1
|
Zheng Z, Lv J, Niu Z, Zhang J, Zhu M, Hu H, Sun W, Ma J, Li Y, Wu Y, Wang D, Mu W, Xu R, Jiang Y, Lu Z, Liu J, Yang Y. Genetic insights into developmental variations of spiny bracts among hazels through the pangenome construction. PLANT BIOTECHNOLOGY JOURNAL 2025; 23:1396-1398. [PMID: 40139668 PMCID: PMC12018811 DOI: 10.1111/pbi.14568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 10/23/2024] [Accepted: 12/23/2024] [Indexed: 03/29/2025]
Affiliation(s)
- Zeyu Zheng
- State Key Laboratory of Herbage Improvement and Grassland Agro‐ecosystems, College of EcologyLanzhou UniversityLanzhouChina
- Yazhouwan National Laboratory (YNL)SanyaChina
| | - Jiaojiao Lv
- State Key Laboratory of Herbage Improvement and Grassland Agro‐ecosystems, College of EcologyLanzhou UniversityLanzhouChina
- Yazhouwan National Laboratory (YNL)SanyaChina
| | - Zhimin Niu
- State Key Laboratory of Herbage Improvement and Grassland Agro‐ecosystems, College of EcologyLanzhou UniversityLanzhouChina
| | - Jin Zhang
- State Key Laboratory of Herbage Improvement and Grassland Agro‐ecosystems, College of EcologyLanzhou UniversityLanzhouChina
| | - Mingjia Zhu
- State Key Laboratory of Herbage Improvement and Grassland Agro‐ecosystems, College of EcologyLanzhou UniversityLanzhouChina
| | - Hongyin Hu
- State Key Laboratory of Herbage Improvement and Grassland Agro‐ecosystems, College of EcologyLanzhou UniversityLanzhouChina
| | - Wanhe Sun
- Liaoning Institute of PomologyXiongyueChina
| | - Jianxiang Ma
- State Key Laboratory of Herbage Improvement and Grassland Agro‐ecosystems, College of EcologyLanzhou UniversityLanzhouChina
| | - Ying Li
- State Key Laboratory of Herbage Improvement and Grassland Agro‐ecosystems, College of EcologyLanzhou UniversityLanzhouChina
| | - Ying Wu
- State Key Laboratory of Herbage Improvement and Grassland Agro‐ecosystems, College of EcologyLanzhou UniversityLanzhouChina
| | - Dandan Wang
- State Key Laboratory of Herbage Improvement and Grassland Agro‐ecosystems, College of EcologyLanzhou UniversityLanzhouChina
| | - Wenjie Mu
- State Key Laboratory of Herbage Improvement and Grassland Agro‐ecosystems, College of EcologyLanzhou UniversityLanzhouChina
| | - Renping Xu
- State Key Laboratory of Herbage Improvement and Grassland Agro‐ecosystems, College of EcologyLanzhou UniversityLanzhouChina
| | - Yun Jiang
- Shanghai Chenshan Botanical GardenShanghaiChina
| | - Zhiqiang Lu
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical GardenChinese Academy of SciencesMenglaChina
| | - Jianquan Liu
- State Key Laboratory of Herbage Improvement and Grassland Agro‐ecosystems, College of EcologyLanzhou UniversityLanzhouChina
| | - Yongzhi Yang
- State Key Laboratory of Herbage Improvement and Grassland Agro‐ecosystems, College of EcologyLanzhou UniversityLanzhouChina
| |
Collapse
|
2
|
Yang Z, Liang L, Xiang W, Wu Q, Wang L, Ma Q. Phylogenomic analyses re-evaluate the backbone of Corylus and unravel extensive signals of reticulate evolution. Mol Phylogenet Evol 2025; 204:108293. [PMID: 39855493 DOI: 10.1016/j.ympev.2025.108293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 01/10/2025] [Accepted: 01/21/2025] [Indexed: 01/27/2025]
Abstract
Phylogenomic analyses have shown that reticulate evolution greatly affects the accuracy of phylogenetic inferences, and thus may challenge the authority of bifurcating phylogenetic trees. In this study, we re-evaluated the phylogenetic backbone of the genus Corylus based on complete taxon sampling and genomic data. We assembled 581 single-copy nuclear genes and whole plastomes from 64 genome resequencing datasets to elucidate the reticulate relationships within Corylus. Nuclear coalescent and concatenation phylogenies revealed identical and fully supported backbone, clarifying the sisterhood between sect. Acanthochlamys and sect. Siphonochlamys as well as the phylogenetic position of C. fargesii and C. wangii, which have yet been addressed in previous phylogenetic studies. However, the monophyly of C. jacquemontii and C. kwechowensis and the distinction between C. ferox and C. ferox var. thibetica were not supported. Gene trees-species tree conflicts and cytonuclear discordance were identified, with multiple evidences supporting that hybridization/introgression, coupled with incomplete lineage sorting, have led to substantial phylogenetic incongruence in Corylus. Moreover, typical geographical clustering rather than strict monophyletic pattern in plastome phylogeny implies chloroplast capture within Corylus and offers evidence of cytoplasmic introgression. Overall, this study provides a robust phylogenomic backbone for Corylus and unravels that reticulate evolution can greatly shape taxonomic revision.
Collapse
Affiliation(s)
- Zhen Yang
- Key Laboratory of Tree Breeding and Cultivation, National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China
| | - Lisong Liang
- Key Laboratory of Tree Breeding and Cultivation, National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China
| | - Weibo Xiang
- National Engineering Research Center of Eco-Environment Protection for Yangtze River Economic Belt, China Three Gorges Corporation, Beijing 100083, China; Rare Plants Research Institute of Yangtze River, China Three Gorges Corporation, Yichang 443133, China
| | - Qiong Wu
- Key Laboratory of Tree Breeding and Cultivation, National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China
| | - Lujun Wang
- Research Institute of Economic Forest Cultivation and Processing, Anhui Academy of Forestry, Hefei 230031, China
| | - Qinghua Ma
- Key Laboratory of Tree Breeding and Cultivation, National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China.
| |
Collapse
|
3
|
Wang TR, Ning X, Zheng SS, Li Y, Lu ZJ, Meng HH, Ge BJ, Kozlowski G, Yan MX, Song YG. Genomic insights into ecological adaptation of oaks revealed by phylogenomic analysis of multiple species. PLANT DIVERSITY 2025; 47:53-67. [PMID: 40041560 PMCID: PMC11873581 DOI: 10.1016/j.pld.2024.07.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 07/22/2024] [Accepted: 07/23/2024] [Indexed: 03/06/2025]
Abstract
Understanding the ecological adaptation of tree species can not only reveal the evolutionary potential but also benefit biodiversity conservation under global climate change. Quercus is a keystone genus in Northern Hemisphere forests, and its wide distribution in diverse ecosystems and long evolutionary history make it an ideal model for studying the genomic basis of ecological adaptations. Here we used a newly sequenced genome of Quercus gilva, an evergreen oak species from East Asia, with 18 published Fagales genomes to determine how Fagaceae genomes have evolved, identify genomic footprints of ecological adaptability in oaks in general, as well as between evergreen and deciduous oaks. We found that oak species exhibited a higher degree of genomic conservation and stability, as indicated by the absence of large-scale chromosomal structural variations or additional whole-genome duplication events. In addition, we identified expansion and tandem repetitions within gene families that contribute to plant physical and chemical defense (e.g., cuticle biosynthesis and oxidosqualene cyclase genes), which may represent the foundation for the ecological adaptation of oak species. Circadian rhythm and hormone-related genes may regulate the habits of evergreen and deciduous oaks. This study provides a comprehensive perspective on the ecological adaptations of tree species based on phylogenetic, genome evolutionary, and functional genomic analyses.
Collapse
Affiliation(s)
- Tian-Rui Wang
- Eastern China Conservation Centre for Wild Endangered Plant Resources, Shanghai Chenshan Botanical Garden, Shanghai 201602, China
| | - Xin Ning
- Eastern China Conservation Centre for Wild Endangered Plant Resources, Shanghai Chenshan Botanical Garden, Shanghai 201602, China
| | - Si-Si Zheng
- Eastern China Conservation Centre for Wild Endangered Plant Resources, Shanghai Chenshan Botanical Garden, Shanghai 201602, China
| | - Yu Li
- Eastern China Conservation Centre for Wild Endangered Plant Resources, Shanghai Chenshan Botanical Garden, Shanghai 201602, China
- College of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou 311300, China
| | - Zi-Jia Lu
- Eastern China Conservation Centre for Wild Endangered Plant Resources, Shanghai Chenshan Botanical Garden, Shanghai 201602, China
- College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Hong-Hu Meng
- Plant Phylogenetics and Conservation Group, Centre for Integrative Conservation, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming 650223, China
| | - Bin-Jie Ge
- Eastern China Conservation Centre for Wild Endangered Plant Resources, Shanghai Chenshan Botanical Garden, Shanghai 201602, China
| | - Gregor Kozlowski
- Eastern China Conservation Centre for Wild Endangered Plant Resources, Shanghai Chenshan Botanical Garden, Shanghai 201602, China
- Department of Biology and Botanic Garden, University of Fribourg, Fribourg, Switzerland
- Natural History Museum Fribourg, Fribourg, Switzerland
| | - Meng-Xiao Yan
- Eastern China Conservation Centre for Wild Endangered Plant Resources, Shanghai Chenshan Botanical Garden, Shanghai 201602, China
| | - Yi-Gang Song
- Eastern China Conservation Centre for Wild Endangered Plant Resources, Shanghai Chenshan Botanical Garden, Shanghai 201602, China
- College of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou 311300, China
| |
Collapse
|
4
|
Amoroso CG, Andolfo G. SiMul-db: a database of single and multi-target Cas9 guides for hazelnut editing. Front Genet 2024; 15:1467316. [PMID: 39737003 PMCID: PMC11683083 DOI: 10.3389/fgene.2024.1467316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 11/22/2024] [Indexed: 01/01/2025] Open
Affiliation(s)
| | - Giuseppe Andolfo
- Department of Agricultural Sciences, University of Naples ‘Federico II’, Portici, Italy
| |
Collapse
|
5
|
Talbot SC, Vining KJ, Snelling JW, Clevenger J, Mehlenbacher SA. A haplotype-resolved chromosome-level assembly and annotation of European hazelnut (C. avellana cv. Jefferson) provides insight into mechanisms of eastern filbert blight resistance. G3 (BETHESDA, MD.) 2024; 14:jkae021. [PMID: 38325326 DOI: 10.1093/g3journal/jkae021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 12/11/2023] [Accepted: 01/05/2024] [Indexed: 02/09/2024]
Abstract
European hazelnut (Corylus avellana L.) is an important tree nut crop. Hazelnut production in North America is currently limited in scalability due to Anisogramma anomala, a fungal pathogen that causes Eastern Filbert Blight (EFB) disease in hazelnut. Successful deployment of EFB resistant cultivars has been limited to the state of Oregon, where the breeding program at Oregon State University (OSU) has released cultivars with a dominant allele at a single resistance locus identified by classical breeding, linkage mapping, and molecular markers. C. avellana cultivar "Jefferson" is resistant to the predominant EFB biotype in Oregon and has been selected by the OSU breeding program as a model for hazelnut genetic and genomic research. Here, we present a near complete, haplotype-resolved chromosome-level hazelnut genome assembly for "Jefferson". This new assembly is a significant improvement over a previously published genome draft. Analysis of genomic regions linked to EFB resistance and self-incompatibility confirmed haplotype splitting and identified new gene candidates that are essential for downstream molecular marker development, thereby facilitating breeding efforts.
Collapse
Affiliation(s)
- Samuel C Talbot
- Department of Horticulture, Oregon State University, 4017 Agriculture and Life Sciences Building, Corvallis, OR 97331, USA
| | - Kelly J Vining
- Department of Horticulture, Oregon State University, 4017 Agriculture and Life Sciences Building, Corvallis, OR 97331, USA
| | - Jacob W Snelling
- Department of Horticulture, Oregon State University, 4017 Agriculture and Life Sciences Building, Corvallis, OR 97331, USA
| | - Josh Clevenger
- Hudson Alpha Institute for Biotechnology, 601 Genome Way Northwest, Huntsville, AL 35806, USA
| | - Shawn A Mehlenbacher
- Department of Horticulture, Oregon State University, 4017 Agriculture and Life Sciences Building, Corvallis, OR 97331, USA
| |
Collapse
|
6
|
Yang Z, Ma W, Wang L, Yang X, Zhao T, Liang L, Wang G, Ma Q. Population genomics reveals demographic history and selection signatures of hazelnut ( Corylus). HORTICULTURE RESEARCH 2023; 10:uhad065. [PMID: 37249951 PMCID: PMC10208898 DOI: 10.1093/hr/uhad065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 04/02/2023] [Indexed: 05/31/2023]
Abstract
Hazelnut (Corylus spp.) is known as one of the four famous tree nuts in the world due to its pleasant taste and nutritional benefits. However, hazelnut promotion worldwide is increasingly challenged by global climate change, limiting its production to a few regions. Focusing on the eurytopic Section Phyllochlamys, we conducted whole-genome resequencing of 125 diverse accessions from five geo-ecological zones in Eurasia to elucidate the genomic basis of adaptation and improvement. Population structure inference outlined five distinct genetic lineages corresponding to climate conditions and breeding background, and highlighted the differentiation between European and Asian lineages. Demographic dynamics and ecological niche modeling revealed that Pleistocene climatic oscillations dominantly shaped the extant genetic patterns, and multiple environmental factors have contributed to the lineage divergence. Whole-genome scans identified 279, 111, and 164 selective sweeps that underlie local adaptation in Corylus heterophylla, Corylus kweichowensis, and Corylus yunnanensis, respectively. Relevant positively selected genes were mainly involved in regulating signaling pathways, growth and development, and stress resistance. The improvement signatures of hybrid hazelnut were concentrated in 312 and 316 selected genes, when compared to C. heterophylla and Corylus avellana, respectively, including those that regulate protein polymerization, photosynthesis, and response to water deprivation. Among these loci, 22 candidate genes were highly associated with the regulation of biological quality. Our study provides insights into evolutionary processes and the molecular basis of how sibling species adapt to contrasting environments, and offers valuable resources for future climate-resilient breeding.
Collapse
Affiliation(s)
- Zhen Yang
- Key Laboratory of Tree Breeding and Cultivation, National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China
| | - Wenxu Ma
- Key Laboratory of Tree Breeding and Cultivation, National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China
- Forest Botany and Tree Physiology, University of Goettingen, Goettingen, 37077, Germany
| | - Lujun Wang
- Research Institute of Economic Forest Cultivation and Processing, Anhui Academy of Forestry, Hefei, 230031, China
| | - Xiaohong Yang
- Research Institute of Walnut, Guizhou Academy of Forestry, Guiyang, 550005, China
| | - Tiantian Zhao
- Key Laboratory of Tree Breeding and Cultivation, National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China
| | - Lisong Liang
- Key Laboratory of Tree Breeding and Cultivation, National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China
| | - Guixi Wang
- Key Laboratory of Tree Breeding and Cultivation, National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China
| | | |
Collapse
|
7
|
GRAS-Di SNP-based molecular characterization and fingerprinting of a Turkish Corylus avellana core set provide insights into the cultivation and breeding of hazelnut in Turkey. Mol Genet Genomics 2023; 298:413-426. [PMID: 36595074 DOI: 10.1007/s00438-022-01990-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 12/27/2022] [Indexed: 01/04/2023]
Abstract
Hazelnut (Corylus avellana L.) is an economically and socially important product for Turkey, the country that leads global production of this crop. The preservation of Turkish hazelnut genetic diversity and informed breeding of new cultivars are crucial for maintaining quality and crop yield stability. In this study, genotyping by random amplicon sequencing (GRAS-Di) was used to identify single-nucleotide polymorphisms (SNPs) in a panel of 96 individuals representing the Turkish national hazelnut collection. The resulting 7609 high-quality SNPs were physically mapped to the Tombul cultivar reference genome and used for population structure and diversity analyses. These analyses revealed that cultivars are not less diverse than wild accessions and that 44% of the panel had admixed ancestry. The results also indicated that recently released Turkish cultivars are highly similar to each other, suggesting that diversity analysis is an important tool that should be employed to prevent future genetic bottlenecks in this crop. A minimal marker algorithm was used to select a set of seven SNP markers that were capable of differentiating the panel accessions. These fingerprinting markers should be useful for the propagation of true-to-type elite cultivars that can be used to renew Turkey's aging hazelnut orchards.
Collapse
|
8
|
The Current Developments in Medicinal Plant Genomics Enabled the Diversification of Secondary Metabolites' Biosynthesis. Int J Mol Sci 2022; 23:ijms232415932. [PMID: 36555572 PMCID: PMC9781956 DOI: 10.3390/ijms232415932] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/04/2022] [Accepted: 12/09/2022] [Indexed: 12/23/2022] Open
Abstract
Medicinal plants produce important substrates for their adaptation and defenses against environmental factors and, at the same time, are used for traditional medicine and industrial additives. Plants have relatively little in the way of secondary metabolites via biosynthesis. Recently, the whole-genome sequencing of medicinal plants and the identification of secondary metabolite production were revolutionized by the rapid development and cheap cost of sequencing technology. Advances in functional genomics, such as transcriptomics, proteomics, and metabolomics, pave the way for discoveries in secondary metabolites and related key genes. The multi-omics approaches can offer tremendous insight into the variety, distribution, and development of biosynthetic gene clusters (BGCs). Although many reviews have reported on the plant and medicinal plant genome, chemistry, and pharmacology, there is no review giving a comprehensive report about the medicinal plant genome and multi-omics approaches to study the biosynthesis pathway of secondary metabolites. Here, we introduce the medicinal plant genome and the application of multi-omics tools for identifying genes related to the biosynthesis pathway of secondary metabolites. Moreover, we explore comparative genomics and polyploidy for gene family analysis in medicinal plants. This study promotes medicinal plant genomics, which contributes to the biosynthesis and screening of plant substrates and plant-based drugs and prompts the research efficiency of traditional medicine.
Collapse
|
9
|
Wang J, Hong P, Qiao Q, Zhu D, Zhang L, Lin K, Sun S, Jiang S, Shen B, Zhang S, Liu Q. Chromosome-level genome assembly provides new insights into Japanese chestnut ( Castanea crenata) genomes. FRONTIERS IN PLANT SCIENCE 2022; 13:1049253. [PMID: 36518506 PMCID: PMC9742463 DOI: 10.3389/fpls.2022.1049253] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 11/10/2022] [Indexed: 05/30/2023]
Abstract
Japanese chestnut (Castanea crenata Sieb. et Zucc) is an economically and ecologically important chestnut species in East Asia. Here, we presented a high-quality chromosome-level reference genome of the Japanese chestnut cultivar 'Tsukuba' by combining Nanopore long reads and Hi-C sequencing. The final assembly has a size of 718.30 Mb and consists of 12 pseudochromosomes ranging from 41.03 to 92.03 Mb, with a BUSCO complete gene percentage of 97.6%. A total of 421.37 Mb repetitive sequences and 46,744 gene models encoding 46,463 proteins were predicted in the genome. Genome evolution analysis showed that Japanese chestnut is closely related to Chinese chestnut and these species shared a common ancestor ~6.5 million years ago. This high-quality Japanese chestnut genome represents an important resource for the chestnut genomics community and will improve our understanding of chestnut biology and evolution.
Collapse
Affiliation(s)
- Jiawei Wang
- Shandong Key Laboratory of Fruit Biotechnology Breeding, Shandong Institute of Pomology, Taian, Shandong, China
| | - Po Hong
- Shandong Key Laboratory of Fruit Biotechnology Breeding, Shandong Institute of Pomology, Taian, Shandong, China
| | - Qian Qiao
- Shandong Key Laboratory of Fruit Biotechnology Breeding, Shandong Institute of Pomology, Taian, Shandong, China
| | - Dongzi Zhu
- Shandong Key Laboratory of Fruit Biotechnology Breeding, Shandong Institute of Pomology, Taian, Shandong, China
| | - Lisi Zhang
- Shandong Key Laboratory of Fruit Biotechnology Breeding, Shandong Institute of Pomology, Taian, Shandong, China
| | - Ke Lin
- Shandong Key Laboratory of Fruit Biotechnology Breeding, Shandong Institute of Pomology, Taian, Shandong, China
- Department of Biology Science and Technology, Taishan University, Taian, Shandong, China
| | - Shan Sun
- Shandong Key Laboratory of Fruit Biotechnology Breeding, Shandong Institute of Pomology, Taian, Shandong, China
| | - Shuna Jiang
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Taian, Shandong, China
| | - Bingxue Shen
- Shandong Key Laboratory of Fruit Biotechnology Breeding, Shandong Institute of Pomology, Taian, Shandong, China
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Taian, Shandong, China
| | - Shizhong Zhang
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Taian, Shandong, China
| | - Qingzhong Liu
- Shandong Key Laboratory of Fruit Biotechnology Breeding, Shandong Institute of Pomology, Taian, Shandong, China
| |
Collapse
|
10
|
Chetverikov PE, Bertone MA. First rhyncaphytoptine mite (Eriophyoidea, Diptilomiopidae) parasitizing American hazelnut (Corylus americana): molecular identification, confocal microscopy, and phylogenetic position. EXPERIMENTAL & APPLIED ACAROLOGY 2022; 88:75-95. [PMID: 36318416 DOI: 10.1007/s10493-022-00740-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 09/09/2022] [Indexed: 06/16/2023]
Abstract
The plant genus Corylus is an economically important crop, valued especially for its nuts. Numerous pathogens and harmful phytophagous arthropods are known to damage hazelnuts. We report on a new eriophyoid mite, Rhyncaphytoptus corylivagrans n. sp., and the first record of Coptophylla lamimani both collected from leaves of American hazelnut (Corylus americana) in North Carolina, USA. Including our new data, the complex of eriophyoids from Corylus comprises 15 species from three families: Phytoptidae (2 spp.), Eriophyidae (11 spp.), and Diptilomiopidae (2 spp.). We obtained sequences of three genes (Cox1, D1-D5 28S, and ITS1-5.8S-ITS2), applied BLAST and tree-based approaches for identification of R. corylivagrans n. sp., and performed the first molecular phylogenetic analysis focused on Rhyncaphytoptinae. Among the three genes, Cox1 showed better power when used for BLAST searches. Combined molecular phylogenetic analyses inferred R. corylivagrans n. sp. as sister to R. betulae, determined several moderately supported host-specific lineages of rhyncaphytoptines, and indicated a close relationship of the new species with members of the genus Rhinotergum. In two Rhinotergum spp. from Rosaceae, confocal microscopy revealed a new structure, the needle-like anterior process of the prodorsal shield, which is absent in R. corylivagrans n. sp. Additionally, the elements of the anal secretory apparatus presumably associated with silk-production and hypothesized as a synapomorphy of Eriophyoidea, were detected in the new species, providing the first documented report of this structure in Diptilomiopidae. Our study contributes to knowledge on the biodiversity of phytoparasites associated with hazelnuts and calls for future comparative phylogenetics of Diptilomiopidae.
Collapse
Affiliation(s)
- Philipp E Chetverikov
- Saint-Petersburg State University, Universitetskaya nab. 7/9, 199034, St. Petersburg, Russia.
- Zoological Institute, Russian Academy of Sciences, Universitetskaya nab. 1, 199034,, St. Petersburg, Russia.
| | - Matthew A Bertone
- Department of Entomology and Plant Pathology, North Carolina State University, Campus Box 7613, 27695, Raleigh, NC, USA.
| |
Collapse
|
11
|
Sillo F, Brunetti C, Marroni F, Vita F, Dos Santos Nascimento LB, Vizzini A, Mello A, Balestrini R. Systemic effects of Tuber melanosporum inoculation in two Corylus avellana genotypes. TREE PHYSIOLOGY 2022; 42:1463-1480. [PMID: 35137225 DOI: 10.1093/treephys/tpac012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Accepted: 01/28/2022] [Indexed: 06/14/2023]
Abstract
Roots of the European hazelnut (Corylus avellana L.), i.e., one of the most economically important nut species, form symbiosis with ectomycorrhizal (ECM) fungi, including truffles. Although physical interactions only occur in roots, the presence of mycorrhizal fungi can lead to metabolic changes at a systemic level, i.e., in leaves. However, how root colonization by ECM fungi modifies these processes in the host plant has so far not been widely studied. This work aimed to investigate the response in two C. avellana genotypes, focusing on leaves from plants inoculated with the black truffle Tuber melanosporum Vittad. Transcriptomic profiles of leaves of colonized plants were compared with those of non-colonized plants, as well as sugar and polyphenolic content. Results suggested that T. melanosporum has the potential to support plants in stressed conditions, leading to the systemic regulation of several genes involved in signaling and defense responses. Although further confirmation is needed, our results open new perspectives for future research aimed to highlight novel aspects in ECM symbiosis.
Collapse
Affiliation(s)
- Fabiano Sillo
- National Research Council - Institute for Sustainable Plant Protection (CNR-IPSP), Strada della Cacce 73, 10135 Torino, Italy
| | - Cecilia Brunetti
- National Research Council - Institute for Sustainable Plant Protection (CNR-IPSP), Via Madonna del Piano 10, 50019 Firenze, Italy
| | - Fabio Marroni
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, Via delle Scienze 206, 33100 Udine, Italy
| | - Federico Vita
- Department of Biology, University of Bari Aldo Moro, Via E. Orabona 4, 70125 Bari, Italy
| | | | - Alfredo Vizzini
- Department of Life Sciences and Systems Biology, University of Torino, Viale P.A. Mattioli 25, 10125 Torino, Italy
- National Research Council - Institute for Sustainable Plant Protection (CNR-IPSP), Viale Mattioli 25, 10125 Torino, Italy
| | - Antonietta Mello
- National Research Council - Institute for Sustainable Plant Protection (CNR-IPSP), Viale Mattioli 25, 10125 Torino, Italy
| | - Raffaella Balestrini
- National Research Council - Institute for Sustainable Plant Protection (CNR-IPSP), Strada della Cacce 73, 10135 Torino, Italy
| |
Collapse
|
12
|
Lysak MA. Celebrating Mendel, McClintock, and Darlington: On end-to-end chromosome fusions and nested chromosome fusions. THE PLANT CELL 2022; 34:2475-2491. [PMID: 35441689 PMCID: PMC9252491 DOI: 10.1093/plcell/koac116] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 04/13/2022] [Indexed: 05/04/2023]
Abstract
The evolution of eukaryotic genomes is accompanied by fluctuations in chromosome number, reflecting cycles of chromosome number increase (polyploidy and centric fissions) and decrease (chromosome fusions). Although all chromosome fusions result from DNA recombination between two or more nonhomologous chromosomes, several mechanisms of descending dysploidy are exploited by eukaryotes to reduce their chromosome number. Genome sequencing and comparative genomics have accelerated the identification of inter-genome chromosome collinearity and gross chromosomal rearrangements and have shown that end-to-end chromosome fusions (EEFs) and nested chromosome fusions (NCFs) may have played a more important role in the evolution of eukaryotic karyotypes than previously thought. The present review aims to summarize the limited knowledge on the origin, frequency, and evolutionary implications of EEF and NCF events in eukaryotes and especially in land plants. The interactions between nonhomologous chromosomes in interphase nuclei and chromosome (mis)pairing during meiosis are examined for their potential importance in the origin of EEFs and NCFs. The remaining open questions that need to be addressed are discussed.
Collapse
Affiliation(s)
- Martin A Lysak
- CEITEC—Central European Institute of Technology, Masaryk University, Brno, CZ-625 00, Czech Republic
| |
Collapse
|
13
|
Wang Z, Kang M, Li J, Zhang Z, Wang Y, Chen C, Yang Y, Liu J. Genomic evidence for homoploid hybrid speciation between ancestors of two different genera. Nat Commun 2022; 13:1987. [PMID: 35418567 PMCID: PMC9008057 DOI: 10.1038/s41467-022-29643-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 03/25/2022] [Indexed: 11/29/2022] Open
Abstract
Homoploid hybrid speciation (HHS) has been increasingly recognized as occurring widely during species diversification of both plants and animals. However, previous studies on HHS have mostly focused on closely-related species while it has been rarely reported or tested between ancestors of different genera. Here, we explore the likely HHS origin of Carpinus sect. Distegocarpus between sect. Carpinus and Ostrya in the family Betulaceae. We generate a chromosome-level reference genome for C. viminea of sect. Carpinus and re-sequence genomes of 44 individuals from the genera Carpinus and Ostrya. Our integrated analyses of all genomic data suggest that sect. Distegocarpus, which has three species, likely originates through HHS during the early divergence between Carpinus and Ostrya. Our study highlights the likelihood of an HHS event between ancestors of the extant genera during their initial divergences, which may have led to reticulate phylogenies at higher taxonomic levels.
Collapse
Affiliation(s)
- Zefu Wang
- State Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, China
| | - Minghui Kang
- State Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, China
| | - Jialiang Li
- State Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, China
| | - Zhiyang Zhang
- State Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, China
| | - Yufei Wang
- State Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, China
| | - Chunlin Chen
- State Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, China
| | - Yongzhi Yang
- State Key Laboratory of Grassland Agro-Ecosystem, College of Ecology, Lanzhou University, Lanzhou, Gansu, China
| | - Jianquan Liu
- State Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, China.
- State Key Laboratory of Grassland Agro-Ecosystem, College of Ecology, Lanzhou University, Lanzhou, Gansu, China.
| |
Collapse
|
14
|
Wang Z, Jiang Y, Yang X, Bi H, Li J, Mao X, Ma Y, Ru D, Zhang C, Hao G, Wang J, Abbott RJ, Liu J. Molecular signatures of parallel adaptive divergence causing reproductive isolation and speciation across two genera. Innovation (N Y) 2022; 3:100247. [PMID: 35519515 PMCID: PMC9065898 DOI: 10.1016/j.xinn.2022.100247] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 04/16/2022] [Indexed: 11/18/2022] Open
Abstract
Parallel evolution of reproductive isolation (PERI) provides strong evidence for natural selection playing a fundamental role in the origin of species. However, PERI has been rarely demonstrated for well established species drawn from different genera. In particular, parallel molecular signatures for the same genes in response to similar habitat divergence in such different lineages is lacking. Here, based on whole-genome sequencing data, we first explore the speciation process in two sister species of Carpinus (Betulaceae) in response to divergence for temperature and soil-iron concentration in habitats they occupy in northern and southwestern China, respectively. We then determine whether parallel molecular mutations occur during speciation in this pair of species and also in another sister-species pair of the related genus, Ostryopsis, which occupy similarly divergent habitats in China. We show that gene flow occurred during the origin of both pairs of sister species since approximately 9.8 or approximately 2 million years ago, implying strong natural selection during divergence. Also, in both species pairs we detected concurrent positive selection in a gene (LHY) for flowering time and in two paralogous genes (FRO4 and FRO7) of a gene family known to be important for iron tolerance. These changes were in addition to changes in other major genes related to these two traits. The different alleles of these particular candidate genes possessed by the sister species of Carpinus were functionally tested and indicated likely to alter flowering time and iron tolerance as previously demonstrated in the pair of Ostryopsis sister species. Allelic changes in these genes may have effectively resulted in high levels of prezygotic reproductive isolation to evolve between sister species of each pair. Our results show that PERI can occur in different genera at different timescales and involve similar signatures of molecular evolution at genes or paralogues of the same gene family, causing reproductive isolation as a consequence of adaptation to similarly divergent habitats. PERI provides strong evidence for natural selection playing a fundamental role in the origin of species PERI is rarely demonstrated for well-established species drawn from different genera We detected PERI across two genera (Carpinus and Ostryopsis) in the family Betulaceae PERI can occur in different genera at different timescales and involve molecular signatures at similar pathways
Collapse
Affiliation(s)
- Zefu Wang
- State Key Laboratory of Grassland Agro-Ecosystem, College of Ecology, Lanzhou University, Lanzhou 730000, China
- Key Laboratory for Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Yuanzhong Jiang
- Key Laboratory for Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Xiaoyue Yang
- State Key Laboratory of Grassland Agro-Ecosystem, College of Ecology, Lanzhou University, Lanzhou 730000, China
| | - Hao Bi
- Key Laboratory for Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Jialiang Li
- Key Laboratory for Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Xingxing Mao
- Key Laboratory for Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Yazhen Ma
- Key Laboratory for Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Dafu Ru
- State Key Laboratory of Grassland Agro-Ecosystem, College of Ecology, Lanzhou University, Lanzhou 730000, China
| | - Cheng Zhang
- Key Laboratory for Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Guoqian Hao
- Sichuan Tea College, Yibin University, Yibin 644000, China
| | - Jing Wang
- Key Laboratory for Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | | | - Jianquan Liu
- State Key Laboratory of Grassland Agro-Ecosystem, College of Ecology, Lanzhou University, Lanzhou 730000, China
- Key Laboratory for Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
- Corresponding author
| |
Collapse
|
15
|
Liu J, Wei H, Zhang X, He H, Cheng Y, Wang D. Chromosome-Level Genome Assembly and HazelOmics Database Construction Provides Insights Into Unsaturated Fatty Acid Synthesis and Cold Resistance in Hazelnut ( Corylus heterophylla). FRONTIERS IN PLANT SCIENCE 2021; 12:766548. [PMID: 34956265 PMCID: PMC8695561 DOI: 10.3389/fpls.2021.766548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Accepted: 11/18/2021] [Indexed: 06/14/2023]
Abstract
Corylus heterophylla (2n = 22) is the most widely distributed, unique, and economically important nut species in China. Chromosome-level genomes of C. avellana, C. heterophylla, and C. mandshurica have been published in 2021, but a satisfactory hazelnut genome database is absent. Northeast China is the main distribution and cultivation area of C. heterophylla, and the mechanism underlying the adaptation of C. heterophylla to extremely low temperature in this area remains unclear. Using single-molecule real-time sequencing and the chromosomal conformational capture (Hi-C) assisted genome assembly strategy, we obtained a high-quality chromosome-scale genome sequence of C. heterophylla, with a total length of 343 Mb and scaffold N50 of 32.88 Mb. A total of 94.72% of the test genes from the assembled genome could be aligned to the Embryophyta_odb9 database. In total, 22,319 protein-coding genes were predicted, and 21,056 (94.34%) were annotated in the assembled genome. A HazelOmics online database (HOD) containing the assembled genome, gene-coding sequences, protein sequences, and various types of annotation information was constructed. This database has a user-friendly and straightforward interface. In total, 439 contracted genes and 3,810 expanded genes were identified through genome evolution analysis, and 17 expanded genes were significantly enriched in the unsaturated fatty acid biosynthesis pathway (ko01040). Transcriptome analysis results showed that FAD (Cor0058010.1), SAD (Cor0141290.1), and KAT (Cor0122500.1) with high expression abundance were upregulated at the ovule maturity stage. We deduced that the expansion of these genes may promote high unsaturated fatty acid content in the kernels and improve the adaptability of C. heterophylla to the cold climate of Northeast China. The reference genome and database will be beneficial for future molecular breeding and gene function studies in this nut species, as well as for evolutionary research on species of the order Fagales.
Collapse
Affiliation(s)
- Jianfeng Liu
- Jilin Provincial Key Laboratory of Plant Resource Science and Green Production, Jilin Normal University, Siping, China
| | - Heng Wei
- Jilin Provincial Key Laboratory of Plant Resource Science and Green Production, Jilin Normal University, Siping, China
| | - Xingzheng Zhang
- Jilin Provincial Key Laboratory of Plant Resource Science and Green Production, Jilin Normal University, Siping, China
| | - Hongli He
- Jilin Provincial Key Laboratory of Plant Resource Science and Green Production, Jilin Normal University, Siping, China
| | - Yunqing Cheng
- Jilin Provincial Key Laboratory of Plant Resource Science and Green Production, Jilin Normal University, Siping, China
| | - Daoming Wang
- Liaoning Economic Forest Research Institute, Dalian, China
| |
Collapse
|
16
|
Xu Q, Zhang X, Zhang Y, Zheng C, Leebens-Mack JH, Jin L, Sankoff D. The monoploid chromosome complement of reconstructed ancestral genomes in a phylogeny. J Bioinform Comput Biol 2021; 19:2140008. [PMID: 34806950 DOI: 10.1142/s0219720021400084] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Using RACCROCHE, a method for reconstructing gene content and order of ancestral chromosomes from a phylogeny of extant genomes represented by the gene orders on their chromosomes, we study the evolution of three orders of woody plants. The method retrieves the monoploid complement of each Ancestor in a phylogeny, consisting a complete set of distinct chromosomes, despite some of the extant genomes being recently or historically polyploidized. The three orders are the Sapindales, the Fagales and the Malvales. All of these are independently estimated to have ancestral monoploid number [Formula: see text].
Collapse
Affiliation(s)
- Qiaoji Xu
- Department of Mathematics and Statistics, University of Ottawa, 150 Louis Pasteur Pvt, Ottawa, Ontario, Canada K1N 6NP, Canada
| | - Xiaomeng Zhang
- Department of Mathematics and Statistics, University of Ottawa, 150 Louis Pasteur Pvt, Ottawa, Ontario, Canada K1N 6NP, Canada
| | - Yue Zhang
- Department of Mathematics and Statistics, University of Ottawa, 150 Louis Pasteur Pvt, Ottawa, Ontario, Canada K1N 6NP, Canada
| | - Chunfang Zheng
- Department of Mathematics and Statistics, University of Ottawa, 150 Louis Pasteur Pvt, Ottawa, Ontario, Canada K1N 6NP, Canada
| | | | - Lingling Jin
- Department of Computer Science, University of Saskatchewan, Saskatoon, Saskatchewan, Canada S7N 5C9, Canada
| | - David Sankoff
- Department of Mathematics and Statistics, University of Ottawa, 150 Louis Pasteur Pvt, Ottawa, Ontario, Canada K1N 6NP, Canada
| |
Collapse
|