1
|
Sang Y, Ma Y, Wang R, Wang Z, Wang T, Su Y. Epigenetic regulation of organ-specific functions in Mikania micrantha and Mikania cordata: insights from DNA methylation and siRNA integration. BMC PLANT BIOLOGY 2024; 24:1142. [PMID: 39609688 PMCID: PMC11605950 DOI: 10.1186/s12870-024-05858-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 11/21/2024] [Indexed: 11/30/2024]
Abstract
BACKGROUND DNA methylation is a crucial epigenetic mechanism that regulates gene expression during plant growth and development. However, the role of DNA methylation in regulating the organ-specific functions of the invasive weed Mikania micrantha remains unknown. RESULTS Here, we generated DNA methylation profiles for M. micrantha and a local congeneric species, Mikania cordata, in three vegetative organs (root, stem, and leaf) using whole-genome bisulfite sequencing. The results showed both differences and conservation in methylation levels and patterns between the two species. Combined with transcriptome data, we found that DNA methylation generally inhibited gene expression, with varying effects depending on the genomic region and sequence context (CG, CHG, and CHH). Genes overlapping with differentially methylated regions (DMRs) were more likely to be differentially expressed between organs, and DMR-associated upregulated differentially expressed genes (DEGs) were enriched in organ-specific pathways. A comparison between photosynthetic (leaf) and non-photosynthetic (root) organs of M. micrantha further confirmed the regulatory role of DNA methylation in leaf-specific photosynthesis. Integrating small RNA-Seq data revealed that 24-nt small interfering RNAs (siRNAs) were associated with CHH methylation in gene-rich regions and regulated CHH methylation in the flanking regions of photosynthesis-related genes. CONCLUSION This study provides insights into the complex regulatory role of DNA methylation and siRNAs in organ-specific functions and offers valuable information for exploring the invasive characteristics of M. micrantha from an epigenetic perspective.
Collapse
Affiliation(s)
- Yatong Sang
- School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Yitong Ma
- School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Ruonan Wang
- School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Zhen Wang
- School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Ting Wang
- Research Institute of Sun Yat-Sen University in Shenzhen, Shenzhen, 518057, China.
- College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China.
| | - Yingjuan Su
- School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, China.
- Research Institute of Sun Yat-Sen University in Shenzhen, Shenzhen, 518057, China.
| |
Collapse
|
2
|
An H, Wang D, Yu L, Wu H, Qin Y, Zhang S, Ji X, Xin Y, Li X. Potential Involvement of MnCYP710A11 in Botrytis cinerea Resistance in Arabidopsis thaliana and Morus notabilis. Genes (Basel) 2024; 15:853. [PMID: 39062632 PMCID: PMC11275358 DOI: 10.3390/genes15070853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 06/26/2024] [Accepted: 06/27/2024] [Indexed: 07/28/2024] Open
Abstract
Cytochrome P450 (CYP) is a crucial oxidoreductase enzyme that plays a significant role in plant defense mechanisms. In this study, a specific cytochrome P450 gene (MnCYP710A11) was discovered in mulberry (Morus notabilis). Bioinformatic analysis and expression pattern analysis were conducted to elucidate the involvement of MnCYP710A11 in combating Botrytis cinerea infection. After the infection of B. cinerea, there was a notable increase in the expression of MnCYP710A11. MnCYP710A11 is overexpressed in Arabidopsis and mulberry and strongly reacts to B. cinerea. The overexpression of the MnCYP710A11 gene in Arabidopsis and mulberry led to a substantial enhancement in resistance against B. cinerea, elevated catalase (CAT) activity, increased proline content, and reduced malondialdehyde (MDA) levels. At the same time, H2O2 and O2- levels in MnCYP710A11 transgenic Arabidopsis were decreased, which reduced the damage of ROS accumulation to plants. Furthermore, our research indicates the potential involvement of MnCYP710A11 in B. cinerea resistance through the modulation of other resistance-related genes. These findings establish a crucial foundation for gaining deeper insights into the role of cytochrome P450 in mulberry plants.
Collapse
Affiliation(s)
- Hui An
- Guangxi Key Laboratory of Sericulture Ecology and Applied Intelligent Technology, Hechi University, Hechi 546300, China; (H.A.); (Y.Q.); (S.Z.)
- Guangxi Collaborative Innovation Center of Modern Sericulture Silk, School of Chemistry and Bioengineering, Hechi University, Hechi 546300, China
| | - Donghao Wang
- College of Forestry, Shandong Agricultural University, Tai’an 271018, China; (D.W.); (L.Y.); (H.W.); (X.J.)
| | - Lin Yu
- College of Forestry, Shandong Agricultural University, Tai’an 271018, China; (D.W.); (L.Y.); (H.W.); (X.J.)
| | - Hongshun Wu
- College of Forestry, Shandong Agricultural University, Tai’an 271018, China; (D.W.); (L.Y.); (H.W.); (X.J.)
| | - Yue Qin
- Guangxi Key Laboratory of Sericulture Ecology and Applied Intelligent Technology, Hechi University, Hechi 546300, China; (H.A.); (Y.Q.); (S.Z.)
- Guangxi Collaborative Innovation Center of Modern Sericulture Silk, School of Chemistry and Bioengineering, Hechi University, Hechi 546300, China
| | - Shihao Zhang
- Guangxi Key Laboratory of Sericulture Ecology and Applied Intelligent Technology, Hechi University, Hechi 546300, China; (H.A.); (Y.Q.); (S.Z.)
- Guangxi Collaborative Innovation Center of Modern Sericulture Silk, School of Chemistry and Bioengineering, Hechi University, Hechi 546300, China
| | - Xianling Ji
- College of Forestry, Shandong Agricultural University, Tai’an 271018, China; (D.W.); (L.Y.); (H.W.); (X.J.)
| | - Youchao Xin
- College of Forestry, Shandong Agricultural University, Tai’an 271018, China; (D.W.); (L.Y.); (H.W.); (X.J.)
| | - Xiaodong Li
- Guangxi Key Laboratory of Sericulture Ecology and Applied Intelligent Technology, Hechi University, Hechi 546300, China; (H.A.); (Y.Q.); (S.Z.)
- Guangxi Collaborative Innovation Center of Modern Sericulture Silk, School of Chemistry and Bioengineering, Hechi University, Hechi 546300, China
| |
Collapse
|
3
|
Mierziak J, Wojtasik W. Epigenetic weapons of plants against fungal pathogens. BMC PLANT BIOLOGY 2024; 24:175. [PMID: 38443788 PMCID: PMC10916060 DOI: 10.1186/s12870-024-04829-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 02/16/2024] [Indexed: 03/07/2024]
Abstract
In the natural environment, plants face constant exposure to biotic stress caused by fungal attacks. The plant's response to various biotic stresses relies heavily on its ability to rapidly adjust the transcriptome. External signals are transmitted to the nucleus, leading to activation of transcription factors that subsequently enhance the expression of specific defense-related genes. Epigenetic mechanisms, including histone modifications and DNA methylation, which are closely linked to chromatin states, regulate gene expression associated with defense against biotic stress. Additionally, chromatin remodelers and non-coding RNA play a significant role in plant defense against stressors. These molecular modifications enable plants to exhibit enhanced resistance and productivity under diverse environmental conditions. Epigenetic mechanisms also contribute to stress-induced environmental epigenetic memory and priming in plants, enabling them to recall past molecular experiences and utilize this stored information for adaptation to new conditions. In the arms race between fungi and plants, a significant aspect is the cross-kingdom RNAi mechanism, whereby sRNAs can traverse organismal boundaries. Fungi utilize sRNA as an effector molecule to silence plant resistance genes, while plants transport sRNA, primarily through extracellular vesicles, to pathogens in order to suppress virulence-related genes. In this review, we summarize contemporary knowledge on epigenetic mechanisms of plant defense against attack by pathogenic fungi. The role of epigenetic mechanisms during plant-fungus symbiotic interactions is also considered.
Collapse
Affiliation(s)
- Justyna Mierziak
- Department of Genetic Biochemistry, Faculty of Biotechnology, University of Wroclaw, Przybyszewskiego 63, Wroclaw, 51-148, Poland
| | - Wioleta Wojtasik
- Department of Genetic Biochemistry, Faculty of Biotechnology, University of Wroclaw, Przybyszewskiego 63, Wroclaw, 51-148, Poland.
| |
Collapse
|
4
|
Wang D, Chen L, Liu C, Wang H, Liu Z, Ji X, He N, Xin Y. Mno-miR164a and MnNAC100 regulate the resistance of mulberry to Botrytis cinerea. PHYSIOLOGIA PLANTARUM 2024; 176:e14309. [PMID: 38659152 DOI: 10.1111/ppl.14309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 04/01/2024] [Accepted: 04/05/2024] [Indexed: 04/26/2024]
Abstract
Although microRNAs (miRNAs) regulate the defense response of a variety of plant species against a variety of pathogenic fungi, the involvement of miRNAs in mulberry's defense against Botrytis cinerea has not yet been documented. In this study, we identified responsive B. cinerea miRNA mno-miR164a in mulberry trees. After infection with B. cinerea, the expression of mno-miR164a was reduced, which was fully correlated with the upregulation of its target gene, MnNAC100, responsible for encoding a transcription factor. By using transient infiltration/VIGS mulberry that overexpressed mno-miR164a or knocked-down MnNAC100, our study revealed a substantial enhancement in mulberry's resistance to B. cinerea when mno-miR164a was overexpressed or MnNAC100 expression was suppressed. This enhancement was accompanied by increased catalase (CAT) activity and reduced malondialdehyde (MDA) content. In addition, mno-miR164a-mediated inhibition of MnNAC100 enhanced the expression of a cluster of defense-related genes in transgenic plants upon exposure to B. cinerea. Meanwhile, MnNAC100 acts as a transcriptional repressor, directly suppressing the expression of MnPDF1.2. Our study indicated that the mno-miR164a-MnNAC100 regulatory module manipulates the defense response of mulberry to B. cinerea infection. This discovery has great potential in breeding of resistant varieties and disease control.
Collapse
Affiliation(s)
- Donghao Wang
- College of Forestry, Shandong Agricultural University, Tai'an, China
| | - Lin Chen
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, China
| | - Chaorui Liu
- College of Forestry, Shandong Agricultural University, Tai'an, China
| | - Hairui Wang
- College of Forestry, Shandong Agricultural University, Tai'an, China
| | - Zixuan Liu
- College of Forestry, Shandong Agricultural University, Tai'an, China
| | - Xianling Ji
- College of Forestry, Shandong Agricultural University, Tai'an, China
| | - Ningjia He
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, China
| | - Youchao Xin
- College of Forestry, Shandong Agricultural University, Tai'an, China
| |
Collapse
|
5
|
Zhou L, Gao G, Li X, Wang W, Tian S, Qin G. The pivotal ripening gene SlDML2 participates in regulating disease resistance in tomato. PLANT BIOTECHNOLOGY JOURNAL 2023; 21:2291-2306. [PMID: 37466912 PMCID: PMC10579708 DOI: 10.1111/pbi.14130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 06/14/2023] [Accepted: 07/06/2023] [Indexed: 07/20/2023]
Abstract
Fruit ripening and disease resistance are two essential biological processes for quality formation and maintenance. DNA methylation, in the form of 5-methylcytosine (5mC), has been elucidated to modulate fruit ripening, but its role in regulating fruit disease resistance remains poorly understood. In this study, we show that mutation of SlDML2, the DNA demethylase gene essential for fruit ripening, affects multiple developmental processes of tomato besides fruit ripening, including seed germination, leaf length and width and flower branching. Intriguingly, loss of SlDML2 function decreased the resistance of tomato fruits against the necrotrophic fungal pathogen Botrytis cinerea. Comparative transcriptomic analysis revealed an obvious transcriptome reprogramming caused by SlDML2 mutation during B. cinerea invasion. Among the thousands of differentially expressed genes, SlβCA3 encoding a β-carbonic anhydrase and SlFAD3 encoding a ω-3 fatty acid desaturase were demonstrated to be transcriptionally activated by SlDML2-mediated DNA demethylation and positively regulate tomato resistance to B. cinerea probably in the same genetic pathway with SlDML2. We further show that the pericarp tissue surrounding B. cinerea infection exhibited a delay in ripening with singnificant decrease in expression of ripening genes that are targeted by SlDML2 and increase in expression of SlβCA3 and SlFAD3. Taken together, our results uncover an essential layer of gene regulation mediated by DNA methylation upon B. cinerea infection and raise the possible that the DNA demethylase gene SlDML2, as a multifunctional gene, participates in modulating the trade-off between fruit ripening and disease resistance.
Collapse
Affiliation(s)
- Leilei Zhou
- Key Laboratory of Plant Resources, Institute of BotanyChinese Academy of SciencesBeijingChina
- China National Botanical GardenBeijingChina
| | - Guangtong Gao
- Key Laboratory of Plant Resources, Institute of BotanyChinese Academy of SciencesBeijingChina
- China National Botanical GardenBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Xiaojing Li
- Key Laboratory of Plant Resources, Institute of BotanyChinese Academy of SciencesBeijingChina
- China National Botanical GardenBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Weihao Wang
- Key Laboratory of Plant Resources, Institute of BotanyChinese Academy of SciencesBeijingChina
- China National Botanical GardenBeijingChina
| | - Shiping Tian
- Key Laboratory of Plant Resources, Institute of BotanyChinese Academy of SciencesBeijingChina
- China National Botanical GardenBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Guozheng Qin
- Key Laboratory of Plant Resources, Institute of BotanyChinese Academy of SciencesBeijingChina
- China National Botanical GardenBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| |
Collapse
|
6
|
Wang D, Liu Z, Qin Y, Zhang S, Yang L, Shang Q, Ji X, Xin Y, Li X. Mulberry MnGolS2 Mediates Resistance to Botrytis cinerea on Transgenic Plants. Genes (Basel) 2023; 14:1912. [PMID: 37895261 PMCID: PMC10606925 DOI: 10.3390/genes14101912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 09/26/2023] [Accepted: 10/04/2023] [Indexed: 10/29/2023] Open
Abstract
Galactitol synthetase (GolS) as a key enzyme in the raffinose family oligosaccharides (RFOs) biosynthesis pathway, which is closely related to stress. At present, there are few studies on GolS in biological stress. The expression of MnGolS2 gene in mulberry was increased under Botrytis cinerea infection. The MnGolS2 gene was cloned and ectopically expressed in Arabidopsis. The content of MDA in leaves of transgenic plants was decreased and the content of CAT was increased after inoculation with B. cinerea. In this study, the role of MnGolS2 in biotic stress was demonstrated for the first time. In addition, it was found that MnGolS2 may increase the resistance of B. cinerea by interacting with other resistance genes. This study offers a crucial foundation for further research into the role of the GolS2 gene.
Collapse
Affiliation(s)
- Donghao Wang
- Guangxi Key Laboratory of Sericulture Ecology and Applied Intelligent Technology, Hechi University, Hechi 546300, China; (Y.Q.); (S.Z.)
- College of Forestry, Shandong Agricultural University, Tai’an 271018, China; (D.W.); (Z.L.); (L.Y.); (Q.S.); (X.J.)
| | - Zixuan Liu
- College of Forestry, Shandong Agricultural University, Tai’an 271018, China; (D.W.); (Z.L.); (L.Y.); (Q.S.); (X.J.)
| | - Yue Qin
- Guangxi Key Laboratory of Sericulture Ecology and Applied Intelligent Technology, Hechi University, Hechi 546300, China; (Y.Q.); (S.Z.)
- Guangxi Collaborative Innovation Center of Modern Sericulture Silk, School of Chemistry and Bioengineering, Hechi University, Hechi 546300, China
| | - Shihao Zhang
- Guangxi Key Laboratory of Sericulture Ecology and Applied Intelligent Technology, Hechi University, Hechi 546300, China; (Y.Q.); (S.Z.)
- Guangxi Collaborative Innovation Center of Modern Sericulture Silk, School of Chemistry and Bioengineering, Hechi University, Hechi 546300, China
| | - Lulu Yang
- College of Forestry, Shandong Agricultural University, Tai’an 271018, China; (D.W.); (Z.L.); (L.Y.); (Q.S.); (X.J.)
| | - Qiqi Shang
- College of Forestry, Shandong Agricultural University, Tai’an 271018, China; (D.W.); (Z.L.); (L.Y.); (Q.S.); (X.J.)
| | - Xianling Ji
- College of Forestry, Shandong Agricultural University, Tai’an 271018, China; (D.W.); (Z.L.); (L.Y.); (Q.S.); (X.J.)
| | - Youchao Xin
- Guangxi Key Laboratory of Sericulture Ecology and Applied Intelligent Technology, Hechi University, Hechi 546300, China; (Y.Q.); (S.Z.)
- College of Forestry, Shandong Agricultural University, Tai’an 271018, China; (D.W.); (Z.L.); (L.Y.); (Q.S.); (X.J.)
| | - Xiaodong Li
- Guangxi Key Laboratory of Sericulture Ecology and Applied Intelligent Technology, Hechi University, Hechi 546300, China; (Y.Q.); (S.Z.)
- Guangxi Collaborative Innovation Center of Modern Sericulture Silk, School of Chemistry and Bioengineering, Hechi University, Hechi 546300, China
| |
Collapse
|
7
|
Liu P, Liu R, Xu Y, Zhang C, Niu Q, Lang Z. DNA cytosine methylation dynamics and functional roles in horticultural crops. HORTICULTURE RESEARCH 2023; 10:uhad170. [PMID: 38025976 PMCID: PMC10660380 DOI: 10.1093/hr/uhad170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 08/20/2023] [Indexed: 12/01/2023]
Abstract
Methylation of cytosine is a conserved epigenetic modification that maintains the dynamic balance of methylation in plants under the regulation of methyltransferases and demethylases. In recent years, the study of DNA methylation in regulating the growth and development of plants and animals has become a key area of research. This review describes the regulatory mechanisms of DNA cytosine methylation in plants. It summarizes studies on epigenetic modifications of DNA methylation in fruit ripening, development, senescence, plant height, organ size, and under biotic and abiotic stresses in horticultural crops. The review provides a theoretical basis for understanding the mechanisms of DNA methylation and their relevance to breeding, genetic improvement, research, innovation, and exploitation of new cultivars of horticultural crops.
Collapse
Affiliation(s)
- Peipei Liu
- National Engineering Laboratory of Crop Stress Resistance Breeding, School of Life Sciences, Anhui Agricultural University, Hefei, 230036, China
| | - Ruie Liu
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yaping Xu
- Shanghai Center for Plant Stress Biology, National Key Laboratory of Plant Molecular Genetics, Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 201602, China
| | - Caixi Zhang
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Qingfeng Niu
- National Engineering Laboratory of Crop Stress Resistance Breeding, School of Life Sciences, Anhui Agricultural University, Hefei, 230036, China
| | - Zhaobo Lang
- Institute of Advanced Biotechnology, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China
| |
Collapse
|
8
|
Zang Y, Xie L, Su J, Luo Z, Jia X, Ma X. Advances in DNA methylation and demethylation in medicinal plants: a review. Mol Biol Rep 2023; 50:7783-7796. [PMID: 37480509 DOI: 10.1007/s11033-023-08618-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 06/21/2023] [Indexed: 07/24/2023]
Abstract
DNA methylation and demethylation are widely acknowledged epigenetic phenomena which can cause heritable and phenotypic changes in functional genes without changing the DNA sequence. They can thus affect phenotype formation in medicinal plants. However, a comprehensive review of the literature summarizing current research trends in this field is lacking. Thus, this review aims to provide an up-to-date summary of current methods for the detection of 5-mC DNA methylation, identification and analysis of DNA methyltransferases and demethyltransferases, and regulation of DNA methylation in medicinal plants. The data showed that polyploidy and environmental changes can affect DNA methylation levels in medicinal plants. Changes in DNA methylation can thus regulate plant morphogenesis, growth and development, and formation of secondary metabolites. Future research is required to explore the mechanisms by which DNA methylation regulates the accumulation of secondary metabolites in medicinal plants.
Collapse
Affiliation(s)
- Yimei Zang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, China
- Biomedicine College, Beijing City University, Beijing, 100094, China
| | - Lei Xie
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, China
| | - Jiaxian Su
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, China
| | - Zuliang Luo
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, China
| | - Xunli Jia
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, China
| | - Xiaojun Ma
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, China.
| |
Collapse
|
9
|
Yang Z, Luo Y, Xia X, He J, Zhang J, Zeng Q, Li D, Ma B, Zhang S, Zhai C, Chen M, He N. Dehydrogenase MnGutB1 catalyzes 1-deoxynojirimycin biosynthesis in mulberry. PLANT PHYSIOLOGY 2023; 192:1307-1320. [PMID: 36800200 PMCID: PMC10231399 DOI: 10.1093/plphys/kiad065] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 01/04/2023] [Indexed: 06/01/2023]
Abstract
As the prevalence of diabetes continues to increase, the number of individuals living with diabetes complications will reach an unprecedented magnitude. Continuous use of some synthetic agents to reduce blood glucose levels causes severe side effects, and thus, the demand for nontoxic, affordable drugs persists. Naturally occurring compounds, such as iminosugars derived from the mulberry (Morus spp.), have been shown to reduce blood glucose levels. In mulberry, 1-deoxynojirimycin (DNJ) is the predominant iminosugar. However, the mechanism underlying DNJ biosynthesis is not completely understood. Here, we showed that DNJ in mulberry is derived from sugar and catalyzed through 2-amino-2-deoxy-D-mannitol (ADM) dehydrogenase MnGutB1. Combining both targeted and nontargeted metabolite profiling methods, DNJ and its precursors ADM and nojirimycin (NJ) were quantified in mulberry samples from different tissues. Purified His-tagged MnGutB1 oxidized the hexose derivative ADM to form the 6-oxo compound DNJ. The mutant MnGutB1 D283N lost this remarkable capability. Furthermore, in contrast to virus-induced gene silencing of MnGutB1 in mulberry leaves that disrupted the biosynthesis of DNJ, overexpression of MnGutB1 in hairy roots and light-induced upregulation of MnGutB1 enhanced DNJ accumulation. Our results demonstrated that hexose derivative ADM, rather than lysine derivatives, is the precursor in DNJ biosynthesis, and it is catalyzed by MnGutB1 to form the 6-oxo compound. These results represent a breakthrough in producing DNJ and its analogs for medical use by metabolic engineering or synthetic biology.
Collapse
Affiliation(s)
- Zhen Yang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China
| | - Yiwei Luo
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China
| | - Xiaoyu Xia
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China
| | - Jinzhi He
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China
| | - Jiajia Zhang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China
| | - Qiwei Zeng
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China
| | - Dong Li
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China
| | - Bi Ma
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China
| | - Shaoyu Zhang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China
| | - Changxin Zhai
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China
| | - Miao Chen
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China
| | - Ningjia He
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China
| |
Collapse
|
10
|
Barathi S, Sabapathi N, Aruljothi KN, Lee JH, Shim JJ, Lee J. Regulatory Small RNAs for a Sustained Eco-Agriculture. Int J Mol Sci 2023; 24:ijms24021041. [PMID: 36674558 PMCID: PMC9863784 DOI: 10.3390/ijms24021041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 12/29/2022] [Accepted: 01/04/2023] [Indexed: 01/07/2023] Open
Abstract
Small RNA (sRNA) has become an alternate biotechnology tool for sustaining eco-agriculture by enhancing plant solidity and managing environmental hazards over traditional methods. Plants synthesize a variety of sRNA to silence the crucial genes of pests or plant immune inhibitory proteins and counter adverse environmental conditions. These sRNAs can be cultivated using biotechnological methods to apply directly or through bacterial systems to counter the biotic stress. On the other hand, through synthesizing sRNAs, microbial networks indicate toxic elements in the environment, which can be used effectively in environmental monitoring and management. Moreover, microbes possess sRNAs that enhance the degradation of xenobiotics and maintain bio-geo-cycles locally. Selective bacterial and plant sRNA systems can work symbiotically to establish a sustained eco-agriculture system. An sRNA-mediated approach is becoming a greener tool to replace xenobiotic pesticides, fertilizers, and other chemical remediation elements. The review focused on the applications of sRNA in both sustained agriculture and bioremediation. It also discusses limitations and recommends various approaches toward future improvements for a sustained eco-agriculture system.
Collapse
Affiliation(s)
- Selvaraj Barathi
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Nadana Sabapathi
- Guangdong Key Laboratory for Genome Stability and Disease Prevention, School of Medicine, Shenzhen University, Shenzhen 518060, China
| | - Kandasamy Nagarajan Aruljothi
- Department of Genetic Engineering, SRM Institute of Science and Technology, Kattankulathur, Chennai 603 203, India
- Correspondence: (K.N.A.); (J.L.); Tel.: +91-995-235-8239 (K.N.A.); +82-53-810-2533 (J.L.); Fax: +82-53-810-4631 (J.L.)
| | - Jin-Hyung Lee
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Jae-Jin Shim
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Jintae Lee
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea
- Correspondence: (K.N.A.); (J.L.); Tel.: +91-995-235-8239 (K.N.A.); +82-53-810-2533 (J.L.); Fax: +82-53-810-4631 (J.L.)
| |
Collapse
|
11
|
Maksimov IV, Shein MY, Burkhanova GF. RNA Interference in Plant Protection from Fungal and Oomycete Infection. APPL BIOCHEM MICRO+ 2022. [DOI: 10.1134/s0003683822100106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2023]
|
12
|
MnASI1 Mediates Resistance to Botrytis cinerea in Mulberry (Morus notabilis). Int J Mol Sci 2022; 23:ijms232113372. [PMID: 36362160 PMCID: PMC9656013 DOI: 10.3390/ijms232113372] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 10/28/2022] [Accepted: 10/29/2022] [Indexed: 11/06/2022] Open
Abstract
Six α-amylase/subtilisin inhibitor genes (MnASIs) were identified from mulberry (Morus notabilis). In this study, bioinformatics and expression pattern analysis of six MnASIs were performed to determine their roles in resistance to B. cinerea. The expression of all six MnASIs was significantly increased under Botrytis cinerea infection. MnASI1, which responded strongly to B. cinerea, was overexpressed in Arabidopsis and mulberry. The resistance of Arabidopsis and mulberry overexpressing MnASI1 gene to B. cinerea was significantly improved, the catalase (CAT) activity was increased, and the malondialdehyde (MDA) content was decreased after inoculation with B. cinerea. At the same time, H2O2 and O2− levels were reduced in MnASI1 transgenic Arabidopsis, reducing the damage of ROS accumulation to plants. In addition, MnASI1 transgenic Arabidopsis increased the expression of the salicylic acid (SA) pathway-related gene AtPR1. This study provides an important reference for further revealing the function of α-amylase/subtilisin inhibitors.
Collapse
|
13
|
Li Y, Yu C, Mo R, Zhu Z, Dong Z, Hu X, Deng W, Zhuang C. Screening and Verification of Photosynthesis and Chloroplast-Related Genes in Mulberry by Comparative RNA-Seq and Virus-Induced Gene Silencing. Int J Mol Sci 2022; 23:ijms23158620. [PMID: 35955752 PMCID: PMC9368790 DOI: 10.3390/ijms23158620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 07/20/2022] [Accepted: 07/29/2022] [Indexed: 12/05/2022] Open
Abstract
Photosynthesis is one of the most important factors in mulberry growth and production. To study the photosynthetic regulatory network of mulberry we sequenced the transcriptomes of two high-yielding (E1 and E2) and one low-yielding (H32) mulberry genotypes at two-time points (10:00 and 12:00). Re-annotation of the mulberry genome based on the transcriptome sequencing data identified 22,664 high-quality protein-coding genes with a BUSCO-assessed completeness of 93.4%. A total of 6587 differentially expressed genes (DEGs) were obtained in the transcriptome analysis. Functional annotation and enrichment revealed 142 out of 6587 genes involved in the photosynthetic pathway and chloroplast development. Moreover, 3 out of 142 genes were further examined using the VIGS technique; the leaves of MaCLA1- and MaTHIC-silenced plants were markedly yellowed or even white, and the leaves of MaPKP2-silenced plants showed a wrinkled appearance. The expression levels of the ensiled plants were reduced, and the levels of chlorophyll b and total chlorophyll were lower than those of the control plants. Co-expression analysis showed that MaCLA1 was co-expressed with CHUP1 and YSL3; MaTHIC was co-expressed with MaHSP70, MaFLN1, and MaEMB2794; MaPKP2 was mainly co-expressed with GH9B7, GH3.1, and EDA9. Protein interaction network prediction revealed that MaCLA1 was associated with RPE, TRA2, GPS1, and DXR proteins; MaTHIC was associated with TH1, PUR5, BIO2, and THI1; MaPKP2 was associated with ENOC, LOS2, and PGI1. This study offers a useful resource for further investigation of the molecular mechanisms involved in mulberry photosynthesis and preliminary insight into the regulatory network of photosynthesis.
Collapse
Affiliation(s)
- Yong Li
- College of Life Sciences, South China Agricultural University, Guangzhou 510642, China;
- Cash Crops Research Institute, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; (C.Y.); (R.M.); (Z.Z.); (Z.D.); (X.H.)
| | - Cui Yu
- Cash Crops Research Institute, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; (C.Y.); (R.M.); (Z.Z.); (Z.D.); (X.H.)
| | - Rongli Mo
- Cash Crops Research Institute, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; (C.Y.); (R.M.); (Z.Z.); (Z.D.); (X.H.)
| | - Zhixian Zhu
- Cash Crops Research Institute, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; (C.Y.); (R.M.); (Z.Z.); (Z.D.); (X.H.)
| | - Zhaoxia Dong
- Cash Crops Research Institute, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; (C.Y.); (R.M.); (Z.Z.); (Z.D.); (X.H.)
| | - Xingming Hu
- Cash Crops Research Institute, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; (C.Y.); (R.M.); (Z.Z.); (Z.D.); (X.H.)
| | - Wen Deng
- Cash Crops Research Institute, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; (C.Y.); (R.M.); (Z.Z.); (Z.D.); (X.H.)
- Correspondence: (W.D.); (C.Z.); Tel.: +86-27-87106001 (W.D.); +86-20-85288399 (C.Z.)
| | - Chuxiong Zhuang
- College of Life Sciences, South China Agricultural University, Guangzhou 510642, China;
- Correspondence: (W.D.); (C.Z.); Tel.: +86-27-87106001 (W.D.); +86-20-85288399 (C.Z.)
| |
Collapse
|
14
|
D’Amico-Willman KM, Sideli GM, Allen BJ, Anderson ES, Gradziel TM, Fresnedo-Ramírez J. Identification of Putative Markers of Non-infectious Bud Failure in Almond [ Prunus dulcis (Mill.) D.A. Webb] Through Genome Wide DNA Methylation Profiling and Gene Expression Analysis in an Almond × Peach Hybrid Population. FRONTIERS IN PLANT SCIENCE 2022; 13:804145. [PMID: 35237284 PMCID: PMC8882727 DOI: 10.3389/fpls.2022.804145] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 01/03/2022] [Indexed: 06/14/2023]
Abstract
Almond [Prunus dulcis (Mill.) D.A. Webb] is an economically important nut crop susceptible to the genetic disorder, Non-infectious Bud Failure (NBF). Despite the severity of exhibition in several prominent almond cultivars, no causal mechanism has been identified underlying NBF development. The disorder is hypothesized to be associated with differential DNA methylation patterns based on patterns of inheritance (i.e., via sexual reproduction and clonal propagation) and previous work profiling methylation in affected trees. Peach (Prunus persica L. Batsch) is a closely related species that readily hybridizes with almond; however, peach is not known to exhibit NBF. A cross between an NBF-exhibiting 'Carmel' cultivar and early flowering peach ('40A17') produced an F1 where ∼50% of progeny showed signs of NBF, including canopy die-back, erratic branching patterns (known as "crazy-top"), and rough bark. In this study, whole-genome DNA methylation profiles were generated for three F1 progenies exhibiting NBF and three progenies considered NBF-free. Subsequent alignment to both the almond and peach reference genomes showed an increase in genome-wide methylation levels in NBF hybrids in CG and CHG contexts compared to no-NBF hybrids when aligned to the almond genome but no difference in methylation levels when aligned to the peach genome. Significantly differentially methylated regions (DMRs) were identified by comparing methylation levels across the genome between NBF- and no-NBF hybrids in each methylation context. In total, 115,635 DMRs were identified based on alignment to the almond reference genome, and 126,800 DMRs were identified based on alignment to the peach reference genome. Nearby genes were identified as associated with the 39 most significant DMRs occurring either in the almond or peach alignments alone or occurring in both the almond and peach alignments. These DMR-associated genes include several uncharacterized proteins and transposable elements. Quantitative PCR was also performed to analyze the gene expression patterns of these identified gene targets to determine patterns of differential expression associated with differential DNA methylation. These DMR-associated genes, particularly those showing corresponding patterns of differential gene expression, represent key targets for almond breeding for future cultivars and mitigating the effects of NBF-exhibition in currently affected cultivars.
Collapse
Affiliation(s)
| | - Gina M. Sideli
- Department of Plant Sciences, University of California, Davis, Davis, CA, United States
| | - Brian J. Allen
- Department of Plant Sciences, University of California, Davis, Davis, CA, United States
| | - Elizabeth S. Anderson
- Department of Horticulture and Crop Science, The Ohio State University, Wooster, OH, United States
| | - Thomas M. Gradziel
- Department of Plant Sciences, University of California, Davis, Davis, CA, United States
| | - Jonathan Fresnedo-Ramírez
- Center for Applied Plant Sciences, The Ohio State University, Wooster, OH, United States
- Department of Horticulture and Crop Science, The Ohio State University, Wooster, OH, United States
| |
Collapse
|
15
|
Xiao D, Zhou K, Yang X, Yang Y, Ma Y, Wang Y. Crosstalk of DNA Methylation Triggered by Pathogen in Poplars With Different Resistances. Front Microbiol 2022; 12:750089. [PMID: 35027912 PMCID: PMC8748266 DOI: 10.3389/fmicb.2021.750089] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 12/07/2021] [Indexed: 11/13/2022] Open
Abstract
DNA methylation plays crucial roles in responses to environmental stimuli. Modification of DNA methylation during development and abiotic stress responses has been confirmed in increasing numbers of plants, mainly annual plants. However, the epigenetic regulation mechanism underlying the immune response to pathogens remains largely unknown in plants, especially trees. To investigate whether DNA methylation is involved in the response to infection process or is related to the resistance differences among poplars, we performed comprehensive whole-genome bisulfite sequencing of the infected stem of the susceptible type Populus × euramerican ‘74/76’ and resistant type Populus tomentosa ‘henan’ upon Lonsdalea populi infection. The results revealed that DNA methylation changed dynamically in poplars during the infection process with a remarkable decrease seen in the DNA methylation ratio. Intriguingly, the resistant P. tomentosa ‘henan’ had a much lower basal DNA methylation ratio than the susceptible P. × euramerican ‘74/76’. Compared to mock-inoculation, both poplar types underwent post-inoculation CHH hypomethylation; however, significant decreases in mC and mCHH proportions were found in resistant poplar. In addition, most differentially CHH-hypomethylated regions were distributed in repeat and promoter regions. Based on comparison of DNA methylation modification with the expression profiles of genes, DNA methylation occurred in resistance genes, pathogenesis-related genes, and phytohormone genes in poplars during pathogen infection. Additionally, transcript levels of genes encoding methylation-related enzymes changed during pathogen infection. Interestingly, small-regulator miRNAs were subject to DNA methylation in poplars experiencing pathogen infection. This investigation highlights the critical role of DNA methylation in the poplar immune response to pathogen infection and provides new insights into epigenetic regulation in perennial plants in response to biotic stress.
Collapse
Affiliation(s)
- Dandan Xiao
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, China.,Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, China.,The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, China
| | - Ke Zhou
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, China.,Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, China.,The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, China.,School of Landscape Architecture, Chengdu Agricultural College, Chengdu, China
| | - Xiaoqian Yang
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, China.,Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, China.,The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, China
| | - Yuzhang Yang
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, China.,Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, China.,The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, China
| | - Yudie Ma
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, China.,Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, China.,The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, China
| | - Yanwei Wang
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, China.,Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, China.,The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, China
| |
Collapse
|
16
|
Tang Y, Yan X, Gu C, Yuan X. Biogenesis, Trafficking, and Function of Small RNAs in Plants. FRONTIERS IN PLANT SCIENCE 2022; 13:825477. [PMID: 35251095 PMCID: PMC8891129 DOI: 10.3389/fpls.2022.825477] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 01/19/2022] [Indexed: 05/03/2023]
Abstract
Small RNAs (sRNAs) encoded by plant genomes have received widespread attention because they can affect multiple biological processes. Different sRNAs that are synthesized in plant cells can move throughout the plants, transport to plant pathogens via extracellular vesicles (EVs), and transfer to mammals via food. Small RNAs function at the target sites through DNA methylation, RNA interference, and translational repression. In this article, we reviewed the systematic processes of sRNA biogenesis, trafficking, and the underlying mechanisms of its functions.
Collapse
Affiliation(s)
- Yunjia Tang
- College of Life Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Xiaoning Yan
- College of Life Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Chenxian Gu
- College of Life Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Xiaofeng Yuan
- College of Life Science, Zhejiang Chinese Medical University, Hangzhou, China
- Academy of Chinese Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
- *Correspondence: Xiaofeng Yuan,
| |
Collapse
|
17
|
Characterization of the Chitinase Gene Family in Mulberry (Morus notabilis) and MnChi18 Involved in Resistance to Botrytis cinerea. Genes (Basel) 2021; 13:genes13010098. [PMID: 35052438 PMCID: PMC8774697 DOI: 10.3390/genes13010098] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 12/23/2021] [Accepted: 12/30/2021] [Indexed: 11/16/2022] Open
Abstract
Chitinase is a hydrolase that uses chitin as a substrate. It plays an important role in plant resistance to fungal pathogens by degrading chitin. Here, we conducted bioinformatics analysis and transcriptome data analysis of the mulberry (Morus notabilis) chitinase gene family to determine its role in the resistance to Botrytis cinerea. A total of 26 chitinase genes were identified, belonging to the GH18 and GH19 families. Among them, six chitinase genes were differentially expressed under the infection of B. cinerea. MnChi18, which significantly responded to B. cinerea, was heterologously expressed in Arabidopsis (Arabidopsis thaliana). The resistance of MnChi18 transgenic Arabidopsis to B. cinerea was significantly enhanced, and after inoculation with B. cinerea, the activity of catalase (CAT) increased and the content of malondialdehyde (MDA) decreased. This shows that overexpression of MnChi18 can protect cells from damage. In addition, our study also indicated that MnChi18 may be involved in B. cinerea resistance through other resistance-related genes. This study provides an important basis for further understanding the function of mulberry chitinase.
Collapse
|
18
|
Gan T, Lin Z, Bao L, Hui T, Cui X, Huang Y, Wang H, Su C, Jiao F, Zhang M, Qian Y. Comparative Proteomic Analysis of Tolerant and Sensitive Varieties Reveals That Phenylpropanoid Biosynthesis Contributes to Salt Tolerance in Mulberry. Int J Mol Sci 2021; 22:9402. [PMID: 34502318 PMCID: PMC8431035 DOI: 10.3390/ijms22179402] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 08/22/2021] [Accepted: 08/23/2021] [Indexed: 12/11/2022] Open
Abstract
Mulberry, an important woody tree, has strong tolerance to environmental stresses, including salinity, drought, and heavy metal stress. However, the current research on mulberry resistance focuses mainly on the selection of resistant resources and the determination of physiological indicators. In order to clarify the molecular mechanism of salt tolerance in mulberry, the physiological changes and proteomic profiles were comprehensively analyzed in salt-tolerant (Jisang3) and salt-sensitive (Guisangyou12) mulberry varieties. After salt treatment, the malondialdehyde (MDA) content and proline content were significantly increased compared to control, and the MDA and proline content in G12 was significantly lower than in Jisang3 under salt stress. The calcium content was significantly reduced in the salt-sensitive mulberry varieties Guisangyou12 (G12), while sodium content was significantly increased in both mulberry varieties. Although the Jisang3 is salt-tolerant, salt stress caused more reductions of photosynthetic rate in Jisang3 than Guisangyou12. Using tandem mass tags (TMT)-based proteomics, the changes of mulberry proteome levels were analyzed in salt-tolerant and salt-sensitive mulberry varieties under salt stress. Combined with GO and KEGG databases, the differentially expressed proteins were significantly enriched in the GO terms of amino acid transport and metabolism and posttranslational modification, protein turnover up-classified in Guisangyou12 while down-classified in Jisang3. Through the comparison of proteomic level, we identified the phenylpropanoid biosynthesis may play an important role in salt tolerance of mulberry. We clarified the molecular mechanism of mulberry salt tolerance, which is of great significance for the selection of excellent candidate genes for saline-alkali soil management and mulberry stress resistance genetic engineering.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Minjuan Zhang
- The Sericultural and Silk Research Institute, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China; (T.G.); (Z.L.); (L.B.); (T.H.); (X.C.); (Y.H.); (H.W.); (C.S.); (F.J.)
| | - Yonghua Qian
- The Sericultural and Silk Research Institute, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China; (T.G.); (Z.L.); (L.B.); (T.H.); (X.C.); (Y.H.); (H.W.); (C.S.); (F.J.)
| |
Collapse
|