1
|
Wang Y, Wu Y, Ren J, Wang Y, Perwaiz I, Su H, Li J, Qu P. Pharmacological inhibition of the NLRP3 inflammasome attenuates kidney apoptosis, fibrosis, and injury in Dahl salt-sensitive rats. Clin Exp Nephrol 2025; 29:113-122. [PMID: 39576390 PMCID: PMC11807026 DOI: 10.1007/s10157-024-02567-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 09/12/2024] [Indexed: 02/09/2025]
Abstract
BACKGROUND Salt-sensitive hypertension (SSH) is the most severe form of hypertension, and the presence of NLRP3 inflammasome plays a crucial role in its pathogenesis. Although MCC950 has shown therapeutic potential for hypertension and kidney injury, its mechanism of action remains unclear. METHODS Dahl salt-sensitive (SS) rats and their salt-tolerant aptamer control SS-13BN (BN) rats were randomly assigned to four groups: SS rats intraperitoneally administered physiological saline (SS + vehicle) or MCC950 (SS + MCC950), and BN rats intraperitoneally administered physiological saline (BN + vehicle) or MCC950 (BN + MCC950). All rats were given 2% saline for drinking and received intraperitoneal injections of physiological saline or MCC950 (5 mg/kg) every other day. Biomarkers such as serum creatinine, urinary protein, sodium retention, NLRP3 inflammasome, inflammation, apoptosis, fibrosis, sodium channels and histopathological changes in kidney injury were evaluated in blood, urine, and kidney tissues. RESULTS Compared with the SS + vehicle group, the SS + MCC950 group showed significantly lower blood pressure levels. Additionally, inhibition of NLRP3 inflammasome activation was observed along with reduced inflammation, apoptosis, fibrosis, and sodium retention in the kidneys. CONCLUSIONS The findings suggest that pharmacological inhibition of the NLRP3 inflammasome reduces blood pressure in SS rats and alleviates related kidney injury by suppressing inflammation, apoptosis, fibrosis, and sodium retention.
Collapse
Affiliation(s)
- Yue Wang
- Institute of Heart and Vessel Diseases, The Second Hospital Affiliated of Dalian Medical University, Dalian, 116000, China
| | - Yuhang Wu
- Institute of Heart and Vessel Diseases, The Second Hospital Affiliated of Dalian Medical University, Dalian, 116000, China
| | - Jiayu Ren
- Institute of Heart and Vessel Diseases, The Second Hospital Affiliated of Dalian Medical University, Dalian, 116000, China
| | - Ying Wang
- Institute of Heart and Vessel Diseases, The Second Hospital Affiliated of Dalian Medical University, Dalian, 116000, China
| | - Imran Perwaiz
- Institute of Heart and Vessel Diseases, The Second Hospital Affiliated of Dalian Medical University, Dalian, 116000, China
| | - Hongtong Su
- Institute of Heart and Vessel Diseases, The Second Hospital Affiliated of Dalian Medical University, Dalian, 116000, China
| | - Jing Li
- Institute of Heart and Vessel Diseases, The Second Hospital Affiliated of Dalian Medical University, Dalian, 116000, China
| | - Peng Qu
- Institute of Heart and Vessel Diseases, The Second Hospital Affiliated of Dalian Medical University, Dalian, 116000, China.
| |
Collapse
|
2
|
Yang C, Isaeva E, Shimada S, Kurth T, Stumpf M, Zheleznova NN, Staruschenko A, Dash RK, Cowley AW. Inhibition of mTORC2 promotes natriuresis in Dahl salt-sensitive rats via the decrease of NCC and ENaC activity. Am J Physiol Renal Physiol 2024; 327:F435-F449. [PMID: 38779754 PMCID: PMC11460535 DOI: 10.1152/ajprenal.00403.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 03/27/2024] [Accepted: 04/21/2024] [Indexed: 05/25/2024] Open
Abstract
We have previously observed that prolonged administration of rapamycin, an inhibitor targeting the mammalian target of rapamycin complex (mTORC)1, partially reduced hypertension and alleviated kidney inflammation in Dahl salt-sensitive (SS) rats. In contrast, treatment with PP242, an inhibitor affecting both mTORC1/mTORC2, not only completely prevented hypertension but also provided substantial protection against kidney injury. Notably, PP242 exhibited potent natriuretic effects that were not evident with rapamycin. The primary objective of this study was to pinpoint the specific tubular sites responsible for the natriuretic effect of PP242 in SS rats subjected to either 0.4% NaCl (normal salt) or 4.0% NaCl (high salt) diet. Acute effects of PP242 on natriuretic, diuretic, and kaliuretic responses were determined in unanesthetized SS rats utilizing benzamil, furosemide, or hydrochlorothiazide [inhibitors of epithelial Na+ channel (ENaC), Na-K-2Cl cotransporter (NKCC2), or Na-Cl cotransporter (NCC), respectively] either administered alone or in combination. The findings indicate that the natriuretic effects of PP242 in SS rats stem predominantly from the inhibition of NCC and a reduction of ENaC open probability. Molecular analysis revealed that mTORC2 regulates NCC activity through protein phosphorylation and ENaC activity through proteolytic cleavage in vivo. Evidence also indicated that PP242 also prevents the loss of K+ associated with the inhibition of NCC. These findings suggest that PP242 may represent an improved therapeutic approach for antihypertensive intervention, potentially controlling blood pressure and mitigating kidney injury in salt-sensitive human subjects.NEW & NOTEWORTHY This study explored mechanisms underlying the natriuretic effects of mammalian target of rapamycin protein complex 2 inhibition using PP242 and revealed both epithelial Na+ channel and Na-Cl cotransporter in the distal tubular segments were potentially inhibited. These observations, with prior lab evidence, indicate that PP242 prevents hypertension via its potent inhibitory effects on these specific sodium transporters and by reducing renal immune responses. This dual action, coupled with potassium sparing effects, suggests an improved approach for managing hypertension and associated kidney damage.
Collapse
Affiliation(s)
- Chun Yang
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
| | - Elena Isaeva
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
| | - Satoshi Shimada
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
| | - Theresa Kurth
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
| | - Megan Stumpf
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
| | - Nadezhda N Zheleznova
- Department of Molecular Pharmacology and Physiology, University of South Florida, Tampa, Florida, United States
| | - Alexander Staruschenko
- Department of Molecular Pharmacology and Physiology, University of South Florida, Tampa, Florida, United States
| | - Ranjan K Dash
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
- Department of Biomedical Engineering, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
| | - Allen W Cowley
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
| |
Collapse
|
3
|
de Cos M, Mosoyan G, Chauhan K, Troost JP, Wong JS, Lefferts S, Morgan P, Meliambro K, Egerman M, Ray J, Parker T, Levine D, Seshan S, Bardash Y, Horowitz B, Kent CA, Shaw MM, Perlman A, Moledina DG, Coca SG, Campbell KN. Urinary Plasminogen as a Marker of Disease Progression in Human Glomerular Disease. Am J Kidney Dis 2024; 84:205-214.e1. [PMID: 38452919 PMCID: PMC11260534 DOI: 10.1053/j.ajkd.2024.01.520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 12/27/2023] [Accepted: 01/12/2024] [Indexed: 03/09/2024]
Abstract
RATIONALE & OBJECTIVE Glomerular disorders have a highly variable clinical course, and biomarkers that reflect the molecular mechanisms underlying their progression are needed. Based on our previous work identifying plasminogen as a direct cause of podocyte injury, we designed this study to test the association between urine plasmin(ogen) (ie, plasmin and its precursor plasminogen) and end-stage kidney disease (ESKD). STUDY DESIGN Multicenter cohort study. SETTING & PARTICIPANTS 1,010 patients enrolled in the CureGN Cohort with biopsy-proven glomerular disease (focal segmental glomerulosclerosis, membranous nephropathy, and immunoglobulin A nephropathy). PREDICTORS The main predictor was urine plasmin(ogen) at baseline. Levels were measured by an electrochemiluminescent immunoassay developed de novo. Traditional clinical and analytical characteristics were used for adjustment. The ratio of urine plasmin(ogen)/expected plasmin(ogen) was evaluated as a predictor in a separate model. OUTCOME Progression to ESKD. ANALYTICAL APPROACH Cox regression was used to examine the association between urinary plasmin(ogen) and time to ESKD. Urinary markers were log2 transformed to approximate normal distribution and normalized to urinary creatinine (Log2uPlasminogen/cr, Log2 urinary protein/cr [UPCR]). Expected plasmin(ogen) was calculated by multiple linear regression. RESULTS Adjusted Log2uPlasminogen/cr was significantly associated with ESKD (HR per doubling Log2 uPlasminogen/cr 1.31 [95% CI, 1.22-1.40], P<0.001). Comparison of the predictive performance of the models including Log2 uPlasminogen/cr, Log2 UPCR, or both markers showed the plasmin(ogen) model superiority. The ratio of measured/expected urine plasmin(ogen) was independently associated with ESKD: HR, 0.41 (95% CI, 0.22-0.77) if ratio<0.8 and HR 2.42 (95% CI, 1.54-3.78) if ratio>1.1 (compared with ratio between 0.8 and 1.1). LIMITATIONS Single plasmin(ogen) determination does not allow for the study of changes over time. The use of a cohort of mostly white patients and the restriction to patients with 3 glomerular disorders limits the external validity of our analysis. CONCLUSIONS Urinary plasmin(ogen) and the ratio of measured/expected plasmin(ogen) are independently associated with ESKD in a cohort of patients with glomerular disease. Taken together with our previous experimental findings, urinary plasmin(ogen) could be a useful biomarker in prognostic decision making and a target for the development of novel therapies in patients with proteinuria and glomerular disease. PLAIN-LANGUAGE SUMMARY Glomerular diseases are an important cause of morbidity and mortality in patients of all ages. Knowing the individual risk of progression to dialysis or transplantation would help to plan the follow-up and treatment of these patients. Our work studies the usefulness of urinary plasminogen as a marker of progression in this context, since previous studies indicate that plasminogen may be involved in the mechanisms responsible for the progression of these disorders. Our work in a sample of 1,010 patients with glomerular disease demonstrates that urinary plasminogen (as well as the ratio of measured to expected plasminogen) is associated with the risk of progression to end-stage kidney disease. Urine plasminogen exhibited good performance and, if further validated, could enable risk stratification for timely interventions in patients with proteinuria and glomerular disease.
Collapse
Affiliation(s)
- Marina de Cos
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Gohar Mosoyan
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Kinsuk Chauhan
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Jonathan P Troost
- Michigan Institute for Clinical and Health Research, University of Michigan, Ann Arbor, Michigan
| | - Jenny S Wong
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Sean Lefferts
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Paul Morgan
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Kristin Meliambro
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Marc Egerman
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Justina Ray
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Tom Parker
- Rogosin Institute, Weill Cornell Medicine, New York, New York
| | - Daniel Levine
- Rogosin Institute, Weill Cornell Medicine, New York, New York
| | - Surya Seshan
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, New York
| | - Yoni Bardash
- St. Joseph's University Medical, Paterson, New Jersey
| | - Benjamin Horowitz
- Robert Wood Johnson Medical School, Rutgers University, New Brunswick, New Jersey
| | - Candice A Kent
- Section of Nephrology and Clinical and Translational Research Accelerator, Department of Internal Medicine, School of Medicine, Yale University, New Haven, Connecticut
| | - Melissa M Shaw
- Section of Nephrology and Clinical and Translational Research Accelerator, Department of Internal Medicine, School of Medicine, Yale University, New Haven, Connecticut
| | - Alan Perlman
- Rogosin Institute, Weill Cornell Medicine, New York, New York; Division of Nephrology and Hypertension, Department of Medicine, Weill Cornell Medicine, New York, New York
| | - Dennis G Moledina
- Section of Nephrology and Clinical and Translational Research Accelerator, Department of Internal Medicine, School of Medicine, Yale University, New Haven, Connecticut
| | - Steven G Coca
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Kirk N Campbell
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York.
| |
Collapse
|
4
|
Zhang M, Liu M, Wang W, Ren Z, Wang P, Xue Y, Wang X. The salt sensitivity of Drd4-null mice is associated with the upregulations of sodium transporters in kidneys. Hypertens Res 2024; 47:2144-2156. [PMID: 38778170 DOI: 10.1038/s41440-024-01724-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 04/01/2024] [Accepted: 04/21/2024] [Indexed: 05/25/2024]
Abstract
To explore the mechanism of the hypertension in dopamine receptor-4 (Drd4) null mice, we determined the salt sensitivity and renal sodium transport proteins in Drd4-/- and Drd4+/+ mice with varied salt diets. On normal NaCl diet (NS), mean arterial pressures (MAP, telemetry) were higher in Drd4-/- than Drd4+/+; Low NaCl diet (LS) tended to decrease MAP in both strains; high NaCl diet (HS) elevated MAP with sodium excretion decreased and pressure-natriuresis curve shifted to right in Drd4-/- relative to Drd4+/+ mice. Drd4-/- mice exhibited increased renal sodium-hydrogen exchanger 3 (NHE3), sodium-potassium-2-chloride cotransporter (NKCC2), sodium-chloride cotransporter (NCC), and outer medullary α-epithelial sodium channel (αENaC) on NS, decreased NKCC2, NCC, αENaC, and αNa+-K+-ATPase on LS, and increased αENaC on HS. NKCC2, NCC, αENaC, and αNa+-K+-ATPase in plasma membrane were greater in Drd4-/- than in Drd4+/+ mice with HS. D4R was expressed in proximal and distal convoluted tubules, thick ascending limbs, and outer medullary collecting ducts and colocalized with NKCC2 and NCC. The phosphorylation of NKCC2 was enhanced but ubiquitination was reduced in the KO mice. There were no differences between the mouse strains in serum aldosterone concentrations and urinary dopamine excretions despite their changes with diets. The mRNA expressions of renal NHE3, NKCC2, NCC, and αENaC on NS were not altered in Drd4-/- mice. Thus, increased protein expressions of NHE3, NKCC2, NCC and αENaC are associated with hypertension in Drd4-/- mice; increased plasma membrane protein expression of NKCC2, NCC, αENaC, and αNa+-K+-ATPase may mediate the salt sensitivity of Drd4-/- mice.
Collapse
Affiliation(s)
- Mingzhuo Zhang
- The Core Laboratory for Clinical Research, BenQ Medical Center, The Affiliated BenQ Hospital of Nanjing Medical University, Nanjing, China
- Department of Nephrology, BenQ Medical Center, The Affiliated BenQ Hospital of Nanjing Medical University, Nanjing, China
| | - Mingda Liu
- The Core Laboratory for Clinical Research, BenQ Medical Center, The Affiliated BenQ Hospital of Nanjing Medical University, Nanjing, China
| | - Weiwan Wang
- The Core Laboratory for Clinical Research, BenQ Medical Center, The Affiliated BenQ Hospital of Nanjing Medical University, Nanjing, China
| | - Zhiyun Ren
- The Core Laboratory for Clinical Research, BenQ Medical Center, The Affiliated BenQ Hospital of Nanjing Medical University, Nanjing, China
| | - Ping Wang
- The Core Laboratory for Clinical Research, BenQ Medical Center, The Affiliated BenQ Hospital of Nanjing Medical University, Nanjing, China
| | - Ying Xue
- The Core Laboratory for Clinical Research, BenQ Medical Center, The Affiliated BenQ Hospital of Nanjing Medical University, Nanjing, China
| | - Xiaoyan Wang
- The Core Laboratory for Clinical Research, BenQ Medical Center, The Affiliated BenQ Hospital of Nanjing Medical University, Nanjing, China.
- Department of Nephrology, BenQ Medical Center, The Affiliated BenQ Hospital of Nanjing Medical University, Nanjing, China.
| |
Collapse
|
5
|
Aufy M, Hussein AM, Stojanovic T, Studenik CR, Kotob MH. Proteolytic Activation of the Epithelial Sodium Channel (ENaC): Its Mechanisms and Implications. Int J Mol Sci 2023; 24:17563. [PMID: 38139392 PMCID: PMC10743461 DOI: 10.3390/ijms242417563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 12/10/2023] [Accepted: 12/14/2023] [Indexed: 12/24/2023] Open
Abstract
Epithelial sodium channel (ENaC) are integral to maintaining salt and water homeostasis in various biological tissues, including the kidney, lung, and colon. They enable the selective reabsorption of sodium ions, which is a process critical for controlling blood pressure, electrolyte balance, and overall fluid volume. ENaC activity is finely controlled through proteolytic activation, a process wherein specific enzymes, or proteases, cleave ENaC subunits, resulting in channel activation and increased sodium reabsorption. This regulatory mechanism plays a pivotal role in adapting sodium transport to different physiological conditions. In this review article, we provide an in-depth exploration of the role of proteolytic activation in regulating ENaC activity. We elucidate the involvement of various proteases, including furin-like convertases, cysteine, and serine proteases, and detail the precise cleavage sites and regulatory mechanisms underlying ENaC activation by these proteases. We also discuss the physiological implications of proteolytic ENaC activation, focusing on its involvement in blood pressure regulation, pulmonary function, and intestinal sodium absorption. Understanding the mechanisms and consequences of ENaC proteolytic activation provides valuable insights into the pathophysiology of various diseases, including hypertension, pulmonary disorders, and various gastrointestinal conditions. Moreover, we discuss the potential therapeutic avenues that emerge from understanding these mechanisms, offering new possibilities for managing diseases associated with ENaC dysfunction. In summary, this review provides a comprehensive discussion of the intricate interplay between proteases and ENaC, emphasizing the significance of proteolytic activation in maintaining sodium and fluid balance in both health and disease.
Collapse
Affiliation(s)
- Mohammed Aufy
- Division of Pharmacology and Toxicology, Department of Pharmaceutical Sciences, University of Vienna, 1090 Vienna, Austria; (A.M.H.); (M.H.K.)
| | - Ahmed M. Hussein
- Division of Pharmacology and Toxicology, Department of Pharmaceutical Sciences, University of Vienna, 1090 Vienna, Austria; (A.M.H.); (M.H.K.)
- Department of Zoology, Faculty of Science, Al-Azhar University, Assiut 71524, Egypt
| | - Tamara Stojanovic
- Programme for Proteomics, Paracelsus Medical University, 5020 Salzburg, Austria;
| | - Christian R. Studenik
- Division of Pharmacology and Toxicology, Department of Pharmaceutical Sciences, University of Vienna, 1090 Vienna, Austria; (A.M.H.); (M.H.K.)
| | - Mohamed H. Kotob
- Division of Pharmacology and Toxicology, Department of Pharmaceutical Sciences, University of Vienna, 1090 Vienna, Austria; (A.M.H.); (M.H.K.)
- Department of Pathology, Faculty of Veterinary Medicine, Assiut University, Assiut 71515, Egypt
| |
Collapse
|
6
|
Iwata Y, Deng Q, Kakizoe Y, Nakagawa T, Miyasato Y, Nakagawa M, Nishiguchi K, Nagayoshi Y, Narita Y, Izumi Y, Kuwabara T, Adachi M, Mukoyama M. A Serine Protease Inhibitor, Camostat Mesilate, Suppresses Urinary Plasmin Activity and Alleviates Hypertension and Podocyte Injury in Dahl Salt-Sensitive Rats. Int J Mol Sci 2023; 24:15743. [PMID: 37958726 PMCID: PMC10650472 DOI: 10.3390/ijms242115743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 10/25/2023] [Accepted: 10/28/2023] [Indexed: 11/15/2023] Open
Abstract
In proteinuric renal diseases, the serine protease (SP) plasmin activates the epithelial sodium channel (ENaC) by cleaving its γ subunit. We previously demonstrated that a high-salt (HS) diet provoked hypertension and proteinuria in Dahl salt-sensitive (DS) rats, accompanied by γENaC activation, which were attenuated by camostat mesilate (CM), an SP inhibitor. However, the effects of CM on plasmin activity in DS rats remain unclear. In this study, we investigated the effects of CM on plasmin activity, ENaC activation, and podocyte injury in DS rats. The DS rats were divided into the control diet, HS diet (8.0% NaCl), and HS+CM diet (0.1% CM) groups. After weekly blood pressure measurement and 24-h urine collection, the rats were sacrificed at 5 weeks. The HS group exhibited hypertension, massive proteinuria, increased urinary plasmin, and γENaC activation; CM treatment suppressed these changes. CM prevented plasmin(ogen) attachment to podocytes and mitigated podocyte injury by reducing the number of apoptotic glomerular cells, inhibiting protease-activated receptor-1 activation, and suppressing inflammatory and fibrotic cytokine expression. Our findings highlight the detrimental role of urinary plasmin in the pathogenesis of salt-sensitive hypertension and glomerular injury. Targeting plasmin with SP inhibitors, such as CM, may be a promising therapeutic approach for these conditions.
Collapse
Affiliation(s)
- Yasunobu Iwata
- Department of Nephrology, Kumamoto University Graduate School of Medical Sciences, Kumamoto 860-8556, Japan
| | - Qinyuan Deng
- Department of Nephrology, Kumamoto University Graduate School of Medical Sciences, Kumamoto 860-8556, Japan
| | - Yutaka Kakizoe
- Department of Nephrology, Kumamoto University Graduate School of Medical Sciences, Kumamoto 860-8556, Japan
- Comprehensive Clinical Education, Training and Development Center, Kumamoto University Hospital, Kumamoto 860-8556, Japan
| | - Terumasa Nakagawa
- Department of Nephrology, Kumamoto University Graduate School of Medical Sciences, Kumamoto 860-8556, Japan
| | - Yoshikazu Miyasato
- Department of Nephrology, Kumamoto University Graduate School of Medical Sciences, Kumamoto 860-8556, Japan
| | - Miyuki Nakagawa
- Department of Nephrology, Kumamoto University Graduate School of Medical Sciences, Kumamoto 860-8556, Japan
| | - Kayo Nishiguchi
- Department of Nephrology, Kumamoto University Graduate School of Medical Sciences, Kumamoto 860-8556, Japan
| | - Yu Nagayoshi
- Department of Nephrology, Kumamoto University Graduate School of Medical Sciences, Kumamoto 860-8556, Japan
| | - Yuki Narita
- Department of Pharmacy, Kumamoto University Hospital, Kumamoto 860-8556, Japan
| | - Yuichiro Izumi
- Department of Nephrology, Kumamoto University Graduate School of Medical Sciences, Kumamoto 860-8556, Japan
| | - Takashige Kuwabara
- Department of Nephrology, Kumamoto University Graduate School of Medical Sciences, Kumamoto 860-8556, Japan
| | - Masataka Adachi
- Department of Nephrology, Kumamoto University Graduate School of Medical Sciences, Kumamoto 860-8556, Japan
| | - Masashi Mukoyama
- Department of Nephrology, Kumamoto University Graduate School of Medical Sciences, Kumamoto 860-8556, Japan
- Comprehensive Clinical Education, Training and Development Center, Kumamoto University Hospital, Kumamoto 860-8556, Japan
| |
Collapse
|
7
|
Salama Y, Takahashi S, Tsuda Y, Okada Y, Hattori K, Heissig B. YO2 Induces Melanoma Cell Apoptosis through p53-Mediated LRP1 Downregulation. Cancers (Basel) 2022; 15:288. [PMID: 36612285 PMCID: PMC9818169 DOI: 10.3390/cancers15010288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 12/25/2022] [Accepted: 12/29/2022] [Indexed: 01/04/2023] Open
Abstract
The multifunctional endocytic receptor low-density lipoprotein receptor-related protein 1 (LRP1) has been implicated in melanoma growth. However, the mechanism of LRP1 expression in melanoma cells remains only partially understood. In most melanomas, the TP53 tumor suppressor is retained as a non-mutated, inactive form that fails to suppress tumors. We identify TP53 as a regulator of LRP1-mediated tumor growth. TP53 enhances the expression of miRNA miR-103/107. These miRNAs target LRP1 expression on melanoma cells. TP53 overexpression in human and murine melanoma cells was achieved using lentivirus or treatment with the small molecule YO-2, a plasmin inhibitor known to induce apoptosis in various cancer cell lines. TP53 restoration enhanced the expression of the tumor suppressor miR-103/107, resulting in the downregulation of LRP1 and suppression of tumor growth in vivo and in vitro. Furthermore, LRP1 overexpression or p53 downregulation prevented YO-2-mediated melanoma growth inhibition. We identified YO-2 as a novel p53 inducer in melanoma cells. Cotreatment of YO-2 with doxorubicin blocked tumor growth in vivo and in a murine melanoma model, suggesting that YO-2 exerts anti-melanoma effects alone or in combination with conventional myelosuppressive drugs.
Collapse
Affiliation(s)
- Yousef Salama
- An-Najah Center for Cancer and Stem Cell Research, Faculty of Medicine and Health Sciences, An-Najah National University, P.O. Box 7, Nablus 99900800, Palestine
| | - Satoshi Takahashi
- Division of Clinical Genome Research, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | - Yuko Tsuda
- The Faculty of Pharmaceutical Science, Kobe Gakuin University, 518 Arise, Ikawadani-Cho, Nishi-Ku, Kobe 651-2180, Japan
| | - Yoshio Okada
- The Faculty of Pharmaceutical Science, Kobe Gakuin University, 518 Arise, Ikawadani-Cho, Nishi-Ku, Kobe 651-2180, Japan
| | - Koichi Hattori
- Center for Genome and Regenerative Medicine, Graduate School of Medicine, Juntendo University, 2-1-1 Hongo, Bunkyo-Ku, Tokyo 113-8421, Japan
| | - Beate Heissig
- Department of Research Support Utilizing Bioresource Bank, Graduate School of Medicine, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-Ku, Tokyo 113-8421, Japan
| |
Collapse
|