1
|
Zhang Y, Jiang M, Ma J, Chen J, Kong L, Zhan Z, Li X, Piao Z. Metabolomics and Transcriptomics Reveal the Function of Trigonelline and Its Synthesis Gene BrNANMT in Clubroot Susceptibility of Brassica rapa. PLANT, CELL & ENVIRONMENT 2025. [PMID: 40079515 DOI: 10.1111/pce.15474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 02/22/2025] [Accepted: 03/03/2025] [Indexed: 03/15/2025]
Abstract
Clubroot caused by Plasmodiophora brassicae, a soil-borne pathogen, threatens cruciferous plants, resulting in severe yield reductions. To identify genes and metabolites associated with clubroot resistance and susceptibility, we performed metabolome and transcriptome analyses of Brassica rapa inbred line CRBJN3-2 inoculated with resistant and susceptible P. brassicae strains. Co-expression network analysis revealed that trigonelline accumulation, linked to the nicotinic acid and nicotinamide metabolic pathways, was significantly higher in clubroot-susceptible plants. Furthermore, applying trigonelline externally aggravated clubroot in both B. rapa and Arabidopsis thaliana. Overexpression of the nicotinate N-methyltransferase gene (BrNANMT) responsible for the conversion from nicotinate to trigonelline in these plants increased disease susceptibility, while loss of this gene's function resulted in improved clubroot resistance. Our study is the first to reveal the function of trigonelline in promoting clubroot development and identify BrNANMT as a clubroot susceptibility gene and trigonelline can be used as a marker metabolite in response to P. brassicae infection. Gene editing of BrNANMT provides new insights for the development of Brassica crops with improved resistance to clubroot.
Collapse
Affiliation(s)
- Yuting Zhang
- Molecular Biology of Vegetable Laboratory, College of Horticulture, Shenyang Agricultural University, Shenyang, China
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Mingliang Jiang
- School of Agriculture, Jilin Agricultural Science and Technology University, Jilin, China
| | - Junjie Ma
- Molecular Biology of Vegetable Laboratory, College of Horticulture, Shenyang Agricultural University, Shenyang, China
| | - Jingjing Chen
- Brassica juncea Genetic Breeding Laboratory, College of Modern Agriculture and Bioengineering, Yangtze Normal University, Chongqing, China
| | - Liyan Kong
- Molecular Biology of Vegetable Laboratory, College of Horticulture, Shenyang Agricultural University, Shenyang, China
| | - Zongxiang Zhan
- Molecular Biology of Vegetable Laboratory, College of Horticulture, Shenyang Agricultural University, Shenyang, China
| | - Xiaonan Li
- Molecular Biology of Vegetable Laboratory, College of Horticulture, Shenyang Agricultural University, Shenyang, China
| | - Zhongyun Piao
- Molecular Biology of Vegetable Laboratory, College of Horticulture, Shenyang Agricultural University, Shenyang, China
| |
Collapse
|
2
|
Zhang M, Zhu M, Lang H, Wang W, Li X, Jiang M. Genome-Wide Identification, Characterization, and Expression Analysis of Orphan Genes Within Coriander. PLANTS (BASEL, SWITZERLAND) 2025; 14:778. [PMID: 40094770 PMCID: PMC11901849 DOI: 10.3390/plants14050778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Revised: 02/21/2025] [Accepted: 03/01/2025] [Indexed: 03/19/2025]
Abstract
Orphan genes (OGs) are genes that have no significant sequence similarity with known genes from other species or lineages. Identifying and characterizing OGs have become more feasible with the increasing availability of plant transcriptomes and genome sequences. OGs play important roles in response to both biotic and abiotic stresses, contributing to biological functions and lineage-specific traits. This study aimed to identify and characterize OGs in Coriandrum sativum (coriander) using the BLAST method. A total of 941 C. sativum OGs (CsOGs), 1298 Apiaceae-specific genes (ASGs), and 38,508 evolutionarily conserved genes (ECGs) were identified through comparative genomics. Genic feature analyses revealed that CsOGs and ASGs, although part of different gene sets, had shorter gene lengths, a lower proportion of multi-exon genes, and higher GC content than ECGs. OGs were distributed across all 11 chromosomes, with the highest proportion of CsOGs and ASGs found on chromosome A11. RNA-Seq analysis revealed 71 CsOGs uniquely expressed in four different tissues, 61 CsOGs specifically expressed across three growth stages, and five CsOGs with specific expression patterns in different tissues and growth stages. Notably, as determined via qRT-PCR analysis, these five CsOGs presented general or specific expression patterns under normal conditions, but their expression significantly increased after exposure to cold stress, suggesting that they may play a critical role in cold stress response. This study comprehensively identified, characterized, and analyzed the expression of OGs within coriander, which provides a foundation for further research on the functions of coriander OGs in influencing species-specific trait formation and stress response.
Collapse
Affiliation(s)
- Meidi Zhang
- School of Agriculture, Jilin Agricultural Science and Technology University, Jilin 132101, China; (M.Z.); (H.L.); (W.W.)
| | - Mo Zhu
- Institute of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences (Northeast Agricultural Research Center of China), Changchun 130033, China;
| | - Hong Lang
- School of Agriculture, Jilin Agricultural Science and Technology University, Jilin 132101, China; (M.Z.); (H.L.); (W.W.)
| | - Weiming Wang
- School of Agriculture, Jilin Agricultural Science and Technology University, Jilin 132101, China; (M.Z.); (H.L.); (W.W.)
| | - Xiaonan Li
- Molecular Biology of Vegetable Laboratory, College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
| | - Mingliang Jiang
- School of Agriculture, Jilin Agricultural Science and Technology University, Jilin 132101, China; (M.Z.); (H.L.); (W.W.)
| |
Collapse
|
3
|
Ren Q, Lim YY, Teo CH. Genome-wide identification and expression analysis of orphan genes in twelve Musa (sub)species. 3 Biotech 2025; 15:41. [PMID: 39822754 PMCID: PMC11732818 DOI: 10.1007/s13205-025-04213-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Accepted: 01/03/2025] [Indexed: 01/19/2025] Open
Abstract
Orphan genes (OGs), also known as lineage-specific genes, are species-specific genes that play a crucial role in species-specific adaptations to various stresses. Although OGs have been identified in several plant species, there is no information on OGs in banana genomes. This study aimed to systematically identify OGs in twelve banana (sub)species using comparative genomics. The results showed that OG content varied widely among these (sub)species, from 0.4% in Musa itinerans to 7.3% in Ensete glaucum. Genetic structure analysis showed that banana OGs have significantly shorter protein lengths, smaller molecular weight, fewer exons, and shorter exon lengths than non-orphan genes (NOGs). Subcellular localization predictions showed that banana OGs are mainly found in the chloroplast, nucleus, and cytosol, and are evenly distributed across chromosomes. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses suggested that OGs may be involved in cellular processes, metabolic processes, and molecular transport. The transcriptome analysis of 9 AAA cultivars against 4 M. acuminata subspecies genomes showed the OGs content. Analysis of gene expression in M. acuminata subsp. malaccensis showed 75 differentially expressed (DE) OGs in response to abiotic stresses and 46 DE OGs related to biotic stresses, indicating that these OGs might play important roles in response to abiotic and biotic stresses. This study provides a foundation for further in-depth research into the functions of OGs in bananas. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-025-04213-9.
Collapse
Affiliation(s)
- Qingwen Ren
- Centre for Research in Biotechnology for Agriculture (CEBAR), Universiti Malaya, 50603 Kuala Lumpur, Malaysia
| | - Yat-Yuen Lim
- Institute of Biological Sciences, Faculty of Science, Universiti Malaya, 50603 Kuala Lumpur, Malaysia
| | - Chee How Teo
- Centre for Research in Biotechnology for Agriculture (CEBAR), Universiti Malaya, 50603 Kuala Lumpur, Malaysia
| |
Collapse
|
4
|
Zhang X, Jia Q, Jia X, Li J, Sun X, Min L, Liu Z, Ma W, Zhao J. Brassica vegetables-an undervalued nutritional goldmine. HORTICULTURE RESEARCH 2025; 12:uhae302. [PMID: 39949883 PMCID: PMC11822409 DOI: 10.1093/hr/uhae302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 10/16/2024] [Indexed: 02/16/2025]
Abstract
The genus Brassica includes six species and over 15 types of vegetables that are widely cultivated and consumed globally. This group of vegetables is rich in bioactive compounds, including glucosinolates, vitamins (such as vitamin C, folate, tocopherol, and phylloquinone), carotenoids, phenols, and minerals, which are crucial for enriching diets and maintaining human health. However, the full extent of these phytonutrients and their significant health benefits remain to be fully elucidated. This review highlights the nutrient compositions and health advantages of Brassica vegetables and discusses the impacts of various processing methods on their nutritional value. Additionally, we discuss potential strategies for enhancing the nutrition of Brassica crops through agronomic biofortification, conventional breeding, and biotechnological or metabolic engineering approaches. This review lays the foundation for the nutritional improvement of Brassica crops.
Collapse
Affiliation(s)
- Xiaomeng Zhang
- State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Collaborative Innovation Center of Vegetable Industry in Hebei, College of Horticulture, Hebei Agricultural University, No. 2596 Lekai South Street, Lianchi District, Baoding, Hebei 071000, China
| | - Qiong Jia
- State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Collaborative Innovation Center of Vegetable Industry in Hebei, College of Horticulture, Hebei Agricultural University, No. 2596 Lekai South Street, Lianchi District, Baoding, Hebei 071000, China
| | - Xin Jia
- State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Collaborative Innovation Center of Vegetable Industry in Hebei, College of Horticulture, Hebei Agricultural University, No. 2596 Lekai South Street, Lianchi District, Baoding, Hebei 071000, China
| | - Jie Li
- Department of Biochemistry and Metabolism, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, United Kingdom
| | - Xiaoxue Sun
- State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Collaborative Innovation Center of Vegetable Industry in Hebei, College of Horticulture, Hebei Agricultural University, No. 2596 Lekai South Street, Lianchi District, Baoding, Hebei 071000, China
| | - Leiguo Min
- State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Collaborative Innovation Center of Vegetable Industry in Hebei, College of Horticulture, Hebei Agricultural University, No. 2596 Lekai South Street, Lianchi District, Baoding, Hebei 071000, China
| | - Zhaokun Liu
- Vegetable Research Institute, Suzhou Academy of Agricultural Sciences, No. 2351 Dongshan Avenue, Linhu Town, Wuzhong District, Suzhou, Jiangsu 215155, China
| | - Wei Ma
- State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Collaborative Innovation Center of Vegetable Industry in Hebei, College of Horticulture, Hebei Agricultural University, No. 2596 Lekai South Street, Lianchi District, Baoding, Hebei 071000, China
| | - Jianjun Zhao
- State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Collaborative Innovation Center of Vegetable Industry in Hebei, College of Horticulture, Hebei Agricultural University, No. 2596 Lekai South Street, Lianchi District, Baoding, Hebei 071000, China
| |
Collapse
|
5
|
Jiang M, Zhan Z, Li X, Piao Z. Construction and evaluation of Brassica rapa orphan genes overexpression library. FRONTIERS IN PLANT SCIENCE 2025; 16:1532449. [PMID: 39912098 PMCID: PMC11794797 DOI: 10.3389/fpls.2025.1532449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Accepted: 01/07/2025] [Indexed: 02/07/2025]
Abstract
Orphan genes (OGs) are crucial for species-specific characteristics and stress responses and are restricted to a specific taxon. However, their functions within particular species are poorly understood. Previous research identified OGs in Brassica rapa (BrOGs). In this study, the BrOGs overexpression (BrOGsOE) library in Arabidopsis thaliana was constructed. Approximately 128 unknown functional BrOGs were selected from Chinese cabbage and were overexpressed. The analysis focused on the phenotypes of leaf morphology and flowering time against phenotypic differences between Chinese cabbage and Arabidopsis. Interestingly, 72.66% of the transgenic lines showed distinctive phenotypic changes. Chinese cabbage-specific features, including curved, hairy, upward or downward-curving leaves, serrated margins, and multiple leaves, were observed in the BrOGsOE lines. The BrOGs overexpression library was associated with numerous variations in flowering time, particularly delayed flowering. This suggested that the delayed flowering time caused by BrOGs may be associated with resistance to bolting seem in Chinese cabbage. Furthermore, the results of stress treatment of 24 BrOGsOE lines with no apparent significant phenotypes suggested that a number of BrOGs have both general and specific functions against environmental and pathogenic stress. The findings of this study provide a comprehensive overview of the roles of BrOGs, emphasizing their significance as a resource for identifying positive genes associated with species-specific characteristics and stress responses and offering a solid foundation for the functional analysis of BrOGs.
Collapse
Affiliation(s)
- Mingliang Jiang
- Molecular Biology of Vegetable Laboratory, College of Horticulture, Shenyang Agricultural University, Shenyang, China
- School of Agriculture, Jilin Agricultural Science and Technology University, Jilin, China
| | - Zongxiang Zhan
- Molecular Biology of Vegetable Laboratory, College of Horticulture, Shenyang Agricultural University, Shenyang, China
| | - Xiaonan Li
- Molecular Biology of Vegetable Laboratory, College of Horticulture, Shenyang Agricultural University, Shenyang, China
| | - Zhongyun Piao
- Molecular Biology of Vegetable Laboratory, College of Horticulture, Shenyang Agricultural University, Shenyang, China
| |
Collapse
|
6
|
Zhang Y, Jiang M, Sun S, Zhan Z, Li X, Piao Z. Chinese cabbage orphan gene BR3 confers bolting resistance to Arabidopsis through the gibberellin pathway. FRONTIERS IN PLANT SCIENCE 2025; 15:1518962. [PMID: 39902211 PMCID: PMC11788340 DOI: 10.3389/fpls.2024.1518962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Accepted: 12/26/2024] [Indexed: 02/05/2025]
Abstract
Premature bolting reduces the yield and quality of Chinese cabbage, making bolting resistance gene identification crucial for breeding superior and stable varieties. In this study, we identified an orphan gene BOLTING RESISTANCE 3 (BR3) that positively regulates bolting resistance in Arabidopsis thaliana. The expression of BR3 was developmentally regulated and occurred during the seedling and flowering stages. The BR3 protein was localized to both the plasma membrane and nucleus. Arabidopsis BR3 overexpressing (BR3OE) plants exhibited delayed bolting and flowering times, an increased number of rosette leaves, reduced plant height, and fewer siliques under long-day (LD) conditions. Key flowering genes were significantly downregulated in BR3OE plants. BR3OE plants similarly exhibited delayed bolting and flowering times, and an increased number of rosette leaves under short-day (SD) conditions. BR3OE plants showed no significant phenotypic differences after vernalization treatment. BR3OE and WT plants exhibited early flowering after GA3 treatment, and bolting and flowering time remained delayed in BR3OE plants compared with WT plants. Key DELLA genes BrRGA1 and BrRGL3 exhibited a co-expression pattern consistent with BR3 gene in Chinese cabbage, which suggested that BrRGA1 and BrRGL3 genes may directly or indirectly regulated by BR3 gene. BR3 gene increased bolting resistance perhaps by upregulating the expression of DELLA genes in the GA pathway. This study provides new theoretical insights for addressing premature bolting in Chinese cabbage and offers novel approaches for breeding bolting-resistant varieties.
Collapse
Affiliation(s)
- Yuting Zhang
- Molecular Biology of Vegetable Laboratory, College of Horticulture, Shenyang Agricultural University, Shenyang, China
| | - Mingliang Jiang
- School of Agriculture, Jilin Agricultural Science and Technology University, Jilin, China
| | - Shurui Sun
- Molecular Biology of Vegetable Laboratory, College of Horticulture, Shenyang Agricultural University, Shenyang, China
| | - Zongxiang Zhan
- Molecular Biology of Vegetable Laboratory, College of Horticulture, Shenyang Agricultural University, Shenyang, China
| | - Xiaonan Li
- Molecular Biology of Vegetable Laboratory, College of Horticulture, Shenyang Agricultural University, Shenyang, China
| | - Zhongyun Piao
- Molecular Biology of Vegetable Laboratory, College of Horticulture, Shenyang Agricultural University, Shenyang, China
| |
Collapse
|
7
|
Yuan P, Usman M, Liu W, Adhikari A, Zhang C, Njiti V, Xia Y. Advancements in Plant Gene Editing Technology: From Construct Design to Enhanced Transformation Efficiency. Biotechnol J 2024; 19:e202400457. [PMID: 39692063 DOI: 10.1002/biot.202400457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 10/17/2024] [Accepted: 10/30/2024] [Indexed: 12/19/2024]
Abstract
Plant gene editing technology has significantly advanced in recent years, thereby transforming both biotechnological research and agricultural practices. This review provides a comprehensive summary of recent advancements in this rapidly evolving field, showcasing significant discoveries from improved transformation efficiency to advanced construct design. The primary focus is on the maturation of the Clustered regularly interspaced short palindromic repeats/CRISPR-associated protein (CRISPR/Cas)9 system, which has emerged as a powerful tool for precise gene editing in plants. Through a detailed exploration, we elucidate the intricacies of integrating genetic modifications into plant genomes, shedding light on transport mechanisms, transformation techniques, and optimization strategies specific to CRISPR constructs. Furthermore, we explore the initiatives aimed at extending the frontiers of gene editing to nonmodel plant species, showcasing the growing scope of this technology. Overall, this comprehensive review highlights the significant impact of recent advancements in plant gene editing, illuminating its transformative potential in driving agricultural innovation and biotechnological progress.
Collapse
Affiliation(s)
- Pu Yuan
- Department of Plant Pathology, College of Food, Agricultural and Environmental Sciences, The Ohio State University, Columbus, Ohio, USA
| | - Muhammad Usman
- Department of Plant Pathology, College of Food, Agricultural and Environmental Sciences, The Ohio State University, Columbus, Ohio, USA
- Department of Plant Pathology, University of Agriculture, Faisalabad, Pakistan
| | - Wenshan Liu
- Department of Plant Pathology, College of Food, Agricultural and Environmental Sciences, The Ohio State University, Columbus, Ohio, USA
| | - Ashna Adhikari
- Department of Plant Pathology, College of Food, Agricultural and Environmental Sciences, The Ohio State University, Columbus, Ohio, USA
| | - Chunquan Zhang
- College of Agriculture and Applied Sciences, Alcorn State University, Lorman, Mississippi, USA
| | - Victor Njiti
- College of Agriculture and Applied Sciences, Alcorn State University, Lorman, Mississippi, USA
| | - Ye Xia
- Department of Plant Pathology, College of Food, Agricultural and Environmental Sciences, The Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
8
|
Kong L, Sun J, Zhang W, Zhan Z, Piao Z. Functional analysis of the key BrSWEET genes for sugar transport involved in the Brassica rapa-Plasmodiophora brassicae interaction. Gene 2024; 927:148708. [PMID: 38885818 DOI: 10.1016/j.gene.2024.148708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 06/02/2024] [Accepted: 06/14/2024] [Indexed: 06/20/2024]
Abstract
Plasmodiophora brassicae, the causative agent of clubroot disease, establishes a long-lasting parasitic relationship with its host by inducing the expression of sugar transporters. Previous studies have indicated that most BrSWEET genes in Chinese cabbage are up-regulated upon infection with P. brassicae. However, the key BrSWEET genes responsive to P. brassicae have not been definitively identified. In this study, we selected five BrSWEET genes and conducted a functional analysis of them. These five BrSWEET genes showed a notable up-regulation in roots after P. brassicae inoculation. Furthermore, these BrSWEET proteins were localized to the plasma membrane. Yeast functional complementation assays confirmed transport activity for glucose, fructose, or sucrose in four BrSWEETs, with the exception of BrSWEET2a. Mutants and silenced plants of BrSWEET1a, -11a, and -12a showed lower clubroot disease severity compared to wild-type plants, while gain-of-function Arabidopsis thaliana plants overexpressing these three BrSWEET genes exhibited significantly higher disease incidence and severity. Our findings suggested that BrSWEET1a, BrSWEET11a, and BrSWEET12a play pivotal roles in P. brassicae-induced gall formation, shedding light on the role of sugar transporters in host-pathogen interactions.
Collapse
Affiliation(s)
- Liyan Kong
- Molecular Biology of Vegetable Laboratory, Department of Horticulture, Shenyang Agricultural University, Shenyang, Liaoning 110866, China.
| | - Jiadi Sun
- Molecular Biology of Vegetable Laboratory, Department of Horticulture, Shenyang Agricultural University, Shenyang, Liaoning 110866, China.
| | - Wenjun Zhang
- Molecular Biology of Vegetable Laboratory, Department of Horticulture, Shenyang Agricultural University, Shenyang, Liaoning 110866, China.
| | - Zongxiang Zhan
- Molecular Biology of Vegetable Laboratory, Department of Horticulture, Shenyang Agricultural University, Shenyang, Liaoning 110866, China.
| | - Zhongyun Piao
- Molecular Biology of Vegetable Laboratory, Department of Horticulture, Shenyang Agricultural University, Shenyang, Liaoning 110866, China.
| |
Collapse
|
9
|
Zu Y, Jiang M, Zhan Z, Li X, Piao Z. Orphan gene BR2 positively regulates bolting resistance through the vernalization pathway in Chinese cabbage. HORTICULTURE RESEARCH 2024; 11:uhae216. [PMID: 39398948 PMCID: PMC11469923 DOI: 10.1093/hr/uhae216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 07/21/2024] [Indexed: 10/15/2024]
Abstract
Orphan genes (OGs) are unique to the specific species or lineage, and whose homologous sequences cannot be found in other species or lineages. Furthermore, these genes lack recognizable domains or functional motifs, which make their characterization difficult. Here, we identified a Brassica rapa OG named BOLTING RESISTANCE 2 (BR2) that could positively modulate bolting resistance. The expression of BR2 was developmentally regulated and the BR2 protein was localized to the cell membrane. BR2 overexpression not only markedly delayed flowering time in Arabidopsis transgenic plants, but substantially affected the development of leaves and flower organs. Flowering repressor AtFLC gene was significantly up-regulated transcribed in Arabidopsis BR2 overexpression lines, while AtFT and AtSOC1 expression was decreased. In addition, the BR2 expression was enhanced in bolting-resistant type Chinese cabbage and was reduced in non-resistant type. Moreover, chilling stress inhibited the BR2 expression levels. Overexpression of BR2 also delayed flowering time in Chinese cabbage. In vernalized Chinese cabbage BR2 overexpression plants, BrVIN3.b and BrFRI were significantly down-regulated, while BrFLC5 was substantially up-regulated. Key floral factors, including three BrSOC1s, two BrLFYs, and four BrFTs were down-regulated. The expression changes of these key genes were consistent with the delayed flowering phenotype of Chinese cabbage BR2 overexpressing plants. Thus, we predicted that BR2 may predominantly function via the vernalization pathway. Our findings propose that the OG BR2 acts as a novel modulator of flowering time in Chinese cabbage, which provides a new insight on the breeding of varieties that are resistant to bolting.
Collapse
Affiliation(s)
- Ye Zu
- Molecular Biology of Vegetable Laboratory, College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
| | - Mingliang Jiang
- School of Agriculture, Jilin Agricultural Science and Technology University, Jilin 132101, China
| | - Zongxiang Zhan
- Molecular Biology of Vegetable Laboratory, College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
| | - Xiaonan Li
- Molecular Biology of Vegetable Laboratory, College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
| | - Zhongyun Piao
- Molecular Biology of Vegetable Laboratory, College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
| |
Collapse
|
10
|
Fakhar AZ, Liu J, Pajerowska-Mukhtar KM, Mukhtar MS. The ORFans' tale: new insights in plant biology. TRENDS IN PLANT SCIENCE 2023; 28:1379-1390. [PMID: 37453923 DOI: 10.1016/j.tplants.2023.06.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 05/17/2023] [Accepted: 06/19/2023] [Indexed: 07/18/2023]
Abstract
Orphan genes (OGs) are protein-coding genes without a significant sequence similarity in closely related species. Despite their functional importance, very little is known about the underlying molecular mechanisms by which OGs participate in diverse biological processes. Here, we discuss the evolutionary mechanisms of OGs' emergence with relevance to species-specific adaptations. We also provide a mechanistic view of the involvement of OGs in multiple processes, including growth, development, reproduction, and carbon-metabolism-mediated immunity. We highlight the interconnection between OGs and the sucrose nonfermenting 1 (SNF1)-related protein kinases (SnRKs)-target of rapamycin (TOR) signaling axis for phytohormone signaling, nutrient metabolism, and stress responses. Finally, we propose a high-throughput pipeline for OGs' interspecies and intraspecies gene transfer through a transgenic approach for future biotechnological advances.
Collapse
Affiliation(s)
- Ali Zeeshan Fakhar
- Department of Biology, University of Alabama at Birmingham, 1300 University Blvd., Birmingham, AL 35294, USA
| | - Jinbao Liu
- Department of Biology, University of Alabama at Birmingham, 1300 University Blvd., Birmingham, AL 35294, USA
| | | | - M Shahid Mukhtar
- Department of Biology, University of Alabama at Birmingham, 1300 University Blvd., Birmingham, AL 35294, USA.
| |
Collapse
|
11
|
Zhao Y, Huang S, Zhang Y, Tan C, Feng H. Role of Brassica orphan gene BrLFM on leafy head formation in Chinese cabbage (Brassica rapa). TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2023; 136:170. [PMID: 37420138 DOI: 10.1007/s00122-023-04411-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 06/22/2023] [Indexed: 07/09/2023]
Abstract
Brassica orphan gene BrFLM, identified by two allelic mutants, was involved in leafy head formation in Chinese cabbage. Leafy head formation is a unique agronomic trait of Chinese cabbage that determines its yield and quality. In our previous study, an EMS mutagenesis Chinese cabbage mutant library was constructed using the heading Chinese cabbage double haploid (DH) line FT as the wild-type. Here, we screened two extremely similar leafy head deficiency mutants lfm-1 and lfm-2 with geotropic growth leaves from the library to investigate the gene(s) related to leafy head formation. Reciprocal crossing results showed that these two mutants were allelic. We utilized lfm-1 to identify the mutant gene(s). Genetic analysis showed that the mutated trait was controlled by a single nuclear gene Brlfm. Mutmap analysis showed that Brlfm was located on chromosome A05, and BraA05g012440.3C or BraA05g021450.3C were the candidate gene. Kompetitive allele-specific PCR analysis eliminated BraA05g012440.3C from the candidates. Sanger sequencing identified an SNP from G to A at the 271st nucleotide on BraA05g021450.3C. The sequencing of lfm-2 detected another non-synonymous SNP (G to A) located at the 266st nucleotide on BraA05g021450.3C, which verified its function on leafy head formation. We blasted BraA05g021450.3C on database and found that it belongs to a Brassica orphan gene encoding an unknown 13.74 kDa protein, named BrLFM. Subcellular localization showed that BrLFM was located in the nucleus. These findings reveal that BrLFM is involved in leafy head formation in Chinese cabbage.
Collapse
Affiliation(s)
- Yonghui Zhao
- College of Horticulture, Shenyang Agricultural University, 120 Dongling Road, Shenhe District, Shenyang, 110866, People's Republic of China
| | - Shengnan Huang
- College of Horticulture, Shenyang Agricultural University, 120 Dongling Road, Shenhe District, Shenyang, 110866, People's Republic of China
| | - Yun Zhang
- College of Horticulture, Shenyang Agricultural University, 120 Dongling Road, Shenhe District, Shenyang, 110866, People's Republic of China
| | - Chong Tan
- College of Horticulture, Shenyang Agricultural University, 120 Dongling Road, Shenhe District, Shenyang, 110866, People's Republic of China
| | - Hui Feng
- College of Horticulture, Shenyang Agricultural University, 120 Dongling Road, Shenhe District, Shenyang, 110866, People's Republic of China.
| |
Collapse
|
12
|
Fakhar AZ, Liu J, Pajerowska-Mukhtar KM, Mukhtar MS. The Lost and Found: Unraveling the Functions of Orphan Genes. J Dev Biol 2023; 11:27. [PMID: 37367481 PMCID: PMC10299390 DOI: 10.3390/jdb11020027] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 05/19/2023] [Accepted: 05/26/2023] [Indexed: 06/28/2023] Open
Abstract
Orphan Genes (OGs) are a mysterious class of genes that have recently gained significant attention. Despite lacking a clear evolutionary history, they are found in nearly all living organisms, from bacteria to humans, and they play important roles in diverse biological processes. The discovery of OGs was first made through comparative genomics followed by the identification of unique genes across different species. OGs tend to be more prevalent in species with larger genomes, such as plants and animals, and their evolutionary origins remain unclear but potentially arise from gene duplication, horizontal gene transfer (HGT), or de novo origination. Although their precise function is not well understood, OGs have been implicated in crucial biological processes such as development, metabolism, and stress responses. To better understand their significance, researchers are using a variety of approaches, including transcriptomics, functional genomics, and molecular biology. This review offers a comprehensive overview of the current knowledge of OGs in all domains of life, highlighting the possible role of dark transcriptomics in their evolution. More research is needed to fully comprehend the role of OGs in biology and their impact on various biological processes.
Collapse
Affiliation(s)
| | | | | | - M. Shahid Mukhtar
- Department of Biology, University of Alabama at Birmingham, 1300 University Blvd., Birmingham, AL 35294, USA
| |
Collapse
|
13
|
Wang L, Tonsager AJ, Zheng W, Wang Y, Stessman D, Fang W, Stenback KE, Campbell A, Tanvir R, Zhang J, Cothron S, Wan D, Meng Y, Spalding MH, Nikolau BJ, Li L. Single-cell genetic models to evaluate orphan gene function: The case of QQS regulating carbon and nitrogen allocation. FRONTIERS IN PLANT SCIENCE 2023; 14:1126139. [PMID: 37051080 PMCID: PMC10084940 DOI: 10.3389/fpls.2023.1126139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Accepted: 03/13/2023] [Indexed: 06/19/2023]
Abstract
We demonstrate two synthetic single-cell systems that can be used to better understand how the acquisition of an orphan gene can affect complex phenotypes. The Arabidopsis orphan gene, Qua-Quine Starch (QQS) has been identified as a regulator of carbon (C) and nitrogen (N) partitioning across multiple plant species. QQS modulates this important biotechnological trait by replacing NF-YB (Nuclear Factor Y, subunit B) in its interaction with NF-YC. In this study, we expand on these prior findings by developing Chlamydomonas reinhardtii and Saccharomyces cerevisiae strains, to refactor the functional interactions between QQS and NF-Y subunits to affect modulations in C and N allocation. Expression of QQS in C. reinhardtii modulates C (i.e., starch) and N (i.e., protein) allocation by affecting interactions between NF-YC and NF-YB subunits. Studies in S. cerevisiae revealed similar functional interactions between QQS and the NF-YC homolog (HAP5), modulating C (i.e., glycogen) and N (i.e., protein) allocation. However, in S. cerevisiae both the NF-YA (HAP2) and NF-YB (HAP3) homologs appear to have redundant functions to enable QQS and HAP5 to affect C and N allocation. The genetically tractable systems that developed herein exhibit the plasticity to modulate highly complex phenotypes.
Collapse
Affiliation(s)
- Lei Wang
- Department of Biological Sciences, Mississippi State University, Mississippi State, MS, United States
| | - Andrew J. Tonsager
- Roy J. Carver Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, Ames, IA, United States
- Engineering Research Center for Biorenewable Chemicals, Iowa State University, Ames, IA, United States
- Center for Metabolic Biology, Iowa State University, Ames, IA, United States
| | - Wenguang Zheng
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA, United States
| | - Yingjun Wang
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA, United States
| | - Dan Stessman
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA, United States
| | - Wei Fang
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA, United States
| | - Kenna E. Stenback
- Roy J. Carver Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, Ames, IA, United States
- Engineering Research Center for Biorenewable Chemicals, Iowa State University, Ames, IA, United States
- Center for Metabolic Biology, Iowa State University, Ames, IA, United States
| | - Alexis Campbell
- Roy J. Carver Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, Ames, IA, United States
- Engineering Research Center for Biorenewable Chemicals, Iowa State University, Ames, IA, United States
- Center for Metabolic Biology, Iowa State University, Ames, IA, United States
| | - Rezwan Tanvir
- Department of Biological Sciences, Mississippi State University, Mississippi State, MS, United States
| | - Jinjiang Zhang
- Department of Biological Sciences, Mississippi State University, Mississippi State, MS, United States
- Mississippi School for Mathematics and Science, Columbus, MS, United States
| | - Samuel Cothron
- Department of Biological Sciences, Mississippi State University, Mississippi State, MS, United States
| | - Dongli Wan
- Institute of Grassland Research, Chinese Academy of Agricultural Sciences, Hohhot, China
| | - Yan Meng
- Department of Agriculture, Alcorn State University, Lorman, MS, United States
| | - Martin H. Spalding
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA, United States
| | - Basil J. Nikolau
- Roy J. Carver Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, Ames, IA, United States
- Engineering Research Center for Biorenewable Chemicals, Iowa State University, Ames, IA, United States
- Center for Metabolic Biology, Iowa State University, Ames, IA, United States
| | - Ling Li
- Department of Biological Sciences, Mississippi State University, Mississippi State, MS, United States
| |
Collapse
|
14
|
Tsaballa A, Xanthopoulou A, Sperdouli I, Bantis F, Boutsika A, Chatzigeorgiou I, Tsaliki E, Koukounaras A, Ntinas GK, Ganopoulos I. LED omics in Rocket Salad ( Diplotaxis tenuifolia): Comparative Analysis in Different Light-Emitting Diode (LED) Spectrum and Energy Consumption. PLANTS (BASEL, SWITZERLAND) 2023; 12:1203. [PMID: 36986894 PMCID: PMC10059670 DOI: 10.3390/plants12061203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/20/2023] [Accepted: 03/01/2023] [Indexed: 06/18/2023]
Abstract
By applying three different LED light treatments, designated as blue (B), red (R)/blue (B), red (R) and white (W) light, as well as the control, the effect on Diplotaxis tenuifolia phenotype (yield and quality), and physiological, biochemical, and molecular status, as well as growing system resource use efficiency, was examined. We observed that basic leaf characteristics, such as leaf area, leaf number, relative chlorophyll content, as well as root characteristics, such as total root length and root architecture, remained unaffected by different LEDs. Yield expressed in fresh weight was slightly lower in LED lights than in the control (1113 g m-2), with R light producing the least (679 g m-2). However, total soluble solids were significantly affected (highest, 5.5° Brix, in R light) and FRAP was improved in all LED lights (highest, 191.8 μg/g FW, in B) in comparison to the control, while the nitrate content was less (lowest, 949.2 μg/g FW, in R). Differential gene expression showed that B LED light affected more genes in comparison to R and R/B lights. Although total phenolic content was improved under all LED lights (highest, 1.05 mg/g FW, in R/B), we did not detect a significant amount of DEGs in the phenylpropanoid pathway. R light positively impacts the expression of the genes encoding for photosynthesis components. On the other hand, the positive impact of R light on SSC was possibly due to the expression of key genes being induced, such as SUS1. In summary, this research is an integrative and innovative study, where the exploration of the effect of different LED lights on rocket growing under protected cultivation, in a closed chamber cultivation system, was performed at multiple levels.
Collapse
Affiliation(s)
- Aphrodite Tsaballa
- Institute of Plant Breeding and Genetic Resources, Hellenic Agricultural Organization DIMITRA (ELGO-Dimitra), GR-57001 Thermi, Greece
| | - Aliki Xanthopoulou
- Institute of Plant Breeding and Genetic Resources, Hellenic Agricultural Organization DIMITRA (ELGO-Dimitra), GR-57001 Thermi, Greece
| | - Ilektra Sperdouli
- Institute of Plant Breeding and Genetic Resources, Hellenic Agricultural Organization DIMITRA (ELGO-Dimitra), GR-57001 Thermi, Greece
| | - Filippos Bantis
- Department of Horticulture, School of Agriculture, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece
| | - Anastasia Boutsika
- Institute of Plant Breeding and Genetic Resources, Hellenic Agricultural Organization DIMITRA (ELGO-Dimitra), GR-57001 Thermi, Greece
| | - Ioanna Chatzigeorgiou
- Institute of Plant Breeding and Genetic Resources, Hellenic Agricultural Organization DIMITRA (ELGO-Dimitra), GR-57001 Thermi, Greece
- Department of Horticulture, School of Agriculture, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece
| | - Eleni Tsaliki
- Institute of Plant Breeding and Genetic Resources, Hellenic Agricultural Organization DIMITRA (ELGO-Dimitra), GR-57001 Thermi, Greece
| | - Athanasios Koukounaras
- Department of Horticulture, School of Agriculture, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece
| | - Georgios K. Ntinas
- Institute of Plant Breeding and Genetic Resources, Hellenic Agricultural Organization DIMITRA (ELGO-Dimitra), GR-57001 Thermi, Greece
| | - Ioannis Ganopoulos
- Institute of Plant Breeding and Genetic Resources, Hellenic Agricultural Organization DIMITRA (ELGO-Dimitra), GR-57001 Thermi, Greece
| |
Collapse
|
15
|
Jiang M, Zhang Y, Yang X, Li X, Lang H. Brassica rapa orphan gene BR1 delays flowering time in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2023; 14:1135684. [PMID: 36909380 PMCID: PMC9998908 DOI: 10.3389/fpls.2023.1135684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Accepted: 02/15/2023] [Indexed: 06/18/2023]
Abstract
Orphan genes are essential to the emergence of species-specific traits and the process of evolution, lacking sequence similarity to any other identified genes. As they lack recognizable domains or functional motifs, however, efforts to characterize these orphan genes are often difficult. Flowering is a key trait in Brassica rapa, as premature bolting can have a pronounced adverse impact on plant quality and yield. Bolting resistance-related orphan genes, however, have yet to be characterized. In this study, an orphan gene designated BOLTING RESISTANCE 1 (BR1) was identified and found through gene structural variation analyses to be more highly conserved in Chinese cabbage than in other available accessions. The expression of BR1 was increased in bolting resistant Chinese cabbage and decreased in bolting non-resistant type, and the expression of some mark genes were consist with bolting resistance phenotype. BR1 is primarily expressed in leaves at the vegetative growth stage, and the highest BR1 expression levels during the flowering stage were observed in the flower buds and silique as compared to other tissue types. The overexpression of BR1 in Arabidopsis was associated with enhanced bolting resistance under long day (LD) conditions, with these transgenic plants exhibiting significant decreases in stem height, rosette radius, and chlorophyll content. Transcriptomic sequencing of WT and BR1OE plants showed the association of BR1 with other bolting resistance genes. Transcriptomic sequencing and qPCR revealed that six flowering integrator genes and one chlorophyll biosynthesis-related gene were downregulated following BR1 overexpression. Six key genes in photoperiodic flowering pathway exhibited downward expression trends in BR1OE plants, while the expression of floral repressor AtFLC gene was upregulated. The transcripts of these key genes were consistent with observed phenotypes in BR1OE plants, and the results indicated that BR1 may function through vernalization and photoperiodic pathway. Instead, the protein encoded by BR1 gene was subsequently found to localize to the nucleus. Taken together, we first propose that orphan gene BR1 functions as a novel regulator of flowering time, and these results suggested that BR1 may represent a promising candidate gene to support the selective breeding of Chinese cabbage cultivars with enhanced bolting resistance.
Collapse
Affiliation(s)
- Mingliang Jiang
- School of Agriculture, Jilin Agricultural Science and Technology College, Jilin, China
| | - Yuting Zhang
- College of Horticulture, Shenyang Agricultural University, Shenyang, China
| | - Xiaolong Yang
- College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Xiaonan Li
- College of Horticulture, Shenyang Agricultural University, Shenyang, China
| | - Hong Lang
- School of Agriculture, Jilin Agricultural Science and Technology College, Jilin, China
| |
Collapse
|
16
|
Tanvir R, Wang L, Zhang A, Li L. Orphan Genes in Crop Improvement: Enhancing Potato Tuber Protein without Impacting Yield. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11223076. [PMID: 36432805 PMCID: PMC9696052 DOI: 10.3390/plants11223076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 10/31/2022] [Accepted: 11/10/2022] [Indexed: 05/03/2023]
Abstract
Qua-Quine Starch (QQS), an Arabidopsis thaliana orphan gene, and its interactor, Arabidopsis Nuclear Factor Y subunit C4 (AtNF-YC4), can increase the total leaf and seed protein in different plants. Despite their potential in developing protein-rich crop varieties, their influence on the protein content of the stem, modified stem, and tuber was never investigated. Potato (Solanum tuberosum) is one of the most valuable food crops worldwide. This staple food is rich in starch, vitamins (B6, C), phenolics, flavonoids, polyamines, carotenoids, and various minerals but lacks adequate proteins necessary for a healthy human diet. Here we expressed A. thaliana QQS (AtQQS) and overexpressed S. tuberosum NF-YC4 (StNF-YC4) in potatoes to determine their influence on the composition and morphological characteristics of potato tubers. Our data demonstrated higher protein and reduced starch content in potato tubers without significantly compromising the tuber yield, shape, and numbers, when QQS was expressed or StNF-YC4 was overexpressed. Publicly available expression data, promoter region, and protein−protein interaction analyses of StNF-YC4 suggest its potential functionality in potato storage protein, metabolism, stress resistance, and defense against pests and pathogens. The overall outcomes of this study support QQS and NF-YC4’s potential utilization as tools to enhance tuber protein content in plants.
Collapse
Affiliation(s)
- Rezwan Tanvir
- Department of Biological Sciences, Mississippi State University, Starkville, MS 39762, USA
| | - Lei Wang
- Department of Biological Sciences, Mississippi State University, Starkville, MS 39762, USA
| | - Amy Zhang
- Department of Biological Sciences, Mississippi State University, Starkville, MS 39762, USA
- Mississippi School for Mathematics and Science, Columbus, MS 39701, USA
| | - Ling Li
- Department of Biological Sciences, Mississippi State University, Starkville, MS 39762, USA
- Correspondence: ; Tel.: +1-662-325-7570
| |
Collapse
|
17
|
Kumar D, Yadav A, Ahmad R, Dwivedi UN, Yadav K. CRISPR-Based Genome Editing for Nutrient Enrichment in Crops: A Promising Approach Toward Global Food Security. Front Genet 2022; 13:932859. [PMID: 35910203 PMCID: PMC9329789 DOI: 10.3389/fgene.2022.932859] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 06/08/2022] [Indexed: 12/21/2022] Open
Abstract
The global malnutrition burden imparts long-term developmental, economic, social, and medical consequences to individuals, communities, and countries. The current developments in biotechnology have infused biofortification in several food crops to fight malnutrition. However, these methods are not sustainable and suffer from several limitations, which are being solved by the CRISPR-Cas-based system of genome editing. The pin-pointed approach of CRISPR-based genome editing has made it a top-notch method due to targeted gene editing, thus making it free from ethical issues faced by transgenic crops. The CRISPR-Cas genome-editing tool has been extensively used in crop improvement programs due to its more straightforward design, low methodology cost, high efficiency, good reproducibility, and quick cycle. The system is now being utilized in the biofortification of cereal crops such as rice, wheat, barley, and maize, including vegetable crops such as potato and tomato. The CRISPR-Cas-based crop genome editing has been utilized in imparting/producing qualitative enhancement in aroma, shelf life, sweetness, and quantitative improvement in starch, protein, gamma-aminobutyric acid (GABA), oleic acid, anthocyanin, phytic acid, gluten, and steroidal glycoalkaloid contents. Some varieties have even been modified to become disease and stress-resistant. Thus, the present review critically discusses CRISPR-Cas genome editing-based biofortification of crops for imparting nutraceutical properties.
Collapse
Affiliation(s)
- Dileep Kumar
- Department of Biochemistry, University of Lucknow, Lucknow, India
| | - Anurag Yadav
- Department of Microbiology, College of Basic Science and Humanities, Sardarkrushinagar Dantiwada Agriculture University, Banaskantha, India
| | - Rumana Ahmad
- Department of Biochemistry, Era Medical University and Hospital, Lucknow, India
| | | | - Kusum Yadav
- Department of Biochemistry, University of Lucknow, Lucknow, India
| |
Collapse
|
18
|
Jiang M, Li X, Dong X, Zu Y, Zhan Z, Piao Z, Lang H. Research Advances and Prospects of Orphan Genes in Plants. FRONTIERS IN PLANT SCIENCE 2022; 13:947129. [PMID: 35874010 PMCID: PMC9305701 DOI: 10.3389/fpls.2022.947129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 06/23/2022] [Indexed: 06/15/2023]
Abstract
Orphan genes (OGs) are defined as genes having no sequence similarity with genes present in other lineages. OGs have been regarded to play a key role in the development of lineage-specific adaptations and can also serve as a constant source of evolutionary novelty. These genes have often been found related to various stress responses, species-specific traits, special expression regulation, and also participate in primary substance metabolism. The advancement in sequencing tools and genome analysis methods has made the identification and characterization of OGs comparatively easier. In the study of OG functions in plants, significant progress has been made. We review recent advances in the fast evolving characteristics, expression modulation, and functional analysis of OGs with a focus on their role in plant biology. We also emphasize current challenges, adoptable strategies and discuss possible future directions of functional study of OGs.
Collapse
Affiliation(s)
- Mingliang Jiang
- School of Agriculture, Jilin Agricultural Science and Technology College, Jilin, China
| | - Xiaonan Li
- College of Horticulture, Shenyang Agricultural University, Shenyang, China
| | - Xiangshu Dong
- School of Agriculture, Yunnan University, Kunming, China
| | - Ye Zu
- College of Horticulture, Shenyang Agricultural University, Shenyang, China
| | - Zongxiang Zhan
- College of Horticulture, Shenyang Agricultural University, Shenyang, China
| | - Zhongyun Piao
- College of Horticulture, Shenyang Agricultural University, Shenyang, China
| | - Hong Lang
- School of Agriculture, Jilin Agricultural Science and Technology College, Jilin, China
| |
Collapse
|
19
|
Cardoso-Silva CB, Aono AH, Mancini MC, Sforça DA, da Silva CC, Pinto LR, Adams KL, de Souza AP. Taxonomically Restricted Genes Are Associated With Responses to Biotic and Abiotic Stresses in Sugarcane ( Saccharum spp.). FRONTIERS IN PLANT SCIENCE 2022; 13:923069. [PMID: 35845637 PMCID: PMC9280035 DOI: 10.3389/fpls.2022.923069] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 06/13/2022] [Indexed: 06/15/2023]
Abstract
Orphan genes (OGs) are protein-coding genes that are restricted to particular clades or species and lack homology with genes from other organisms, making their biological functions difficult to predict. OGs can rapidly originate and become functional; consequently, they may support rapid adaptation to environmental changes. Extensive spread of mobile elements and whole-genome duplication occurred in the Saccharum group, which may have contributed to the origin and diversification of OGs in the sugarcane genome. Here, we identified and characterized OGs in sugarcane, examined their expression profiles across tissues and genotypes, and investigated their regulation under varying conditions. We identified 319 OGs in the Saccharum spontaneum genome without detected homology to protein-coding genes in green plants, except those belonging to Saccharinae. Transcriptomic analysis revealed 288 sugarcane OGs with detectable expression levels in at least one tissue or genotype. We observed similar expression patterns of OGs in sugarcane genotypes originating from the closest geographical locations. We also observed tissue-specific expression of some OGs, possibly indicating a complex regulatory process for maintaining diverse functional activity of these genes across sugarcane tissues and genotypes. Sixty-six OGs were differentially expressed under stress conditions, especially cold and osmotic stresses. Gene co-expression network and functional enrichment analyses suggested that sugarcane OGs are involved in several biological mechanisms, including stimulus response and defence mechanisms. These findings provide a valuable genomic resource for sugarcane researchers, especially those interested in selecting stress-responsive genes.
Collapse
Affiliation(s)
- Cláudio Benício Cardoso-Silva
- Center of Molecular Biology and Genetic Engineering (CBMEG), University of Campinas (UNICAMP), Campinas, Brazil
- Department of Botany, University of British Columbia, Vancouver, BC, Canada
| | - Alexandre Hild Aono
- Center of Molecular Biology and Genetic Engineering (CBMEG), University of Campinas (UNICAMP), Campinas, Brazil
| | - Melina Cristina Mancini
- Center of Molecular Biology and Genetic Engineering (CBMEG), University of Campinas (UNICAMP), Campinas, Brazil
| | - Danilo Augusto Sforça
- Center of Molecular Biology and Genetic Engineering (CBMEG), University of Campinas (UNICAMP), Campinas, Brazil
| | - Carla Cristina da Silva
- Center of Molecular Biology and Genetic Engineering (CBMEG), University of Campinas (UNICAMP), Campinas, Brazil
- Agronomy Department, Federal University of Viçosa (UFV), Viçosa, Brazil
| | - Luciana Rossini Pinto
- Sugarcane Research Advanced Centre, Agronomic Institute of Campinas (IAC/APTA), Ribeirão Preto, Brazil
| | - Keith L. Adams
- Department of Botany, University of British Columbia, Vancouver, BC, Canada
| | - Anete Pereira de Souza
- Center of Molecular Biology and Genetic Engineering (CBMEG), University of Campinas (UNICAMP), Campinas, Brazil
- Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil
| |
Collapse
|
20
|
Comparative Metabolic Study of Two Contrasting Chinese Cabbage Genotypes under Mild and Severe Drought Stress. Int J Mol Sci 2022; 23:ijms23115947. [PMID: 35682623 PMCID: PMC9180449 DOI: 10.3390/ijms23115947] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 05/20/2022] [Accepted: 05/23/2022] [Indexed: 02/01/2023] Open
Abstract
Chinese cabbage (Brassica rapa L. ssp. pekinensis) is an important leafy vegetable crop cultivated worldwide. Drought is one of the most important limiting factors for the growth, production and quality of Chinese cabbage due to its weak drought tolerance. In order to deepen the understanding of drought stress response in Chinese cabbage, metabolomics studies were conducted in drought−tolerant (DT) and drought−susceptible (DS) genotypes of Chinese cabbage under water deficit−simulated mild and severe drought stress conditions. A total of 777 metabolites were detected, wherein 90 of them were proposed as the drought−responsive metabolites in Chinese cabbage, with abscisic acid (ABA), serine, choline alfoscerate, and sphingosine as potential representative drought stress biomarkers. We also found that drought−tolerant and drought−susceptible genotypes showed differential metabolic accumulation patterns with contrasting drought response mechanisms. Notably, constitutively high levels of ABA and glutathione were detected in drought−tolerant genotype in all tested and control conditions. In addition, proline, sucrose, γ−aminobutyric acid, and glutathione were also found to be highly correlated to drought tolerance. This study is the first metabolomic study on how Chinese cabbage responds to drought stress, and could provide insights on how to develop and cultivate new drought−resistant varieties.
Collapse
|
21
|
Tanvir R, Ping W, Sun J, Cain M, Li X, Li L. AtQQS orphan gene and NtNF-YC4 boost protein accumulation and pest resistance in tobacco (Nicotiana tabacum). PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2022; 317:111198. [PMID: 35193747 DOI: 10.1016/j.plantsci.2022.111198] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 12/07/2021] [Accepted: 01/26/2022] [Indexed: 05/19/2023]
Abstract
Qua-Quine Starch (QQS), an orphan gene exclusively found in Arabidopsis thaliana, interacts with Nuclear Factor Y subunit C4 (NF-YC4) and regulates carbon and nitrogen allocation in different plant species. Several studies uncovered its potential in increasing total protein and resistance against pathogens/pests in Arabidopsis and soybean. However, it is still unclear if these attributes QQS offers are universal in all flowering plants. Here we studied AtQQS and Nicotiana tabacum NF-YC4's (NtNF-YC4) influence on starch/protein content and pest resistance in tobacco. Our results showed both AtQQS and NtNF-YC4 had a positive impact on the plant's total protein accumulation. Simultaneously, we have also observed reduced starch biosynthesis and increased resistance against common pests like whiteflies (Bemisia tabaci) and aphids (Myzus persicae) in tobacco plants expressing AtQQS or overexpressing NtNF-YC4. Real-time PCR also revealed increased NF-YC4 expression after aphid infestation in tobacco varieties with higher pest resistance but decreased/unchanged NF-YC4 expression in varieties susceptible to pests. Further analysis revealed that QQS expression and overexpression of NtNF-YC4 strongly repressed expression of genes such as sugar transporter SWEET10 and Flowering Locus T (FT), suggesting involvement of SWEET10 and FT in the QQS and NF-YC4 mediated carbon and nitrogen allocation in tobacco. Our data suggested that the activity of species-specific orphan genes may not be limited to the original species or its close relatives. Sequence alignment revealed the conserved sequence of the NF-YC4s in different plant species that may be responsible for the resulting shift in metabolism, pest resistance. Cis-acting DNA element analysis of NtNF-YC4 promoter region may outline potential mechanisms for these phenotypic changes.
Collapse
Affiliation(s)
- Rezwan Tanvir
- Department of Biological Sciences, Mississippi State University, Mississippi State, MS 39762, USA
| | - Wenli Ping
- Department of Biological Sciences, Mississippi State University, Mississippi State, MS 39762, USA; Institute of Tobacco, Henan Academy of Agricultural Sciences, Key Laboratory for Green Preservation & Control of Tobacco Diseases and Pests in Huanghuai Growing Area, Zhengzhou, Henan 450002, China
| | - Jiping Sun
- Institute of Tobacco, Henan Academy of Agricultural Sciences, Key Laboratory for Green Preservation & Control of Tobacco Diseases and Pests in Huanghuai Growing Area, Zhengzhou, Henan 450002, China
| | - Morgan Cain
- Department of Biological Sciences, Mississippi State University, Mississippi State, MS 39762, USA
| | - Xuejun Li
- Institute of Tobacco, Henan Academy of Agricultural Sciences, Key Laboratory for Green Preservation & Control of Tobacco Diseases and Pests in Huanghuai Growing Area, Zhengzhou, Henan 450002, China
| | - Ling Li
- Department of Biological Sciences, Mississippi State University, Mississippi State, MS 39762, USA.
| |
Collapse
|
22
|
Nagamine A, Ezura H. Genome Editing for Improving Crop Nutrition. Front Genome Ed 2022; 4:850104. [PMID: 35224538 PMCID: PMC8864126 DOI: 10.3389/fgeed.2022.850104] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 01/24/2022] [Indexed: 11/22/2022] Open
Abstract
Genome editing technologies, including CRISPR/Cas9 and TALEN, are excellent genetic modification techniques and are being proven to be powerful tools not only in the field of basic science but also in the field of crop breeding. Recently, two genome-edited crops targeted for nutritional improvement, high GABA tomatoes and high oleic acid soybeans, have been released to the market. Nutritional improvement in cultivated crops has been a major target of conventional genetic modification technologies as well as classical breeding methods. Mutations created by genome editing are considered to be almost identical to spontaneous genetic mutations because the mutation inducer, the transformed foreign gene, can be completely eliminated from the final genome-edited hosts after causing the mutation. Therefore, genome-edited crops are expected to be relatively easy to supply to the market, unlike GMO crops. On the other hand, due to their technical feature, the main goal of current genome-edited crop creation is often the total or partial disruption of genes rather than gene delivery. Therefore, to obtain the desired trait using genome editing technology, in some cases, a different approach from that of genetic recombination technology may be required. In this mini-review, we will review several nutritional traits in crops that have been considered suitable targets for genome editing, including the two examples mentioned above, and discuss how genome editing technology can be an effective breeding technology for improving nutritional traits in crops.
Collapse
Affiliation(s)
- Ai Nagamine
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
| | - Hiroshi Ezura
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
- Tsukuba Plant Innovation Research Center, University of Tsukuba, Tsukuba, Japan
- *Correspondence: Hiroshi Ezura,
| |
Collapse
|
23
|
Wang T, Zhang C, Zhang H, Zhu H. CRISPR/Cas9-Mediated Gene Editing Revolutionizes the Improvement of Horticulture Food Crops. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:13260-13269. [PMID: 33734711 DOI: 10.1021/acs.jafc.1c00104] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Horticultural food crops are important sources of nutrients for humans. With the increase of the global population, enhanced horticulture food crop production has become a new challenge, and enriching their nutritional content has also been required. Gene editing systems, such as zinc finger nucleases, transcription activator-like effector nucleases, and clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated 9 (Cas9), have accelerated crop improvement through the modification of targeted genomes precisely. Here, we review the development of various gene editors and compare their advantages and shortcomings, especially the newly emerging CRISPR/Cas systems, such as base editing and prime editing. We also summarize their practical applications in crop trait improvement, including yield, nutritional quality, and other consumer traits.
Collapse
Affiliation(s)
- Tian Wang
- College of Life Science, Shandong Normal University, Jinan, Shandong 250014, People's Republic of China
| | - Chunjiao Zhang
- Supervision, Inspection & Testing Center of Agricultural Products Quality, Ministry of Agriculture and Rural Affairs, Beijing 100083, People's Republic of China
| | - Hongyan Zhang
- College of Life Science, Shandong Normal University, Jinan, Shandong 250014, People's Republic of China
| | - Hongliang Zhu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, People's Republic of China
| |
Collapse
|