral color and scent, respectively. Alternatively, modifying the carotenoid flux or CCD1 localization might affect floral color and scent simultaneously. Taking these results together, the present study provides a preliminary deciphering of the genetic constraints underlying flower color and scent development, and proposes possible schemes for further genetic modification of ornamental traits in C. miniata and other plants.
Collapse
Affiliation(s)
- Yueqing Li
- Key Laboratory of Molecular Epigenetics of MOE and Institute of Genetics & Cytology, Northeast Normal University, Changchun 130024, China
| | - Ruifang Gao
- Key Laboratory of Molecular Epigenetics of MOE and Institute of Genetics & Cytology, Northeast Normal University, Changchun 130024, China
| | - Jia Zhang
- Key Laboratory of Molecular Epigenetics of MOE and Institute of Genetics & Cytology, Northeast Normal University, Changchun 130024, China
| | - Yanan Wang
- Key Laboratory of Molecular Epigenetics of MOE and Institute of Genetics & Cytology, Northeast Normal University, Changchun 130024, China
| | - Peiru Kong
- Key Laboratory of Molecular Epigenetics of MOE and Institute of Genetics & Cytology, Northeast Normal University, Changchun 130024, China
| | - Keyu Lu
- Key Laboratory of Molecular Epigenetics of MOE and Institute of Genetics & Cytology, Northeast Normal University, Changchun 130024, China
| | - Adnan
- Key Laboratory of Molecular Epigenetics of MOE and Institute of Genetics & Cytology, Northeast Normal University, Changchun 130024, China
| | - Meng Liu
- Key Laboratory of Molecular Epigenetics of MOE and Institute of Genetics & Cytology, Northeast Normal University, Changchun 130024, China
| | - Feng Ao
- Key Laboratory of Molecular Epigenetics of MOE and Institute of Genetics & Cytology, Northeast Normal University, Changchun 130024, China
| | - Chunli Zhao
- College of Horticulture, Jilin Agricultural University, Changchun 130118, China
| | - Li Wang
- Key Laboratory of Molecular Epigenetics of MOE and Institute of Genetics & Cytology, Northeast Normal University, Changchun 130024, China
| | - Xiang Gao
- Key Laboratory of Molecular Epigenetics of MOE and Institute of Genetics & Cytology, Northeast Normal University, Changchun 130024, China
| |
Collapse
|
17
|
Yusop MSM, Mohamed-Hussein ZA, Ramzi AB, Bunawan H. Cymbidium Mosaic Virus Infecting Orchids: What, How, and What Next? IRANIAN JOURNAL OF BIOTECHNOLOGY 2022; 20:e3020. [PMID: 35891960 PMCID: PMC9284244 DOI: 10.30498/ijb.2021.278382.3020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Context Cymbidium mosaic virus (CymMV) is one of the most devastating viruses causing losses in the orchid industry, affecting economies worth millions of US dollars. CymMV significantly affects the orchid population and could be controlled through an integrated management strategy consisting of virus detection, good sanitation care of gardeners and their tools, and maintaining virus-free explants. Evidence acquisition This review was written based on research publications relevant to the CymMV infection in orchids. The literature cited were obtained from online literature databases such as web of Science, Scopus, and Google Scholar. The searched term used was "Cymbidium mosaic virus". Related publications to the initial search were also examined. Results & Conclusions This review describes the threat of CymMV to the orchid population by examining its history, genome organization, symptoms on individual orchids, detection, and management. Current research has been focusing on the prospect of transgenic orchids with viral resistance. This review also highlights the potential role of the symbiotic relationship between orchids and arbuscular mycorrhiza fungi that could be useful to improve the protection of orchids against virus infection. Overall, this review provides information on how CymMV infection impacts the orchid population.
Collapse
Affiliation(s)
- Mohd Shakir Mohamad Yusop
- Institute of Systems Biology (INBIOSIS), Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia
| | - Zeti-Azura Mohamed-Hussein
- Institute of Systems Biology (INBIOSIS), Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia
- Department of Applied Physics, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia
| | - Ahmad Bazli Ramzi
- Institute of Systems Biology (INBIOSIS), Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia
| | - Hamidun Bunawan
- Institute of Systems Biology (INBIOSIS), Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia
| |
Collapse
|
18
|
Guo J, Shan C, Zhang Y, Wang X, Tian H, Han G, Zhang Y, Wang B. Mechanisms of Salt Tolerance and Molecular Breeding of Salt-Tolerant Ornamental Plants. FRONTIERS IN PLANT SCIENCE 2022; 13:854116. [PMID: 35574092 PMCID: PMC9093713 DOI: 10.3389/fpls.2022.854116] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 03/30/2022] [Indexed: 05/10/2023]
Abstract
As the area of salinized soils increases, and freshwater becomes more scarcer worldwide, an urgent measure for agricultural production is to use salinized land and conserve freshwater resources. Ornamental flowering plants, such as carnations, roses, chrysanthemums, and gerberas, are found around the world and have high economic, ornamental, ecological, and edible value. It is therefore prudent to improve the salt tolerance of these important horticultural crops. Here, we summarize the salt-adaptive mechanisms, genes, and molecular breeding of ornamental flowering crops. We also review the genome editing technologies that provide us with the means to obtain novel varieties with high salinity tolerance and improved utility value, and discuss future directions of research into ornamental plants like salt exclusion mechanism. We considered that the salt exclusion mechanism in ornamental flowering plants, the acquisition of flowers with high quality and novel color under salinity condition through gene editing techniques should be focused on for the future research.
Collapse
Affiliation(s)
- Jianrong Guo
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Science, Shandong Normal University, Ji’nan, China
- *Correspondence: Jianrong Guo,
| | - Changdan Shan
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Science, Shandong Normal University, Ji’nan, China
| | - Yifan Zhang
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Science, Shandong Normal University, Ji’nan, China
| | - Xinlei Wang
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Science, Shandong Normal University, Ji’nan, China
| | - Huaying Tian
- College of Forestry Engineering, Shandong Agriculture and Engineering University, Ji’nan, China
| | - Guoliang Han
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Science, Shandong Normal University, Ji’nan, China
| | - Yi Zhang
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Science, Shandong Normal University, Ji’nan, China
| | - Baoshan Wang
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Science, Shandong Normal University, Ji’nan, China
- Baoshan Wang,
| |
Collapse
|
19
|
Giovannini A, Laura M, Nesi B, Savona M, Cardi T. Genes and genome editing tools for breeding desirable phenotypes in ornamentals. PLANT CELL REPORTS 2021; 40:461-478. [PMID: 33388891 PMCID: PMC7778708 DOI: 10.1007/s00299-020-02632-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Accepted: 10/27/2020] [Indexed: 05/05/2023]
Abstract
We review the main genes underlying commercial traits in cut flower species and critically discuss the possibility to apply genome editing approaches to produce novel variation and phenotypes. Promoting flowering and flower longevity as well as creating novelty in flower structure, colour range and fragrances are major objectives of ornamental plant breeding. The novel genome editing techniques add new possibilities to study gene function and breed new varieties. The implementation of such techniques, however, relies on detailed information about structure and function of genomes and genes. Moreover, improved protocols for efficient delivery of editing reagents are required. Recent results of the application of genome editing techniques to elite ornamental crops are discussed in this review. Enabling technologies and genomic resources are reviewed in relation to the implementation of such approaches. Availability of the main gene sequences, underlying commercial traits and in vitro transformation protocols are provided for the world's best-selling cut flowers, namely rose, lily, chrysanthemum, lisianthus, tulip, gerbera, freesia, alstroemeria, carnation and hydrangea. Results obtained so far are described and their implications for the improvement of flowering, flower architecture, colour, scent and shelf-life are discussed.
Collapse
Affiliation(s)
- A. Giovannini
- CREA Research Centre for Vegetable and Ornamental Crops (CREA OF), Corso degli Inglesi 508, 18038 Sanremo, Italy
| | - M. Laura
- CREA Research Centre for Vegetable and Ornamental Crops (CREA OF), Corso degli Inglesi 508, 18038 Sanremo, Italy
| | - B. Nesi
- CREA Research Centre for Vegetable and Ornamental Crops (CREA OF), Via dei Fiori 8, 51017 Pescia, Italy
| | - M. Savona
- CREA Research Centre for Vegetable and Ornamental Crops (CREA OF), Corso degli Inglesi 508, 18038 Sanremo, Italy
| | - T. Cardi
- CREA Research Centre for Vegetable and Ornamental Crops (CREA OF), Via Cavalleggeri 25, 84098 Pontecagnano Faiano, Italy
| |
Collapse
|
20
|
Darqui FS, Radonic LM, Beracochea VC, Hopp HE, López Bilbao M. Peculiarities of the Transformation of Asteraceae Family Species: The Cases of Sunflower and Lettuce. FRONTIERS IN PLANT SCIENCE 2021; 12:767459. [PMID: 34899788 PMCID: PMC8662702 DOI: 10.3389/fpls.2021.767459] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 11/02/2021] [Indexed: 05/17/2023]
Abstract
The Asteraceae family is the largest and most diversified family of the Angiosperms, characterized by the presence of numerous clustered inflorescences, which have the appearance of a single compound flower. It is estimated that this family represents around 10% of all flowered species, with a great biodiversity, covering all environments on the planet, except Antarctica. Also, it includes economically important crops, such as lettuce, sunflower, and chrysanthemum; wild flowers; herbs, and several species that produce molecules with pharmacological properties. Nevertheless, the biotechnological improvement of this family is limited to a few species and their genetic transformation was achieved later than in other plant families. Lettuce (Lactuca sativa L.) is a model species in molecular biology and plant biotechnology that has easily adapted to tissue culture, with efficient shoot regeneration from different tissues, organs, cells, and protoplasts. Due to this plasticity, it was possible to obtain transgenic plants tolerant to biotic or abiotic stresses as well as for the production of commercially interesting molecules (molecular farming). These advances, together with the complete sequencing of lettuce genome allowed the rapid adoption of gene editing using the CRISPR system. On the other hand, sunflower (Helianthus annuus L.) is a species that for years was considered recalcitrant to in vitro culture. Although this difficulty was overcome and some publications were made on sunflower genetic transformation, until now there is no transgenic variety commercialized or authorized for cultivation. In this article, we review similarities (such as avoiding the utilization of the CaMV35S promoter in transformation vectors) and differences (such as transformation efficiency) in the state of the art of genetic transformation techniques performed in these two species.
Collapse
Affiliation(s)
- Flavia Soledad Darqui
- IABIMO (Instituto de Agrobiotecnología y Biología Molecular), UEDD INTA-CONICET, CNIA, Buenos Aires, Argentina
| | - Laura Mabel Radonic
- IABIMO (Instituto de Agrobiotecnología y Biología Molecular), UEDD INTA-CONICET, CNIA, Buenos Aires, Argentina
| | - Valeria Cecilia Beracochea
- IABIMO (Instituto de Agrobiotecnología y Biología Molecular), UEDD INTA-CONICET, CNIA, Buenos Aires, Argentina
| | - H. Esteban Hopp
- IABIMO (Instituto de Agrobiotecnología y Biología Molecular), UEDD INTA-CONICET, CNIA, Buenos Aires, Argentina
- Departamento de Fisiología, Biología Molecular y Celular (FBMC), Facultad de Ciencias Exactas y Naturales (FCEyN), Universidad de Buenos Aires (UBA), Ciudad Autónoma de Buenos Aires, Buenos Aires, Argentina
| | - Marisa López Bilbao
- IABIMO (Instituto de Agrobiotecnología y Biología Molecular), UEDD INTA-CONICET, CNIA, Buenos Aires, Argentina
- *Correspondence: Marisa López Bilbao,
| |
Collapse
|
21
|
Abstract
The presence of genetically modified organisms (GMO) is commonly assessed using real-time PCR methods targeting the most common transgenic elements found in GMOs. Once the presence of GM material has been established using these screening methods, GMOs are further identified using a battery of real-time PCR methods, each being specific of one GM event and usually targeting the junction of the plant genome and of the transgenic DNA insert. If, using these specific methods, no GMO could be identified, the presence of an unauthorized GMO is suspected. In this context, the aim of this work was to develop a fast and simple method to obtain the sequence of the transgene and of its junction with plant DNA, with the presence of a screening sequence as only prior knowledge. An unauthorized GM petunia, recently found on the French market, was used as template during the development of this new molecular tool. The innovative proposed protocol is based on the circularization of fragmented DNA followed by the amplification of the transgene and of its flanking regions using long-range inverse PCR. Sequencing was performed using the Oxford Nanopore MinION technology and a bioinformatic pipeline was developed.
Collapse
|
22
|
Haselmair-Gosch C, Nitarska D, Walliser B, Flachowsky H, Marinovic S, Halbwirth H. Event-specific qualitative polymerase chain reaction analysis for two T-DNA copies in genetically modified orange Petunia. PLANT CELL, TISSUE AND ORGAN CULTURE 2020; 142:415-424. [PMID: 32684656 PMCID: PMC7359168 DOI: 10.1007/s11240-020-01871-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Accepted: 06/14/2020] [Indexed: 06/11/2023]
Abstract
In 2017, various orange coloured petunia on the market turned out to be genetically modified (GM) without an official authorization for commercialization. Sequence analysis suggested these undeclared plants most probably originated from a plant transformation experiment performed in the 1980s. For a deeper understanding how GM petunia entered classical breeding programmes worldwide, and whether they originated from a single source or not, we undertook a molecular genetic characterization of the T-DNA integration sites in different GM petunia cultivars and breeding lines. By means of genome walking, we isolated different T-DNA sequences, which are located at the junctions between the T-DNA(s) and the petunia DNA. Based on the results obtained we conclude that there are at least two T-DNA copies of different lengths. This is supported by Southern blot analysis. For T-DNA1, the 3'-junction sequence was isolated, whereas the 5'-junction remained unclear. In contrast, for T-DNA2, the 5'-junction sequence was isolated, whereas the sequence isolated from the 3'-region consists only of T-DNA, but did not include the junction from the T-DNA to the petunia DNA. We developed primers for event-specific PCRs and screened a set of three orange GM petunia cultivars and 126 GM offspring from a commercial breeding program. We show that both T-DNA copies are present in all our tested GM petunia samples, which underpins the assumption of a single transgenic origin of the undeclared GM petunia. Most likely, the two T-DNAs are integrated in close proximity into the petunia genome.
Collapse
Affiliation(s)
- Christian Haselmair-Gosch
- Institute of Chemical, Environmental and Bioscience Engineering, Technische Universität Wien, Getreidemarkt 9, 1060 Vienna, Austria
| | - Daria Nitarska
- Institute of Chemical, Environmental and Bioscience Engineering, Technische Universität Wien, Getreidemarkt 9, 1060 Vienna, Austria
| | - Benjamin Walliser
- Institute of Chemical, Environmental and Bioscience Engineering, Technische Universität Wien, Getreidemarkt 9, 1060 Vienna, Austria
| | - Henryk Flachowsky
- Institute for Breeding Research on Fruit Crops, Julius Kühn-Institut, Pillnitzer Platz 3a, 01326 Dresden, Germany
| | - Silvija Marinovic
- Institute of Chemical, Environmental and Bioscience Engineering, Technische Universität Wien, Getreidemarkt 9, 1060 Vienna, Austria
| | - Heidi Halbwirth
- Institute of Chemical, Environmental and Bioscience Engineering, Technische Universität Wien, Getreidemarkt 9, 1060 Vienna, Austria
| |
Collapse
|
23
|
Ahn CH, Ramya M, An HR, Park PM, Kim YJ, Lee SY, Jang S. Progress and Challenges in the Improvement of Ornamental Plants by Genome Editing. PLANTS 2020; 9:plants9060687. [PMID: 32481726 PMCID: PMC7356337 DOI: 10.3390/plants9060687] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 05/18/2020] [Accepted: 05/27/2020] [Indexed: 01/08/2023]
Abstract
Biotechnological approaches have been used to modify the floral color, size, and fragrance of ornamental plants, as well as to increase disease resistance and vase life. Together with the advancement of whole genome sequencing technologies, new plant breeding techniques have rapidly emerged in recent years. Compared to the early versions of gene editing tools, such as meganucleases (MNs), zinc fingers (ZFNs), and transcription activator-like effector nucleases (TALENs), clustered regularly interspaced short palindromic repeat (CRISPR) is capable of altering a genome more efficiently and with higher accuracy. Most recently, new CRISPR systems, including base editors and prime editors, confer reduced off-target activity with improved DNA specificity and an expanded targeting scope. However, there are still controversial issues worldwide for the recognition of genome-edited plants, including whether genome-edited plants are genetically modified organisms and require a safety evaluation process. In the current review, we briefly summarize the current progress in gene editing systems and also introduce successful/representative cases of the CRISPR system application for the improvement of ornamental plants with desirable traits. Furthermore, potential challenges and future prospects in the use of genome-editing tools for ornamental plants are also discussed.
Collapse
Affiliation(s)
- Chang Ho Ahn
- Floriculture Research Division, National Institute of Horticultural and Herbal Science, Rural Development Administration (RDA), Wanju-gun, Jellabuk-do 55365, Korea; (C.H.A.); (M.R.); (H.R.A.); (P.M.P.); (Y.-J.K.)
| | - Mummadireddy Ramya
- Floriculture Research Division, National Institute of Horticultural and Herbal Science, Rural Development Administration (RDA), Wanju-gun, Jellabuk-do 55365, Korea; (C.H.A.); (M.R.); (H.R.A.); (P.M.P.); (Y.-J.K.)
| | - Hye Ryun An
- Floriculture Research Division, National Institute of Horticultural and Herbal Science, Rural Development Administration (RDA), Wanju-gun, Jellabuk-do 55365, Korea; (C.H.A.); (M.R.); (H.R.A.); (P.M.P.); (Y.-J.K.)
| | - Pil Man Park
- Floriculture Research Division, National Institute of Horticultural and Herbal Science, Rural Development Administration (RDA), Wanju-gun, Jellabuk-do 55365, Korea; (C.H.A.); (M.R.); (H.R.A.); (P.M.P.); (Y.-J.K.)
| | - Yae-Jin Kim
- Floriculture Research Division, National Institute of Horticultural and Herbal Science, Rural Development Administration (RDA), Wanju-gun, Jellabuk-do 55365, Korea; (C.H.A.); (M.R.); (H.R.A.); (P.M.P.); (Y.-J.K.)
| | - Su Young Lee
- Floriculture Research Division, National Institute of Horticultural and Herbal Science, Rural Development Administration (RDA), Wanju-gun, Jellabuk-do 55365, Korea; (C.H.A.); (M.R.); (H.R.A.); (P.M.P.); (Y.-J.K.)
- Correspondence: (S.Y.L.); (S.J.); Tel.: +82-238-6840 (S.Y.L.); +82-63-238-6677 (S.J.)
| | - Seonghoe Jang
- World Vegetable Center Korea Office (WKO), Wanju-gun, Jellabuk-do 55365, Korea
- Correspondence: (S.Y.L.); (S.J.); Tel.: +82-238-6840 (S.Y.L.); +82-63-238-6677 (S.J.)
| |
Collapse
|
24
|
Zhong C, Tang Y, Pang B, Li X, Yang Y, Deng J, Feng C, Li L, Ren G, Wang Y, Peng J, Sun S, Liang S, Wang X. The R2R3-MYB transcription factor GhMYB1a regulates flavonol and anthocyanin accumulation in Gerbera hybrida. HORTICULTURE RESEARCH 2020; 7:78. [PMID: 32435501 PMCID: PMC7237480 DOI: 10.1038/s41438-020-0296-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 03/11/2020] [Accepted: 03/23/2020] [Indexed: 05/13/2023]
Abstract
Anthocyanins and flavonols have vital roles in flower coloration, plant development, and defense. Because anthocyanins and flavonols share the same subcellular localization and common biosynthetic substrates, these pathways may compete for substrates. However, the mechanism regulating this potential competition remains unclear. Here, we identified GhMYB1a, an R2R3-MYB transcription factor involved in the regulation of anthocyanin and flavonol accumulation in gerbera (Gerberahybrida). GhMYB1a shares high sequence similarity with that of other characterized regulators of flavonol biosynthesis. In addition, GhMYB1a is also phylogenetically grouped with these proteins. The overexpression of GhMYB1a in gerbera and tobacco (Nicotianatabacum) resulted in decreased anthocyanin accumulation and increased accumulation of flavonols by upregulating the structural genes involved in flavonol biosynthesis. We further found that GhMYB1a functions as a homodimer instead of interacting with basic helix-loop-helix cofactors. These results suggest that GhMYB1a is involved in regulating the anthocyanin and flavonol metabolic pathways through precise regulation of gene expression. The functional characterization of GhMYB1a provides insight into the biosynthesis and regulation of flavonols and anthocyanins.
Collapse
Affiliation(s)
- Chunmei Zhong
- College of Forestry and Landscape Architecture; Key Laboratory of Energy Plants Resource and Utilization, Ministry of Agriculture, P.R. China, South China Agricultural University, Guangzhou, 510642 China
| | - Yi Tang
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, 510631 China
| | - Bin Pang
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, 510631 China
| | - Xukun Li
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, 510631 China
| | - Yuping Yang
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, 510631 China
| | - Jing Deng
- College of Forestry and Landscape Architecture; Key Laboratory of Energy Plants Resource and Utilization, Ministry of Agriculture, P.R. China, South China Agricultural University, Guangzhou, 510642 China
| | - Chengyong Feng
- Key Laboratory of Plant Resources and Beijing Botanical Garden, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093 China
| | - Lingfei Li
- Key Laboratory of Southern Subtropical Plant Diversity, Fairy Lake Botanical Garden, Shenzhen & Chinese Academy of Sciences, Shenzhen, Guangdong 518004 China
| | - Guiping Ren
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, 510631 China
| | - Yaqin Wang
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, 510631 China
| | - Jianzong Peng
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, 510631 China
| | - Shulan Sun
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, 510631 China
| | - Shan Liang
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, 510631 China
| | - Xiaojing Wang
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, 510631 China
| |
Collapse
|