• Reference Citation Analysis
  • v
  • v
  • Find an Article
  • Find an Author
Download
Number Citation Analysis
1
Li H, Kalunke R, Tetorya M, Czymmek KJ, Shah DM. Modes of action and potential as a peptide-based biofungicide of a plant defensin MtDef4. Mol Plant Pathol 2024;25:e13458. [PMID: 38619888 PMCID: PMC11018249 DOI: 10.1111/mpp.13458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 03/19/2024] [Accepted: 03/25/2024] [Indexed: 04/17/2024]
2
Felemban A, Moreno JC, Mi J, Ali S, Sham A, AbuQamar SF, Al-Babili S. The apocarotenoid β-ionone regulates the transcriptome of Arabidopsis thaliana and increases its resistance against Botrytis cinerea. Plant J 2024;117:541-560. [PMID: 37932864 DOI: 10.1111/tpj.16510] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 10/02/2023] [Accepted: 10/04/2023] [Indexed: 11/08/2023]
3
Xu Y, Tan J, Lu J, Zhang Y, Li X. RAS signalling genes can be used as host-induced gene silencing targets to control fungal diseases caused by Sclerotinia sclerotiorum and Botrytis cinerea. Plant Biotechnol J 2024;22:262-277. [PMID: 37845842 PMCID: PMC10754012 DOI: 10.1111/pbi.14184] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 08/27/2023] [Accepted: 09/02/2023] [Indexed: 10/18/2023]
4
Ji D, Liu W, Cui X, Liu K, Liu Y, Huang X, Li B, Qin G, Chen T, Tian S. A receptor-like kinase SlFERL mediates immune responses of tomato to Botrytis cinerea by recognizing BcPG1 and fine-tuning MAPK signaling. New Phytol 2023;240:1189-1201. [PMID: 37596704 DOI: 10.1111/nph.19210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Accepted: 07/26/2023] [Indexed: 08/20/2023]
5
Zhou L, Gao G, Li X, Wang W, Tian S, Qin G. The pivotal ripening gene SlDML2 participates in regulating disease resistance in tomato. Plant Biotechnol J 2023;21:2291-2306. [PMID: 37466912 PMCID: PMC10579708 DOI: 10.1111/pbi.14130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 06/14/2023] [Accepted: 07/06/2023] [Indexed: 07/20/2023]
6
Ramirez Gaona M, van Tuinen A, Schipper D, Kano A, Wolters PJ, Visser RGF, van Kan JAL, Wolters AA, Bai Y. Mutation of PUB17 in tomato leads to reduced susceptibility to necrotrophic fungi. Plant Biotechnol J 2023;21:2157-2159. [PMID: 37735839 PMCID: PMC10579703 DOI: 10.1111/pbi.14127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 06/08/2023] [Accepted: 07/07/2023] [Indexed: 09/23/2023]
7
Wang R, Liu K, Tang B, Su D, He X, Deng H, Wu M, Bouzayen M, Grierson D, Liu M. The MADS-box protein SlTAGL1 regulates a ripening-associated SlDQD/SDH2 involved in flavonoid biosynthesis and resistance against Botrytis cinerea in post-harvest tomato fruit. Plant J 2023;115:1746-1757. [PMID: 37326247 DOI: 10.1111/tpj.16354] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 05/30/2023] [Accepted: 06/12/2023] [Indexed: 06/17/2023]
8
Tetorya M, Li H, Djami‐Tchatchou AT, Buchko GW, Czymmek KJ, Shah DM. Plant defensin MtDef4-derived antifungal peptide with multiple modes of action and potential as a bio-inspired fungicide. Mol Plant Pathol 2023;24:896-913. [PMID: 37036170 PMCID: PMC10346373 DOI: 10.1111/mpp.13336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 02/28/2023] [Accepted: 03/20/2023] [Indexed: 06/19/2023]
9
Han H, Lv F, Liu Z, Chen T, Xue T, Liang W, Liu M. BcTaf14 regulates growth and development, virulence, and stress responses in the phytopathogenic fungus Botrytis cinerea. Mol Plant Pathol 2023;24:849-865. [PMID: 37026690 PMCID: PMC10346378 DOI: 10.1111/mpp.13331] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 03/15/2023] [Accepted: 03/15/2023] [Indexed: 06/19/2023]
10
Luo D, Sun W, Cai J, Hu G, Zhang D, Zhang X, Larkin RM, Zhang J, Yang C, Ye Z, Wang T. SlBBX20 attenuates JA signalling and regulates resistance to Botrytis cinerea by inhibiting SlMED25 in tomato. Plant Biotechnol J 2023;21:792-805. [PMID: 36582069 PMCID: PMC10037119 DOI: 10.1111/pbi.13997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 12/13/2022] [Accepted: 12/22/2022] [Indexed: 06/17/2023]
11
Shao W, Sun K, Ma T, Jiang H, Hahn M, Ma Z, Jiao C, Yin Y. SUMOylation regulates low-temperature survival and oxidative DNA damage tolerance in Botrytis cinerea. New Phytol 2023;238:817-834. [PMID: 36651012 DOI: 10.1111/nph.18748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 01/13/2023] [Indexed: 06/17/2023]
12
Qin S, Veloso J, Baak M, Boogmans B, Bosman T, Puccetti G, Shi‐Kunne X, Smit S, Grant‐Downton R, Leisen T, Hahn M, van Kan JAL. Molecular characterization reveals no functional evidence for naturally occurring cross-kingdom RNA interference in the early stages of Botrytis cinerea-tomato interaction. Mol Plant Pathol 2023;24:3-15. [PMID: 36168919 PMCID: PMC9742496 DOI: 10.1111/mpp.13269] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 08/22/2022] [Accepted: 08/24/2022] [Indexed: 05/14/2023]
13
Zhu Y, Zhang X, Zhang Q, Chai S, Yin W, Gao M, Li Z, Wang X. The transcription factors VaERF16 and VaMYB306 interact to enhance resistance of grapevine to Botrytis cinerea infection. Mol Plant Pathol 2022;23:1415-1432. [PMID: 35822262 PMCID: PMC9452770 DOI: 10.1111/mpp.13223] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 03/08/2022] [Accepted: 03/28/2022] [Indexed: 06/01/2023]
14
Li J, Wu Z, Zhu Z, Xu L, Wu B, Li J. Botrytis cinerea mediated cell wall degradation accelerates spike stalk browning in Munage grape. J Food Biochem 2022;46:e14271. [PMID: 35715997 DOI: 10.1111/jfbc.14271] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 03/31/2022] [Accepted: 05/03/2022] [Indexed: 11/29/2022]
15
Duanis‐Assaf D, Galsurker O, Davydov O, Maurer D, Feygenberg O, Sagi M, Poverenov E, Fluhr R, Alkan N. Double-stranded RNA targeting fungal ergosterol biosynthesis pathway controls Botrytis cinerea and postharvest grey mould. Plant Biotechnol J 2022;20:226-237. [PMID: 34520611 PMCID: PMC8710829 DOI: 10.1111/pbi.13708] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/12/2021] [Accepted: 09/02/2021] [Indexed: 06/01/2023]
16
Quaglia M, Troni E, D’Amato R, Ederli L. Effect of zinc imbalance and salicylic acid co-supply on Arabidopsis response to fungal pathogens with different lifestyles. Plant Biol (Stuttg) 2022;24:30-40. [PMID: 34608720 PMCID: PMC9291626 DOI: 10.1111/plb.13344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 09/03/2021] [Indexed: 06/13/2023]
17
Alfonso E, Stahl E, Glauser G, Bellani E, Raaymakers TM, Van den Ackerveken G, Zeier J, Reymond P. Insect eggs trigger systemic acquired resistance against a fungal and an oomycete pathogen. New Phytol 2021;232:2491-2505. [PMID: 34510462 PMCID: PMC9292583 DOI: 10.1111/nph.17732] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 09/05/2021] [Indexed: 05/27/2023]
18
Chen JB, Bao SW, Fang YL, Wei LY, Zhu WS, Peng YL, Fan J. An LRR-only protein promotes NLP-triggered cell death and disease susceptibility by facilitating oligomerization of NLP in Arabidopsis. New Phytol 2021;232:1808-1822. [PMID: 34403491 DOI: 10.1111/nph.17680] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 08/09/2021] [Indexed: 06/13/2023]
19
Zhang Y, Song R, Yuan H, Li T, Wang L, Lu K, Guo J, Liu W. Overexpressing the N-terminus of CATALASE2 enhances plant jasmonic acid biosynthesis and resistance to necrotrophic pathogen Botrytis cinerea B05.10. Mol Plant Pathol 2021;22:1226-1238. [PMID: 34247446 PMCID: PMC8435237 DOI: 10.1111/mpp.13106] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 06/16/2021] [Accepted: 06/16/2021] [Indexed: 05/31/2023]
20
Xu Y, Tong Z, Zhang X, Zhang X, Luo Z, Shao W, Li L, Ma Q, Zheng X, Fang W. Plant volatile organic compound (E)-2-hexenal facilitates Botrytis cinerea infection of fruits by inducing sulfate assimilation. New Phytol 2021;231:432-446. [PMID: 33792940 DOI: 10.1111/nph.17378] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Indexed: 05/14/2023]
21
Zabel S, Brandt W, Porzel A, Athmer B, Bennewitz S, Schäfer P, Kortbeek R, Bleeker P, Tissier A. A single cytochrome P450 oxidase from Solanum habrochaites sequentially oxidizes 7-epi-zingiberene to derivatives toxic to whiteflies and various microorganisms. Plant J 2021;105:1309-1325. [PMID: 33617106 DOI: 10.1111/tpj.15113] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 10/30/2020] [Accepted: 11/30/2020] [Indexed: 05/26/2023]
22
Valeri MC, Novi G, Weits DA, Mensuali A, Perata P, Loreti E. Botrytis cinerea induces local hypoxia in Arabidopsis leaves. New Phytol 2021;229:173-185. [PMID: 32124454 PMCID: PMC7754360 DOI: 10.1111/nph.16513] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Accepted: 02/21/2020] [Indexed: 05/19/2023]
23
Del Corpo D, Fullone MR, Miele R, Lafond M, Pontiggia D, Grisel S, Kieffer‐Jaquinod S, Giardina T, Bellincampi D, Lionetti V. AtPME17 is a functional Arabidopsis thaliana pectin methylesterase regulated by its PRO region that triggers PME activity in the resistance to Botrytis cinerea. Mol Plant Pathol 2020;21:1620-1633. [PMID: 33029918 PMCID: PMC7694680 DOI: 10.1111/mpp.13002] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 09/07/2020] [Accepted: 09/08/2020] [Indexed: 05/13/2023]
24
Soulie M, Koka SM, Floch K, Vancostenoble B, Barbe D, Daviere A, Soubigou‐Taconnat L, Brunaud V, Poussereau N, Loisel E, Devallee A, Expert D, Fagard M. Plant nitrogen supply affects the Botrytis cinerea infection process and modulates known and novel virulence factors. Mol Plant Pathol 2020;21:1436-1450. [PMID: 32939948 PMCID: PMC7549004 DOI: 10.1111/mpp.12984] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 06/25/2020] [Accepted: 07/28/2020] [Indexed: 05/05/2023]
25
Ren H, Bai M, Sun J, Liu J, Ren M, Dong Y, Wang N, Ning G, Wang C. RcMYB84 and RcMYB123 mediate jasmonate-induced defense responses against Botrytis cinerea in rose (Rosa chinensis). Plant J 2020;103:1839-1849. [PMID: 32524706 DOI: 10.1111/tpj.14871] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 05/25/2020] [Accepted: 06/01/2020] [Indexed: 05/02/2023]
26
Singh NK, Paz E, Kutsher Y, Reuveni M, Lers A. Tomato T2 ribonuclease LE is involved in the response to pathogens. Mol Plant Pathol 2020;21:895-906. [PMID: 32352631 PMCID: PMC7280031 DOI: 10.1111/mpp.12928] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 02/05/2020] [Accepted: 02/15/2020] [Indexed: 05/16/2023]
27
Zhang M, Sun C, Liu Y, Feng H, Chang H, Cao S, Li G, Yang S, Hou J, Zhu‐Salzman K, Zhang H, Qin Q. Transcriptome analysis and functional validation reveal a novel gene, BcCGF1, that enhances fungal virulence by promoting infection-related development and host penetration. Mol Plant Pathol 2020;21:834-853. [PMID: 32301267 PMCID: PMC7214349 DOI: 10.1111/mpp.12934] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 12/04/2019] [Accepted: 02/19/2020] [Indexed: 05/28/2023]
28
Denton‐Giles M, McCarthy H, Sehrish T, Dijkwel Y, Mesarich CH, Bradshaw RE, Cox MP, Dijkwel PP. Conservation and expansion of a necrosis-inducing small secreted protein family from host-variable phytopathogens of the Sclerotiniaceae. Mol Plant Pathol 2020;21:512-526. [PMID: 32061186 PMCID: PMC7060139 DOI: 10.1111/mpp.12913] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 12/19/2019] [Accepted: 12/21/2019] [Indexed: 05/02/2023]
29
Hou J, Feng HQ, Chang HW, Liu Y, Li GH, Yang S, Sun CH, Zhang MZ, Yuan Y, Sun J, Zhu-Salzman K, Zhang H, Qin QM. The H3K4 demethylase Jar1 orchestrates ROS production and expression of pathogenesis-related genes to facilitate Botrytis cinerea virulence. New Phytol 2020;225:930-947. [PMID: 31529514 DOI: 10.1111/nph.16200] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 09/04/2019] [Indexed: 06/10/2023]
30
Xiong F, Liu M, Zhuo F, Yin H, Deng K, Feng S, Liu Y, Luo X, Feng L, Zhang S, Li Z, Ren M. Host-induced gene silencing of BcTOR in Botrytis cinerea enhances plant resistance to grey mould. Mol Plant Pathol 2019;20:1722-1739. [PMID: 31622007 PMCID: PMC6859489 DOI: 10.1111/mpp.12873] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
31
Zhu Y, Li Y, Zhang S, Zhang X, Yao J, Luo Q, Sun F, Wang X. Genome-wide identification and expression analysis reveal the potential function of ethylene responsive factor gene family in response to Botrytis cinerea infection and ovule development in grapes (Vitis vinifera L.). Plant Biol (Stuttg) 2019;21:571-584. [PMID: 30468551 DOI: 10.1111/plb.12943] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Accepted: 11/16/2018] [Indexed: 05/02/2023]
32
Liu Y, Liu J, Li G, Zhang M, Zhang Y, Wang Y, Hou J, Yang S, Sun J, Qin Q. A novel Botrytis cinerea-specific gene BcHBF1 enhances virulence of the grey mould fungus via promoting host penetration and invasive hyphal development. Mol Plant Pathol 2019;20:731-747. [PMID: 31008573 PMCID: PMC6637910 DOI: 10.1111/mpp.12788] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
33
Locci F, Benedetti M, Pontiggia D, Citterico M, Caprari C, Mattei B, Cervone F, De Lorenzo G. An Arabidopsis berberine bridge enzyme-like protein specifically oxidizes cellulose oligomers and plays a role in immunity. Plant J 2019;98:540-554. [PMID: 30664296 DOI: 10.1111/tpj.14237] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 01/05/2019] [Accepted: 01/11/2019] [Indexed: 05/20/2023]
34
Calderón CE, Rotem N, Harris R, Vela‐Corcía D, Levy M. Pseudozyma aphidis activates reactive oxygen species production, programmed cell death and morphological alterations in the necrotrophic fungus Botrytis cinerea. Mol Plant Pathol 2019;20:562-574. [PMID: 30537338 PMCID: PMC6637909 DOI: 10.1111/mpp.12775] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
35
Rossi FR, Krapp AR, Bisaro F, Maiale SJ, Pieckenstain FL, Carrillo N. Reactive oxygen species generated in chloroplasts contribute to tobacco leaf infection by the necrotrophic fungus Botrytis cinerea. Plant J 2017;92:761-773. [PMID: 28906064 DOI: 10.1111/tpj.13718] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Revised: 08/23/2017] [Accepted: 09/07/2017] [Indexed: 05/18/2023]
36
González M, Brito N, González C. The Botrytis cinerea elicitor protein BcIEB1 interacts with the tobacco PR5-family protein osmotin and protects the fungus against its antifungal activity. New Phytol 2017;215:397-410. [PMID: 28480965 DOI: 10.1111/nph.14588] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Accepted: 03/27/2017] [Indexed: 05/02/2023]
PrevPage 1 of 1 1Next
© 2004-2024 Baishideng Publishing Group Inc. All rights reserved. 7041 Koll Center Parkway, Suite 160, Pleasanton, CA 94566, USA