1
|
Chen X, Lin WY, Zhang FW, Guo LQ, Ge H, Ge DZ, Tan JJ, Liu BC, Wang RR, Zhang L. Investigation of oral microbiome composition in elderly Chinese patients with hypertension: a cross-sectional study. J Oral Microbiol 2025; 17:2489603. [PMID: 40270620 PMCID: PMC12016255 DOI: 10.1080/20002297.2025.2489603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 02/10/2025] [Accepted: 04/01/2025] [Indexed: 04/25/2025] Open
Abstract
Background Hypertension is a prevalent metabolic disorder in the elderly, with its pathogenesis linked to gut microbiota dysbiosis. Recent studies suggested that oral microbiota may also play a role in hypertension development, yet its relationship with hypertension in the elderly remains underexplored. Objective This cross-sectional study aimed to examine the structure of the oral microbiota and its association with hypertension in elderly patients, providing insights into hypertension prevention and treatment. Methods A total of 206 subjects (60-89 years) were categorized into normal (CON) and hypertensive (HTN) groups, based on the Chinese Hypertension Guidelines. Saliva samples were analyzed using 16S rRNA gene sequencing. Results Oral microbiota composition was significantly influenced by blood pressure. At the phylum level, Synergistetes and Spirochaetes were more significantly abundant in the HTN group, while at the genus level Treponema and Leptothrix was higher, Actinomyces and Capnocytophaga were lower in HTN. Random Forest analysis identified 15 key microbiota as strong discriminators of HTN (AUC 0.74). Blood pressure was negatively correlated with Actinomycetes and positively correlated with Leptothrix. PICRUST2 analysis revealed elevated chlorinated compound degradation in HTN patients. Conclusions This study identified distinct oral microbiota in elderly hypertensive patients, highlighting the role of the oral microbiome in hypertension pathogenesis.
Collapse
Affiliation(s)
- Xin Chen
- Shanghai Innovation Center of Traditional Chinese Medicine Health Service, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Wen-Yong Lin
- Cardiovascular Department of Traditional Chinese Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Feng-Wei Zhang
- Shanghai Innovation Center of Traditional Chinese Medicine Health Service, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Li-Qiang Guo
- Shanghai Innovation Center of Traditional Chinese Medicine Health Service, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Han Ge
- Shanghai Innovation Center of Traditional Chinese Medicine Health Service, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ding-Zuo Ge
- Shanghai Innovation Center of Traditional Chinese Medicine Health Service, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Juan-Juan Tan
- Institute of Integrative Medicine, Shaanxi University of Chinese Medicine, Xianyang, China
- Institute of Integrative Medicine, Shaanxi Key Laboratory of Integrated Traditional and Western Medicine for Prevention and Treatment of Cardiovascular Diseases, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Bao-Cheng Liu
- Shanghai Innovation Center of Traditional Chinese Medicine Health Service, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Rui-Rui Wang
- Shanghai Innovation Center of Traditional Chinese Medicine Health Service, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Lei Zhang
- Shanghai Innovation Center of Traditional Chinese Medicine Health Service, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
2
|
Pang B, Qi X, Zhang H. Salivary-Gland-Mediated Nitrate Recirculation as a Modulator for Cardiovascular Diseases. Biomolecules 2025; 15:439. [PMID: 40149975 PMCID: PMC11940199 DOI: 10.3390/biom15030439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2025] [Revised: 03/11/2025] [Accepted: 03/17/2025] [Indexed: 03/29/2025] Open
Abstract
Cardiovascular diseases (CVDs), which include multiple disorders of the heart and blood vessels, are the leading causes of death. Nitric oxide (NO) is a vasodilator that regulates vascular tension. Endogenous NO is produced via the L-arginine-nitric oxide synthase (NOS) pathway. In conditions of cardiovascular dysfunction, NOS activity is impaired, leading to NO deficiency. In turn, the reduction in NO bioactivity exacerbates the pathogenesis of CVDs. Exogenous intake of inorganic nitrate supplements endogenous production via the nitrate-nitrite-NO pathway to maintain the NO supply. Salivary glands play an essential role in the conversion of nitrate to NO, with approximately 25% of circulating nitrate being absorbed and secreted into saliva. As a result, salivary nitrate concentrations can exceed that in the blood by more than tenfold. This recycled nitrate in saliva serves as a reservoir for NO and performs NO-like functions when endogenous NO production is insufficient. In this review, we summarize the emerging benefits of dietary nitrate in CVDs, with a particular focus on salivary-gland-mediated nitrate recirculation in maintaining NO bioavailability and cardiovascular homeostasis. Salivary-gland-mediated nitrate recirculation provides a novel perspective for potential intervention of CVDs.
Collapse
Affiliation(s)
- Baoxing Pang
- Department of Medical Genetics and Molecular Biochemistry, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Xingyun Qi
- Department of Biology, Rutgers University, Camden, NJ 08103, USA
| | - Huiliang Zhang
- Department of Medical Genetics and Molecular Biochemistry, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| |
Collapse
|
3
|
Al-Maweri SA, Al-Mashraqi AA, Al-Qadhi G, Al-Hebshi N, Ba-Hattab R. The association between the oral microbiome and hypertension: a systematic review. J Oral Microbiol 2025; 17:2459919. [PMID: 39902217 PMCID: PMC11789219 DOI: 10.1080/20002297.2025.2459919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 12/12/2024] [Accepted: 01/02/2025] [Indexed: 02/05/2025] Open
Abstract
Background This study systematically reviewed the available evidence regarding the potential association between oral microbiota and hypertension. Methods A comprehensive search of online databases was conducted by two independent investigators for all relevant articles. All observational studies that assessed the association between oral microbiota and hypertension were included. Quality appraisal was conducted using the NOS tool. Results A total of 17 studies comprising 6007 subjects were included. The studies varied with respect to sample type and microbial analysis method. All studies, except one, found significant differences in microbial composition between hypertensive and normotensive subjects. However, there were substantial inconsistencies regarding the specific differences identified. Still, a few taxa were repeatedly found enriched in hypertension including Aggregatibacter, Kingella, Lautropia, and Leptotrachia besides the red complex periodontal pathogens. When considering only studies that controlled for false discovery rates and confounders, Atopobium, Prevotella, and Veillonella were identified as consistently associated with hypertension. Conclusion There are significant differences in the oral microbiome between hypertensive and normotensive subjects. Despite the heterogeneity between the included studies, a subset of microbial taxa seems to be consistently enriched in hypertension. Further studies are highly recommended to explore this association. Registration PROSPERO database (ID: CRD42023495005).
Collapse
Affiliation(s)
| | | | - Gamilah Al-Qadhi
- Department of Basic Dental Sciences, Faculty of Dentistry, University of Science and Technology, Aden, Yemen
| | - Nezar Al-Hebshi
- Oral Microbiome Research Laboratory, Department of Oral Health Sciences, Maurice H. Kornberg School of Dentistry, Temple University, Philadelphia, PA, USA
| | - Raidan Ba-Hattab
- College of Dental Medicine, QU Health, Qatar University, Doha, Qatar
| |
Collapse
|
4
|
Marincak Vrankova Z, Brenerova P, Bodokyova L, Bohm J, Ruzicka F, Borilova Linhartova P. Tongue microbiota in relation to the breathing preference in children undergoing orthodontic treatment. BMC Oral Health 2024; 24:1259. [PMID: 39434101 PMCID: PMC11492670 DOI: 10.1186/s12903-024-05062-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 10/14/2024] [Indexed: 10/23/2024] Open
Abstract
BACKGROUND Mouth breathing (MB), a risk factor of oral dysbiosis and halitosis, is linked with craniofacial anomalies and pediatric obstructive sleep apnea. Here, we aimed to analyze tongue microbiota in children from the perspective of their breathing pattern before/during orthodontic treatment. METHODS This prospective case-control study included 30 children with orthodontic anomalies, 15 with MB and 15 with nasal breathing (NB), matched by age, sex, and body mass index. All underwent orthodontic examination and sleep apnea monitoring. Tongue swabs were collected before starting (timepoint M0) and approx. six months into the orthodontic therapy (timepoint M6). Oral candidas and bacteriome were analyzed using mass spectrometry technique and 16S rRNA sequencing, respectively. RESULTS MB was associated with higher apnea-hypopnea index. At M0, oral candidas were equally present in both groups. At M6, Candida sp. were found in six children with MB but in none with NB. No significant differences in bacterial diversity were observed between groups and timepoints. However, presence/relative abundance of genus Solobacterium was higher in children with MB than NB at M0. CONCLUSIONS Significant links between MB and the presence of genus Solobacterium (M0) as well as Candida sp. (M6) were found in children with orthodontic anomalies, highlighting the risk of halitosis in them.
Collapse
Affiliation(s)
- Zuzana Marincak Vrankova
- RECETOX, Faculty of Science, Masaryk University, Kotlarska 2, Brno, Czech Republic
- Clinic of Maxillofacial Surgery, University Hospital Brno, Jihlavska 20, Brno, Czech Republic
- Clinic of Stomatology, Institution Shared With St. Anne´s University Hospital, Faculty of Medicine, Masaryk University, Pekarska 53, Brno, Czech Republic
| | - Petra Brenerova
- RECETOX, Faculty of Science, Masaryk University, Kotlarska 2, Brno, Czech Republic
| | - Lenka Bodokyova
- RECETOX, Faculty of Science, Masaryk University, Kotlarska 2, Brno, Czech Republic
| | - Jan Bohm
- RECETOX, Faculty of Science, Masaryk University, Kotlarska 2, Brno, Czech Republic
| | - Filip Ruzicka
- Clinic of Microbiology, Institution Shared With St. Anne ́s University Hospital, Faculty of Medicine, Masaryk University, Pekarska 53, Brno, Czech Republic
| | - Petra Borilova Linhartova
- RECETOX, Faculty of Science, Masaryk University, Kotlarska 2, Brno, Czech Republic.
- Clinic of Maxillofacial Surgery, University Hospital Brno, Jihlavska 20, Brno, Czech Republic.
| |
Collapse
|
5
|
Liu KL, Xu SJ, Chen SW, Zhang MJ, Ye N, Li J. Correlation Analysis of Characteristics of Intestinal Microbiota and Cytokine Levels in Patients with Obstructive Sleep Apnea-Hypopnea Syndrome. Nat Sci Sleep 2024; 16:1533-1544. [PMID: 39372894 PMCID: PMC11451461 DOI: 10.2147/nss.s471264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 09/11/2024] [Indexed: 10/08/2024] Open
Abstract
Objective The aim of this study was to analyze the relationship between the characteristics of the intestinal microbiota and cytokine levels in individuals with different degrees of obstructive sleep apnea-hypopnea syndrome (OSAHS) as well as to investigate intestinal microbiota imbalances in patients with OSAHS and the associated mechanisms. Methods Based on their sleep apnea hypopnea index (AHI), a total of 37 adults were assigned to a control group, a mild OSAHS group, or a moderate-to-severe OSAHS group. Fecal samples were collected to characterize the intestinal microbiota using metagenomic next-generation sequencing (mNGS), while blood samples were collected to detect levels of interleukin-17a (IL-17a), interleukin-10 (IL-10), tumor necrosis factor-alpha (TNF-α), and interleukin-6 (IL-6) in each group. Results 1. There was no significant difference in the Shannon index among the three groups (P > 0.05). The three groups showed significant difference in the relative abundance of Faecalibacterium prausnitzii and Bifidobacterium adolescentis (with F values of 3.955 and 7.24, respectively, P < 0.05), while showed no significant difference in the relative abundance of B. pseudocatenulatum, Bifidobacterium longum, Klebsiella pneumoniae, and Haemophilus parainfluenzae (P > 0.05). 2. The three groups showed significant difference in the expression of serum IL-17A and TNF-α levels (with F values of 18.119 and 10.691, respectively, P < 0.05), while showed no significant difference in the expression of IL-10, IL-6, and CRP levels (P > 0.05). 3. Multiple linear regression analysis revealed that the relative abundance of F. prausnitzii was correlated with changes in BMI and AHI (with β values of 2.585 and -0.157, respectively, P < 0.05), while the relative abundance of B. adolescentis was correlated with changes in IL-17a (with β value of -0.161, P < 0.05). Conclusion The study revealed a significant correlation between intestinal microbiota abundance and cytokine levels, suggesting that gut microbiota disruption in OSAHS patients may be linked to systemic chronic inflammation.
Collapse
Affiliation(s)
- Kai-li Liu
- Department of General Medicine, The First Affiliated Hospital of Soochow University, Suzhou, People’s Republic of China
| | - Shen-jie Xu
- Department of General Medicine, The First Affiliated Hospital of Soochow University, Suzhou, People’s Republic of China
| | - Si-wen Chen
- Department of General Medicine, The First Affiliated Hospital of Soochow University, Suzhou, People’s Republic of China
| | - Min-jie Zhang
- Department of General Medicine, The First Affiliated Hospital of Soochow University, Suzhou, People’s Republic of China
| | - Ni Ye
- Department of General Medicine, The First Affiliated Hospital of Soochow University, Suzhou, People’s Republic of China
| | - Jie Li
- Department of General Medicine, The First Affiliated Hospital of Soochow University, Suzhou, People’s Republic of China
| |
Collapse
|
6
|
Li J, Wang S, Yan K, Wang P, Jiao J, Wang Y, Chen M, Dong Y, Zhong J. Intestinal microbiota by angiotensin receptor blocker therapy exerts protective effects against hypertensive damages. IMETA 2024; 3:e222. [PMID: 39135690 PMCID: PMC11316932 DOI: 10.1002/imt2.222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 06/13/2024] [Accepted: 06/13/2024] [Indexed: 08/15/2024]
Abstract
Dysbiosis of the gut microbiota has been implicated in hypertension, and drug-host-microbiome interactions have drawn considerable attention. However, the influence of angiotensin receptor blocker (ARB)-shaped gut microbiota on the host is not fully understood. In this work, we assessed the alterations of blood pressure (BP), vasculatures, and intestines following ARB-modified gut microbiome treatment and evaluated the changes in the intestinal transcriptome and serum metabolome in hypertensive rats. Hypertensive patients with well-controlled BP under ARB therapy were recruited as human donors, spontaneously hypertensive rats (SHRs) receiving normal saline or valsartan were considered animal donors, and SHRs were regarded as recipients. Histological and immunofluorescence staining was used to assess the aorta and small intestine, and 16S rRNA amplicon sequencing was performed to examine gut bacteria. Transcriptome and metabonomic analyses were conducted to determine the intestinal transcriptome and serum metabolome, respectively. Notably, ARB-modified fecal microbiota transplantation (FMT), results in marked decreases in systolic BP levels, collagen deposition and reactive oxygen species accumulation in the vasculature, and alleviated intestinal structure impairments in SHRs. These changes were linked with the reconstruction of the gut microbiota in SHR recipients post-FMT, especially with a decreased abundance of Lactobacillus, Aggregatibacter, and Desulfovibrio. Moreover, ARB-treated microbes contributed to increased intestinal Ciart, Per1, Per2, Per3, and Cipc gene levels and decreased Nfil3 and Arntl expression were detected in response to ARB-treated microbes. More importantly, circulating metabolites were dramatically reduced in ARB-FMT rats, including 6beta-Hydroxytestosterone and Thromboxane B2. In conclusion, ARB-modified gut microbiota exerts protective roles in vascular remodeling and injury, metabolic abnormality and intestinal dysfunctions, suggesting a pivotal role in mitigating hypertension and providing insights into the cross-talk between antihypertensive medicines and the gut microbiome.
Collapse
Affiliation(s)
- Jing Li
- Heart Center and Beijing Key Laboratory of Hypertension, Beijing Chaoyang HospitalCapital Medical UniversityBeijingChina
- Department of Cardiology, Beijing Chaoyang HospitalCapital Medical UniversityBeijingChina
| | - Si‐Yuan Wang
- Heart Center and Beijing Key Laboratory of Hypertension, Beijing Chaoyang HospitalCapital Medical UniversityBeijingChina
- Department of Cardiology, Beijing Chaoyang HospitalCapital Medical UniversityBeijingChina
| | - Kai‐Xin Yan
- Heart Center and Beijing Key Laboratory of Hypertension, Beijing Chaoyang HospitalCapital Medical UniversityBeijingChina
- Department of Cardiology, Beijing Chaoyang HospitalCapital Medical UniversityBeijingChina
| | - Pan Wang
- Heart Center and Beijing Key Laboratory of Hypertension, Beijing Chaoyang HospitalCapital Medical UniversityBeijingChina
- Department of Cardiology, Beijing Chaoyang HospitalCapital Medical UniversityBeijingChina
| | - Jie Jiao
- Heart Center and Beijing Key Laboratory of Hypertension, Beijing Chaoyang HospitalCapital Medical UniversityBeijingChina
- Department of Cardiology, Beijing Chaoyang HospitalCapital Medical UniversityBeijingChina
| | - Yi‐Dan Wang
- Heart Center and Beijing Key Laboratory of Hypertension, Beijing Chaoyang HospitalCapital Medical UniversityBeijingChina
- Department of Cardiology, Beijing Chaoyang HospitalCapital Medical UniversityBeijingChina
| | - Mu‐Lei Chen
- Heart Center and Beijing Key Laboratory of Hypertension, Beijing Chaoyang HospitalCapital Medical UniversityBeijingChina
- Department of Cardiology, Beijing Chaoyang HospitalCapital Medical UniversityBeijingChina
| | - Ying Dong
- Heart Center and Beijing Key Laboratory of Hypertension, Beijing Chaoyang HospitalCapital Medical UniversityBeijingChina
- Department of Cardiology, Beijing Chaoyang HospitalCapital Medical UniversityBeijingChina
| | - Jiu‐Chang Zhong
- Heart Center and Beijing Key Laboratory of Hypertension, Beijing Chaoyang HospitalCapital Medical UniversityBeijingChina
- Department of Cardiology, Beijing Chaoyang HospitalCapital Medical UniversityBeijingChina
| |
Collapse
|
7
|
Ye J, Lv Y, Xie H, Lian K, Xu X. Whole-Genome Metagenomic Analysis of the Oral Microbiota in Patients with Obstructive Sleep Apnea Comorbid with Major Depressive Disorder. Nat Sci Sleep 2024; 16:1091-1108. [PMID: 39100910 PMCID: PMC11296376 DOI: 10.2147/nss.s474052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 07/23/2024] [Indexed: 08/06/2024] Open
Abstract
Background Obstructive sleep apnea (OSA) patients commonly experience high rates of depression. This study aims to examine the oral microbiota characteristics of OSA and those with comorbid major depressive disorder (OSA+MDD) patients. Methods Participants were enrolled from Aug 2022 to Apr 2023. Polysomnography, psychiatrist interviews, and scales were used to diagnose OSA and MDD. Oral samples were collected from participants by rubbing swabs on buccal mucosa, palate, and gums. Oral microbiota was analyzed via whole-genome metagenomics and bioinformatic analysis followed sequencing. Venous blood was drawn to detect plasma inflammatory factor levels. Results The study enrolled 33 OSA patients, 28 OSA+MDD patients, and 28 healthy controls. Significant differences were found in 8 phyla, 229 genera, and 700 species of oral microbiota among the three groups. Prevotellaceae abundance in the OSA and OSA+MDD groups was significantly lower than that in healthy controls. Linear discriminant analysis effect size (LEfSe) analysis showed that Streptococcaceae and Actinobacteria were the characteristic oral microbiota of the OSA and OSA+MDD groups, respectively. KEGG analysis indicates 30 pathways were changed in the OSA and OSA+MDD groups compared with healthy controls, and 23 pathways were changed in the OSA group compared with the OSA+MDD group. Levels of IL-6 in the OSA+MDD group were significantly higher than in the healthy group, correlating positively with the abundance of Schaalia, Campylobacter, Fusobacterium, Alloprevotella, and Candidatus Nanosynbacter in the oral, as well as with Hamilton Anxiety Rating Scale and Hamilton Depression Rating Scale scores. Conclusion Significant differences in oral microbiota populations and gene function were observed among the three groups. OSA patients were characterized by a decreased abundance of Prevotellaceae and an increased abundance of Streptococcaceae. OSA+MDD patients had an increased abundance of Actinobacteria. IL-6 might regulate the relationship between depression and the oral microbiota in OSA+MDD patients.
Collapse
Affiliation(s)
- Jing Ye
- Department of Psychiatry, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, People’s Republic of China
- Sleep Medicine Center, The First People’s Hospital of Yunnan, Kunming, Yunnan, People’s Republic of China
| | - Yunhui Lv
- Sleep Medicine Center, The First People’s Hospital of Yunnan, Kunming, Yunnan, People’s Republic of China
| | - Hui Xie
- Department of Traumatology, The First People’s Hospital of Yunnan, Kunming, Yunnan, People’s Republic of China
| | - Kun Lian
- Department of Neurosurgery, The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, People’s Republic of China
| | - Xiufeng Xu
- Department of Psychiatry, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, People’s Republic of China
| |
Collapse
|
8
|
Chen X, Cheng Z, Xu J, Wang Q, Zhao Z, Jiang Q. No genetic association between sleep traits and periodontitis: A bidirectional two-sample Mendelian randomization study. Cranio 2024:1-10. [PMID: 39075864 DOI: 10.1080/08869634.2024.2384681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/31/2024]
Abstract
OBJECTIVE This study aimed to investigate the potential genetic link between sleep traits and periodontitis. METHODS A two-sample bidirectional Mendelian randomization (MR) analysis was conducted using publicly available genome-wide association studies data on chronotype, daytime sleepiness, daytime napping frequency, insomnia, sleep duration, snoring, and the apnea-hypopnea index (AHI), along with a separate dataset on periodontitis. RESULTS Chronotype (OR = 0.929, 95% CI = 0.788-1.095), daytime sleepiness (OR = 0.492, 95% CI = 0.186-1.306), daytime napping frequency (OR = 1.178, 95% CI = 0.745-1.863), sleep duration (OR = 0.868, 95% CI = 0.644-1.169), AHI (OR = 1.124, 95% CI = 0.980-1.289), insomnia (OR = 0.832, 95% CI = 0.440-1.573), and snoring (OR = 0.641, 95% CI = 0.198-2.075) had no effect on periodontitis. Similarly, periodontitis demonstrated no significant effect on sleep traits. CONCLUSIONS There is no evidence of a bidirectional genetic relationship between sleep traits and the risk of periodontitis.
Collapse
Affiliation(s)
- Xin Chen
- Department of Oral and Maxillofacial Surgery, Jiangyin People's Hospital Affiliated to Nantong University, Jiangsu, China
| | - Zheng Cheng
- Department of Oral and Maxillofacial Surgery, Jiangyin People's Hospital Affiliated to Nantong University, Jiangsu, China
| | - Junyu Xu
- Department of Oral and Maxillofacial Surgery, Jiangyin People's Hospital Affiliated to Nantong University, Jiangsu, China
| | - Qianyi Wang
- Department of Cardiology, Jiangyin People's Hospital Affiliated to Nantong University, Jiangsu, China
| | - Zhibai Zhao
- Department of Oral Mucosal Diseases, The Affiliated Stomatological Hospital of Nanjing Medical University, Jiangsu, China
| | - Qianglin Jiang
- Department of Oral and Maxillofacial Surgery, Jiangyin People's Hospital Affiliated to Nantong University, Jiangsu, China
| |
Collapse
|
9
|
Golshah A, Sadeghi M, Sadeghi E. Evaluation of Serum/Plasma Levels of Interleukins (IL-6, IL-12, IL-17, IL-18, and IL-23) in Adults and Children with Obstructive Sleep Apnea: A Systematic Review, Meta-Analysis, and Trial Sequential Analysis. J Interferon Cytokine Res 2024; 44:300-315. [PMID: 38757606 DOI: 10.1089/jir.2024.0057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2024] Open
Abstract
Obstructive sleep apnea (OSA) is a chronic inflammatory disease characterized by partial or complete upper airway obstruction during sleep. We aimed to evaluate serum/plasma levels of several cytokines (interleukin [IL]-6, IL-12, IL-17, IL-18, and IL-23) in a systematic review meta-analysis in both adults and children with OSA compared with controls. We conducted a comprehensive search of 4 digital databases (PubMed, Web of Science, Scopus, and Cochrane Library) up until October 19, 2023, without any limitations. For our meta-analysis, we used Review Manager, version 5.3, and displayed the data as the standardized mean difference (SMD) and 95% confidence interval (CI) to assess the correlation between cytokine levels and OSA. We utilized Comprehensive Meta-Analysis version 3.0 software to conduct bias analyses, meta-regression, and sensitivity analyses. From 1881 records, 84 articles were included in the systematic review and meta-analysis. In adults, the pooled SMDs for IL-6 level were 0.79 (P value < 0.00001), for IL-17 level were 0.74 (P value = 0.14), and for IL-18 level were 0.43 (P value = 0.00002). In children, the pooled SMD for IL-6 was 1.10 (P value < 0.00001), for IL-12 was 0.47 (P value = 0.10), for IL-17 was 2.21 (a P value = 0.24), for IL-18 was 0.19 (P value = 0.07), and for IL-23 was 2.46 (P value < 0.0001). The subgroup analysis showed that the ethnicity, mean body mass index, and mean apnea-hypopnea index for IL-6 levels in adults and the ethnicity for IL-6 levels in children were effective factors in the pooled SMD. The findings of the trial sequential analysis revealed that adequate evidence has been obtained. The analysis of IL levels in adults and children with OSA compared with those without OSA revealed significant differences. In adults, IL-6 and IL-18 levels were significantly higher in the OSA group, while in children, only IL-6 and IL-23 levels were significantly elevated.
Collapse
Affiliation(s)
- Amin Golshah
- Department of Orthodontics, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Masoud Sadeghi
- Medical Biology Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Edris Sadeghi
- Medical Biology Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
10
|
Chai X, Liu L, Chen F. Oral nitrate-reducing bacteria as potential probiotics for blood pressure homeostasis. Front Cardiovasc Med 2024; 11:1337281. [PMID: 38638884 PMCID: PMC11024454 DOI: 10.3389/fcvm.2024.1337281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 03/12/2024] [Indexed: 04/20/2024] Open
Abstract
Hypertension is a leading cause of morbidity and mortality worldwide and poses a major risk factor for cardiovascular diseases and chronic kidney disease. Research has shown that nitric oxide (NO) is a vasodilator that regulates vascular tension and the decrease of NO bioactivity is considered one of the potential pathogenesis of essential hypertension. The L-arginine-nitric oxide synthase (NOS) pathway is the main source of endogenous NO production. However, with aging or the onset of diseases, the function of the NOS system becomes impaired, leading to insufficient NO production. The nitrate-nitrite-NO pathway allows for the generation of biologically active NO independent of the NOS system, by utilizing endogenous or dietary inorganic nitrate and nitrite through a series of reduction cycles. The oral cavity serves as an important interface between the body and the environment, and dysbiosis or disruption of the oral microbiota has negative effects on blood pressure regulation. In this review, we explore the role of oral microbiota in maintaining blood pressure homeostasis, particularly the connection between nitrate-reducing bacteria and the bioavailability of NO in the bloodstream and blood pressure changes. This review aims to elucidate the potential mechanisms by which oral nitrate-reducing bacteria contribute to blood pressure homeostasis and to highlight the use of oral nitrate-reducing bacteria as probiotics for oral microbiota intervention to prevent hypertension.
Collapse
Affiliation(s)
- Xiaofen Chai
- Central Laboratory, Peking University School and Hospital of Stomatology, Beijing, China
| | - Libing Liu
- Department of Nutrition and Health, China Agricultural University, Beijing, China
| | - Feng Chen
- Central Laboratory, Peking University School and Hospital of Stomatology, Beijing, China
| |
Collapse
|
11
|
Zhu K, Jin Y, Zhao Y, He A, Wang R, Cao C. Proteomic scrutiny of nasal microbiomes: implications for the clinic. Expert Rev Proteomics 2024; 21:169-179. [PMID: 38420723 DOI: 10.1080/14789450.2024.2323983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 02/21/2024] [Indexed: 03/02/2024]
Abstract
INTRODUCTION The nasal cavity is the initial site of the human respiratory tract and is one of the habitats where microorganisms colonize. The findings from a growing number of studies have shown that the nasal microbiome is an important factor for human disease and health. 16S rRNA sequencing and metagenomic next-generation sequencing (mNGS) are the most commonly used means of microbiome evaluation. Among them, 16S rRNA sequencing is the primary method used in previous studies of nasal microbiomes. However, neither 16S rRNA sequencing nor mNGS can be used to analyze the genes specifically expressed by nasal microorganisms and their functions. This problem can be addressed by proteomic analysis of the nasal microbiome. AREAS COVERED In this review, we summarize current advances in research on the nasal microbiome, introduce the methods for proteomic evaluation of the nasal microbiome, and focus on the important roles of proteomic evaluation of the nasal microbiome in the diagnosis and treatment of related diseases. EXPERT OPINION The detection method for microbiome-expressed proteins is known as metaproteomics. Metaproteomic analysis can help us dig deeper into the nasal microbiomes and provide new targets and ideas for clinical diagnosis and treatment of many nasal dysbiosis-related diseases.
Collapse
Affiliation(s)
- Ke Zhu
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Respiratory Disease of Ningbo, The First Affiliated Hospital of Ningbo University, Ningbo, China
| | - Yan Jin
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Respiratory Disease of Ningbo, The First Affiliated Hospital of Ningbo University, Ningbo, China
- Department of Respiratory and Critical Care Medicine, Municipal Hospital Affiliated to Taizhou University, Taizhou, China
| | - Yun Zhao
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Respiratory Disease of Ningbo, The First Affiliated Hospital of Ningbo University, Ningbo, China
| | - Andong He
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Respiratory Disease of Ningbo, The First Affiliated Hospital of Ningbo University, Ningbo, China
| | - Ran Wang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Chao Cao
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Respiratory Disease of Ningbo, The First Affiliated Hospital of Ningbo University, Ningbo, China
| |
Collapse
|
12
|
Liu X, Liu Y, Liu J, Zhang H, Shan C, Guo Y, Gong X, Cui M, Li X, Tang M. Correlation between the gut microbiome and neurodegenerative diseases: a review of metagenomics evidence. Neural Regen Res 2024; 19:833-845. [PMID: 37843219 PMCID: PMC10664138 DOI: 10.4103/1673-5374.382223] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 04/19/2023] [Accepted: 06/17/2023] [Indexed: 10/17/2023] Open
Abstract
A growing body of evidence suggests that the gut microbiota contributes to the development of neurodegenerative diseases via the microbiota-gut-brain axis. As a contributing factor, microbiota dysbiosis always occurs in pathological changes of neurodegenerative diseases, such as Alzheimer's disease, Parkinson's disease, and amyotrophic lateral sclerosis. High-throughput sequencing technology has helped to reveal that the bidirectional communication between the central nervous system and the enteric nervous system is facilitated by the microbiota's diverse microorganisms, and for both neuroimmune and neuroendocrine systems. Here, we summarize the bioinformatics analysis and wet-biology validation for the gut metagenomics in neurodegenerative diseases, with an emphasis on multi-omics studies and the gut virome. The pathogen-associated signaling biomarkers for identifying brain disorders and potential therapeutic targets are also elucidated. Finally, we discuss the role of diet, prebiotics, probiotics, postbiotics and exercise interventions in remodeling the microbiome and reducing the symptoms of neurodegenerative diseases.
Collapse
Affiliation(s)
- Xiaoyan Liu
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu Province, China
| | - Yi Liu
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu Province, China
- Institute of Animal Husbandry, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu Province, China
| | - Junlin Liu
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu Province, China
| | - Hantao Zhang
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu Province, China
| | - Chaofan Shan
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu Province, China
| | - Yinglu Guo
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu Province, China
| | - Xun Gong
- Department of Rheumatology & Immunology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu Province, China
| | - Mengmeng Cui
- Department of Neurology, The Second Affiliated Hospital of Shandong First Medical University, Taian, Shandong Province, China
| | - Xiubin Li
- Department of Neurology, The Second Affiliated Hospital of Shandong First Medical University, Taian, Shandong Province, China
| | - Min Tang
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu Province, China
| |
Collapse
|
13
|
Golshah A, Sadeghi E, Sadeghi M. Association of Tumor Necrosis Factor-Alpha, Interleukin-1β, Interleukin-8, and Interferon-γ with Obstructive Sleep Apnea in Both Children and Adults: A Meta-Analysis of 102 Articles. J Clin Med 2024; 13:1484. [PMID: 38592305 PMCID: PMC10932105 DOI: 10.3390/jcm13051484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 02/20/2024] [Accepted: 02/29/2024] [Indexed: 04/10/2024] Open
Abstract
Background: Cytokines may have a significant impact on sleep regulation. In this meta-analysis, we present the serum/plasma levels of tumor necrosis factor-alpha (TNF-α), interleukin (IL)-8, IL-1β, and interferon-gamma (IFN-γ) in both children and adults with obstructive sleep apnea (OSA) in comparison to controls. Methods: Four electronic databases were systematically searched (PubMed, Web of Science, Scopus, and Cochrane Library) through 19 October 2023, without any restrictions on language, date, age, and sex. We used Review Manager version 5.3 to perform meta-analysis and presented the data as standardized mean difference (SMD) and 95% confidence interval (CI) values to evaluate the relationships between the levels of cytokines and OSA. Results: A total of 102 articles (150 independent studies) were included in the meta-analysis. The pooled SMDs in adults were 1.42 (95%CI: 1.11, 1.73; p < 0.00001), 0.85 (95%CI: 0.40, 1.31; p = 0.0002), 0.69 (95%CI: 0.22, 1.16; p = 0.004), and 0.39 (95%CI: -0.37, 1.16; p = 0.31) for TNF-α, IL-8, IL-1β, and IFN-γ, respectively. The pooled SMDs in children were 0.84 (95%CI: 0.35, 1.33; p = 0.0008), 0.60 (95%CI: 0.46, 0.74; p < 0.00001), 0.25 (95%CI: -0.44, 0.93; p = 0.49), and 3.70 (95%CI: 0.75, 6.65; p = 0.01) for TNF-α, IL-8, IL-1β, and IFN-γ, respectively. Conclusions: The levels of proinflammatory cytokines of TNF-α, IL-8, and IL-1β in adults, and TNF-α, IL-8, and IFN-γ in children with OSA, are significantly higher than those in controls.
Collapse
Affiliation(s)
- Amin Golshah
- Department of Orthodontics, Kermanshah University of Medical Sciences, Kermanshah 6715847141, Iran;
| | - Edris Sadeghi
- Medical Biology Research Center, Kermanshah University of Medical Sciences, Kermanshah 6714415185, Iran;
| | - Masoud Sadeghi
- Medical Biology Research Center, Kermanshah University of Medical Sciences, Kermanshah 6714415185, Iran;
| |
Collapse
|
14
|
Wang Y, Li J, Hu H, Wu Y, Chen S, Feng X, Wang T, Wang Y, Wu S, Luo H. Distinct microbiome of tongue coating and gut in type 2 diabetes with yellow tongue coating. Heliyon 2024; 10:e22615. [PMID: 38163136 PMCID: PMC10756968 DOI: 10.1016/j.heliyon.2023.e22615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 11/08/2023] [Accepted: 11/15/2023] [Indexed: 01/03/2024] Open
Abstract
The gut microbiome plays a critical role in the pathogenesis of type 2 diabetes mellitus (T2DM). However, the inconvenience of obtaining fecal samples hinders the clinical application of gut microbiome analysis. In this study, we hypothesized that tongue coating color is associated with the severity of T2DM. Therefore, we aimed to compare tongue coating, gut microbiomes, and various clinical parameters between patients with T2DM with yellow (YC) and non-yellow tongue coatings (NYC). Tongue coating and gut microbiomes of 27 patients with T2DM (13 with YC and 14 with NYC) were analyzed using 16S rDNA gene sequencing technology. Additionally, we measured glycated hemoglobin (HbA1c), random blood glucose (RBG), fasting blood glucose (FBG), postprandial blood glucose (PBG), insulin (INS), glucagon (GC), body mass index (BMI), and homeostasis model assessment of β-cell function (HOMA-β) levels for each patient. The correlation between tongue coating and the gut microbiomes was also analyzed. Our findings provide evidence that the levels of Lactobacillus spp. are significantly higher in both the tongue coating and the gut microbiomes of patients with YC. Additionally, we observed that elevated INS and GC levels, along with decreased BMI and HOMA-β levels, were indicative of a more severe condition in patients with T2DM with YC. Moreover, our results suggest that the composition of the tongue coating may reflect the presence of Lactobacillus spp. in the gut. These results provide insights regarding the potential relationship between tongue coating color, the gut microbiome, and T2DM.
Collapse
Affiliation(s)
- Yao Wang
- School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, China
| | - Jiqing Li
- Department of Endocrinology, Hainan Provincial Hospital of Traditional Chinese Medicine , Haikou, Hainan Province, China
| | - Haiying Hu
- West China Hospital Sichuan University, Chengdu, Sichuan Province, China
| | - Yalan Wu
- School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, China
| | - Song Chen
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, China
| | - Xiangrong Feng
- School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, China
| | - Ting Wang
- Department of Emergency and Critical Care, Hainan Provincial Hospital of Traditional Chinese Medicine, Haikou, Hainan Province, China
| | - Yinrong Wang
- Department of Endocrinology, Hainan Provincial Hospital of Traditional Chinese Medicine , Haikou, Hainan Province, China
| | - Su Wu
- Department of Endocrinology, Hainan Provincial Hospital of Traditional Chinese Medicine , Haikou, Hainan Province, China
| | - Huanhuan Luo
- School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, China
- State Key Laboratory of Traditional Chinese Medicine Syndrome, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, China
| |
Collapse
|
15
|
Chen L, Nini W, Jinmei Z, Jingmei Y. Implications of sleep disorders for periodontitis. Sleep Breath 2023; 27:1655-1666. [PMID: 36547852 DOI: 10.1007/s11325-022-02769-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 11/14/2022] [Accepted: 12/12/2022] [Indexed: 12/24/2022]
Abstract
PURPOSE Periodontitis is a chronic inflammatory disease caused by multi-factors. Sleep is a natural physiologic process, and the sleep duration, quality, and patterns might be associated with periodontitis. Meanwhile, periodontitis might in turn induce systemic inflammation and thus impact sleep in different ways as well. METHODS To investigate the bidirectional relationship between sleep disorder and periodontitis, a literature search was conducted to reveal the interaction and possible mechanism between these two diseases. RESULTS The results show that sleep disorders can affect the progression of periodontitis via some pathomechanisms, and periodontitis also has a reverse impact on sleep. CONCLUSION Although the epidemiologic and clinical trials found the possible associations between sleep disorder and periodontitis, their relationship is still not that explicit. Further studies are warranted to shed light on them, to improve preventive health care.
Collapse
Affiliation(s)
- Li Chen
- State Key Laboratory of Oral Disease & National Clinical Research Center for Oral Disease, Department of Periodontics, West China Hospital of Stomatology, Sichuan University, No. 14, Section 3, Renmin South Road, Chengdu, 610041, China
| | - Wang Nini
- State Key Laboratory of Oral Disease & National Clinical Research Center for Oral Disease, Department of Periodontics, West China Hospital of Stomatology, Sichuan University, No. 14, Section 3, Renmin South Road, Chengdu, 610041, China
| | - Zhang Jinmei
- State Key Laboratory of Oral Disease & National Clinical Research Center for Oral Disease, Department of Periodontics, West China Hospital of Stomatology, Sichuan University, No. 14, Section 3, Renmin South Road, Chengdu, 610041, China
| | - Yang Jingmei
- State Key Laboratory of Oral Disease & National Clinical Research Center for Oral Disease, Department of Periodontics, West China Hospital of Stomatology, Sichuan University, No. 14, Section 3, Renmin South Road, Chengdu, 610041, China.
| |
Collapse
|
16
|
Bianchi G, de'Angelis N, Gavriilidis P, Sobhani I, de'Angelis GL, Carra MC. Oral microbiota in obstructive sleep apnea patients: a systematic review. Sleep Breath 2023; 27:1203-1216. [PMID: 36207622 DOI: 10.1007/s11325-022-02718-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 09/13/2022] [Accepted: 09/27/2022] [Indexed: 11/07/2022]
Abstract
PURPOSE Evidence suggests that patients with obstructive sleep apnea (OSA) are at increased risk of suffering from periodontitis, a chronic inflammatory disease of the tooth-supporting tissues associated with a dysbiotic oral microbiota. This systematic review aims to explore the current literature about the composition of the oral microbiota in patients with OSA compared to those without OSA. METHODS Medline, Embase, and Cochrane Library were searched in May 2022 to identify original articles investigating the oral microbiota composition and/or oral microbiome (any microbiological technique) of patients with OSA (adults or children) vs. controls. Case report, reviews, and animal studies were excluded. RESULTS Of over 279 articles initially identified, 8 were selected, of which 3 dealt with pediatric patients. Overall, 344 patients with OSA and 131 controls were included. Five studies used salivary samples, 2 oral mucosal swabs, and 1 subgingival plaque sample. With different methods to characterize oral microbiota, 6/8 studies observed significant differences between patients with OSA patients and controls in the composition and relative abundance of several bacteria species/genera linked to periodontitis. CONCLUSION Within the limitations of the available literature, the present systematic review indicates that OSA and related conditions (e.g., mouth breathing) are associated with different oral microbiota compositions, which may underlie the association between OSA and periodontitis.
Collapse
Affiliation(s)
- Giorgio Bianchi
- Service of General Surgery, Henri Mondor University Hospital, Creteil, France
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Nicola de'Angelis
- Service of General Surgery, Henri Mondor University Hospital, Creteil, France
- Faculté de Santé, Université Paris Est, UPEC, Creteil, France
| | - Paschalis Gavriilidis
- Department of HBP Surgery, University Hospitals Coventry and Warwickshire NHS Trust, Clifford Bridge Road, Coventry, CV2 2DX, UK
| | - Iradj Sobhani
- Department of Gastroenterology, APHP-Henri Mondor University Hospital, Creteil, France
- EC2M-EA7375 Research Team, Henri Mondor Campus, Paris East University, Creteil, France
| | - Gian Luigi de'Angelis
- Gastroenterology and Endoscopy Unit, Department of Medicine and Surgery, University Hospital of Parma, Parma, Italy
| | - Maria Clotilde Carra
- Service of Odontology, Unit of Oral and Periodontal Surgery, Rothschild University Hospital and University Paris Cité, 5, rue Santerre, Paris, France.
| |
Collapse
|
17
|
Gao Y, Wang H, Hu Y, Li J, Xu W, Zhao L, Su X, Han J, Li T, Fang X, Liu L. Whole-genome metagenomic analysis of the oral microbiota in patients with obstructive sleep apnea. Sleep Breath 2023; 27:1383-1398. [PMID: 36401059 DOI: 10.1007/s11325-022-02732-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 07/28/2022] [Accepted: 08/04/2022] [Indexed: 11/20/2022]
Abstract
PURPOSE The oral microbiota is closely associated with systemic health, but few studies have investigated the oral microbiota in patients with obstructive sleep apnea (OSA). This study aimed to identify the variation of oral microbiota among patients with severe OSA, and the change of oral microbiota after treatment with continuous positive airway pressure (CPAP). METHODS Participants were enrolled in the study from November 2020 to August 2021. Sleep parameters using full nocturnal polysomnography (PSG) were collected on healthy controls, patients with severe OSA, and patients with severe OSA after CPAP treatment for 3 months. Oral samples were also collected by rubbing disposable medical sterile swabs on the buccal mucosa. Routine blood tests and biochemical indicators were measured using the fully automated biochemical analyzer. Oral microbial composition of oral samples were determined using whole-genome metagenomic analysis in all participants. Correlations were analyzed between the oral microbiota and blood lipids. RESULTS Study enrollment included 14 participants, 7 healthy controls and 7 patients with severe OSA. At the species level, the relative abundances of Prevotella, Alloprevotella, Bacteroides, Veillonella_tobetsuensis, Candidatus saccharimonas, and Leptotrichia in the groups with severe OSA were significantly lower than those in the healthy controls (P both < 0.05). The abundances of Capnocytophaga, Veillonella, Bacillus_anthracis, Eikenella, and Kingella were significantly higher whereas the abundances of Gordonia and Streptococcus were significantly lower in the group with severe OSA compared to the severe OSA-CPAP group (P < 0.05 for both). According to the Kyoto Encyclopedia of Genes and Genomes (KEGG), 4 pathways changed in the group with severe OSA compared with healthy controls (P both < 0.05). Pathways related to Novobiocin biosynthesis, 2-Oxocarboxylic acid metabolism, and Histidine metabolism were enriched in the patients with severe OSA. Nine pathways showed significant differences with regard to the relative abundances of phenylalanine metabolism; alanine, aspartate, and glutamate metabolism; one carbon pool by folate; monobactam biosynthesis; 2-oxocarboxylic acid metabolism; arginine biosynthesis and vitamin B6 metabolism; novobiocin biosynthesis; and arginine and proline metabolism, which were significantly higher in the group with severe OSA compared to the severe OSA-CPAP group (P both < 0.05). The Spearman correlation analysis between blood lipid parameters and oral microbiota components showed that negative correlations were observed between total cholesterol and Streptomyces (r = - 0.893, P = 0.007), and high-density lipoprotein cholesterol (HDL-C) and Gordonia (r = - 0.821, P = 0.023); positive correlations were observed between HDL-C and Candidatus saccharimonas (r = 0.929, P = 0.003), and low-density lipoprotein cholesterol (LDL-C) and Capnocytophaga (r = 0.893, P = 0.007). CONCLUSION There was an apparent discrepancy of the oral microbiota and metabolic pathways between the group with severe OSA and controls, and CPAP significantly changed oral microbial abundance and metabolic pathways in patients with severe OSA. Correlation analysis showed that these oral bacteria were strongly correlated with the blood lipids level.
Collapse
Affiliation(s)
- Yinghui Gao
- PKU-UPenn Sleep Center, Peking University International Hospital, Beijing, 102206, China
| | - Huanhuan Wang
- Nursing of Peking University, Beijing, 100191, China
| | - Yazhuo Hu
- Institute of Gerontology, Second Medical Center, PLA General Hospital, Beijing, 100853, China
| | - JianHua Li
- Cardiology Department of the Second Medical Center &, National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing, 100853, China
| | - Weihao Xu
- Cardiology Department of the Second Medical Center &, National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing, 100853, China
| | - LiBo Zhao
- Cardiology Department of the Second Medical Center &, National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing, 100853, China
| | - Xiaofeng Su
- Medical College, Yan'an University, Yan'an, 716000, Shaanxi Province, China
| | - Jiming Han
- Medical College, Yan'an University, Yan'an, 716000, Shaanxi Province, China
| | - Tianzhi Li
- The Second Medical Center &, National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing, 100853, China.
| | - Xiangqun Fang
- Department of Pulmonary and Critical Care Medicine of the Second Medical Center &, National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, 28 Fuxing Road, Beijing, 100853, China.
| | - Lin Liu
- Department of Pulmonary and Critical Care Medicine of the Second Medical Center &, National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, 28 Fuxing Road, Beijing, 100853, China.
| |
Collapse
|
18
|
Wang J, Zhang X, Yang X, Yu H, Bu M, Fu J, Zhang Z, Xu H, Hu J, Lu J, Zhang H, Zhai Z, Yang W, Wu X, Wang Y, Tong Q. Revitalizing myocarditis treatment through gut microbiota modulation: unveiling a promising therapeutic avenue. Front Cell Infect Microbiol 2023; 13:1191936. [PMID: 37260696 PMCID: PMC10229058 DOI: 10.3389/fcimb.2023.1191936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 04/24/2023] [Indexed: 06/02/2023] Open
Abstract
Numerous studies have demonstrated that gut microbiota plays an important role in the development and treatment of different cardiovascular diseases, including hypertension, heart failure, myocardial infarction, arrhythmia, and atherosclerosis. Furthermore, evidence from recent studies has shown that gut microbiota contributes to the development of myocarditis. Myocarditis is an inflammatory disease that often results in myocardial damage. Myocarditis is a common cause of sudden cardiac death in young adults. The incidence of myocarditis and its associated dilated cardiomyopathy has been increasing yearly. Myocarditis has gained significant attention on social media due to its association with both COVID-19 and COVID-19 vaccinations. However, the current therapeutic options for myocarditis are limited. In addition, little is known about the potential therapeutic targets of myocarditis. In this study, we review (1) the evidence on the gut-heart axis, (2) the crosslink between gut microbiota and the immune system, (3) the association between myocarditis and the immune system, (4) the impact of gut microbiota and its metabolites on myocarditis, (5) current strategies for modulating gut microbiota, (6) challenges and future directions for targeted gut microbiota in the treatment of myocarditis. The approach of targeting the gut microbiota in myocarditis is still in its infancy, and this is the study to explore the gut microbiota-immune system-myocarditis axis. Our findings are expected to pave the way for the use of gut microbiota as a potential therapeutic target in the treatment of myocarditis.
Collapse
Affiliation(s)
- Jingyue Wang
- Department of Cardiovascular Medicine, The First Hospital of Jilin University, Changchun, China
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing, China
| | - Xianfeng Zhang
- Department of Neurosurgery, The First Hospital of Jilin University, Changchun, China
| | - Xinyu Yang
- Department of Cardiovascular Medicine, The First Hospital of Jilin University, Changchun, China
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing, China
| | - Hang Yu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing, China
| | - Mengmeng Bu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing, China
| | - Jie Fu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing, China
| | - Zhengwei Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing, China
| | - Hui Xu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing, China
| | - Jiachun Hu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing, China
| | - Jinyue Lu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing, China
| | - Haojian Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing, China
| | - Zhao Zhai
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing, China
| | - Wei Yang
- Department of Cardiovascular Medicine, The First Hospital of Jilin University, Changchun, China
| | - Xiaodan Wu
- Department of Cardiovascular Medicine, The First Hospital of Jilin University, Changchun, China
| | - Yan Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing, China
| | - Qian Tong
- Department of Cardiovascular Medicine, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
19
|
Giampá SQC, Lorenzi-Filho G, Drager LF. Obstructive sleep apnea and metabolic syndrome. Obesity (Silver Spring) 2023; 31:900-911. [PMID: 36863747 DOI: 10.1002/oby.23679] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 12/05/2022] [Accepted: 12/05/2022] [Indexed: 03/04/2023]
Abstract
Metabolic syndrome (MS) is a heterogeneous condition associated with increased cardiovascular risk. There is growing evidence from experimental, translational, and clinical investigations that has suggested that obstructive sleep apnea (OSA) is associated with prevalent and incident components of MS and MS itself. The biological plausibility is supportive, primarily related to one of the main features of OSA, namely intermittent hypoxia: increased sympathetic activation with hemodynamic repercussions, increased hepatic glucose output, insulin resistance through adipose tissue inflammation, pancreatic β-cell dysfunction, hyperlipidemia through the worsening of fasting lipid profiles, and the reduced clearance of triglyceride-rich lipoproteins. Although there are multiple related pathways, the clinical evidence relies mainly on cross-sectional data preventing any causality assumptions. The overlapping presence of visceral obesity or other confounders such as medications challenges the ability to understand the independent contribution of OSA on MS. In this review, we revisit the evidence on how OSA/intermittent hypoxia could mediate adverse effects of MS parameters independent of adiposity. Particular attention is devoted to discussing recent evidence from interventional studies. This review describes the research gaps, the challenges in the field, perspectives, and the need for additional high-quality data from interventional studies addressing the impact of not only established but promising therapies for OSA/obesity.
Collapse
Affiliation(s)
- Sara Q C Giampá
- Graduate Program in Cardiology, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Geraldo Lorenzi-Filho
- Laboratório do Sono, Divisão de Pneumologia, Instituto do Coração (InCor), Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Luciano F Drager
- Unidade de Hipertensão, Instituto do Coração (InCor), Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
- Unidade de Hipertensão, Disciplina de Nefrologia, Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| |
Collapse
|
20
|
Janmohammadi P, Raeisi T, Zarei M, Nejad MM, Karimi R, Mirali Z, Zafary R, Alizadeh S. Adipocytokines in obstructive sleep apnea: A systematic review and meta-analysis. Respir Med 2023; 208:107122. [PMID: 36682601 DOI: 10.1016/j.rmed.2023.107122] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 12/23/2022] [Accepted: 01/17/2023] [Indexed: 01/21/2023]
Abstract
BACKGROUND AND AIM Adipocytokines play an important role in obstructive sleep apnea (OSA) by mediating inflammatory responses. Previous studies have reported that OSA is related to a change in the serum levels of adipocytokines; however, the results are still controversial. This meta-analysis aimed to assess the relationship between OSA and circulating level of adipocytokines in adults and children. METHODS A comprehensive search was conducted in databases of Medline/PubMed and Scopus for pertinent articles published since their inception to July 2022. Weighted mean differences (WMDs) and 95% confidence intervals (CIs) were used to assess the strength of the relationship between the concentrations of adipocytokines with OSA. RESULTS In the overall analysis, contrary to IL-10, which showed a significant reduction, IL-1β, IL-4, IL-8, IL-17, and IFN- gamma showed higher levels in OSA patients in comparison with control groups (p <0.05). For adults, IL-1β, IL-8, IL-17, IL-18, vaspin, visfatin, and chemerin were linked to a greater serum levels in patients with OSA, while, IL-5 and IL-10 were detected significantly lower in adults with OSA in comparison with healthy adults (p <0.05). In children with OSA, the serum levels of IL-4, IL-8, IL-12, IL-17, IL-23, and IFN-gamma were significantly higher than healthy children (p <0.05). CONCLUSION The levels of inflammatory markers were found to be higher in OSA patients compared with control individuals, suggesting that adipocytokines may contribute to the pathology of OSA.
Collapse
Affiliation(s)
- Parisa Janmohammadi
- Department of Clinical Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Tahereh Raeisi
- Department of Medicine, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Mahtab Zarei
- Department of Cellular and Molecular Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Maryam Mofidi Nejad
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Roya Karimi
- Department of Preventive Medicine, University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Zahra Mirali
- Department of Nutrition, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Reza Zafary
- Department of Toxicology & Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Shahab Alizadeh
- Minimally Invasive Surgery Research Center, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
21
|
Téllez Corral MA, Herrera Daza E, Cuervo Jimenez HK, Bravo Becerra MDM, Villamil JC, Hidalgo Martinez P, Roa Molina NS, Otero L, Cortés ME, Parra Giraldo CM. Cryptic Oral Microbiota: What Is Its Role as Obstructive Sleep Apnea-Related Periodontal Pathogens? INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:1740. [PMID: 36767109 PMCID: PMC9913967 DOI: 10.3390/ijerph20031740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 01/07/2023] [Accepted: 01/12/2023] [Indexed: 06/18/2023]
Abstract
Periodontitis has been commonly linked to periodontopathogens categorized in Socransky's microbial complexes; however, there is a lack of knowledge regarding "other microorganisms" or "cryptic microorganisms", which are rarely thought of as significant oral pathogens and have been neither previously categorized nor connected to illnesses in the oral cavity. This study hypothesized that these cryptic microorganisms could contribute to the modulation of oral microbiota present in health or disease (periodontitis and/or obstructive sleep apnea (OSA) patients). For this purpose, the presence and correlation among these cultivable cryptic oral microorganisms were identified, and their possible role in both conditions was determined. Data from oral samples of individuals with or without periodontitis and with or without OSA were obtained from a previous study. Demographic data, clinical oral characteristics, and genera and species of cultivable cryptic oral microorganisms identified by MALDI-TOF were recorded. The data from 75 participants were analyzed to determine the relative frequencies of cultivable cryptic microorganisms' genera and species, and microbial clusters and correlations tests were performed. According to periodontal condition, dental-biofilm-induced gingivitis in reduced periodontium and stage III periodontitis were found to have the highest diversity of cryptic microorganism species. Based on the experimental condition, these findings showed that there are genera related to disease conditions and others related to healthy conditions, with species that could be related to different chronic diseases being highlighted as periodontitis and OSA comorbidities. The cryptic microorganisms within the oral microbiota of patients with periodontitis and OSA are present as potential pathogens, promoting the development of dysbiotic microbiota and the occurrence of chronic diseases, which have been previously proposed to be common risk factors for periodontitis and OSA. Understanding the function of possible pathogens in the oral microbiota will require more research.
Collapse
Affiliation(s)
- Mayra A. Téllez Corral
- Centro de Investigaciones Odontológicas, Facultad de Odontología, Pontificia Universidad Javeriana, Bogotá D.C. 110231, Colombia
- Unidad de Investigación en Proteómica y Micosis Humanas, Departamento de Microbiología, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá D.C. 110231, Colombia
- Faculty of Dentistry and Innovation Technology Graduate Program, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil
| | - Eddy Herrera Daza
- Departamento de Matemáticas, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá D.C. 110231, Colombia
| | - Hayde K. Cuervo Jimenez
- Unidad de Investigación en Proteómica y Micosis Humanas, Departamento de Microbiología, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá D.C. 110231, Colombia
| | - María del Mar Bravo Becerra
- Unidad de Investigación en Proteómica y Micosis Humanas, Departamento de Microbiología, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá D.C. 110231, Colombia
| | - Jean Carlos Villamil
- Centro de Investigaciones Odontológicas, Facultad de Odontología, Pontificia Universidad Javeriana, Bogotá D.C. 110231, Colombia
| | - Patricia Hidalgo Martinez
- Sleep Clinic, Hospital Universitario San Ignacio and Faculty of Medicine, Pontificia Universidad Javeriana, Bogotá D.C. 110231, Colombia
| | - Nelly S. Roa Molina
- Centro de Investigaciones Odontológicas, Facultad de Odontología, Pontificia Universidad Javeriana, Bogotá D.C. 110231, Colombia
| | - Liliana Otero
- Centro de Investigaciones Odontológicas, Facultad de Odontología, Pontificia Universidad Javeriana, Bogotá D.C. 110231, Colombia
| | - María E. Cortés
- Faculty of Dentistry and Innovation Technology Graduate Program, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil
| | - Claudia M. Parra Giraldo
- Unidad de Investigación en Proteómica y Micosis Humanas, Departamento de Microbiología, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá D.C. 110231, Colombia
- Departamento de Microbiología y Parasilogía, Facultad de Farmacia, Universidad Complutense de Madrid, 28040 Madrid, Spain
| |
Collapse
|
22
|
Huang X, Chen X, Gong X, Xu Y, Xu Z, Gao X. Characteristics of salivary microbiota in children with obstructive sleep apnea: A prospective study with polysomnography. Front Cell Infect Microbiol 2022; 12:945284. [PMID: 36105146 PMCID: PMC9465092 DOI: 10.3389/fcimb.2022.945284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 08/08/2022] [Indexed: 11/13/2022] Open
Abstract
ObjectivesThe present study aimed to investigate the characteristics of salivary microbiota of children with obstructive sleep apnea (OSA) and to assess longitudinal alterations in salivary microbiota before and after adenotonsillectomy.MethodsA set of cross-sectional samples consisted of 36 OSA children (17 boys and 19 girls, 7.47 ± 2.24 years old) and 22 controls (9 boys and 13 girls, 7.55 ± 2.48 years old) were included in the study, among which eight OSA children (five boys and three girls, 8.8 ± 2.0 years old) who underwent treatment of adenotonsillectomy were followed up after 1 year. Saliva samples were collected, and microbial profiles were analyzed by bioinformatics analysis based on 16S rRNA sequencing.ResultsIn cross-sectional samples, the OSA group had higher α-diversity as estimated by Chao1, Shannon, Simpson, Pielou_e, and observed species as compared with the control group (p < 0.05). β-Diversity based on the Bray–Curtis dissimilarities (p = 0.004) and Jaccard distances (p = 0.001) revealed a significant separation between the OSA group and control group. Nested cross-validated random forest classifier identified the 10 most important genera (Lactobacillus, Escherichia, Bifidobacterium, Capnocytophaga, Bacteroidetes_[G-7], Parvimonas, Bacteroides, Klebsiella, Lautropia, and Prevotella) that could differentiate OSA children from controls with an area under the curve (AUC) of 0.94. Linear discriminant analysis effect size (LEfSe) analysis revealed a significantly higher abundance of genera such as Prevotella (p = 0.027), Actinomyces (p = 0.015), Bifidobacterium (p < 0.001), Escherichia (p < 0.001), and Lactobacillus (p < 0.001) in the OSA group, among which Prevotella was further corroborated in longitudinal samples. Prevotella sp_HMT_396 was found to be significantly enriched in the OSA group (p = 0.02) with significantly higher levels as OSA severity increased (p = 0.014), and it had a lower abundance in the post-treatment group (p = 0.003) with a decline in each OSA child 1 year after adenotonsillectomy.ConclusionsA significantly higher microbial diversity and a significant difference in microbial composition and abundance were identified in salivary microbiota of OSA children compared with controls. Meanwhile, some characteristic genera (Prevotella, Actinomyces, Lactobacillus, Escherichia, and Bifidobacterium) were found in OSA children, among which the relationship between Prevotella spp. and OSA is worth further studies.
Collapse
Affiliation(s)
- Xin Huang
- Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing, China
| | - Xuehui Chen
- Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing, China
| | - Xu Gong
- Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing, China
| | - Ying Xu
- Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing, China
| | - Zhifei Xu
- Department of Respiratory Medicine, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, Beijing, China
- *Correspondence: Xuemei Gao,
| | - Xuemei Gao
- Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing, China
- *Correspondence: Xuemei Gao,
| |
Collapse
|
23
|
Analysis of Gut Microbiota in Patients with Exacerbated Symptoms of Schizophrenia following Therapy with Amisulpride: A Pilot Study. Behav Neurol 2022; 2022:4262094. [PMID: 35287288 PMCID: PMC8917950 DOI: 10.1155/2022/4262094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 02/18/2022] [Indexed: 11/24/2022] Open
Abstract
Evidence is mounting that the gut microbiome is related to the underlying pathogenesis of schizophrenia. However, effects of amisulpride on gut microbiota are poorly defined. This study was aimed at analyzing cytokines and fecal microbiota in patients with exacerbated symptoms of schizophrenia treated with amisulpride during four weeks of their hospital stay. In the present study, feces collected from patients with schizophrenia were analyzed using 16S rRNA pyrosequencing and bioinformatic analyses to ascertain gut microbiome composition and fasting peripheral blood cytokines. We found that patients undergoing treatment of schizophrenia with amisulpride had distinct changes in gut microbial composition at the genus level, increased levels of short-chain fatty acid-producing bacteria (Dorea and Butyricicoccus), and reduced levels of pathogenic bacteria (Actinomyces and Porphyromonas), but the level of Desulfovibrio was still high. We also found a significant downregulation of butanoate metabolism based on functional analysis of the microbiome. After treatment, elevated levels of interleukin- (IL-) 4 and decreased levels of IL-6 were found. Our findings extend prior work and suggest a possible pharmacological mechanism of amisulpride treatment for schizophrenia, which acts via mediation of the gut microbiome.
Collapse
|
24
|
Dong Y, Wang P, Lin J, Han C, Jiao J, Zuo K, Chen M, Yang X, Cai J, Jiang H, Guo X, Li J. Characterization of fecal metabolome changes in patients with obstructive sleep apnea. J Clin Sleep Med 2022; 18:575-586. [PMID: 34534066 PMCID: PMC8804979 DOI: 10.5664/jcsm.9668] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
STUDY OBJECTIVES Obstructive sleep apnea (OSA) is a clinical syndrome characterized by recurrent episodes of apnea or hypopnea of the upper airway, leading to increased negative intrathoracic pressure, sleep fragmentation, intermittent hypoxia during sleep, and increased risk for morbidity and mortality of affected patients. The gut microbiome plays a key role in OSA pathogenesis, and fecal metabolic profiling reflects the gut microbial functional readout and mediates host-microbiome interactions. METHODS Herein, we conducted a cohort study to explore fecal metabolic signatures distinguishing OSA (44 patients) from healthy controls (22 healthy controls) by untargeted gas chromatography-time-of-flight mass spectroscopy. RESULTS Significant metabolic signatures were detected in stool samples of patients with OSA: 246 metabolites of 24 ontology classes were identified, and 48 metabolites of 6 ontology classes were shifted. An enrichment of arachidonic acid, docosahexaenoic acid, and 11Z-eicosenoic acid and reduction in stearic acid, 5-hydroxyindoleacetic acid, gluconic acid, and α-hyodeoxycholic acid were observed in stool samples from patients with OSA. Fecal variance resulted in alterations in potential metabolic activities and was thereby strongly associated with host phenotypes, such as pulse blood oxygen saturation and apnea-hypopnea index. The prediction model based on feces metabolomics was established to distinguish OSA from healthy controls with high accuracy. CONCLUSIONS This study revealed the metabolomic signatures of patients with OSA in feces, and the findings provide evidence of an association between metabolome and OSA. CITATION Dong Y, Wang P, Lin J, et al. Characterization of fecal metabolome changes in patients with obstructive sleep apnea. J Clin Sleep Med. 2022;18(2):575-586.
Collapse
Affiliation(s)
- Ying Dong
- Heart Center & Beijing Key Laboratory of Hypertension, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Pan Wang
- Heart Center & Beijing Key Laboratory of Hypertension, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Junling Lin
- Hypertension Center, State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases, Fuwai Hospital, Chinese Academy of Medical Sciences, and Peking Union Medical College, Beijing, China
| | - Chunming Han
- Heart Center & Beijing Key Laboratory of Hypertension, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Jie Jiao
- Heart Center & Beijing Key Laboratory of Hypertension, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Kun Zuo
- Heart Center & Beijing Key Laboratory of Hypertension, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Mulei Chen
- Heart Center & Beijing Key Laboratory of Hypertension, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Xinchun Yang
- Heart Center & Beijing Key Laboratory of Hypertension, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Jun Cai
- Hypertension Center, State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases, Fuwai Hospital, Chinese Academy of Medical Sciences, and Peking Union Medical College, Beijing, China
| | - He Jiang
- The International Curriculum Centre, The High School Affiliated to Renmin University of China, Beijing, China
| | - Xiheng Guo
- Department of Respiratory and Critical Care Medicine, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China;,Address correspondence to: Jing Li, PhD, Heart Center, Beijing Chaoyang Hospital, Capital Medical University, Beijing Key Laboratory of Hypertension, 8th Gongtinanlu Rd, Chaoyang District, Beijing, China, 100020; Tel: 86-10-85231937; ; and Xiheng Guo, MD, Department of Respiratory and Critical Care Medicine, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China, 100020; Tel: 86-10-85231545;
| | - Jing Li
- Heart Center & Beijing Key Laboratory of Hypertension, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China,Address correspondence to: Jing Li, PhD, Heart Center, Beijing Chaoyang Hospital, Capital Medical University, Beijing Key Laboratory of Hypertension, 8th Gongtinanlu Rd, Chaoyang District, Beijing, China, 100020; Tel: 86-10-85231937; ; and Xiheng Guo, MD, Department of Respiratory and Critical Care Medicine, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China, 100020; Tel: 86-10-85231545;
| |
Collapse
|
25
|
Peripheral blood oxidative stress markers for obstructive sleep apnea—a meta-analysis. Sleep Breath 2022; 26:2045-2057. [DOI: 10.1007/s11325-021-02557-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 12/15/2021] [Accepted: 12/23/2021] [Indexed: 10/19/2022]
|
26
|
Chen X, Chen Y, Feng M, Huang X, Li C, Han F, Zhang Q, Gao X. Altered Salivary Microbiota in Patients with Obstructive Sleep Apnea Comorbid Hypertension. Nat Sci Sleep 2022; 14:593-607. [PMID: 35422668 PMCID: PMC9005082 DOI: 10.2147/nss.s347630] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 03/11/2022] [Indexed: 12/22/2022] Open
Abstract
PURPOSE Microorganisms contribute to the pathogenesis of obstructive sleep apnea (OSA)-associated hypertension (HTN), while more studies focus on intestinal microbiome. However, the relationship between oral microbiota and OSA-associated HTN has yet to be elucidated. This study aimed to identify differences in salivary microbiota between patients with OSA comorbid HTN compared with OSA patients, and furthermore evaluate the relationship between oral microbiome changes and increased blood pressure in patients with OSA. PATIENTS AND METHODS This study collected salivary samples from 103 participants, including 27 healthy controls, 27 patients with OSA, 23 patients with HTN, and 26 patients with OSA comorbid HTN, to explore alterations of the oral microbiome using 16S rRNA gene V3-V4 high-throughput sequencing. And ultra-high-performance liquid chromatography was used for metabolomic analysis. RESULTS Alpha- and beta-diversity analyses revealed a substantial difference in community structure and diversity in patients with OSA comorbid HTN compared with patients with OSA or HTN. The relative abundance of the genus Actinomyces was significantly decreased in patients with HTN compared with healthy controls, and those with OSA concomitant HTN compared with the patients in OSA, but was not significantly different between patients with OSA and healthy controls. Linear discriminant analysis effect size and variance analysis also indicated that the genera Haemophilus, Neisseria, and Lautropia were enriched in HTN. In addition, Oribacterium was an unique taxa in the OSA comorbid HTN group compared with the control group. Metabolomic analysis of saliva identified compounds associated with cardiovascular disease in patients with OSA comorbid HTN.2-hydroxyadenine, was significantly increased in the group of patients with OSA compared with controls, and L-carnitine was significantly decreased in patients with OSA comorbid HTN compared with OSA patients. CONCLUSION This study highlighted noninvasive biomarkers for patients with OSA comorbid HTN. As the first study to find alterations of the salivary microbiome in patients with OSA comorbid HTN, it may provide a theoretical foundation for clinical diagnosis and treatment of this condition.
Collapse
Affiliation(s)
- Xuehui Chen
- Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing, 100081, People's Republic of China
| | - Yanlong Chen
- Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing, 100081, People's Republic of China
| | - Mengqi Feng
- Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing, 100081, People's Republic of China
| | - Xin Huang
- Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing, 100081, People's Republic of China
| | - Changtao Li
- Department of Orthodontics, Beijing Haidian Hospital, Haidian Section of Peking University Third Hospital, Beijing, 100080, People's Republic of China
| | - Fang Han
- Sleep Medicine Center, Department of Respiratory and Critical Care Medicine, Peking University People's Hospital, Beijing, 100044, People's Republic of China
| | - Qian Zhang
- Central Laboratory, Peking University School and Hospital of Stomatology, Beijing, 100081, People's Republic of China.,National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology, Beijing, 100081, People's Republic of China
| | - Xuemei Gao
- Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing, 100081, People's Republic of China.,National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology, Beijing, 100081, People's Republic of China
| |
Collapse
|
27
|
Chen Y, Chen X, Huang X, Duan Y, Gao H, Gao X. Analysis of Salivary Microbiome and Its Association With Periodontitis in Patients With Obstructive Sleep Apnea. Front Cell Infect Microbiol 2021; 11:752475. [PMID: 34950605 PMCID: PMC8688821 DOI: 10.3389/fcimb.2021.752475] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 11/16/2021] [Indexed: 12/30/2022] Open
Abstract
Objectives This study aimed to analyze the periodontal conditions of patients with obstructive sleep apnea (OSA) in relation to the salivary microbiome. Materials and Methods In total, 54 male adults (27 with OSA, 27 controls) completed this cross-sectional study. All participants were monitored by overnight polysomnography (PSG) and underwent full-mouth periodontal examination. Saliva samples were then collected, and the microbial 16S ribosomal RNA gene was sequenced. The data were analyzed to determine the microbial distribution and the community structure of the two groups. Results Demonstrated by alpha and beta diversity, the OSA group had a lower microbial richness and a lower observed species than the controls. There was no significant difference in the microbial species diversity or evenness between the OSA and the non-OSA groups. The OSA group had fewer operational taxonomic units (OTUs), and the distribution of microbiome showed that several gram-positive bacteria had higher abundance in the OSA group. As for periodontal pathogens, the relative abundance of Prevotella was significantly increased in the OSA group. No significant difference was observed in the relative abundance of other pathogens at either the genus or species level. Conclusions The salivary microbial community structure was altered in patients with OSA in terms of species richness and trans-habitat diversity, along with an increase in Prevotella, a specific periodontal pathogen. These findings might explain the high prevalence of periodontitis in OSA patients.
Collapse
Affiliation(s)
- Yanlong Chen
- Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing, China
| | - Xuehui Chen
- Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing, China
| | - Xin Huang
- Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing, China
| | - Ying Duan
- Department of Sleep Medicine, Airforce Medical Center, Beijing, China
| | - He Gao
- Department of Sleep Medicine, Airforce Medical Center, Beijing, China
| | - Xuemei Gao
- Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing, China
| |
Collapse
|
28
|
Disturbances of the Gut Microbiota, Sleep Architecture, and mTOR Signaling Pathway in Patients with Severe Obstructive Sleep Apnea-Associated Hypertension. Int J Hypertens 2021; 2021:9877053. [PMID: 34888100 PMCID: PMC8651365 DOI: 10.1155/2021/9877053] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 11/09/2021] [Accepted: 11/16/2021] [Indexed: 02/07/2023] Open
Abstract
Intermittent hypoxia and sleep fragmentation are pathophysiological processes involved in obstructive sleep apnea (OSA) which affect gut microbiota, sleep architecture, and mTOR signaling pathway. However, the involvement of these elements in the pathogenesis mechanism of OSA-associated hypertension remains unclear. Therefore, this study investigated whether the OSA-associated hypertension mechanism is regulated by the gut microbiota and mTOR signaling pathway. Patients were diagnosed by polysomnography; their fecal samples were obtained and analyzed for their microbiome composition by 16S ribosomal RNA pyrosequencing and bioinformatics analysis. Transcript genes on fasting peripheral blood mononuclear cells (PBMCs) were examined using Illumina RNA-sequencing analysis. Totally, we enrolled 60 patients with severe OSA [without hypertension (n = 27) and with hypertension (n = 33)] and 12 controls (neither OSA nor hypertension). Results revealed that severe-OSA patients with hypertension had an altered gut microbiome, decreased short-chain fatty acid-producing bacteria (P < 0.05), and reduced arginine and proline metabolism pathways (P=0.001), compared with controls; also, they had increased stage N1 sleep and reduced stages N2 and N3 sleep accompanied by repeated arousals (P < 0.05). Analysis of PBMCs using the Kyoto Encyclopedia of Genes and Genomes database showed that the mTOR signaling pathway (P=0.006) was the most important differential gene-enriched pathway in severe-OSA patients with hypertension. Our findings extend prior work and suggest a possibility that the regulation of the mTOR signaling pathway is involved in developing OSA-associated hypertension through its interaction with the disturbance of the gut microbiome and sleep architecture.
Collapse
|
29
|
Role of the microbiota in hypertension and antihypertensive drug metabolism. Hypertens Res 2021; 45:246-253. [PMID: 34887530 DOI: 10.1038/s41440-021-00804-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 09/17/2021] [Accepted: 11/03/2021] [Indexed: 12/22/2022]
Abstract
Recent evidence suggests that the gut microbiota plays an important role in the development and pathogenesis of hypertension. Dysbiosis, an imbalance in the composition and function of the gut microbiota, was shown to be associated with hypertension in both animal models and humans. In this review, we provide insights into host-microbiota interactions and summarize the evidence supporting the importance of the microbiota in blood pressure (BP) regulation. Metabolites produced by the gut microbiota, especially short-chain fatty acids (SCFAs), modulate BP and vascular responses. Harmful gut-derived metabolites, such as trimethylamine N-oxide and several uremic toxins, exert proatherosclerotic, prothrombotic, and proinflammatory effects. High-salt intake alters the composition of the microbiota, and this microbial alteration contributes to the pathogenesis of salt-sensitive hypertension. In addition, the microbiota may impact the metabolism of drugs and steroid hormones in the host. The drug-metabolizing activities of the microbiota affect the pharmacokinetic parameters of antihypertensive drugs and contribute to the pathogenesis of licorice-induced pseudohyperaldosteronism. Furthermore, the oral microbiota plays a role in BP regulation by producing nitric oxide, which lowers BP via its vasodilatory effects. Thus, antihypertensive intervention strategies targeting the microbiota, such as the use of prebiotics, probiotics, and postbiotics (e.g., SCFAs), are considered new therapeutic options for the treatment of hypertension.
Collapse
|
30
|
Li Y, Cui J, Liu Y, Chen K, Huang L, Liu Y. Oral, Tongue-Coating Microbiota, and Metabolic Disorders: A Novel Area of Interactive Research. Front Cardiovasc Med 2021; 8:730203. [PMID: 34490384 PMCID: PMC8417575 DOI: 10.3389/fcvm.2021.730203] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 07/21/2021] [Indexed: 12/17/2022] Open
Abstract
Interactions between colonizing microbiota and the host have been fully confirmed, among which the tongue-coating microbiota have a moderate rate of renewal and disease sensitivity and are easily obtained, making them an ideal research subject. Oral microbiota disorders are related to diabetes, obesity, cardiovascular disease, cancer, and other systemic diseases. As an important part of the oral cavity, tongue-coating microbiota can promote gastritis and digestive system tumors, affecting the occurrence and development of multiple chronic diseases. Common risk factors include diet, age, and immune status, among others. Metabolic regulatory mechanisms may be similar between the tongue and gut microbiota. Tongue-coating microbiota can be transferred to the respiratory or digestive tract and create a new balance with local microorganisms, together with the host epithelial cells forming a biological barrier. This barrier is involved in the production and circulation of nitric oxide (NO) and the function of taste receptors, forming the oral-gut-brain axis (similar to the gut-brain axis). At present, the disease model and mechanism of tongue-coating microbiota affecting metabolism have not been widely studied, but they have tremendous potential.
Collapse
Affiliation(s)
- Yiwen Li
- National Clinical Research Center for Traditional Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jing Cui
- National Clinical Research Center for Traditional Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yanfei Liu
- The Second Department of Geriatrics, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Keji Chen
- National Clinical Research Center for Traditional Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Luqi Huang
- China Academy of Chinese Medical Sciences, Beijing, China
| | - Yue Liu
- National Clinical Research Center for Traditional Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
31
|
Alterations of oral microbiota in patients with obstructive sleep apnea-hypopnea syndrome treated with continuous positive airway pressure: a pilot study. Sleep Breath 2021; 26:811-814. [PMID: 34196941 DOI: 10.1007/s11325-021-02428-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 06/22/2021] [Accepted: 06/23/2021] [Indexed: 10/21/2022]
Abstract
PURPOSE Obstructive sleep apnea-hypopnea syndrome (OSAHS) is an independent risk factor for cardiovascular diseases, including hypertension. In our previous study, it was demonstrated that oral microbiota alteration in patients with OSAHS, particularly in the genera Aggregatibacter and Porphyromonas, may influence the development of hypertension. Continuous positive airway pressure (CPAP) is the main therapy for OSAHS and OSAHS-associated hypertension. However, the role of oral microbiota post CPAP treatment remains unknown. METHODS We conducted 16S rDNA pyrosequencing and bioinformatic analyses to compare the bacterial composition of oral specimens from patients with OSAHS before and after overnight CPAP treatment. RESULTS This approach enabled a relatively comprehensive description of oral microbiota, with decreases in Gemella and increases in Staphylococcus, f_Lachnospiraceae, Parabacteroides, and f_Ruminococcaceae after CPAP treatment. CONCLUSION Alteration of oral microbiota may shed new insight on the underlying pathogenesis of OSAHS-associated hypertension.
Collapse
|
32
|
Zhang X, Wang S, Xu H, Yi H, Guan J, Yin S. Metabolomics and microbiome profiling as biomarkers in obstructive sleep apnoea: a comprehensive review. Eur Respir Rev 2021; 30:30/160/200220. [PMID: 33980666 PMCID: PMC9489097 DOI: 10.1183/16000617.0220-2020] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 12/03/2020] [Indexed: 11/25/2022] Open
Abstract
Introduction Obstructive sleep apnoea (OSA) is a common sleep disorder with a high social and economic burden. Thus, early prediction and diagnosis of OSA are important. Changes in metabolism and the microbiome may serve as biomarkers for OSA. Herein, we review the literature on the metabolomic and microbiome changes associated with OSA, and identify the metabolites and microorganisms involved. Methods We searched the PUBMED and EMBASE electronic databases using the following terms: “obstructive sleep apnea”, “OSA”, “sleep disordered breathing”, “SDB”, “intermittent hypoxia”, “sleep fragmentation”, and either “metabolomics” or “microbiome”. In total, 273 papers were identified, of which 28 were included in our study. Results Changes in the levels of certain metabolites related to fatty acid, carbohydrate and amino acid metabolism were associated with the incidence of OSA. The diversity and abundance of microflora, particularly Firmicutes and Bacteroidetes, were altered in humans and rodents with OSA. Conclusions Certain changes in metabolism and the microbiota play an integral role in the pathophysiology of OSA and OSA-induced cardiovascular complications. Metabolomic and microbiome biomarkers shed light on the pathogenesis of OSA, and facilitate early diagnosis and treatment. Unique alterations in metabolism and the microbiome play an integral role in the pathophysiology of OSA and OSA-induced cardiovascular complicationshttps://bit.ly/3mW2rD5
Collapse
Affiliation(s)
- Xiaoman Zhang
- Dept of Otolaryngology Head and Neck Surgery & Center of Sleep Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China.,Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai, China.,Otolaryngological Institute of Shanghai Jiao Tong University, Shanghai, China.,Both authors contributed equally
| | - Shengming Wang
- Dept of Otolaryngology Head and Neck Surgery & Center of Sleep Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China.,Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai, China.,Otolaryngological Institute of Shanghai Jiao Tong University, Shanghai, China.,Both authors contributed equally
| | - Huajun Xu
- Dept of Otolaryngology Head and Neck Surgery & Center of Sleep Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China .,Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai, China.,Otolaryngological Institute of Shanghai Jiao Tong University, Shanghai, China
| | - Hongliang Yi
- Dept of Otolaryngology Head and Neck Surgery & Center of Sleep Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China.,Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai, China.,Otolaryngological Institute of Shanghai Jiao Tong University, Shanghai, China
| | - Jian Guan
- Dept of Otolaryngology Head and Neck Surgery & Center of Sleep Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China.,Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai, China.,Otolaryngological Institute of Shanghai Jiao Tong University, Shanghai, China
| | - Shankai Yin
- Dept of Otolaryngology Head and Neck Surgery & Center of Sleep Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China.,Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai, China.,Otolaryngological Institute of Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
33
|
Li J, Yang X, Zhou X, Cai J. The Role and Mechanism of Intestinal Flora in Blood Pressure Regulation and Hypertension Development. Antioxid Redox Signal 2021; 34:811-830. [PMID: 32316741 DOI: 10.1089/ars.2020.8104] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Significance: Hypertension (HTN) has a complex etiology that is characterized by genetic and environmental factors. It has become a global health burden leading to cardiovascular diseases and kidney diseases, ultimately progressing to premature death. Accumulating evidence indicated that gut microbiome was associated with metabolic disorders and inflammation, which were closely linked to HTN. Recent Advances: Recent studies using bacterial genomic analysis and fecal microbiota transplantation as well as many lines of seminal evidence demonstrated that aberrant gut microbiome was significantly associated with HTN. The intestinal microbiome of both patients and animals with HTN had decreased bacterial diversity, disordered microbial structure and functions, and altered end products of fermentation. Gut dysbiosis and metabolites of the gut microbiota play an important role in blood pressure (BP) control, and they are therefore responsible for developing HTN. Critical Issues: This study aimed at focusing on the recent advances in understanding the role played by gut bacteria and the mechanisms underlying the pathological milieu that induced elevated BP and led to HTN pathogenesis. Potential intervention strategies targeting the correction of gut dysbiosis to improve HTN development were summarized. Future Directions: Larger numbers of fecal transplants from participants with HTN should be carried out to examine the magnitude of BP changes with the replacement of the gut microbiome. The proposed mechanisms for the gut in regulating BP remain to be verified. Whether intervention strategies using probiotics, dietary interventions, bacteriophages, and fecal transplants are feasible for individuals with HTN remains to be explored. Antioxid. Redox Signal. 34, 811-830.
Collapse
Affiliation(s)
- Jing Li
- Heart Center, Beijing ChaoYang Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Hypertension, Beijing, China
| | - Xinchun Yang
- Heart Center, Beijing ChaoYang Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Hypertension, Beijing, China
| | - Xin Zhou
- Department of Cardiology, Tianjin Medical University General Hospital, Tianjin, China
| | - Jun Cai
- State Key Laboratory of Cardiovascular Disease of China, Hypertension Center, National Center for Cardiovascular Diseases of China, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
34
|
Cai Y, Juszczak HM, Cope EK, Goldberg AN. The Microbiome in Obstructive Sleep Apnea. Sleep 2021; 44:6168416. [PMID: 33705556 DOI: 10.1093/sleep/zsab061] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 02/06/2021] [Indexed: 12/25/2022] Open
Abstract
Recent evidence has highlighted important associations between obstructive sleep apnea and the microbiome. Although the intricacies of the pathophysiologic mechanisms are not well understood, available evidence suggests a bidirectional relationship between OSA and microbiota composition. Sleep fragmentation, intermittent hypoxia, and intermittent hypercapnia all play significant roles in altering the microbiome, and initial evidence has shown that alterations of the microbiota affect sleep patterns. Animal model evidence strongly supports the idea that the microbiome mediates disease states associated with OSA including hypertension, atherosclerosis, and obesity. The majority of evidence focuses on changes in the gut microbiome, which may result from OSA as well as contribute to sleep pattern changes, OSA-related CVD, and obesity. Meanwhile, a developing body of work suggests changes in the upper airway microbiome may be associated with OSA and periodontitis-related oral cavity microbiome changes may have significance in OSA-related CVD. Lastly, while evidence is limited, several studies suggest there may be a role for treatment of OSA and OSA-related comorbidities through alteration of the microbiome with probiotics, prebiotics, and microbiota transplantation. These early animal and human studies begin to characterize the interrelationships of the microbiome and OSA and may lead to new avenues for treatment.
Collapse
Affiliation(s)
- Yi Cai
- Department of Otolaryngology-Head and Neck Surgery, University of California, San Francisco, CA, USA
| | - Hailey M Juszczak
- School of Medicine, University of California, San Francisco, CA, USA
| | - Emily K Cope
- Center for Applied Microbiome Sciences, The Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, AZ, USA
| | - Andrew N Goldberg
- Department of Otolaryngology-Head and Neck Surgery, University of California, San Francisco, CA, USA
| |
Collapse
|
35
|
Sohail MU, Hedin L, Al-Asmakh M. Dysbiosis of the Salivary Microbiome is Associated with Hypertension and Correlated with Metabolic Syndrome Biomarkers. Diabetes Metab Syndr Obes 2021; 14:4641-4653. [PMID: 34858042 PMCID: PMC8630402 DOI: 10.2147/dmso.s325073] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 09/04/2021] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Hypertension (HT) is an idiopathic disease with severe complications and a high incidence of global mortality. Although the disease shares characteristic features with diabetes and obesity, the complex interplay of endogenous and environmental factors is not well characterized. The oral microbiome has recently been studied to better understand the role of commensal microorganisms in metabolic disorders, including HT, although its role in disease etiology is unclear. METHODS To bridge this gap, we compared the oral microbiome and clinical chemistry of adult subjects enrolled at Qatar Biobank. Clinical chemistry was performed using Roche Cobas-6000 analyzer. Saliva samples were subjected to 16S rRNA sequencing using Illumina MiSeq platform. Cross-gender comparisons were made between control (males/females) (C-M and C-F) and HT (HT-M and HT-F) groups. RESULTS The HT groups had higher (p ≤ 0.05) BMI, plasma glucose, insulin, C-peptide, and alkaline phosphatase (ALP) concentrations. Triglycerides, cholesterol, LDL-cholesterol, and sodium ions were similar among the groups. The microbiome was predominantly occupied by Firmicutes, Bacteroidetes, Proteobacteria, and Actinobacteria. Firmicutes were higher (p ≤ 0.05) in the HT groups, whereas Proteobacteria was only higher in the C-F group. Prevotella and Veillonella were significantly higher in the HT groups and exhibited a positive correlation with blood pressure and hyperglycemia. In contrast to other studies, the mathematical summation of priori-select microbes reveals that nitrate-reducing microbes were higher in the HT groups compared with the controls. CONCLUSION In conclusion, these observations suggest a strong association of HT with microbial dysbiosis, where microbial species other than nitrate-reducing microbes contribute to blood pressure regulation. The findings affirm plausible microbial signatures of hypertension and suggest manipulating these microbes as a novel treatment modality. Future experiments are warranted for the mechanistic investigation of hypertension metagenomics and microbial activity.
Collapse
Affiliation(s)
| | - Lars Hedin
- The Royal Norwegian Ministry of Health and Care Services, Molde Kommune, 6413, Norway
| | - Maha Al-Asmakh
- Department of Biomedical Science, College of Health Sciences, QU Health, Qatar University, Doha, 2713, Qatar
- Biomedical Research Center, Qatar University, Doha, 2713, Qatar
- Biomedical and Pharmaceutical Research Unit, QU Health, Qatar University, Doha, Qatar
- Correspondence: Maha Al-Asmakh Tel +974 4403 4789Fax +974-4403-1351 Email
| |
Collapse
|
36
|
Analysis of the Salivary Microbiome in Obstructive Sleep Apnea Syndrome Patients. ACTA ACUST UNITED AC 2020; 2020:6682020. [PMID: 33488886 PMCID: PMC7803107 DOI: 10.1155/2020/6682020] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 12/02/2020] [Accepted: 12/10/2020] [Indexed: 12/01/2022]
Abstract
Background Oral microbiota plays an important role in oral and systemic diseases, while few reports referred to obstructive sleep apnea syndrome (OSAS). Thus, this study aimed to explore the different salivary microbiome in patients with OSAS and controls. Materials and Methods Saliva was collected from 15 OSAS patients and nine healthy controls, and bacterial genomic DNA was extracted for 16S rRNA amplicon sequencing based on the Illumina platform. Results The alpha and beta diversities were not significantly different between patients with OSAS and controls. The main phyla in the two groups were Firmicutes, Actinobacteria, Bacteroidetes, Proteobacteria, and Fusobacteria, which accounted for 95% of the abundance. The main genera were Streptococcus, Rothia, Actinomyces, Prevotella, and Neisseria. Based on the genus and operational taxonomic units, Peptostreptococcus, Alloprevotella, and Granulicatella were enriched in controls, while only Scardovia species were significantly more abundant in patients with OSAS. Conclusions There was no significant difference in the relative abundance of bacteria between OSAS and controls. So, further studies will need to focus on the metagenome of bacteria in OSAS patients.
Collapse
|
37
|
Gao J, Cao H, Zhang Q, Wang B. The effect of intermittent hypoxia and fecal microbiota of OSAS on genes associated with colorectal cancer. Sleep Breath 2020; 25:1075-1087. [PMID: 33029691 PMCID: PMC8195781 DOI: 10.1007/s11325-020-02204-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 08/31/2020] [Accepted: 09/22/2020] [Indexed: 12/29/2022]
Abstract
Purpose Colorectal cancer (CRC) is one of the common causes of cancer death worldwide. Obstructive sleep apnea syndrome (OSAS), sharing many risk factors in common with CRC, is prevalent among CRC patients. OSAS may promote the CRC development independently but the mechanism is still unknown. Intermittent hypoxia (IH) is one of the characteristics of OSAS, and hypoxia may influence the genes associated with CRC. Intestinal microbiota plays important role in CRC carcinogenesis, and OSAS patients have been shown to have intestinal microbiota dysbiosis. We hypothesized that IH and intestinal microbiota dysbiosis may be involved for CRC in patients with OSAS. Methods We established precancerous cell models of CRC with Immorto-Min colonic epithelial (IMCE) cells. First, the cells were exposed to IH in a special chamber for 4 h, 8 h, and 12 h. Feces from 6 patients with OSAS and 6 healthy controls were collected and made into sterile fecal fluid for incubation with IMCE cells for 12 h. The cells were then exposed to IH for 4 h, 8 h, and 12 h. After IH exposure, the expressions of genes and inflammation cytokines associated with CRC, such as β-catenin, STAT3, HIF-1α, IL-6, TNF-α, c-myc, and cyclinD1, were tested. Results IH activated the expression of HIF-1α and STAT3 both in mRNA and protein level (HIF-1α: P = 0.015 for mRNA level, P = 0.027 for protein level; STAT3: P = 0.023 for mRNA level, P = 0.023 for protein level), and promoted p-STAT3 shifting to the nucleus (P = 0.023). The mRNA of β-catenin (P = 0.022) and cyclinD1 (P = 0.023) was elevated, but there was no change for the β-catenin protein in the nucleus. Gut microbiota of OSAS patients promoted the expression of STAT3 (protein level: 0 h: P = 0.037; 4 h: P = 0.046; 8 h: P = 0.049; 12 h: P = 0.037), promoted p-STAT3 (4 h: P = 0.049; 8 h: P = 0.046; 12 h: P = 0.046) shifting to the nucleus, and also elevated the expression of IL-6 and TNF-α in mRNA level at 4 h (IL-6: P = 0.037, TNF-α: P = 0.037) and 8 h (IL-6: P = 0.037, TNF-α: P = 0.037). The protein of β-catenin in the nucleus was not affected by IH and gut microbiota from OSAS. Conclusions Our study demonstrated that IH and gut microbiota of patients with OSAS activated HIF-1α expression and STAT3 pathway in IMCE cells, with no influence on β-catenin pathway, which suggested that IH, STAT3 pathway, chronic inflammation, and intestinal microbiota dysbiosis may be involved in CRC carcinogenesis correlated with OSAS These findings must be interpreted cautiously and further research is necessary to clarify the causative steps in CRC development.
Collapse
Affiliation(s)
- Jia Gao
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, No.154, Anshan Road, Heping District, Tianjin, China
- Department of Geriatrics, Tianjin Geriatrics Institute, Tianjin Medical University General Hospital, No.154, Anshan Road, Heping District, Tianjin, China
| | - Hailong Cao
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, No.154, Anshan Road, Heping District, Tianjin, China
| | - Qiang Zhang
- Department of Geriatrics, Tianjin Geriatrics Institute, Tianjin Medical University General Hospital, No.154, Anshan Road, Heping District, Tianjin, China
| | - Bangmao Wang
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, No.154, Anshan Road, Heping District, Tianjin, China.
| |
Collapse
|
38
|
Muralitharan RR, Jama HA, Xie L, Peh A, Snelson M, Marques FZ. Microbial Peer Pressure: The Role of the Gut Microbiota in Hypertension and Its Complications. HYPERTENSION (DALLAS, TEX. : 1979) 2020; 76:1674-1687. [PMID: 33012206 DOI: 10.1161/hypertensionaha.120.14473] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
There is increasing evidence of the influence of the gut microbiota on hypertension and its complications, such as chronic kidney disease, stroke, heart failure, and myocardial infarction. This is not surprising considering that the most common risk factors for hypertension, such as age, sex, medication, and diet, can also impact the gut microbiota. For example, sodium and fermentable fiber have been studied in relation to both hypertension and the gut microbiota. By combining second- and, now, third-generation sequencing with metabolomics approaches, metabolites, such as short-chain fatty acids and trimethylamine N-oxide, and their producers, have been identified and are now known to affect host physiology and the cardiovascular system. The receptors that bind these metabolites have also been explored with positive findings-examples include known short-chain fatty acid receptors, such as G-protein coupled receptors GPR41, GPR43, GPR109a, and OLF78 in mice. GPR41 and OLF78 have been shown to have inverse roles in blood pressure regulation, whereas GPR43 and GPR109A have to date been demonstrated to impact cardiac function. New treatment options in the form of prebiotics (eg, dietary fiber), probiotics (eg, Lactobacillus spp.), and postbiotics (eg, the short-chain fatty acids acetate, propionate, and butyrate) have all been demonstrated to be beneficial in lowering blood pressure in animal models, but the underlying mechanisms remain poorly understood and translation to hypertensive patients is still lacking. Here, we review the evidence for the role of the gut microbiota in hypertension, its risk factors, and cardiorenal complications and identify future directions for this exciting and fast-evolving field.
Collapse
Affiliation(s)
- Rikeish R Muralitharan
- From the Hypertension Research Laboratory, School of Biological Sciences, Faculty of Science (R.R.M., H.A.J., L.X., A.P., F.Z.M.), Monash University, Melbourne, Australia
- Institute for Medical Research, Ministry of Health Malaysia, Kuala Lumpur, Malaysia (R.R.M.)
| | - Hamdi A Jama
- From the Hypertension Research Laboratory, School of Biological Sciences, Faculty of Science (R.R.M., H.A.J., L.X., A.P., F.Z.M.), Monash University, Melbourne, Australia
- Heart Failure Research Group, Baker Heart and Diabetes Institute, Melbourne, Australia (H.A.J., F.Z.M.)
| | - Liang Xie
- From the Hypertension Research Laboratory, School of Biological Sciences, Faculty of Science (R.R.M., H.A.J., L.X., A.P., F.Z.M.), Monash University, Melbourne, Australia
- Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, Australia (L.X.)
| | - Alex Peh
- From the Hypertension Research Laboratory, School of Biological Sciences, Faculty of Science (R.R.M., H.A.J., L.X., A.P., F.Z.M.), Monash University, Melbourne, Australia
| | - Matthew Snelson
- Department of Diabetes, Central Clinical School (M.S.), Monash University, Melbourne, Australia
| | - Francine Z Marques
- From the Hypertension Research Laboratory, School of Biological Sciences, Faculty of Science (R.R.M., H.A.J., L.X., A.P., F.Z.M.), Monash University, Melbourne, Australia
- Heart Failure Research Group, Baker Heart and Diabetes Institute, Melbourne, Australia (H.A.J., F.Z.M.)
| |
Collapse
|
39
|
Liu F, Zhang N, Jiang P, Zhai Q, Li C, Yu D, Wu Y, Zhang Y, Lv L, Xu X, Feng N. Characteristics of the urinary microbiome in kidney stone patients with hypertension. J Transl Med 2020; 18:130. [PMID: 32183836 PMCID: PMC7079538 DOI: 10.1186/s12967-020-02282-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Accepted: 02/26/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Kidney stone disease (KSD) is more common in individuals with hypertension (HTN) than in individuals with normotension (NTN). Urinary dysbiosis is associated with urinary tract disease and systemic diseases. However, the role of the urinary microbiome in KSD complicated with HTN remains unclear. METHODS This study investigated the relationship between the pelvis urinary microbiome and blood pressure (BP) in patients with KSD co-occurring with HTN (KSD-HTN) and healthy controls (HC) by conducting 16S rRNA gene sequencing of bacteria in urine samples. The urine samples were collected (after bladder disinfection) from 50 patients with unilateral kidney calcium stones and NTN (n = 12), prehypertension (pHTN; n = 11), or HTN (n = 27), along with 12 HCs. RESULTS Principal coordinates analysis showed that there were significant differences in the urinary microbiomes not only between KSD patients and HCs but also between KSD-pHTN or KSD-HTN patients and KSD-NTN patients. Gardnerella dominated in HCs, Staphylococcus dominated in KSD-NTN patients and Sphingomonas dominated in both KSD-pHTN and KSD-HTN patients. The abundance of several genera including Acidovorax, Gardnerella and Lactobacillus was correlated with BP. Adherens junction and nitrogen and nucleotide metabolism pathways, among others, were associated with changes in BP. CONCLUSIONS The findings suggest that patients with KSD complicated with HTN have a unique urinary microbiome profile and that changes in the microbiome may reflect disease progression and may be useful to monitor response to treatments.
Collapse
Affiliation(s)
- Fengping Liu
- Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China
- Department of Urology, Affiliated Wuxi No. 2 Hospital, Nanjing Medical University, Wuxi, Jiangsu, China
| | - Nan Zhang
- Department of Urology, Affiliated Wuxi No. 2 Hospital, Nanjing Medical University, Wuxi, Jiangsu, China
| | - Peng Jiang
- Department of Urology, Affiliated Wuxi No. 2 Hospital, Nanjing Medical University, Wuxi, Jiangsu, China
| | - Qixiao Zhai
- State Key Laboratory of Food Science and Technology and School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Chen Li
- Department of Urology, Affiliated Wuxi No. 2 Hospital, Nanjing Medical University, Wuxi, Jiangsu, China
| | - Deshui Yu
- Department of Urology, Affiliated Wuxi No. 2 Hospital, Nanjing Medical University, Wuxi, Jiangsu, China
| | - Yan Wu
- Department of Urology, Affiliated Wuxi No. 2 Hospital, Nanjing Medical University, Wuxi, Jiangsu, China
| | - Yuwei Zhang
- Department of Urology, Affiliated Wuxi No. 2 Hospital, Nanjing Medical University, Wuxi, Jiangsu, China
| | - Longxian Lv
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China.
| | - Xinyu Xu
- Department of Urology, Affiliated Wuxi No. 2 Hospital, Nanjing Medical University, Wuxi, Jiangsu, China.
| | - Ninghan Feng
- Department of Urology, Affiliated Wuxi No. 2 Hospital, Nanjing Medical University, Wuxi, Jiangsu, China.
| |
Collapse
|