1
|
Karthik M, Panchal NK, T M, Bakthavatchalam YD, Neeravi A, Abirami B, Walia K, Veeraraghavan B. Evolutionary insights into NDM variants: Identification and functional analysis of novel NDM-58 in Pseudomonas aeruginosa. Microb Pathog 2025; 204:107574. [PMID: 40228751 DOI: 10.1016/j.micpath.2025.107574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 03/27/2025] [Accepted: 04/09/2025] [Indexed: 04/16/2025]
Abstract
The emergence of New Delhi Metallo-β-lactamase (NDM) variants in P. aeruginosa has significantly contributed to carbapenem resistance, posing a global threat to antimicrobial therapy. The catalytic activity of NDM, dependent on Zn (II), is enhanced by specific mutations. In this study, we report the identification and characterization of a novel NDM-58 variant (GenBank: OR081828.1) in P. aeruginosa BA24848, which exhibited resistance to multiple β-lactams, including cephalosporins, carbapenems, and BL/BLI combinations. WGS revealed that NDM-58 harbors a unique P185S substitution. This strain is associated with other ARGs (blaPAO, PME-1, fosA, blaOXA-396, blaOXA-494, blaOXA-50, sul1, dfrA1, qacE, aph(3')-VI, qnrVC1, and cat7), indicating a XDR phenotype. Comparative genomic analysis revealed the presence of MGEs (ISpre2, ISPa6, ISPa2, ISPsy29, IS26, Tn4661, ISPa37, and ISUnCu4) associated with NDM-58, which may facilitate the horizontal transfer of resistance determinants. Structural modeling and molecular dynamics simulations demonstrated that NDM-58 exhibits altered stability and compactness compared to NDM-1, likely influencing its enzymatic activity and resistance profile. Residual conservation analysis revealed that Pro185 is highly conserved, and its substitution to serine may impact protein stability and function. The molecular dynamics analysis indicated that NDM-58 has lower residual fluctuations and increased flexibility, which may enhance its adaptability under varying physiological conditions. Our findings provide novel insights into the evolutionary dynamics of NDM enzymes and the role of genetic environments in their dissemination. Understanding these mechanisms is crucial for developing effective surveillance and mitigation strategies against emerging carbapenem-resistant P. aeruginosa.
Collapse
Affiliation(s)
- Maruthan Karthik
- Department of Clinical Microbiology, Christian Medical College, Vellore, Tamil Nadu, India
| | - Nagesh Kishan Panchal
- Department of Clinical Microbiology, Christian Medical College, Vellore, Tamil Nadu, India
| | - Monisha T
- Department of Clinical Microbiology, Christian Medical College, Vellore, Tamil Nadu, India
| | | | - Ayyanraj Neeravi
- Department of Clinical Microbiology, Christian Medical College, Vellore, Tamil Nadu, India
| | - Baby Abirami
- Department of Clinical Microbiology, Christian Medical College, Vellore, Tamil Nadu, India
| | - Kamini Walia
- Division of Epidemiology and Communicable Diseases, Indian Council of Medical Research, New Delhi, India
| | - Balaji Veeraraghavan
- Department of Clinical Microbiology, Christian Medical College, Vellore, Tamil Nadu, India.
| |
Collapse
|
2
|
Wang L, Xue Y, Wang JN, Mo Y, Mei Y. Rational Enzyme Evolution by Facilitating Correlated Motion along the Reaction. J Phys Chem B 2025. [PMID: 40426335 DOI: 10.1021/acs.jpcb.5c02133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2025]
Abstract
Enzymes are highly efficient and specific protein catalysts that play an essential role in regulating metabolic processes in living organisms. By modulating the rates of chemical reactions, enzymes tune fundamental crucial biological functions. Directed evolution is a widely used strategy to enhance protein functionality by selecting variants with desirable traits through random mutation and recombination. However, this approach relies heavily on chemical intuition and demands substantial experimental resources, including labor-intensive mutagenesis. In contrast, rational enzyme engineering leverages mechanistic insights to enhance efficiency and reduce costs. This study presents a mutation strategy guided by the correlated motion of protein during enzymatic reactions, validated through four mutations across two proteins. The results underscore the potential of this physics-based approach to streamline and advance enzyme evolution.
Collapse
Affiliation(s)
- Lianxin Wang
- State Key Laboratory of Precision Spectroscopy, School of Physics and Electronic Science, East China Normal University, Shanghai 200241, China
| | - Yuanfei Xue
- State Key Laboratory of Precision Spectroscopy, School of Physics and Electronic Science, East China Normal University, Shanghai 200241, China
| | - Jia-Ning Wang
- State Key Laboratory of Precision Spectroscopy, School of Physics and Electronic Science, East China Normal University, Shanghai 200241, China
| | - Yan Mo
- State Key Laboratory of Precision Spectroscopy, School of Physics and Electronic Science, East China Normal University, Shanghai 200241, China
- NYU-ECNU Center for Computational Chemistry at NYU Shanghai, Shanghai 200062, China
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, Shanxi, China
| | - Ye Mei
- State Key Laboratory of Precision Spectroscopy, School of Physics and Electronic Science, East China Normal University, Shanghai 200241, China
- NYU-ECNU Center for Computational Chemistry at NYU Shanghai, Shanghai 200062, China
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, Shanxi, China
| |
Collapse
|
3
|
He ZC, Zhang T, Peng W, Ding F. Protonation State Insights into the Influence of Biocatalytic Function for Acetylcholinesterase Mediated by Neonicotinoids. Biochemistry 2025; 64:1996-2009. [PMID: 40252023 DOI: 10.1021/acs.biochem.5c00024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/21/2025]
Abstract
The catalytic efficiency of acetylcholinesterase (AChE) is likely regulated by the protonation states and conformational adaptations of its catalytic residues. While neonicotinoid insecticides are recognized for impairing AChE function through neurotoxic mechanisms, the precise molecular mechanisms governing this inhibition remain poorly characterized. This investigation elucidates how structural variations among neonicotinoids modulate the protonation equilibria of Glu-202 and His-447 in AChE's catalytic triad. Comparative analysis reveals that nitro-substituted neonicotinoids (imidacloprid, clothianidin) induce more pronounced protonation state transitions compared to their cyano-containing counterparts (thiacloprid, acetamiprid). Specifically, the strong electron-withdrawing nitro groups facilitate the conversion of Glu-202 from the deprotonation (GLU) to protonation (GLH) state and His-447 from the δ- (HID) to ε-position protonation (HIE) state through enhanced electrostatic interactions. These electronic perturbations trigger structural reorganization within the active site, evidenced by nitro group-directed residue realignment and subsequent H-bond formation. Energy decomposition analysis identifies electrostatic contributions as the primary determinant of binding affinity differences, with nitro-neonicotinoids exhibiting stronger interactions than cyano-neonicotinoids. QM/MM metadynamics reveals that substantial protonation state alterations disrupt AChE's biocatalytic function, particularly its capacity for acetylcholine hydrolysis. Finally, SH-SY5Y-based cellular assays show that imidacloprid exhibits the strongest inhibitory effect on AChE intracellular activity, while thiacloprid and acetamiprid show weaker inhibitory effects, aligning with the computational predictions. This study provides insights into the protonation-state-induced biocatalytic function for acetylcholinesterase mediated by neonicotinoids, contributing to the assessment of exogenous ligand-induced potential ecological and human health risks.
Collapse
Affiliation(s)
- Zhi-Cong He
- School of Water and Environment, Key Laboratory of Subsurface Hydrology and Ecological Effect in Arid Region of Ministry of Education, Key Laboratory of Ecohydrology and Water Security in Arid and Semi-Arid Regions of Ministry of Water Resources, Chang'an University, Xi'an 710054, China
| | - Tao Zhang
- School of Water and Environment, Key Laboratory of Subsurface Hydrology and Ecological Effect in Arid Region of Ministry of Education, Key Laboratory of Ecohydrology and Water Security in Arid and Semi-Arid Regions of Ministry of Water Resources, Chang'an University, Xi'an 710054, China
| | - Wei Peng
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Fei Ding
- School of Water and Environment, Key Laboratory of Subsurface Hydrology and Ecological Effect in Arid Region of Ministry of Education, Key Laboratory of Ecohydrology and Water Security in Arid and Semi-Arid Regions of Ministry of Water Resources, Chang'an University, Xi'an 710054, China
| |
Collapse
|
4
|
Capodimonte L, Meireles FTP, Bahr G, Bonomo RA, Dal Peraro M, López C, Vila AJ. OXA β-lactamases from Acinetobacter spp. are membrane bound and secreted into outer membrane vesicles. mBio 2025; 16:e0334324. [PMID: 39670715 PMCID: PMC11796391 DOI: 10.1128/mbio.03343-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Accepted: 11/19/2024] [Indexed: 12/14/2024] Open
Abstract
β-lactamases from Gram-negative bacteria are generally regarded as soluble, periplasmic enzymes. NDMs have been exceptionally characterized as lipoproteins anchored to the outer membrane. A bioinformatics study on all sequenced β-lactamases was performed that revealed a predominance of putative lipidated enzymes in the Class D OXAs. Namely, 60% of the OXA Class D enzymes contain a lipobox sequence in their signal peptide, that is expected to trigger lipidation and membrane anchoring. This contrasts with β-lactamases from other classes, which are predicted to be mostly soluble proteins. Almost all (>99%) putative lipidated OXAs are present in Acinetobacter spp. Importantly, we further demonstrate that OXA-23 and OXA-24/40 are lipidated, membrane-bound proteins in Acinetobacter baumannii. In contrast, OXA-48 (commonly produced by Enterobacterales) lacks a lipobox and is a soluble protein. Outer membrane vesicles (OMVs) from A. baumannii cells expressing OXA-23 and OXA-24/40 contain these enzymes in their active form. Moreover, OXA-loaded OMVs were able to protect A. baumannii, Escherichia coli, and Pseudomonas aeruginosa cells susceptible to piperacillin and imipenem. These results permit us to conclude that membrane binding is a bacterial host-specific phenomenon in OXA enzymes. These findings reveal that membrane-bound β-lactamases are more common than expected and support the hypothesis that OMVs loaded with lipidated β-lactamases are vehicles for antimicrobial resistance and its dissemination. This advantage could be crucial in polymicrobial infections, in which Acinetobacter spp. are usually involved, and underscore the relevance of identifying the cellular localization of lactamases to better understand their physiology and target them.IMPORTANCEβ-lactamases represent the main mechanism of antimicrobial resistance in Gram-negative pathogens. Their catalytic function (cleaving β-lactam antibiotics) occurs in the bacterial periplasm, where they are commonly reported as soluble proteins. A bioinformatic analysis reveals a significant number of putative lipidated β-lactamases, expected to be attached to the outer bacterial membrane. Notably, 60% of Class D OXA β-lactamases (all from Acinetobacter spp.) are predicted as membrane-anchored proteins. We demonstrate that two clinically relevant carbapenemases, OXA-23 and OXA-24/40, are membrane-bound proteins in A. baumannii. This cellular localization favors the secretion of these enzymes into outer membrane vesicles that transport them outside the boundaries of the cell. β-lactamase-loaded vesicles can protect populations of antibiotic-susceptible bacteria, enabling them to thrive in the presence of β-lactam antibiotics. The ubiquity of this phenomenon suggests that it may have influenced the dissemination of resistance mediated by Acinetobacter spp., particularly in polymicrobial infections, being a potent evolutionary advantage.
Collapse
Affiliation(s)
- Lucia Capodimonte
- Instituto de Biología Molecular y Celular de Rosario (CONICET IBR -UNR), Rosario, Argentina
- Área Biofísica, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Santa Fe, Argentina
| | | | - Guillermo Bahr
- Instituto de Biología Molecular y Celular de Rosario (CONICET IBR -UNR), Rosario, Argentina
- Área Biofísica, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Santa Fe, Argentina
| | - Robert A. Bonomo
- Department of Molecular Biology and Microbiology, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
- Research Service, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, Ohio, USA
- Departments of Pharmacology, Biochemistry, Proteomics and Bioinformatics, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
- CWRU-Cleveland VAMC Center for Antimicrobial Resistance and Epidemiology (Case VA CARES), Cleveland, Ohio, USA
| | - Matteo Dal Peraro
- Institute of Bioengineering, School of Life Science, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Carolina López
- Instituto de Biología Molecular y Celular de Rosario (CONICET IBR -UNR), Rosario, Argentina
| | - Alejandro J. Vila
- Instituto de Biología Molecular y Celular de Rosario (CONICET IBR -UNR), Rosario, Argentina
- Área Biofísica, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Santa Fe, Argentina
- CWRU-Cleveland VAMC Center for Antimicrobial Resistance and Epidemiology (Case VA CARES), Cleveland, Ohio, USA
| |
Collapse
|
5
|
Heil EL, McCreary EK. REVISITing treatment of metallo-β-lactamases. THE LANCET. INFECTIOUS DISEASES 2025; 25:144-146. [PMID: 39389074 DOI: 10.1016/s1473-3099(24)00561-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 08/15/2024] [Indexed: 10/12/2024]
Affiliation(s)
- Emily L Heil
- Department of Practice, Sciences, and Health-Outcomes Research, University of Maryland School of Pharmacy, Baltimore, MD 21201, USA.
| | - Erin K McCreary
- Division of Infectious Diseases, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
6
|
Lai R, Li H. Mechanism of Ampicillin Hydrolysis by New Delhi Metallo-β-Lactamase 1: Insight From QM/MM MP2 Calculation. J Comput Chem 2025; 46:e27544. [PMID: 39636155 PMCID: PMC11619567 DOI: 10.1002/jcc.27544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 09/17/2024] [Accepted: 11/15/2024] [Indexed: 12/07/2024]
Abstract
The New Delhi metallo-β-lactamase 1 (NDM-1) can hydrolyze nearly all clinically important β-lactam antibiotics, narrowing the options for effective treatment of bacterial infections. QM/MM MP2 calculations are performed to reveal the mechanism of ampicillin hydrolysis catalyzed by NDM-1. It is found that the rate-determining step is the dissociation of hydrolyzed ampicillin from the NDM-1 active site, which requires a proton transfer from the bridging neutral water molecule to the newly formed carboxylate group. The precedent reaction steps, including the hydroxide nucleophilic addition, CN bond cleavage, and the protonation of the negative lactam N atom by a solvent water molecule, all require insignificant activation free energies. The calculated activation free energy for this rate-determining proton transfer step is 16.0 kcal/mol, in good agreement with experimental values of 13.7 ~ 14.7 kcal/mol. This proton transfer step exhibits a solvent hydrogen-deuterium kinetic isotope effect of 3.4, consistent with several experimental kinetic results.
Collapse
Affiliation(s)
- Rui Lai
- Dalian Institute of Chemical PhysicsChinese Academy of SciencesDalianChina
| | - Hui Li
- Department of Chemistry, Nebraska Center for Materials and Nanoscience, and Center for Integrated Biomolecular CommunicationUniversity of Nebraska‐LincolnLincolnNebraskaUSA
| |
Collapse
|
7
|
Capodimonte L, Meireles FTP, Bahr G, Bonomo RA, Dal Peraro M, López C, Vila AJ. OXA β-lactamases from Acinetobacter spp. are membrane-bound and secreted into outer membrane vesicles. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.04.622015. [PMID: 39574660 PMCID: PMC11580949 DOI: 10.1101/2024.11.04.622015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/02/2024]
Abstract
β-lactamases from Gram-negative bacteria are generally regarded as soluble, periplasmic enzymes. NDMs have been exceptionally characterized as lipoproteins anchored to the outer membrane. A bioinformatics study on all sequenced β-lactamases was performed that revealed a predominance of putative lipidated enzymes in the class D OXAs. Namely, 60% of the OXA class D enzymes contain a lipobox sequence in their signal peptide, that is expected to trigger lipidation and membrane anchoring. This contrasts with β-lactamases from other classes, which are predicted to be mostly soluble proteins. Almost all (> 99%) putative lipidated OXAs are present in Acinetobacter spp. Importantly, we further demonstrate that OXA-23 and OXA-24/40 are lipidated, membrane-bound proteins in Acinetobacter baumannii. In contrast, OXA-48 (commonly produced by Enterobacterales) lacks a lipobox and is a soluble protein. Outer membrane vesicles (OMVs) from Acinetobacter baumannii cells expressing OXA-23 and OXA-24/40 contain these enzymes in their active form. Moreover, OXA-loaded OMVs were able to protect A. baumannii, Escherichia coli and Pseudomonas aeruginosa cells susceptible to piperacillin and imipenem. These results permit us to conclude that membrane binding is a bacterial host-specific phenomenon in OXA enzymes. These findings reveal that membrane-bound β-lactamases are more common than expected and support the hypothesis that OMVs loaded with lipidated β-lactamases are vehicles for antimicrobial resistance and its dissemination. This advantage could be crucial in polymicrobial infections, in which Acinetobacter spp. are usually involved, and underscore the relevance of identifying the cellular localization of lactamases to better understand their physiology and target them.
Collapse
Affiliation(s)
- Lucia Capodimonte
- Instituto de Biología Molecular y Celular de Rosario (CONICET IBR -UNR)
- Área Biofísica, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Santa Fe, Argentina
| | - Fernando Teixeira Pinto Meireles
- Institute of Bioengineering, School of Life Science, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Guillermo Bahr
- Instituto de Biología Molecular y Celular de Rosario (CONICET IBR -UNR)
- Área Biofísica, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Santa Fe, Argentina
| | - Robert A. Bonomo
- Department of Molecular Biology and Microbiology, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
- Research Service, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, Ohio, USA
- Departments of Pharmacology, Biochemistry, Proteomics and Bioinformatics, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
- CWRU-Cleveland VAMC Center for Antimicrobial Resistance and Epidemiology (Case VA CARES), Cleveland, Ohio, USA
| | - Matteo Dal Peraro
- Institute of Bioengineering, School of Life Science, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Carolina López
- Instituto de Biología Molecular y Celular de Rosario (CONICET IBR -UNR)
| | - Alejandro J. Vila
- Instituto de Biología Molecular y Celular de Rosario (CONICET IBR -UNR)
- Área Biofísica, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Santa Fe, Argentina
- CWRU-Cleveland VAMC Center for Antimicrobial Resistance and Epidemiology (Case VA CARES), Cleveland, Ohio, USA
| |
Collapse
|
8
|
Rakovitsky N, Lurie-Weinberger MN, Temkin E, Hameir A, Efrati-Epchtien R, Wulffhart L, Keren Paz A, Schwartz D, Carmeli Y. Evaluation of the CARBA PAcE test, a colorimetric imipenem hydrolysis test for rapid detection of carbapenemase activity. Microbiol Spectr 2024; 12:e0089124. [PMID: 39440983 PMCID: PMC11619416 DOI: 10.1128/spectrum.00891-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 08/22/2024] [Indexed: 10/25/2024] Open
Abstract
There is an urgent need for accurate and fast diagnostic tests to identify carbapenemase-producing bacteria. Here, we evaluated a colorimetric imipenem hydrolysis test, called the CARBA PAcE test, to detect carbapenemase-producing Gram-negative bacteria (GNB). We tested a collection of 270 GNB isolates with a characterized carbapenemase content. Our testing set included 205 carbapenemase-producing, carbapenemase-resistant Enterobacterales (CP CRE) with 40 Klebsiella pneumoniae carbapenemase (KPC), 49 New Delhi metallo beta lactamase (NDM), 49 OXA-48-like, 15 Verona integron-mediated metallo-β-lactamase (VIM), three IMP, 43 IMI, six isolates producing more than one carbapenemase, and 65 non-carbapenemase-producing Enterobacterales (20 ESBL producers, 35 non-carbapenemase-producing, carbapenem-resistant [non-CP CRE], and 10 carbapenem-susceptible Enterobacterales [non-CP, non-CSE, third-generation cephalosporin and carbapenem susceptible]). We compared the performances of the CARBA PAcE test, the qualitative colorimetric β-CARBA test, and the modified CarbaNP test to a gold standard of carbapenemase gene detection by PCR. Specificities of all tests were high: 95.4% (62/65) for CARBA PAcE test, 98.5% (64/65) for β-CARBA test, and 100% (65/65) for the modified CarbaNP test. Sensitivity varied by carbapenemase: all three tests had a sensitivity of 100% for NDM, VIM, and IMP and 97.5% for KPC. Sensitivity to detect IMI was 0% for the CARBA PAcE and β-CARBA tests and 11.6% for the modified CarbaNP test. Sensitivity to detect OXA-48-like was 89.7% for the CARBA PAcE test, 87.7% for the β-CARBA test, and 14.2% for the modified CarbaNP test. Reading the results of the CARBA PAcE assay was difficult. The CARBA PAcE assay is highly sensitive for detecting NDM, VIM, IMP, and KPC, but slightly less sensitive for OXA-48-like. It does not detect IMI. It is highly specific, and its overall diagnostic accuracy is similar to that of β-CARBA. Its operational advantages are rapid turnaround time, ease of use, and long shelf life, but reading of results is subjective.IMPORTANCEWe evaluated the ability of the CARBA PAcE test to detect carbapenemases in 274 Gram-negative isolates with a known carbapenemase content. Specificity was high for all carbapenemases tested (96.9%). Sensitivity was high for KPC, NDM, VIM, and IMP (97.5-100%); but lower for OXA-48-like (89.7%). Activity of IMI could not be detected. Taken together, our results indicate that CARBA PAcE is a useful alternative in regions where NDM and KPC are predominant. The limitations of the test are difficulty in reading results and incompatibility with mSuperCARBA.
Collapse
Affiliation(s)
- Nadya Rakovitsky
- National Institute for Antibiotic Resistance and Infection Control, Israel Ministry of Health, Tel Aviv, Israel
| | - Mor N. Lurie-Weinberger
- National Institute for Antibiotic Resistance and Infection Control, Israel Ministry of Health, Tel Aviv, Israel
| | - Elizabeth Temkin
- National Institute for Antibiotic Resistance and Infection Control, Israel Ministry of Health, Tel Aviv, Israel
| | - Amichay Hameir
- National Institute for Antibiotic Resistance and Infection Control, Israel Ministry of Health, Tel Aviv, Israel
| | - Reut Efrati-Epchtien
- National Institute for Antibiotic Resistance and Infection Control, Israel Ministry of Health, Tel Aviv, Israel
| | - Liat Wulffhart
- National Institute for Antibiotic Resistance and Infection Control, Israel Ministry of Health, Tel Aviv, Israel
| | - Alona Keren Paz
- National Institute for Antibiotic Resistance and Infection Control, Israel Ministry of Health, Tel Aviv, Israel
| | - David Schwartz
- National Institute for Antibiotic Resistance and Infection Control, Israel Ministry of Health, Tel Aviv, Israel
| | - Yehuda Carmeli
- National Institute for Antibiotic Resistance and Infection Control, Israel Ministry of Health, Tel Aviv, Israel
- School of Medicine, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
9
|
Sarkar P, Xu W, Vázquez-Hernández M, Dhanda G, Tripathi S, Basak D, Xie H, Schipp L, Dietze P, Bandow JE, Nair NN, Haldar J. Enhancing the antibacterial efficacy of vancomycin analogues: targeting metallo-β-lactamases and cell wall biosynthesis. Chem Sci 2024; 15:d4sc03577a. [PMID: 39309102 PMCID: PMC11409854 DOI: 10.1039/d4sc03577a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 09/08/2024] [Indexed: 09/25/2024] Open
Abstract
Vancomycin is a crucial last-resort antibiotic for tackling Gram-positive bacterial infections. However, its potency fails against the more difficult-to-treat Gram-negative bacteria (GNB). Vancomycin derivatives have shown promise as broad-spectrum antibacterials, but are still underexplored. Toward this, we present a novel strategy wherein we substitute the sugar moiety of vancomycin with a dipicolyl amine group, yielding VanNHdipi. This novel glycopeptide enhances its efficacy against vancomycin-resistant bacteria by up to 100-fold. A comprehensive approach involving microbiological assays, biochemical analyses, proteomics, and computational studies unraveled the impact of this design on biological activity. Our investigations reveal that VanNHdipi, like vancomycin, disrupts membrane-bound steps of cell wall synthesis inducing envelope stress, while also interfering with the structural integrity of the cytoplasmic membrane, setting it apart from vancomycin. Most noteworthy is its potency against critical GNB producing metallo-β-lactamases (MBLs). VanNHdipi effectively inactivates various MBLs with IC50 in the range of 0.2-10 μM resulting in resensitization of MBL-producing bacteria to carbapenems. Molecular docking and molecular dynamics (MD) studies indicate that H-bonding interactions between the sugar moiety of the vancomycin derivative with the amino acids on the surface of NDM-1 facilitate enhanced binding affinity for the enzyme. This work expands the scope of vancomycin derivatives and offers a promising new avenue for combating antibiotic resistance.
Collapse
Affiliation(s)
- Paramita Sarkar
- Antimicrobial Research Laboratory, New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research Jakkur Bengaluru 560064 Karnataka India +91 802208 2565
| | - Weipan Xu
- School of Pharmacy, East China University of Science and Technology 130 Meilong Rd. Shanghai 200237 China
| | - Melissa Vázquez-Hernández
- Applied Microbiology, Faculty of Biology and Biotechnology, Ruhr University Bochum Universitätsstraße 150 44780 Bochum Germany
| | - Geetika Dhanda
- Antimicrobial Research Laboratory, New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research Jakkur Bengaluru 560064 Karnataka India +91 802208 2565
| | - Shubhandra Tripathi
- Department of Chemistry, Indian Institute of Technology Kanpur Kanpur 20816 India
| | - Debajyoti Basak
- Antimicrobial Research Laboratory, New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research Jakkur Bengaluru 560064 Karnataka India +91 802208 2565
| | - Hexin Xie
- School of Pharmacy, East China University of Science and Technology 130 Meilong Rd. Shanghai 200237 China
| | - Lea Schipp
- Applied Microbiology, Faculty of Biology and Biotechnology, Ruhr University Bochum Universitätsstraße 150 44780 Bochum Germany
| | - Pascal Dietze
- Applied Microbiology, Faculty of Biology and Biotechnology, Ruhr University Bochum Universitätsstraße 150 44780 Bochum Germany
| | - Julia E Bandow
- Applied Microbiology, Faculty of Biology and Biotechnology, Ruhr University Bochum Universitätsstraße 150 44780 Bochum Germany
| | - Nishanth N Nair
- Department of Chemistry, Indian Institute of Technology Kanpur Kanpur 20816 India
| | - Jayanta Haldar
- Antimicrobial Research Laboratory, New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research Jakkur Bengaluru 560064 Karnataka India +91 802208 2565
- School of Advanced Materials, Jawaharlal Nehru Centre for Advanced Scientific Research Jakkur Bengaluru 560064 Karnataka India
| |
Collapse
|
10
|
Saikia S, Chetia P. Antibiotics: From Mechanism of Action to Resistance and Beyond. Indian J Microbiol 2024; 64:821-845. [PMID: 39282166 PMCID: PMC11399512 DOI: 10.1007/s12088-024-01285-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 04/15/2024] [Indexed: 09/18/2024] Open
Abstract
Antibiotics are the super drugs that have revolutionized modern medicine by curing many infectious diseases caused by various microbes. They efficiently inhibit the growth and multiplication of the pathogenic microbes without causing adverse effects on the host. However, prescribing suboptimal antibiotic and overuse in agriculture and animal husbandry have led to the emergence of antimicrobial resistance, one of the most serious threats to global health at present. The efficacy of a new antibiotic is high when introduced; however, a small bacterial population attains resistance gradually and eventually survives. Understanding the mode of action of these miracle drugs, as well as their interaction with targets is very complex. However, it is necessary to fulfill the constant need for novel therapeutic alternatives to address the inevitable development of resistance. Therefore, considering the need of the hour, this article has been prepared to discuss the mode of action and recent advancements in the field of antibiotics. Efforts has also been made to highlight the current scenario of antimicrobial resistance and drug repurposing as a fast-track solution to combat the issue.
Collapse
Affiliation(s)
- Shyamalima Saikia
- Molecular Plant Taxonomy and Bioinformatics Research Laboratory, Department of Life Sciences, Dibrugarh University, Dibrugarh, Assam 786004 India
| | - Pankaj Chetia
- Department of Life Sciences, Dibrugarh University, Dibrugarh, Assam 786004 India
| |
Collapse
|
11
|
Ortega-Balleza JL, Vázquez-Jiménez LK, Ortiz-Pérez E, Avalos-Navarro G, Paz-González AD, Lara-Ramírez EE, Rivera G. Current Strategy for Targeting Metallo-β-Lactamase with Metal-Ion-Binding Inhibitors. Molecules 2024; 29:3944. [PMID: 39203022 PMCID: PMC11356879 DOI: 10.3390/molecules29163944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 08/12/2024] [Accepted: 08/19/2024] [Indexed: 09/03/2024] Open
Abstract
Currently, antimicrobial resistance (AMR) is a serious health problem in the world, mainly because of the rapid spread of multidrug-resistant (MDR) bacteria. These include bacteria that produce β-lactamases, which confer resistance to β-lactams, the antibiotics with the most prescriptions in the world. Carbapenems are particularly noteworthy because they are considered the ultimate therapeutic option for MDR bacteria. However, this group of antibiotics can also be hydrolyzed by β-lactamases, including metallo-β-lactamases (MBLs), which have one or two zinc ions (Zn2+) on the active site and are resistant to common inhibitors of serine β-lactamases, such as clavulanic acid, sulbactam, tazobactam, and avibactam. Therefore, the design of inhibitors against MBLs has been directed toward various compounds, with groups such as nitrogen, thiols, and metal-binding carboxylates, or compounds such as bicyclic boronates that mimic hydrolysis intermediates. Other compounds, such as dipicolinic acid and aspergillomarasmin A, have also been shown to inhibit MBLs by chelating Zn2+. In fact, recent inhibitors are based on Zn2+ chelation, which is an important factor in the mechanism of action of most MBL inhibitors. Therefore, in this review, we analyzed the current strategies for the design and mechanism of action of metal-ion-binding inhibitors that combat MDR bacteria.
Collapse
Affiliation(s)
- Jessica L. Ortega-Balleza
- Laboratorio de Biotecnología Farmacéutica, Centro de Biotecnología Genómica, Instituto Politécnico Nacional, Reynosa 88710, Mexico; (J.L.O.-B.); (L.K.V.-J.); (E.O.-P.); (A.D.P.-G.); (E.E.L.-R.)
- Consejo Nacional de Humanidades, Ciencias y Tecnologías (CONAHCYT), Ciudad de México 03940, Mexico
| | - Lenci K. Vázquez-Jiménez
- Laboratorio de Biotecnología Farmacéutica, Centro de Biotecnología Genómica, Instituto Politécnico Nacional, Reynosa 88710, Mexico; (J.L.O.-B.); (L.K.V.-J.); (E.O.-P.); (A.D.P.-G.); (E.E.L.-R.)
- Consejo Nacional de Humanidades, Ciencias y Tecnologías (CONAHCYT), Ciudad de México 03940, Mexico
| | - Eyra Ortiz-Pérez
- Laboratorio de Biotecnología Farmacéutica, Centro de Biotecnología Genómica, Instituto Politécnico Nacional, Reynosa 88710, Mexico; (J.L.O.-B.); (L.K.V.-J.); (E.O.-P.); (A.D.P.-G.); (E.E.L.-R.)
| | - Guadalupe Avalos-Navarro
- Departamento de Ciencias Médicas y de la Vida, Instituto de Investigación en Genética Molecular, Centro Universitario de la Ciénega, Universidad de Guadalajara, Ocotlán 47810, Mexico;
| | - Alma D. Paz-González
- Laboratorio de Biotecnología Farmacéutica, Centro de Biotecnología Genómica, Instituto Politécnico Nacional, Reynosa 88710, Mexico; (J.L.O.-B.); (L.K.V.-J.); (E.O.-P.); (A.D.P.-G.); (E.E.L.-R.)
| | - Edgar E. Lara-Ramírez
- Laboratorio de Biotecnología Farmacéutica, Centro de Biotecnología Genómica, Instituto Politécnico Nacional, Reynosa 88710, Mexico; (J.L.O.-B.); (L.K.V.-J.); (E.O.-P.); (A.D.P.-G.); (E.E.L.-R.)
| | - Gildardo Rivera
- Laboratorio de Biotecnología Farmacéutica, Centro de Biotecnología Genómica, Instituto Politécnico Nacional, Reynosa 88710, Mexico; (J.L.O.-B.); (L.K.V.-J.); (E.O.-P.); (A.D.P.-G.); (E.E.L.-R.)
| |
Collapse
|
12
|
Moreno-Latorre M, de la Torre MC, Cabeza JA, García-Álvarez P, Sierra MA. Attaching Metal-Containing Moieties to β-Lactam Antibiotics: The Case of Penicillin and Cephalosporin. Inorg Chem 2024; 63:12593-12603. [PMID: 38923955 PMCID: PMC11234371 DOI: 10.1021/acs.inorgchem.4c01548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 06/03/2024] [Accepted: 06/10/2024] [Indexed: 06/28/2024]
Abstract
Procedures for the preparation of transition metal complexes having intact bicyclic cepham or penam systems as ligands have been developed. Starting from readily available 4-azido-2-azetidinones, a synthetic approach has been tuned using a copper-catalyzed azide-alkyne cycloaddition between 3-azido-2-azetinones and alkynes, followed by methylation and transmetalation to Au(I) and Ir(III) complexes from the mesoionic carbene Ag(I) complexes. This methodology was applied to 6-azido penam and 7-azido cepham derivatives to build 6-(1,2,3-triazolyl)penam and 7-(1,2,3-triazolyl)cepham proligands, which upon methylation and metalation with Au(I) and Ir(III) complexes yielded products derived from the coordination of the metal to the penam C6 and cepham C7 positions, preserving intact the bicyclic structure of the penicillin and cephalosporin scaffolds. The crystal structure of complex 28b, which has an Ir atom directly bonded to the intact penicillin bicycle, was determined by X-ray diffraction. This is the first structural report of a penicillin-transition-metal complex having the bicyclic system of these antibiotics intact. The selectivity of the coordination processes was interpreted using DFT calculations.
Collapse
Affiliation(s)
- María Moreno-Latorre
- Instituto
de Química Orgánica General, Consejo Superior de Investigaciones Científicas (IQOG-CSIC), Juan de la Cierva 3, 28006 Madrid, Spain
- Centro
de Innovación en Química Avanzada ORFEO-CINQA, https://orfeocinqa.es/
| | - María C. de la Torre
- Instituto
de Química Orgánica General, Consejo Superior de Investigaciones Científicas (IQOG-CSIC), Juan de la Cierva 3, 28006 Madrid, Spain
- Centro
de Innovación en Química Avanzada ORFEO-CINQA, https://orfeocinqa.es/
| | - Javier A. Cabeza
- Departamento
de Química Orgánica e Inorgánica, Facultad de
Química, Universidad de Oviedo, 33071 Oviedo, Spain
- Centro
de Innovación en Química Avanzada ORFEO-CINQA, https://orfeocinqa.es/
| | - Pablo García-Álvarez
- Departamento
de Química Orgánica e Inorgánica, Facultad de
Química, Universidad de Oviedo, 33071 Oviedo, Spain
- Centro
de Innovación en Química Avanzada ORFEO-CINQA, https://orfeocinqa.es/
| | - Miguel A. Sierra
- Departamento
de Química Orgánica I, Facultad de Química, Universidad Complutense, 28040 Madrid, Spain
- Centro
de Innovación en Química Avanzada ORFEO-CINQA, https://orfeocinqa.es/
| |
Collapse
|
13
|
Villamil V, Rossi MA, Mojica MF, Hinchliffe P, Martínez V, Castillo V, Saiz C, Banchio C, Macías MA, Spencer J, Bonomo RA, Vila A, Moreno DM, Mahler G. Rational Design of Benzobisheterocycle Metallo-β-Lactamase Inhibitors: A Tricyclic Scaffold Enhances Potency against Target Enzymes. J Med Chem 2024; 67:3795-3812. [PMID: 38373290 PMCID: PMC11447740 DOI: 10.1021/acs.jmedchem.3c02209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2024]
Abstract
Antimicrobial resistance is a global public health threat. Metallo-β-lactamases (MBLs) inactivate β-lactam antibiotics, including carbapenems, are disseminating among Gram-negative bacteria, and lack clinically useful inhibitors. The evolving bisthiazolidine (BTZ) scaffold inhibits all three MBL subclasses (B1-B3). We report design, synthesis, and evaluation of BTZ analogues. Structure-activity relationships identified the BTZ thiol as essential, while carboxylate is replaceable, with its removal enhancing potency by facilitating hydrophobic interactions within the MBL active site. While the introduction of a flexible aromatic ring is neutral or detrimental for inhibition, a rigid (fused) ring generated nM benzobisheterocycle (BBH) inhibitors that potentiated carbapenems against MBL-producing strains. Crystallography of BBH:MBL complexes identified hydrophobic interactions as the basis of potency toward B1 MBLs. These data underscore BTZs as versatile, potent broad-spectrum MBL inhibitors (with activity extending to enzymes refractory to other inhibitors) and provide a rational approach to further improve the tricyclic BBH scaffold.
Collapse
Affiliation(s)
- Valentina Villamil
- Laboratorio de Química Farmacéutica, Departamento de Química Orgánica, Facultad de Química, Universidad de la República (UdelaR), Avda. General Flores 2124, Montevideo, Uruguay
| | - Maria-Agustina Rossi
- Instituto de Biología Molecular y Celular de Rosario (IBR, CONICET-UNR), Ocampo and Esmeralda, S2002LRK, Rosario, Argentina
| | - Maria F. Mojica
- Infectious Diseases Department, School of Medicine, Case Western Reserve University, 44106, Cleveland, OH, USA
| | - Philip Hinchliffe
- School of Cellular and Molecular Medicine, University of Bristol, Biomedical Sciences Building, University Walk, BS8 1TD, Bristol, UK
| | - Verónica Martínez
- Laboratorio de Química Farmacéutica, Departamento de Química Orgánica, Facultad de Química, Universidad de la República (UdelaR), Avda. General Flores 2124, Montevideo, Uruguay
| | - Valerie Castillo
- Laboratorio de Química Farmacéutica, Departamento de Química Orgánica, Facultad de Química, Universidad de la República (UdelaR), Avda. General Flores 2124, Montevideo, Uruguay
| | - Cecilia Saiz
- Laboratorio de Química Farmacéutica, Departamento de Química Orgánica, Facultad de Química, Universidad de la República (UdelaR), Avda. General Flores 2124, Montevideo, Uruguay
| | - Claudia Banchio
- Instituto de Biología Molecular y Celular de Rosario (IBR, CONICET-UNR), Ocampo and Esmeralda, S2002LRK, Rosario, Argentina
- Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, S2002LRK, Rosario, Argentina
| | - Mario A. Macías
- Crystallography and Chemistry of Materials, CrisQuimMat, Department of Chemistry, Universidad de los Andes, 111711, Bogotá, Colombia
| | - James Spencer
- School of Cellular and Molecular Medicine, University of Bristol, Biomedical Sciences Building, University Walk, BS8 1TD, Bristol, UK
| | - Robert A. Bonomo
- Infectious Diseases Department, School of Medicine, Case Western Reserve University, 44106, Cleveland, OH, USA
- Research Service, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, 44106, Cleveland, OH, USA
- Departments of Medicine, Pharmacology, Molecular Biology and Microbiology, Biochemistry, and Proteomics and Bioinformatics, Case Western Reserve University School of Medicine, 44106, Cleveland, OH, USA
- Medical Service, GRECC, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, 44106, Cleveland, OH, USA
- CWRU-Cleveland VAMC Center for Antimicrobial Resistance and Epidemiology (Case VA CARES), 44106, Cleveland, OH, USA
| | - Alejandro Vila
- Instituto de Biología Molecular y Celular de Rosario (IBR, CONICET-UNR), Ocampo and Esmeralda, S2002LRK, Rosario, Argentina
- Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, S2002LRK, Rosario, Argentina
- Medical Service, GRECC, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, 44106, Cleveland, OH, USA
| | - Diego M. Moreno
- Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, S2002LRK, Rosario, Argentina
- Instituto de Química Rosario (IQUIR, CONICET-UNR), Ocampo y Esmeralda, S2002LRK, Rosario, Argentina
| | - Graciela Mahler
- Laboratorio de Química Farmacéutica, Departamento de Química Orgánica, Facultad de Química, Universidad de la República (UdelaR), Avda. General Flores 2124, Montevideo, Uruguay
| |
Collapse
|
14
|
Shi X, Dai Y, Lan Z, Wang S, Cui L, Xiao C, Zhao K, Li X, Liu W, Zhang Q. Interplay between the β-lactam side chain and an active-site mobile loop of NDM-1 in penicillin hydrolysis as a potential target for mechanism-based inhibitor design. Int J Biol Macromol 2024; 262:130041. [PMID: 38336327 DOI: 10.1016/j.ijbiomac.2024.130041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 02/04/2024] [Accepted: 02/06/2024] [Indexed: 02/12/2024]
Abstract
Metallo-β-lactamases (MβLs) stand as significant resistant mechanism against β-lactam antibiotics in Gram-negative bacteria. The worldwide dissemination of New Delhi metallo-β-lactamases (NDMs) intensifies antimicrobial resistance, posing severe threats to human health due to the absence of inhibitors available in clinical therapy. L3, a flexible β-hairpin loop flanking the active site in MβLs, has been proven to wield influence over the reaction process by assuming a crucial role in substrate recognition and intermediate stabilization. In principle, it potentially retards product release from the enzyme, consequently reducing the overall turnover rate although the details regarding this aspect remain inadequately elucidated. In this study, we crystallized NDM-1 in complex with three penicillin substrates, conducted molecular dynamics simulations, and measured the steady-state kinetic parameters. These analyses consistently unveiled substantial disparities in their interactions with loop L3. We further synthesized a penicillin V derivative with increased hydrophobicity in the R1 side chain and co-crystallized it with NDM-1. Remarkably, this compound exhibited much stronger dynamic interplay with L3 during molecular dynamics simulation, showed much lower Km and kcat values, and demonstrated moderate inhibitory capacity to NDM-1 catalyzed meropenem hydrolysis. The data presented here may provide a strategic approach for designing mechanism-based MβL inhibitors focusing on structural elements external to the enzyme's active center.
Collapse
Affiliation(s)
- Xiangrui Shi
- Department of Obstetrics and Gynecology, Daping Hospital, Army Medical University, Chongqing 400042, China
| | - Yujie Dai
- Department of Obstetrics and Gynecology, Daping Hospital, Army Medical University, Chongqing 400042, China
| | - Zhu Lan
- Institute of Immunology, Army Medical University, Chongqing 400038, China
| | - Sheng Wang
- College of Life Science and Technology, Huazhong University of Science and Technology, 1037 Luoyu Avenue, Wuhan, Hubei 430074, China
| | - Liwei Cui
- Institute of Immunology, Army Medical University, Chongqing 400038, China
| | - Chengliang Xiao
- College of Life Science and Technology, Huazhong University of Science and Technology, 1037 Luoyu Avenue, Wuhan, Hubei 430074, China
| | - Kunhong Zhao
- Key Laboratory of Green Pesticide and Agricultural Bioengineering, Minister of Education, Guizhou University, Guiyang 550025, China
| | - Xiangyang Li
- Key Laboratory of Green Pesticide and Agricultural Bioengineering, Minister of Education, Guizhou University, Guiyang 550025, China.
| | - Wei Liu
- Institute of Immunology, Army Medical University, Chongqing 400038, China.
| | - Qinghua Zhang
- Department of Obstetrics and Gynecology, Daping Hospital, Army Medical University, Chongqing 400042, China.
| |
Collapse
|
15
|
Ono D, Mojica MF, Bethel CR, Ishii Y, Drusin SI, Moreno DM, Vila AJ, Bonomo RA. Structural role of K224 in taniborbactam inhibition of NDM-1. Antimicrob Agents Chemother 2024; 68:e0133223. [PMID: 38174924 PMCID: PMC10848753 DOI: 10.1128/aac.01332-23] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 11/22/2023] [Indexed: 01/05/2024] Open
Abstract
Taniborbactam (TAN; VNRX-5133) is a novel bicyclic boronic acid β-lactamase inhibitor (BLI) being developed in combination with cefepime (FEP). TAN inhibits both serine and some metallo-β-lactamases. Previously, the substitution R228L in VIM-24 was shown to increase activity against oxyimino-cephalosporins like FEP and ceftazidime (CAZ). We hypothesized that substitutions at K224, the homologous position in NDM-1, could impact FEP/TAN resistance. To evaluate this, a library of codon-optimized NDM K224X clones for minimum inhibitory concentration (MIC) measurements was constructed; steady-state kinetics and molecular docking simulations were next performed. Surprisingly, our investigation revealed that the addition of TAN restored FEP susceptibility only for NDM-1, as the MICs for the other 19 K224X variants remained comparable to those of FEP alone. Moreover, compared to NDM-1, all K224X variants displayed significantly lower MICs for imipenem, tebipenem, and cefiderocol (32-, 133-, and 33-fold lower, respectively). In contrast, susceptibility to CAZ was mostly unaffected. Kinetic assays with the K224I variant, the only variant with hydrolytic activity to FEP comparable to NDM-1, confirmed that the inhibitory capacity of TAN was modestly compromised (IC50 0.01 µM vs 0.14 µM for NDM-1). Lastly, structural modeling and docking simulations of TAN in NDM-1 and in the K224I variant revealed that the hydrogen bond between TAN's carboxylate with K224 is essential for the productive binding of TAN to the NDM-1 active site. In addition to the report of NDM-9 (E149K) as FEP/TAN resistant, this study demonstrates the fundamental role of single amino acid substitutions in the inhibition of NDM-1 by TAN.
Collapse
Affiliation(s)
- Daisuke Ono
- Department of Medicine, Division of Infectious Diseases, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
- Department of Molecular Biology and Microbiology, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
- Research Service, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, Ohio, USA
| | - Maria F. Mojica
- Department of Molecular Biology and Microbiology, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
- Research Service, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, Ohio, USA
- CWRU-Cleveland VAMC Center for Antimicrobial Resistance and Epidemiology (Case VA CARES), Cleveland, Ohio, USA
| | - Christopher R. Bethel
- Research Service, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, Ohio, USA
| | - Yoshikazu Ishii
- Department of Microbiology and Infectious Disease, Toho University School of Medicine, Tokyo, Japan
| | - Salvador I. Drusin
- Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
- Instituto de Química Rosario (IQUIR), CONICET, Rosario, Argentina
| | - Diego M. Moreno
- Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
- Instituto de Química Rosario (IQUIR), CONICET, Rosario, Argentina
| | - Alejandro J. Vila
- Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
- Instituto de Biología Molecular y Celular de Rosario (IBR), CONICET, Universidad Nacional de Rosario, Rosario, Argentina
| | - Robert A. Bonomo
- Department of Medicine, Division of Infectious Diseases, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
- Department of Molecular Biology and Microbiology, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
- Research Service, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, Ohio, USA
- CWRU-Cleveland VAMC Center for Antimicrobial Resistance and Epidemiology (Case VA CARES), Cleveland, Ohio, USA
- Department of Pharmacology, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
- Department of Biochemistry, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
- Department of Proteomics and Bioinformatics, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
- Clinician Scientist Investigator, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, Ohio, USA
| |
Collapse
|
16
|
Jacobs LMC, Consol P, Chen Y. Drug Discovery in the Field of β-Lactams: An Academic Perspective. Antibiotics (Basel) 2024; 13:59. [PMID: 38247618 PMCID: PMC10812508 DOI: 10.3390/antibiotics13010059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 12/21/2023] [Accepted: 12/23/2023] [Indexed: 01/23/2024] Open
Abstract
β-Lactams are the most widely prescribed class of antibiotics that inhibit penicillin-binding proteins (PBPs), particularly transpeptidases that function in peptidoglycan synthesis. A major mechanism of antibiotic resistance is the production of β-lactamase enzymes, which are capable of hydrolyzing β-lactam antibiotics. There have been many efforts to counter increasing bacterial resistance against β-lactams. These studies have mainly focused on three areas: discovering novel inhibitors against β-lactamases, developing new β-lactams less susceptible to existing resistance mechanisms, and identifying non-β-lactam inhibitors against cell wall transpeptidases. Drug discovery in the β-lactam field has afforded a range of research opportunities for academia. In this review, we summarize the recent new findings on both β-lactamases and cell wall transpeptidases because these two groups of enzymes are evolutionarily and functionally connected. Many efforts to develop new β-lactams have aimed to inhibit both transpeptidases and β-lactamases, while several promising novel β-lactamase inhibitors have shown the potential to be further developed into transpeptidase inhibitors. In addition, the drug discovery progress against each group of enzymes is presented in three aspects: understanding the targets, screening methodology, and new inhibitor chemotypes. This is to offer insights into not only the advancement in this field but also the challenges, opportunities, and resources for future research. In particular, cyclic boronate compounds are now capable of inhibiting all classes of β-lactamases, while the diazabicyclooctane (DBO) series of small molecules has led to not only new β-lactamase inhibitors but potentially a new class of antibiotics by directly targeting PBPs. With the cautiously optimistic successes of a number of new β-lactamase inhibitor chemotypes and many questions remaining to be answered about the structure and function of cell wall transpeptidases, non-β-lactam transpeptidase inhibitors may usher in the next exciting phase of drug discovery in this field.
Collapse
Affiliation(s)
| | | | - Yu Chen
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA; (L.M.C.J.); (P.C.)
| |
Collapse
|
17
|
Azman AA, Leow ATC, Noor NDM, Noor SAM, Latip W, Ali MSM. Worldwide trend discovery of structural and functional relationship of metallo-β-lactamase for structure-based drug design: A bibliometric evaluation and patent analysis. Int J Biol Macromol 2024; 256:128230. [PMID: 38013072 DOI: 10.1016/j.ijbiomac.2023.128230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 10/11/2023] [Accepted: 11/16/2023] [Indexed: 11/29/2023]
Abstract
Metallo-β-lactamase (MBL) is an enzyme produced by clinically important bacteria that can inactivate many commonly used antibiotics, making them a significant concern in treating bacterial infections and the risk of having high antibiotic resistance issues among the community. This review presents a bibliometric and patent analysis of MBL worldwide research trend based on the Scopus and World Intellectual Property Organization databases in 2013-2022. Based on the keywords related to MBL in the article title, abstract, and keywords, 592 research articles were retrieved for further analysis using various tools such as Microsoft Excel to determine the frequency analysis, VOSviewer for bibliometric networks visualization, and Harzing's Publish or Perish for citation metrics analysis. Standard bibliometric parameters were analysed to evaluate the field's research trend, such as the growth of publications, topographical distribution, top subject area, most relevant journal, top cited documents, most relevant authors, and keyword trend analysis. Within 10 years, MBL discovery has shown a steady and continuous growth of interest among the community of researchers. United States of America, China, and the United Kingdom are the top 3 countries contribute high productivity to the field. The patent analysis also shows several impactful filed patents, indicating the significance of development research on the structural and functional relationship of MBL for an effective structure-based drug design (SBDD). Developing new MBL inhibitors using SBDD could help address the research gap and provide new successful therapeutic options for treating MBL-producing bacterial infections.
Collapse
Affiliation(s)
- Ameera Aisyah Azman
- Enzyme and Microbial Technology Research Center, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Selangor 43400, Malaysia; Department of Biochemistry, Faculty of Biotechnology and Biomolecular Science, Universiti Putra Malaysia, Serdang, Selangor 43400, Malaysia
| | - Adam Thean Chor Leow
- Enzyme and Microbial Technology Research Center, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Selangor 43400, Malaysia; Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Selangor 43400, Malaysia
| | - Noor Dina Muhd Noor
- Enzyme and Microbial Technology Research Center, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Selangor 43400, Malaysia; Department of Biochemistry, Faculty of Biotechnology and Biomolecular Science, Universiti Putra Malaysia, Serdang, Selangor 43400, Malaysia
| | - Siti Aminah Mohd Noor
- Center for Defence Foundation Studies, National Defence University of Malaysia, Kem Perdana Sungai Besi, Kuala Lumpur 57000, Malaysia
| | - Wahhida Latip
- Enzyme and Microbial Technology Research Center, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Selangor 43400, Malaysia
| | - Mohd Shukuri Mohamad Ali
- Enzyme and Microbial Technology Research Center, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Selangor 43400, Malaysia; Department of Biochemistry, Faculty of Biotechnology and Biomolecular Science, Universiti Putra Malaysia, Serdang, Selangor 43400, Malaysia.
| |
Collapse
|
18
|
Farhat N, Khan AU. Repurposing FDA approved drug molecules against A B C classes of β-lactamases: a computational biology and molecular dynamics simulations study. J Biomol Struct Dyn 2023; 42:13635-13649. [PMID: 37909541 DOI: 10.1080/07391102.2023.2276890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 10/23/2023] [Indexed: 11/03/2023]
Abstract
β-lactamase are the main resistance factor for β-lactam antibiotics in Gram-negative bacteria. Since β-lactam antibiotics are being utilised as an antimicrobial agents extensively for the past 70 years, a large number of β-lactam-inactivating β-lactamases have been produced by bacteria. Here, we employed a structure-based drug discovery approach to identify and assess the efficacy of a potential medication that might block the β-lactamases which hydrolyse antibiotics. The FDA-approved medications were subjected to virtual screening, molecular docking, molecular dynamics simulations, density functional theory, and covalent docking against the β-lactamases. We identified diosmin, hidrosmin, monoxuritin and solasulfone as β-lactamase inhibitors which are authorised for therapeutic use in humans. These medications interact in a remarkable variety of non-covalent ways with the conserved residues in the substrate-binding pocket of the β-lactamases. Diosmin has been identified as an inhibitor that binds covalently to the NDM-1 a class B metallo-betalactamase. After experimental validation and clinical demonstration, this study offers adequate evidence for the therapeutic use of these drugs for controlling multidrug resistance.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Nabeela Farhat
- Medical Microbiology and Molecular Biology Lab. Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, India
| | - Asad U Khan
- Medical Microbiology and Molecular Biology Lab. Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, India
| |
Collapse
|
19
|
Ayipo YO, Ahmad I, Alananzeh W, Lawal A, Patel H, Mordi MN. Computational modelling of potential Zn-sensitive non-β-lactam inhibitors of imipenemase-1 (IMP-1). J Biomol Struct Dyn 2023; 41:10096-10116. [PMID: 36476097 DOI: 10.1080/07391102.2022.2153168] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 11/24/2022] [Indexed: 12/13/2022]
Abstract
Antibiotic resistance (AR) remains one of the leading global health challenges, mostly implicated in disease-related deaths. The Enterobacteriaceae-producing metallo-β-lactamases (MBLs) are critically involved in AR pathogenesis through Zn-dependent catalytic destruction of β-lactam antibiotics, yet with limited successful clinical inhibitors. The efficacy of relevant broad-spectrum β-lactams including imipenem and meropenem are seriously challenged by their susceptibility to the Zn-dependent carbapenemase hydrolysis, as such, searching for alternatives remains imperative. In this study, computational molecular modelling and virtual screening methods were extensively applied to identify new putative Zn-sensitive broad-spectrum inhibitors of MBLs, specifically imipenemase-1 (IMP-1) from the IBScreen database. Three ligands, STOCK3S-30154, STOCK3S-30418 and STOCK3S-30514 selectively displayed stronger binding interactions with the enzymes compared to reference inhibitors, imipenem and meropenem. For instance, the ligands showed molecular docking scores of -9.450, -8.005 and -10.159 kcal/mol, and MM-GBSA values of -40.404, -31.902 and -33.680 kcal/mol respectively against the IMP-1. Whereas, imipenem and meropenem showed docking scores of -9.038 and -10.875 kcal/mol, and MM-GBSA of -31.184 and -32.330 kcal/mol respectively against the enzyme. The ligands demonstrated good thermodynamic stability and compactness in complexes with IMP-1 throughout the 100 ns molecular dynamics (MD) trajectories. Interestingly, their binding affinities and stabilities were significantly affected in contacts with the remodelled Zn-deficient IMP-1, indicating sensitivity to the carbapenemase active Zn site, however, with non-β-lactam scaffolds, tenable to resist catalytic hydrolysis. They displayed ideal drug-like ADMET properties, thus, representing putative Zn-sensitive non-β-lactam inhibitors of IMP-1 amenable for further experimental studies.
Collapse
Affiliation(s)
- Yusuf Oloruntoyin Ayipo
- Centre for Drug Research, Universiti Sains Malaysia, USM, Pulau Pinang, Malaysia
- Department of Chemistry and Industrial Chemistry, Kwara State University, Ilorin, Nigeria
| | - Iqrar Ahmad
- Department of Pharmaceutical Chemistry, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur, Maharashtra, India
| | - Waleed Alananzeh
- Centre for Drug Research, Universiti Sains Malaysia, USM, Pulau Pinang, Malaysia
| | - Amudat Lawal
- Department of Chemistry, University of Ilorin, Ilorin, Nigeria
| | - Harun Patel
- Department of Pharmaceutical Chemistry, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur, Maharashtra, India
| | - Mohd Nizam Mordi
- Centre for Drug Research, Universiti Sains Malaysia, USM, Pulau Pinang, Malaysia
| |
Collapse
|
20
|
Benin BM, Hillyer T, Crugnale AS, Fulk A, Thomas CA, Crowder MW, Smith MA, Shin WS. Taxifolin as a Metallo-β-Lactamase Inhibitor in Combination with Augmentin against Verona Imipenemase 2 Expressing Pseudomonas aeruginosa. Microorganisms 2023; 11:2653. [PMID: 38004664 PMCID: PMC10673258 DOI: 10.3390/microorganisms11112653] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/23/2023] [Accepted: 10/25/2023] [Indexed: 11/26/2023] Open
Abstract
Among the various mechanisms that bacteria use to develop antibiotic resistance, the multiple expression of β-lactamases is particularly problematic, threatening public health and increasing patient mortality rates. Even if a combination therapy-in which a β-lactamase inhibitor is administered together with a β-lactam antibiotic-has proven effective against serine-β-lactamases, there are no currently approved metallo-β-lactamase inhibitors. Herein, we demonstrate that quercetin and its analogs are promising starting points for the further development of safe and effective metallo-β-lactamase inhibitors. Through a combined computational and in vitro approach, taxifolin was found to inhibit VIM-2 expressing P. aeruginosa cell proliferation at <4 μg/mL as part of a triple combination with amoxicillin and clavulanate. Furthermore, we tested this combination in mice with abrasive skin infections. Together, these results demonstrate that flavonol compounds, such as taxifolin, may be developed into effective metallo-β-lactamase inhibitors.
Collapse
Affiliation(s)
- Bogdan M. Benin
- Department of Pharmaceutical Sciences, Northeast Ohio Medical University, Rootstown, OH 44272, USA; (B.M.B.); (T.H.); (A.F.); (M.A.S.)
| | - Trae Hillyer
- Department of Pharmaceutical Sciences, Northeast Ohio Medical University, Rootstown, OH 44272, USA; (B.M.B.); (T.H.); (A.F.); (M.A.S.)
| | - Aylin S. Crugnale
- Department of Pharmaceutical Sciences, Northeast Ohio Medical University, Rootstown, OH 44272, USA; (B.M.B.); (T.H.); (A.F.); (M.A.S.)
| | - Andrew Fulk
- Department of Pharmaceutical Sciences, Northeast Ohio Medical University, Rootstown, OH 44272, USA; (B.M.B.); (T.H.); (A.F.); (M.A.S.)
| | - Caitlyn A. Thomas
- Department of Chemistry and Biochemistry, Miami University, Oxford, OH 45056, USA; (C.A.T.); (M.W.C.)
| | - Michael W. Crowder
- Department of Chemistry and Biochemistry, Miami University, Oxford, OH 45056, USA; (C.A.T.); (M.W.C.)
| | - Matthew A. Smith
- Department of Pharmaceutical Sciences, Northeast Ohio Medical University, Rootstown, OH 44272, USA; (B.M.B.); (T.H.); (A.F.); (M.A.S.)
- Akron Children’s Hospital, Rebecca D. Considine Research Institute, Akron, OH 44302, USA
| | - Woo Shik Shin
- Department of Pharmaceutical Sciences, Northeast Ohio Medical University, Rootstown, OH 44272, USA; (B.M.B.); (T.H.); (A.F.); (M.A.S.)
| |
Collapse
|
21
|
Yan YH, Zhang TT, Li R, Wang SY, Wei LL, Wang XY, Zhu KR, Li SR, Liang GQ, Yang ZB, Yang LL, Qin S, Li GB. Discovery of 2-Aminothiazole-4-carboxylic Acids as Broad-Spectrum Metallo-β-lactamase Inhibitors by Mimicking Carbapenem Hydrolysate Binding. J Med Chem 2023; 66:13746-13767. [PMID: 37791640 DOI: 10.1021/acs.jmedchem.3c01189] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
Metallo-β-lactamases (MBLs) are zinc-dependent enzymes capable of hydrolyzing all bicyclic β-lactam antibiotics, posing a great threat to public health. However, there are currently no clinically approved MBL inhibitors. Despite variations in their active sites, MBLs share a common catalytic mechanism with carbapenems, forming similar reaction species and hydrolysates. We here report the development of 2-aminothiazole-4-carboxylic acids (AtCs) as broad-spectrum MBL inhibitors by mimicking the anchor pharmacophore features of carbapenem hydrolysate binding. Several AtCs manifested potent activity against B1, B2, and B3 MBLs. Crystallographic analyses revealed a common binding mode of AtCs with B1, B2, and B3 MBLs, resembling binding observed in the MBL-carbapenem product complexes. AtCs restored Meropenem activity against MBL-producing isolates. In the murine sepsis model, AtCs exhibited favorable synergistic efficacy with Meropenem, along with acceptable pharmacokinetics and safety profiles. This work offers promising lead compounds and a structural basis for the development of potential drug candidates to combat MBL-mediated antimicrobial resistance.
Collapse
Affiliation(s)
- Yu-Hang Yan
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Ting-Ting Zhang
- School of Pharmaceutical Sciences, Institute of Drug Discovery and Development, Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, Zhengzhou University, Zhengzhou 450001, China
| | - Rong Li
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
- College of Food and Bioengineering, Xihua University, Chengdu 610039, China
| | - Si-Yao Wang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Liu-Liu Wei
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Xin-Yue Wang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Kai-Rong Zhu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Shan-Rui Li
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Guo-Qing Liang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Zeng-Bao Yang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Ling-Ling Yang
- College of Food and Bioengineering, Xihua University, Chengdu 610039, China
| | - Shangshang Qin
- School of Pharmaceutical Sciences, Institute of Drug Discovery and Development, Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, Zhengzhou University, Zhengzhou 450001, China
| | - Guo-Bo Li
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| |
Collapse
|
22
|
Alonso SDV, González Flecha FL. Fifty years of biophysics in Argentina. Biophys Rev 2023; 15:431-438. [PMID: 37681102 PMCID: PMC10480372 DOI: 10.1007/s12551-023-01114-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 08/10/2023] [Indexed: 09/09/2023] Open
Abstract
In 1972, a group of young Argentinean scientists nucleated in the so-called Membrane Club constituted the Biophysical Society of Argentina (SAB). Over the years, this Society has grown and embraced new areas of research and emerging technologies. In this commentary, we provide an overview of the early stages of biophysics development in Argentina and highlight some of the notable achievements made during the past five decades. The SAB Annual Meetings have been a platform for intense scientific discussions, and the Society has fostered numerous international connections, becoming a hallmark of SAB activities over these 50 years. Initially centered on membrane biophysics, SAB focus has since expanded to encompass diverse fields such as molecular, cellular, and systems biophysics.
Collapse
Affiliation(s)
- Silvia del V. Alonso
- Laboratorio de Bio-Nanotecnología, Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Bernal, Argentina
- Grupo de Biología Estructural y Biotecnología (GBEyB), IMBICE (CONICET CCT-La Plata), La Plata, Argentina
| | - F. Luis González Flecha
- Laboratorio de Biofísica Molecular, Instituto de Química y Fisicoquímica Biológicas, Universidad de Buenos Aires – CONICET, Buenos Aires, Argentina
| |
Collapse
|
23
|
Lu S, Montoya M, Hu L, Neetu N, Sankaran B, Prasad BVV, Palzkill T. Mutagenesis and structural analysis reveal the CTX-M β-lactamase active site is optimized for cephalosporin catalysis and drug resistance. J Biol Chem 2023; 299:104630. [PMID: 36963495 PMCID: PMC10139949 DOI: 10.1016/j.jbc.2023.104630] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 03/17/2023] [Accepted: 03/19/2023] [Indexed: 03/26/2023] Open
Abstract
CTX-M β-lactamases are a widespread source of resistance to β-lactam antibiotics in Gram-negative bacteria. These enzymes readily hydrolyze penicillins and cephalosporins, including oxyimino-cephalosporins such as cefotaxime. To investigate the preference of CTX-M enzymes for cephalosporins, we examined eleven active-site residues in the CTX-M-14 β-lactamase model system by alanine mutagenesis to assess the contribution of the residues to catalysis and specificity for the hydrolysis of the penicillin, ampicillin, and the cephalosporins cephalothin and cefotaxime. Key active site residues for class A β-lactamases, including Lys73, Ser130, Asn132, Lys234, Thr216, and Thr235, contribute significantly to substrate binding and catalysis of penicillin and cephalosporin substrates in that alanine substitutions decrease both kcat and kcat/KM. A second group of residues, including Asn104, Tyr105, Asn106, Thr215, and Thr216, contribute only to substrate binding, with the substitutions decreasing only kcat/KM. Importantly, calculating the average effect of a substitution across the 11 active-site residues shows that the most significant impact is on cefotaxime hydrolysis while ampicillin hydrolysis is least affected, suggesting the active site is highly optimized for cefotaxime catalysis. Furthermore, we determined X-ray crystal structures for the apo-enzymes of the mutants N106A, S130A, N132A, N170A, T215A, and T235A. Surprisingly, in the structures of some mutants, particularly N106A and T235A, the changes in structure propagate from the site of substitution to other regions of the active site, suggesting that the impact of substitutions is due to more widespread changes in structure and illustrating the interconnected nature of the active site.
Collapse
Affiliation(s)
- Shuo Lu
- Department of Pharmacology and Chemical Biology, Baylor College of Medicine, Houston, Texas, USA
| | - Miranda Montoya
- Department of Pharmacology and Chemical Biology, Baylor College of Medicine, Houston, Texas, USA
| | - Liya Hu
- Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas, USA
| | - Neetu Neetu
- Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas, USA
| | - Banumathi Sankaran
- Department of Molecular Biophysics and Integrated Bioimaging, Berkeley Center for Structural Biology, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - B V Venkataram Prasad
- Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas, USA
| | - Timothy Palzkill
- Department of Pharmacology and Chemical Biology, Baylor College of Medicine, Houston, Texas, USA; Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas, USA.
| |
Collapse
|
24
|
Hinchliffe P, Calvopiña K, Rabe P, Mojica MF, Schofield CJ, Dmitrienko GI, Bonomo RA, Vila AJ, Spencer J. Interactions of hydrolyzed β-lactams with the L1 metallo-β-lactamase: Crystallography supports stereoselective binding of cephem/carbapenem products. J Biol Chem 2023; 299:104606. [PMID: 36924941 PMCID: PMC10148155 DOI: 10.1016/j.jbc.2023.104606] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 02/25/2023] [Accepted: 02/27/2023] [Indexed: 03/15/2023] Open
Abstract
L1 is a dizinc subclass B3 metallo-β-lactamase (MBL) that hydrolyzes most β-lactam antibiotics and is a key resistance determinant in the Gram-negative pathogen Stenotrophomonas maltophilia, an important cause of nosocomial infections in immunocompromised patients. L1 is not usefully inhibited by MBL inhibitors in clinical trials, underlying the need for further studies on L1 structure and mechanism. We describe kinetic studies and crystal structures of L1 in complex with hydrolyzed β-lactams from the penam (mecillinam), cephem (cefoxitin/cefmetazole), and carbapenem (tebipenem, doripenem, and panipenem) classes. Despite differences in their structures, all the β-lactam-derived products hydrogen bond to Tyr33, Ser221, and Ser225 and are stabilized by interactions with a conserved hydrophobic pocket. The carbapenem products were modeled as Δ1-imines, with (2S)-stereochemistry. Their binding mode is determined by the presence of a 1β-methyl substituent: the Zn-bridging hydroxide either interacts with the C-6 hydroxyethyl group (1β-hydrogen-containing carbapenems) or is displaced by the C-6 carboxylate (1β-methyl-containing carbapenems). Unexpectedly, the mecillinam product is a rearranged N-formyl amide rather than penicilloic acid, with the N-formyl oxygen interacting with the Zn-bridging hydroxide. NMR studies imply mecillinam rearrangement can occur nonenzymatically in solution. Cephem-derived imine products are bound with (3R)-stereochemistry and retain their 3' leaving groups, likely representing stable endpoints, rather than intermediates, in MBL-catalyzed hydrolysis. Our structures show preferential complex formation by carbapenem- and cephem-derived species protonated on the equivalent (β) faces and so identify interactions that stabilize diverse hydrolyzed antibiotics. These results may be exploited in developing antibiotics, and β-lactamase inhibitors, that form long-lasting complexes with dizinc MBLs.
Collapse
Affiliation(s)
- Philip Hinchliffe
- School of Cellular and Molecular Medicine, University of Bristol, Biomedical Sciences Building, University Walk, Bristol, United Kingdom
| | - Karina Calvopiña
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research, University of Oxford, Oxford, United Kingdom
| | - Patrick Rabe
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research, University of Oxford, Oxford, United Kingdom
| | - Maria F Mojica
- Department of Molecular Biology and Microbiology, School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA; U.S. Department of Veterans Affairs, CWRU-Cleveland VA Medical Center for Antimicrobial Resistance and Epidemiology (Case VA CARES), Cleveland, Ohio, USA; Research Service, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, Ohio, USA; Grupo de Resistencia Antimicrobiana y Epidemiología Hospitalaria, Universidad El Bosque, Bogotá, Colombia
| | - Christopher J Schofield
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research, University of Oxford, Oxford, United Kingdom
| | - Gary I Dmitrienko
- Department of Chemistry, University of Waterloo, Waterloo, Ontario, Canada; School of Pharmacy, University of Waterloo, Waterloo, Ontario, Canada
| | - Robert A Bonomo
- U.S. Department of Veterans Affairs, CWRU-Cleveland VA Medical Center for Antimicrobial Resistance and Epidemiology (Case VA CARES), Cleveland, Ohio, USA; Research Service, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, Ohio, USA; Departments of Medicine, Biochemistry, Pharmacology, and Proteomics and Bioinformatics, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - Alejandro J Vila
- U.S. Department of Veterans Affairs, CWRU-Cleveland VA Medical Center for Antimicrobial Resistance and Epidemiology (Case VA CARES), Cleveland, Ohio, USA; Laboratorio de Metaloproteínas, Instituto de Biología Molecular y Celular de Rosario (IBR, CONICET-UNR), Rosario, Argentina; Área Biofísica, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| | - James Spencer
- School of Cellular and Molecular Medicine, University of Bristol, Biomedical Sciences Building, University Walk, Bristol, United Kingdom.
| |
Collapse
|
25
|
Tolbatov I, Marrone A. Auranofin Targeting the NDM-1 Beta-Lactamase: Computational Insights into the Electronic Configuration and Quasi-Tetrahedral Coordination of Gold Ions. Pharmaceutics 2023; 15:pharmaceutics15030985. [PMID: 36986846 PMCID: PMC10057648 DOI: 10.3390/pharmaceutics15030985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/14/2023] [Accepted: 03/16/2023] [Indexed: 03/30/2023] Open
Abstract
Recently, the well-characterized metallodrug auranofin has been demonstrated to restore the penicillin and cephalosporin sensitivity in resistant bacterial strains via the inhibition of the NDM-1 beta-lactamase, which is operated via the Zn/Au substitution in its bimetallic core. The resulting unusual tetrahedral coordination of the two ions was investigated via the density functional theory calculations. By assessing several charge and multiplicity schemes, coupled with on/off constraining the positions of the coordinating residues, it was demonstrated that the experimental X-ray structure of the gold-bound NDM-1 is consistent with either Au(I)-Au(I) or Au(II)-Au(II) bimetallic moieties. The presented results suggest that the most probable mechanism for the auranofin-based Zn/Au exchange in NDM-1 includes the early formation of the Au(I)-Au(I) system, superseded by oxidation yielding the Au(II)-Au(II) species bearing the highest resemblance to the X-ray structure.
Collapse
Affiliation(s)
- Iogann Tolbatov
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology, Av. Paisos Catalans 16, 43007 Tarragona, Spain
| | - Alessandro Marrone
- Dipartimento di Farmacia, Università degli Studi "G. D'Annunzio" Chieti-Pescara, Via dei Vestini 31, 66100 Chieti, Italy
| |
Collapse
|
26
|
Ikeda A, Ikegaya Y, Honsho M, Matsui H, Nonaka K, Ishii T, Asami Y, Hanaki H, Hirose T, Sunazuka T. A new selective inhibitor for IMP-1 metallo-β-lactamase, 3Z,5E-octa-3,5-diene-1,3,4-tricarboxylic acid-3,4-anhydride. Bioorg Med Chem 2023; 78:117109. [PMID: 36603397 DOI: 10.1016/j.bmc.2022.117109] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/15/2022] [Accepted: 11/17/2022] [Indexed: 12/15/2022]
Abstract
3Z,5E-Octa-3,5-diene-1,3,4-tricarboxylic acid-3,4-anhydride (ODTAA, 1) was isolated from Paecilomyces sp. FKI-6801 for its selective IMP-1 MBL inhibitory activity. The first total synthesis of 1 from the commercially available compound was achieved in 9 steps with 28% overall yield. Introduction of catechol to the maleic anhydride of 1 improved the IC50 toward IMP-1 MBL and the inhibitory activity against IMP-1 MBL-producing P. aeruginosa. Treatment of the maleic anhydride scaffold with amine showed that the β-carbonyl-α,β-unsaturated carboxylic acid moiety is required as a pharmacophore for IMP-1 MBL inhibition.
Collapse
Affiliation(s)
- Akari Ikeda
- Ōmura Satoshi Memorial Institute, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo, 108-8641, Japan; Graduate School of Infection Control Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo, 108-8641, Japan
| | - Yoshiki Ikegaya
- Graduate School of Infection Control Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo, 108-8641, Japan
| | - Masako Honsho
- Ōmura Satoshi Memorial Institute, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo, 108-8641, Japan; Graduate School of Infection Control Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo, 108-8641, Japan
| | - Hidehito Matsui
- Ōmura Satoshi Memorial Institute, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo, 108-8641, Japan; Graduate School of Infection Control Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo, 108-8641, Japan
| | - Kenichi Nonaka
- Ōmura Satoshi Memorial Institute, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo, 108-8641, Japan; Graduate School of Infection Control Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo, 108-8641, Japan
| | - Takahiro Ishii
- Ōmura Satoshi Memorial Institute, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo, 108-8641, Japan; Graduate School of Infection Control Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo, 108-8641, Japan
| | - Yukihiro Asami
- Ōmura Satoshi Memorial Institute, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo, 108-8641, Japan; Graduate School of Infection Control Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo, 108-8641, Japan
| | - Hideaki Hanaki
- Ōmura Satoshi Memorial Institute, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo, 108-8641, Japan; Graduate School of Infection Control Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo, 108-8641, Japan
| | - Tomoyasu Hirose
- Ōmura Satoshi Memorial Institute, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo, 108-8641, Japan; Graduate School of Infection Control Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo, 108-8641, Japan
| | - Toshiaki Sunazuka
- Ōmura Satoshi Memorial Institute, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo, 108-8641, Japan; Graduate School of Infection Control Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo, 108-8641, Japan.
| |
Collapse
|
27
|
Yin C, Song Z, Tian H, Palzkill T, Tao P. Unveiling the structural features that regulate carbapenem deacylation in KPC-2 through QM/MM and interpretable machine learning. Phys Chem Chem Phys 2023; 25:1349-1362. [PMID: 36537692 PMCID: PMC11162551 DOI: 10.1039/d2cp03724f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Resistance to carbapenem β-lactams presents major clinical and economical challenges for the treatment of pathogen infections. The fast hydrolysis of carbapenems by carbapenemase-producing bacterial strains enables the effective deactivation of carbapenem antibiotics. In this study, we aim to unravel the structural features that distinguish the notable deacylation activity of carbapenemases. The deacylation reactions between imipenem (IPM) and the KPC-2 class A serine-based β-lactamases (ASβLs) are modeled with combined quantum mechanical/molecular mechanical (QM/MM) minimum energy pathway (MEP) calculations and interpretable machine-learning (ML) methods. We first applied a dual-level computational protocol to achieve fast sampling of QM/MM MEPs. A tree-based ensemble ML model was employed to learn the MEP activation barriers from the conformational features of the KPC-2/IPM active site. The barrier-predicting model was then unboxed using the Shapley additive explanation (SHAP) importance attribution methods to derive mechanistic insights, which were also verified by additional QM/MM wavefunction analysis. Essentially, we show that potential hydrogen bonding interactions of the general base and the tautomerization states of the carbapenem pyrroline ring could concertedly regulate the activation barrier of KPC-2/IPM deacylation. Nonetheless, we demonstrate the efficacy of interpretable ML to assist the analysis of QM/MM simulation data for robust extraction of human-interpretable mechanistic insights.
Collapse
Affiliation(s)
- Chao Yin
- Department of Chemistry, Center for Research Computing, Center for Drug Discovery, Design, and Delivery (CD4), Southern Methodist University, Dallas, Texas, 75205, USA.
| | - Zilin Song
- Department of Chemistry, Center for Research Computing, Center for Drug Discovery, Design, and Delivery (CD4), Southern Methodist University, Dallas, Texas, 75205, USA.
| | - Hao Tian
- Department of Chemistry, Center for Research Computing, Center for Drug Discovery, Design, and Delivery (CD4), Southern Methodist University, Dallas, Texas, 75205, USA.
| | - Timothy Palzkill
- Department of Pharmacology and Chemical Biology, Baylor College of Medicine, Houston, Texas, 77030, USA
| | - Peng Tao
- Department of Chemistry, Center for Research Computing, Center for Drug Discovery, Design, and Delivery (CD4), Southern Methodist University, Dallas, Texas, 75205, USA.
| |
Collapse
|
28
|
Krivitskaya AV, Khrenova MG. Interplay between the Enamine and Imine Forms of the Hydrolyzed Imipenem in the Active Sites of Metallo-β-lactamases and in Water Solution. J Chem Inf Model 2022; 62:6519-6529. [PMID: 35758922 DOI: 10.1021/acs.jcim.2c00539] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Deactivation of the β-lactam antibiotics in the active sites of the β-lactamases is among the main mechanisms of bacterial antibiotic resistance. As drugs of last resort, carbapenems are efficiently hydrolyzed by metallo-β-lactamases, presenting a serious threat to human health. Our study reveals mechanistic aspects of the imipenem hydrolysis by bizinc metallo-β-lactamases, NDM-1 and L1, belonging to the B1 and the B3 subclasses, respectively. The results of QM(PBE0-D3/6-31G**)/MM simulations show that the enamine product with the protonated nitrogen atom is formed as the major product in NDM-1 and as the only product in the L1 active site. In NDM-1, there is also another reaction pathway that leads to the formation of the (S)-enantiomer of the imine form of the hydrolyzed imipenem; this process occurs with the higher energy barriers. The absence of the second pathway in L1 is due to the different amino acid composition of the active site loop. In L1, the hydrophobic Pro226 residue is located above the pyrroline ring of imipenem that blocks protonation of the carbon atom. Electron density analysis is performed at the stationary points to compare reaction pathways in L1 and NDM-1. Tautomerization from the enamine to the imine form likely happens in solution after the dissociation of the hydrolyzed imipenem from the active site of the enzyme. Classical molecular dynamics simulations of the hydrolyzed imipenem in solution, both with the neutral enamine and the negatively charged N-C2-C3 fragment, demonstrate a huge diversity of conformations. The vast majority of conformations blocks the C3-atom from the side required for the (S)-imine formation upon tautomerization. Thus, according to our calculations, formation of the (R)-imine is more likely. QM(PBE0-D3/6-31G**)/MM molecular dynamics simulations of the hydrolyzed imipenem with the negatively charged N-C2-C3 fragment followed by the Laplacian bond order analysis demonstrate that the N═C2-C3- resonance structure is the most pronounced that facilitates formation of the imine form. The proposed mechanism of the enzymatic enamine formation and its subsequent tautomerization to the imine form in solution is in agreement with the recent spectroscopic and NMR studies.
Collapse
Affiliation(s)
- Alexandra V Krivitskaya
- Bach Institute of Biochemistry, Federal Research Centre "Fundamentals of Biotechnology" of the Russian Academy of Sciences, Moscow 119071, Russia
| | - Maria G Khrenova
- Bach Institute of Biochemistry, Federal Research Centre "Fundamentals of Biotechnology" of the Russian Academy of Sciences, Moscow 119071, Russia.,Department of Chemistry, Interdisciplinary Scientific and Educational School of Moscow University "Brain, Cognitive Systems, Artificial Intelligence", Lomonosov Moscow State University, Moscow 119991, Russia
| |
Collapse
|
29
|
Kong WP, Chen YW, Wong KY. The crystal structure of the H116Q mutant of NDM-1: An enzyme devoid of zinc ions. J Struct Biol 2022; 214:107922. [PMID: 36375744 DOI: 10.1016/j.jsb.2022.107922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 10/31/2022] [Accepted: 11/07/2022] [Indexed: 11/13/2022]
Abstract
New Delhi metallo-β-lactamase 1 (NDM-1) is an important causative factor of antimicrobial resistance due to its efficient hydrolysis of a broad range of β-lactam compounds. The two zinc ions at the active site play essential roles in the NDM-1 catalytic activities. In a previous work, H116, one of the three ligands at the Zn1 site, was mutated in order to investigate the nature of zinc ion chelation. We report here the crystal structure of the NDM-1 H116Q mutant, that was designed to convert a B1 di-zinc enzyme into a B3 type, which either still binds two zinc ions or binds only one at the Zn2 site. The effect of mutation on the overall structure is minimal. Unexpectedly, no zinc ion was observed in the crystal structure. The Zn2-site ligating residue C221 forms a covalent bond with the nearby K121, a residue important in maintaining the active-site structure. The largest conformational changes were found at main-chain and side-chain atoms at residues 232-236 (loop 10), the proper configuration of which is known to be essential for substrate binding. The catalytic-site mutation caused little local changes, yet the effects were amplified and propagated to the substrate binding residues. There were big changes in the ψ angles of residues G232 and L234, which resulted in the side chain of N233 being displaced away from the substrate-binding site. In summary, we failed in turning a B1 enzyme into a B3 enzyme, yet we produced a zinc-less NDM-1 with residual activities.
Collapse
Affiliation(s)
- Wai-Po Kong
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China.
| | - Yu Wai Chen
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China.
| | - Kwok-Yin Wong
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China.
| |
Collapse
|
30
|
Wilamowski M, Sherrell DA, Kim Y, Lavens A, Henning RW, Lazarski K, Shigemoto A, Endres M, Maltseva N, Babnigg G, Burdette SC, Srajer V, Joachimiak A. Time-resolved β-lactam cleavage by L1 metallo-β-lactamase. Nat Commun 2022; 13:7379. [PMID: 36450742 PMCID: PMC9712583 DOI: 10.1038/s41467-022-35029-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 11/14/2022] [Indexed: 12/05/2022] Open
Abstract
Serial x-ray crystallography can uncover binding events, and subsequent chemical conversions occurring during enzymatic reaction. Here, we reveal the structure, binding and cleavage of moxalactam antibiotic bound to L1 metallo-β-lactamase (MBL) from Stenotrophomonas maltophilia. Using time-resolved serial synchrotron crystallography, we show the time course of β-lactam hydrolysis and determine ten snapshots (20, 40, 60, 80, 100, 150, 300, 500, 2000 and 4000 ms) at 2.20 Å resolution. The reaction is initiated by laser pulse releasing Zn2+ ions from a UV-labile photocage. Two metal ions bind to the active site, followed by binding of moxalactam and the intact β-lactam ring is observed for 100 ms after photolysis. Cleavage of β-lactam is detected at 150 ms and the ligand is significantly displaced. The reaction product adjusts its conformation reaching steady state at 2000 ms corresponding to the relaxed state of the enzyme. Only small changes are observed in the positions of Zn2+ ions and the active site residues. Mechanistic details captured here can be generalized to other MBLs.
Collapse
Affiliation(s)
- M Wilamowski
- Center for Structural Genomics of Infectious Diseases, Consortium for Advanced Science and Engineering, University of Chicago, Chicago, IL, 60667, USA
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL, 60637, USA
- Department of General Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology of Jagiellonian University, 30387, Krakow, Poland
| | - D A Sherrell
- Structural Biology Center, X-ray Science Division, Argonne National Laboratory, Argonne, IL, 60439, USA
| | - Y Kim
- Center for Structural Genomics of Infectious Diseases, Consortium for Advanced Science and Engineering, University of Chicago, Chicago, IL, 60667, USA
- Structural Biology Center, X-ray Science Division, Argonne National Laboratory, Argonne, IL, 60439, USA
| | - A Lavens
- Structural Biology Center, X-ray Science Division, Argonne National Laboratory, Argonne, IL, 60439, USA
| | - R W Henning
- Center for Advanced Radiation Sources, University of Chicago, Chicago, IL, 60637, USA
| | - K Lazarski
- Structural Biology Center, X-ray Science Division, Argonne National Laboratory, Argonne, IL, 60439, USA
| | - A Shigemoto
- Department of Chemistry and Biochemistry, Worcester Polytechnic Institute, Worcester, MA, 01609, USA
| | - M Endres
- Center for Structural Genomics of Infectious Diseases, Consortium for Advanced Science and Engineering, University of Chicago, Chicago, IL, 60667, USA
| | - N Maltseva
- Center for Structural Genomics of Infectious Diseases, Consortium for Advanced Science and Engineering, University of Chicago, Chicago, IL, 60667, USA
| | - G Babnigg
- Center for Structural Genomics of Infectious Diseases, Consortium for Advanced Science and Engineering, University of Chicago, Chicago, IL, 60667, USA
| | - S C Burdette
- Department of Chemistry and Biochemistry, Worcester Polytechnic Institute, Worcester, MA, 01609, USA
| | - V Srajer
- Center for Advanced Radiation Sources, University of Chicago, Chicago, IL, 60637, USA
| | - A Joachimiak
- Center for Structural Genomics of Infectious Diseases, Consortium for Advanced Science and Engineering, University of Chicago, Chicago, IL, 60667, USA.
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL, 60637, USA.
- Structural Biology Center, X-ray Science Division, Argonne National Laboratory, Argonne, IL, 60439, USA.
| |
Collapse
|
31
|
Fung YH, Kong WP, Leung ASL, Du R, So PK, Wong WL, Leung YC, Chen YW, Wong KY. NDM-1 Zn1-binding residue His116 plays critical roles in antibiotic hydrolysis. BIOCHIMICA ET BIOPHYSICA ACTA. PROTEINS AND PROTEOMICS 2022; 1870:140833. [PMID: 35944887 DOI: 10.1016/j.bbapap.2022.140833] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 06/28/2022] [Accepted: 08/04/2022] [Indexed: 06/15/2023]
Abstract
Bacteria expressing NDM-1 have been labeled as superbugs because it confers upon them resistance to a broad range of β-lactam antibiotics. The enzyme has a di‑zinc active centre, with the Zn2 site extensively studied. The roles of active-site Zn1 ligand residues are, however, still not fully understood. We carried out structure-function studies using the mutants, H116A, H116N, and H116Q. Zinc content analysis showed that Zn1 binding was weakened by 40 to 60% in the H116 mutants. The enzymatic-activity studies showed that the lower hydrolysis rates were mainly caused by their weaker substrate binding. The catalytic efficiency (kcat/Km) of the mutants followed the order: WT > > H116Q (decreased by 4-20 fold) > H116A (decreased by 20-700 fold) ≥ H116N (decreased by 6-800 fold). The maximum effect was observed on H116N against penicillin G, whereas ampicillin was not hydrolyzed at all. The fold-increase of Km values, which informs the weakening of substrate binding, were: H116A by 5-45 fold; H116N by 6-100 fold; H116Q by 2-10 fold. Molecular dynamics simulations suggested that the Zn1 site mutations affected the positions of Zn2 and the bridging hydroxide, by 0.8 to 1.2 Å, with the largest changes of ~1.5 Å observed on Zn2 ligand C221. A native hydrogen bond between H118 and D236 was disrupted in the H116N and H116Q mutants, which led to increased flexibility of loop 10. Consequently, residue N233 was no longer maintained at an optimal position for substrate binding. H116 connected loop 7 across Zn1 to loop 10, thereby contributed to the overall integrity. This work revealed that the H116-Zn1 interaction plays a critical role in defining the substrate-binding site. From these results, it can be inferred that inhibition strategies targeting the zinc ions may be a new direction for drug development.
Collapse
Affiliation(s)
- Yik-Hong Fung
- The State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Wai-Po Kong
- The State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Alan Siu Lun Leung
- The State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Ruolan Du
- The State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Pu-Kin So
- The State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Wing-Leung Wong
- The State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Yun-Chung Leung
- The State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Yu Wai Chen
- The State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Kwok-Yin Wong
- The State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China.
| |
Collapse
|
32
|
Yamamoto K, Tanaka H, Kurisu G, Nakano R, Yano H, Sakai H. Structural insights into the substrate specificity of IMP-6 and IMP-1 metallo-β-lactamases. J Biochem 2022; 173:21-30. [PMID: 36174533 PMCID: PMC9792659 DOI: 10.1093/jb/mvac080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 09/20/2022] [Accepted: 09/24/2022] [Indexed: 01/12/2023] Open
Abstract
IMP-type metallo-β-lactamases confer resistance to carbapenems and a broad spectrum of β-lactam antibiotics. IMP-6 and IMP-1 differ by only a point mutation: Ser262 in IMP-1 and Gly262 in IMP-6. The kcat/Km values of IMP-1 for imipenem and meropenem are nearly identical; however, for IMP-6, the kcat/Km for meropenem is 7-fold that for imipenem. In clinical practice, this may result in an ineffective therapeutic regimen and, consequently, in treatment failure. Here, we report the crystal structures of IMP-6 and IMP-1 with the same space group and similar cell constants at resolutions of 1.70 and 1.94 Å, respectively. The overall structures of IMP-6 and IMP-1 are similar. However, the loop region (residues 60-66), which participates in substrate binding, is more flexible in IMP-6 than in IMP-1. This difference in flexibility determines the substrate specificity of IMP-type metallo-β-lactamases for imipenem and meropenem. The amino acid at position 262 alters the mobility of His263; this affects the flexibility of the loop via a hydrogen bond with Pro68, which plays the role of a hinge in IMP-type metallo-β-lactamases. The substitution of Pro68 with a glycine elicited an increase in the Km of IMP-6 for imipenem, whereas the affinity for meropenem remained unchanged.
Collapse
Affiliation(s)
- Keizo Yamamoto
- Keizo Yamamoto, 840 Shijo-Cho, Kashihara, Nara 634-8521 Japan. Tel/Fax: +81-(0)744-29-8810,
| | - Hideaki Tanaka
- Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Genji Kurisu
- Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Ryuichi Nakano
- Department of Microbiology and Infectious Diseases, Nara Medical University, 840 Shojo-Cho, Kashihara, Nara 634-8521, Japan
| | - Hisakazu Yano
- Department of Microbiology and Infectious Diseases, Nara Medical University, 840 Shojo-Cho, Kashihara, Nara 634-8521, Japan
| | - Hiromi Sakai
- Department of Chemistry, Nara Medical University, 840 Shojo-Cho, Kashihara, Nara 634-8521, Japan
| |
Collapse
|
33
|
Iqbal Z, Sun J, Yang H, Ji J, He L, Zhai L, Ji J, Zhou P, Tang D, Mu Y, Wang L, Yang Z. Recent Developments to Cope the Antibacterial Resistance via β-Lactamase Inhibition. Molecules 2022; 27:3832. [PMID: 35744953 PMCID: PMC9227086 DOI: 10.3390/molecules27123832] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 06/06/2022] [Accepted: 06/09/2022] [Indexed: 12/01/2022] Open
Abstract
Antibacterial resistance towards the β-lactam (BL) drugs is now ubiquitous, and there is a major global health concern associated with the emergence of new β-lactamases (BLAs) as the primary cause of resistance. In addition to the development of new antibacterial drugs, β-lactamase inhibition is an alternative modality that can be implemented to tackle this resistance channel. This strategy has successfully revitalized the efficacy of a number of otherwise obsolete BLs since the discovery of the first β-lactamase inhibitor (BLI), clavulanic acid. Over the years, β-lactamase inhibition research has grown, leading to the introduction of new synthetic inhibitors, and a few are currently in clinical trials. Of note, the 1, 6-diazabicyclo [3,2,1]octan-7-one (DBO) scaffold gained the attention of researchers around the world, which finally culminated in the approval of two BLIs, avibactam and relebactam, which can successfully inhibit Ambler class A, C, and D β-lactamases. Boronic acids have shown promise in coping with Ambler class B β-lactamases in recent research, in addition to classes A, C, and D with the clinical use of vaborbactam. This review focuses on the further developments in the synthetic strategies using DBO as well as boronic acid derivatives. In addition, various other potential serine- and metallo- β-lactamases inhibitors that have been developed in last few years are discussed briefly as well. Furthermore, binding interactions of the representative inhibitors have been discussed based on the crystal structure data of inhibitor-enzyme complex, published in the literature.
Collapse
Affiliation(s)
- Zafar Iqbal
- Ningxia Centre of Organic Synthesis and Engineering Technology, Ningxia Academy of Agriculture and Forestry Sciences, No. 590, Huanghe East Road, Jinfeng District, Yinchuan 750002, China; (H.Y.); (J.J.); (L.H.); (L.Z.); (J.J.); (P.Z.); (D.T.); (Y.M.); (L.W.)
| | - Jian Sun
- Ningxia Centre of Organic Synthesis and Engineering Technology, Ningxia Academy of Agriculture and Forestry Sciences, No. 590, Huanghe East Road, Jinfeng District, Yinchuan 750002, China; (H.Y.); (J.J.); (L.H.); (L.Z.); (J.J.); (P.Z.); (D.T.); (Y.M.); (L.W.)
| | | | | | | | | | | | | | | | | | | | - Zhixiang Yang
- Ningxia Centre of Organic Synthesis and Engineering Technology, Ningxia Academy of Agriculture and Forestry Sciences, No. 590, Huanghe East Road, Jinfeng District, Yinchuan 750002, China; (H.Y.); (J.J.); (L.H.); (L.Z.); (J.J.); (P.Z.); (D.T.); (Y.M.); (L.W.)
| |
Collapse
|
34
|
The development of New Delhi metallo-β-lactamase-1 inhibitors since 2018. Microbiol Res 2022; 261:127079. [DOI: 10.1016/j.micres.2022.127079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 04/22/2022] [Accepted: 05/23/2022] [Indexed: 11/21/2022]
|
35
|
Lucic A, Malla TR, Calvopiña K, Tooke CL, Brem J, McDonough MA, Spencer J, Schofield CJ. Studies on the Reactions of Biapenem with VIM Metallo β-Lactamases and the Serine β-Lactamase KPC-2. Antibiotics (Basel) 2022; 11:396. [PMID: 35326858 PMCID: PMC8944426 DOI: 10.3390/antibiotics11030396] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 03/08/2022] [Accepted: 03/09/2022] [Indexed: 02/06/2023] Open
Abstract
Carbapenems are important antibacterials and are both substrates and inhibitors of some β-lactamases. We report studies on the reaction of the unusual carbapenem biapenem, with the subclass B1 metallo-β-lactamases VIM-1 and VIM-2 and the class A serine-β-lactamase KPC-2. X-ray diffraction studies with VIM-2 crystals treated with biapenem reveal the opening of the β-lactam ring to form a mixture of the (2S)-imine and enamine complexed at the active site. NMR studies on the reactions of biapenem with VIM-1, VIM-2, and KPC-2 reveal the formation of hydrolysed enamine and (2R)- and (2S)-imine products. The combined results support the proposal that SBL/MBL-mediated carbapenem hydrolysis results in a mixture of tautomerizing enamine and (2R)- and (2S)-imine products, with the thermodynamically favoured (2S)-imine being the major observed species over a relatively long-time scale. The results suggest that prolonging the lifetimes of β-lactamase carbapenem complexes by optimising tautomerisation of the nascently formed enamine to the (2R)-imine and likely more stable (2S)-imine tautomer is of interest in developing improved carbapenems.
Collapse
Affiliation(s)
- Anka Lucic
- Chemistry Research Laboratory, The Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research, University of Oxford, Oxford OX1 3TA, UK; (A.L.); (T.R.M.); (K.C.); (J.B.); (M.A.M.)
| | - Tika R. Malla
- Chemistry Research Laboratory, The Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research, University of Oxford, Oxford OX1 3TA, UK; (A.L.); (T.R.M.); (K.C.); (J.B.); (M.A.M.)
| | - Karina Calvopiña
- Chemistry Research Laboratory, The Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research, University of Oxford, Oxford OX1 3TA, UK; (A.L.); (T.R.M.); (K.C.); (J.B.); (M.A.M.)
| | - Catherine L. Tooke
- Biomedical Sciences Building, School of Cellular and Molecular Medicine, Faculty of Life Sciences, University of Bristol, University Walk, Bristol BS8 1TD, UK; (C.L.T.); (J.S.)
| | - Jürgen Brem
- Chemistry Research Laboratory, The Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research, University of Oxford, Oxford OX1 3TA, UK; (A.L.); (T.R.M.); (K.C.); (J.B.); (M.A.M.)
| | - Michael A. McDonough
- Chemistry Research Laboratory, The Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research, University of Oxford, Oxford OX1 3TA, UK; (A.L.); (T.R.M.); (K.C.); (J.B.); (M.A.M.)
| | - James Spencer
- Biomedical Sciences Building, School of Cellular and Molecular Medicine, Faculty of Life Sciences, University of Bristol, University Walk, Bristol BS8 1TD, UK; (C.L.T.); (J.S.)
| | - Christopher J. Schofield
- Chemistry Research Laboratory, The Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research, University of Oxford, Oxford OX1 3TA, UK; (A.L.); (T.R.M.); (K.C.); (J.B.); (M.A.M.)
| |
Collapse
|
36
|
Gervasoni S, Spencer J, Hinchliffe P, Pedretti A, Vairoletti F, Mahler G, Mulholland AJ. A multiscale approach to predict the binding mode of metallo beta-lactamase inhibitors. Proteins 2022; 90:372-384. [PMID: 34455628 PMCID: PMC8944931 DOI: 10.1002/prot.26227] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 06/09/2021] [Accepted: 08/18/2021] [Indexed: 02/03/2023]
Abstract
Antibiotic resistance is a major threat to global public health. β-lactamases, which catalyze breakdown of β-lactam antibiotics, are a principal cause. Metallo β-lactamases (MBLs) represent a particular challenge because they hydrolyze almost all β-lactams and to date no MBL inhibitor has been approved for clinical use. Molecular simulations can aid drug discovery, for example, predicting inhibitor complexes, but empirical molecular mechanics (MM) methods often perform poorly for metalloproteins. Here we present a multiscale approach to model thiol inhibitor binding to IMP-1, a clinically important MBL containing two catalytic zinc ions, and predict the binding mode of a 2-mercaptomethyl thiazolidine (MMTZ) inhibitor. Inhibitors were first docked into the IMP-1 active site, testing different docking programs and scoring functions on multiple crystal structures. Complexes were then subjected to molecular dynamics (MD) simulations and subsequently refined through QM/MM optimization with a density functional theory (DFT) method, B3LYP/6-31G(d), increasing the accuracy of the method with successive steps. This workflow was tested on two IMP-1:MMTZ complexes, for which it reproduced crystallographically observed binding, and applied to predict the binding mode of a third MMTZ inhibitor for which a complex structure was crystallographically intractable. We also tested a 12-6-4 nonbonded interaction model in MD simulations and optimization with a SCC-DFTB QM/MM approach. The results show the limitations of empirical models for treating these systems and indicate the need for higher level calculations, for example, DFT/MM, for reliable structural predictions. This study demonstrates a reliable computational pipeline that can be applied to inhibitor design for MBLs and other zinc-metalloenzyme systems.
Collapse
Affiliation(s)
- Silvia Gervasoni
- Department of Pharmaceutical Sciences, University of Milan, Milan, Italy
| | - James Spencer
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, UK
| | - Philip Hinchliffe
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, UK
| | | | - Franco Vairoletti
- Laboratorio de Química Farmacéutica, Departamento de Química Orgánica, Facultad de Química, Universidad de la República (UdelaR), Avda. General Flores 2124, Montevideo, Uruguay
| | - Graciela Mahler
- Laboratorio de Química Farmacéutica, Departamento de Química Orgánica, Facultad de Química, Universidad de la República (UdelaR), Avda. General Flores 2124, Montevideo, Uruguay
| | | |
Collapse
|
37
|
Ayipo YO, Osunniran WA, Babamale HF, Ayinde MO, Mordi MN. Metalloenzyme mimicry and modulation strategies to conquer antimicrobial resistance: Metal-ligand coordination perspectives. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2021.214317] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
38
|
Brem J, Panduwawala T, Hansen JU, Hewitt J, Liepins E, Donets P, Espina L, Farley AJM, Shubin K, Campillos GG, Kiuru P, Shishodia S, Krahn D, Leśniak RK, Schmidt Adrian J, Calvopiña K, Turrientes MC, Kavanagh ME, Lubriks D, Hinchliffe P, Langley GW, Aboklaish AF, Eneroth A, Backlund M, Baran AG, Nielsen EI, Speake M, Kuka J, Robinson J, Grinberga S, Robinson L, McDonough MA, Rydzik AM, Leissing TM, Jimenez-Castellanos JC, Avison MB, Da Silva Pinto S, Pannifer AD, Martjuga M, Widlake E, Priede M, Hopkins Navratilova I, Gniadkowski M, Belfrage AK, Brandt P, Yli-Kauhaluoma J, Bacque E, Page MGP, Björkling F, Tyrrell JM, Spencer J, Lang PA, Baranczewski P, Cantón R, McElroy SP, Jones PS, Baquero F, Suna E, Morrison A, Walsh TR, Schofield CJ. Imitation of β-lactam binding enables broad-spectrum metallo-β-lactamase inhibitors. Nat Chem 2022; 14:15-24. [PMID: 34903857 DOI: 10.1038/s41557-021-00831-x] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Accepted: 09/30/2021] [Indexed: 11/08/2022]
Abstract
Carbapenems are vital antibiotics, but their efficacy is increasingly compromised by metallo-β-lactamases (MBLs). Here we report the discovery and optimization of potent broad-spectrum MBL inhibitors. A high-throughput screen for NDM-1 inhibitors identified indole-2-carboxylates (InCs) as potential β-lactamase stable β-lactam mimics. Subsequent structure-activity relationship studies revealed InCs as a new class of potent MBL inhibitor, active against all MBL classes of major clinical relevance. Crystallographic studies revealed a binding mode of the InCs to MBLs that, in some regards, mimics that predicted for intact carbapenems, including with respect to maintenance of the Zn(II)-bound hydroxyl, and in other regards mimics binding observed in MBL-carbapenem product complexes. InCs restore carbapenem activity against multiple drug-resistant Gram-negative bacteria and have a low frequency of resistance. InCs also have a good in vivo safety profile, and when combined with meropenem show a strong in vivo efficacy in peritonitis and thigh mouse infection models.
Collapse
Affiliation(s)
- Jürgen Brem
- Department of Chemistry, Chemistry Research Laboratory and the Ineos Oxford Institute for Antimicrobial Research, University of Oxford, Oxford, UK.
| | - Tharindi Panduwawala
- Department of Chemistry, Chemistry Research Laboratory and the Ineos Oxford Institute for Antimicrobial Research, University of Oxford, Oxford, UK
| | | | - Joanne Hewitt
- University of Dundee, European Screening Centre, BioCity Scotland, Newhouse, UK
| | | | - Pawel Donets
- Latvian Institute of Organic Synthesis, Riga, Latvia
| | - Laura Espina
- Department of Medical Microbiology, Institute of infection & Immunity, Cardiff University, Cardiff, UK
| | - Alistair J M Farley
- Department of Chemistry, Chemistry Research Laboratory and the Ineos Oxford Institute for Antimicrobial Research, University of Oxford, Oxford, UK
| | - Kirill Shubin
- Latvian Institute of Organic Synthesis, Riga, Latvia
| | - Gonzalo Gomez Campillos
- Department of Chemistry, Chemistry Research Laboratory and the Ineos Oxford Institute for Antimicrobial Research, University of Oxford, Oxford, UK
| | - Paula Kiuru
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Shifali Shishodia
- Department of Chemistry, Chemistry Research Laboratory and the Ineos Oxford Institute for Antimicrobial Research, University of Oxford, Oxford, UK
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Daniel Krahn
- Department of Chemistry, Chemistry Research Laboratory and the Ineos Oxford Institute for Antimicrobial Research, University of Oxford, Oxford, UK
| | - Robert K Leśniak
- Department of Chemistry, Chemistry Research Laboratory and the Ineos Oxford Institute for Antimicrobial Research, University of Oxford, Oxford, UK
| | - Juliane Schmidt Adrian
- Department of Chemistry, Chemistry Research Laboratory and the Ineos Oxford Institute for Antimicrobial Research, University of Oxford, Oxford, UK
| | - Karina Calvopiña
- Department of Chemistry, Chemistry Research Laboratory and the Ineos Oxford Institute for Antimicrobial Research, University of Oxford, Oxford, UK
| | - María-Carmen Turrientes
- Department of Microbiology, Ramón y Cajal University Hospital and Ramón y Cajal Institute for Health Research (IRYCIS), Madrid, Spain
| | - Madeline E Kavanagh
- Department of Chemistry, Chemistry Research Laboratory and the Ineos Oxford Institute for Antimicrobial Research, University of Oxford, Oxford, UK
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA, USA
| | | | - Philip Hinchliffe
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, UK
| | - Gareth W Langley
- Department of Chemistry, Chemistry Research Laboratory and the Ineos Oxford Institute for Antimicrobial Research, University of Oxford, Oxford, UK
- Charles River Laboratories, Saffron Walden, UK
| | - Ali F Aboklaish
- Department of Medical Microbiology, Institute of infection & Immunity, Cardiff University, Cardiff, UK
| | - Anders Eneroth
- Department of Pharmacy, Uppsala Drug Optimization and Pharmaceutical Profiling Platform (UDOPP), Uppsala University, Uppsala, Sweden
| | - Maria Backlund
- Department of Pharmacy, Uppsala Drug Optimization and Pharmaceutical Profiling Platform (UDOPP), Uppsala University, Uppsala, Sweden
| | | | | | - Michael Speake
- University of Dundee, European Screening Centre, BioCity Scotland, Newhouse, UK
- BioAscent Discovery Ltd, Newhouse, UK
| | - Janis Kuka
- Latvian Institute of Organic Synthesis, Riga, Latvia
| | - John Robinson
- University of Dundee, European Screening Centre, BioCity Scotland, Newhouse, UK
- BioAscent Discovery Ltd, Newhouse, UK
| | | | - Lindsay Robinson
- University of Dundee, European Screening Centre, BioCity Scotland, Newhouse, UK
- BioAscent Discovery Ltd, Newhouse, UK
| | - Michael A McDonough
- Department of Chemistry, Chemistry Research Laboratory and the Ineos Oxford Institute for Antimicrobial Research, University of Oxford, Oxford, UK
| | - Anna M Rydzik
- Department of Chemistry, Chemistry Research Laboratory and the Ineos Oxford Institute for Antimicrobial Research, University of Oxford, Oxford, UK
- Research and Early Development, Respiratory & Immunology, AstraZeneca, Mölndal, Sweden
| | - Thomas M Leissing
- Department of Chemistry, Chemistry Research Laboratory and the Ineos Oxford Institute for Antimicrobial Research, University of Oxford, Oxford, UK
| | - Juan Carlos Jimenez-Castellanos
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, UK
- Chemical Biology of Antibiotics, Centre for Infection & Immunity (CIIL), Pasteur Institute, INSERM U1019 - CNRS UMR 9017, Lille, France
| | - Matthew B Avison
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, UK
| | - Solange Da Silva Pinto
- Department of Chemistry, Chemistry Research Laboratory and the Ineos Oxford Institute for Antimicrobial Research, University of Oxford, Oxford, UK
| | - Andrew D Pannifer
- University of Dundee, European Screening Centre, BioCity Scotland, Newhouse, UK
| | | | - Emma Widlake
- Department of Medical Microbiology, Institute of infection & Immunity, Cardiff University, Cardiff, UK
| | | | | | - Marek Gniadkowski
- Department of Molecular Microbiology, National Medicines Institute, Warsaw, Poland
| | - Anna Karin Belfrage
- Department of Medicinal Chemistry, Drug Design and Discovery, Uppsala University, Uppsala, Sweden
| | - Peter Brandt
- Department of Medicinal Chemistry, Drug Design and Discovery, Uppsala University, Uppsala, Sweden
- Beactica Therapeutics AB, Uppsala, Sweden
| | - Jari Yli-Kauhaluoma
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Eric Bacque
- Evotec Infectious Diseases Lyon, Marcy l'Etoile, France
| | | | - Fredrik Björkling
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - Jonathan M Tyrrell
- Department of Medical Microbiology, Institute of infection & Immunity, Cardiff University, Cardiff, UK
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, UK
| | - James Spencer
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, UK
| | - Pauline A Lang
- Department of Chemistry, Chemistry Research Laboratory and the Ineos Oxford Institute for Antimicrobial Research, University of Oxford, Oxford, UK
| | - Pawel Baranczewski
- Department of Pharmacy, SciLifeLab Drug Discovery and Development Platform, ADME of Therapeutics Facility, Uppsala University, Uppsala, Sweden
| | - Rafael Cantón
- Department of Microbiology, Ramón y Cajal University Hospital and Ramón y Cajal Institute for Health Research (IRYCIS), Madrid, Spain
| | - Stuart P McElroy
- University of Dundee, European Screening Centre, BioCity Scotland, Newhouse, UK
- BioAscent Discovery Ltd, Newhouse, UK
| | - Philip S Jones
- University of Dundee, European Screening Centre, BioCity Scotland, Newhouse, UK
- BioAscent Discovery Ltd, Newhouse, UK
| | - Fernando Baquero
- Department of Microbiology, Ramón y Cajal University Hospital and Ramón y Cajal Institute for Health Research (IRYCIS), Madrid, Spain
| | - Edgars Suna
- Latvian Institute of Organic Synthesis, Riga, Latvia
| | - Angus Morrison
- University of Dundee, European Screening Centre, BioCity Scotland, Newhouse, UK
- BioAscent Discovery Ltd, Newhouse, UK
| | - Timothy R Walsh
- Department of Medical Microbiology, Institute of infection & Immunity, Cardiff University, Cardiff, UK
| | - Christopher J Schofield
- Department of Chemistry, Chemistry Research Laboratory and the Ineos Oxford Institute for Antimicrobial Research, University of Oxford, Oxford, UK.
| |
Collapse
|
39
|
Mojica MF, Rossi MA, Vila AJ, Bonomo RA. The urgent need for metallo-β-lactamase inhibitors: an unattended global threat. THE LANCET. INFECTIOUS DISEASES 2022; 22:e28-e34. [PMID: 34246322 PMCID: PMC8266270 DOI: 10.1016/s1473-3099(20)30868-9] [Citation(s) in RCA: 125] [Impact Index Per Article: 41.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 10/22/2020] [Accepted: 11/03/2020] [Indexed: 11/23/2022]
Abstract
Due to their superior tolerability and efficacy, β-lactams are the most potent and prescribed class of antibiotics in the clinic. The emergence of resistance to those antibiotics, mainly due to the production of bacterial enzymes called β-lactamases, has been partially solved by the introduction of β-lactamase inhibitors, which restore the activity of otherwise obsolete molecules. This solution is limited because currently available β-lactamase inhibitors only work against serine β-lactamases, whereas metallo-β-lactamases continue to spread, evolve, and confer resistance to all β-lactams, including carbapenems. Furthermore, the increased use of antibiotics to treat secondary bacterial pneumonia in severely sick patients with COVID-19 might exacerbate the problem of antimicrobial resistance. In this Personal View, we summarise the main advances accomplished in this area of research, emphasise the main challenges that need to be solved, and the importance of research on inhibitors for metallo-B-lactamases amidst the current pandemic.
Collapse
Affiliation(s)
- Maria F Mojica
- Infectious Diseases Department, School of Medicine, Case Western Reserve University, Cleveland, OH, USA; Research Service, Veterans Affairs Northeast Ohio Healthcare System, Cleveland, OH, USA; Grupo de Resistencia Antimicrobiana y Epidemiología Hospitalaria, Universidad El Bosque, Bogotá, Colombia
| | | | - Alejandro J Vila
- Instituto de Biología Molecular y Celular de Rosario, Rosario, Argentina; Área Biofísica, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina; CWRU-Cleveland VAMC Center for Antimicrobial Resistance and Epidemiology, Cleveland, OH, USA.
| | - Robert A Bonomo
- Research Service, Veterans Affairs Northeast Ohio Healthcare System, Cleveland, OH, USA; Department of Medicine, Department of Pharmacology, Department of Molecular Biology and Microbiology, Department of Biochemistry, and Case Center for Proteomics and Bioinformatics, Case Western Reserve University School of Medicine, Cleveland, OH, USA; Medical Service and Geriatric Research Education and Clinical Center, Veterans Affairs Northeast Ohio Healthcare System, Cleveland, OH, USA; CWRU-Cleveland VAMC Center for Antimicrobial Resistance and Epidemiology, Cleveland, OH, USA.
| |
Collapse
|
40
|
Probst K, Boutin S, Späth I, Scherrer M, Henny N, Sahin D, Heininger A, Heeg K, Nurjadi D. Direct-PCR from rectal swabs and environmental reservoirs: A fast and efficient alternative to detect bla OXA-48 carbapenemase genes in an Enterobacter cloacae outbreak setting. ENVIRONMENTAL RESEARCH 2022; 203:111808. [PMID: 34343553 DOI: 10.1016/j.envres.2021.111808] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 07/28/2021] [Accepted: 07/28/2021] [Indexed: 06/13/2023]
Abstract
Carbapenemase-producing bacteria are a risk factor in clinical settings worldwide. The aim of the study was to accelerate the time to results during an outbreak situation with blaOXA-48-positive Enterobacter cloacae by using a real-time multiplex quantitative PCR (qPCR) directly on rectal swab specimens and on wastewater samples to detect carbapenemase-producing bacteria. Thus, we analyzed 681 rectal swabs and 947 environmental samples during a five-month period by qPCR and compared the results to culture screening. The qPCR showed a sensitivity of 100% by testing directly from rectal swabs and was in ten cases more sensitive than the culture-based methods. Environmental screening for blaOXA-48-carbapenemase genes by qPCR revealed reservoirs of different carbapenemase genes that are potential sources of transmission and might lead to new outbreaks. The rapid identification of patients colonized with those isolates and screening of the hospital environment is essential for earlier patient treatment and eliminating potential sources of nosocomial infections.
Collapse
Affiliation(s)
- Katja Probst
- Department of Infectious Diseases, Medical Microbiology and Hospital Hygiene, University Hospital Heidelberg, Heidelberg, Germany.
| | - Sébastien Boutin
- Department of Infectious Diseases, Medical Microbiology and Hospital Hygiene, University Hospital Heidelberg, Heidelberg, Germany; Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), Heidelberg University Hospital, Heidelberg, Germany
| | - Isabel Späth
- Department of Infectious Diseases, Medical Microbiology and Hospital Hygiene, University Hospital Heidelberg, Heidelberg, Germany
| | - Martin Scherrer
- Department of Infectious Diseases, Medical Microbiology and Hospital Hygiene, University Hospital Heidelberg, Heidelberg, Germany
| | - Nicole Henny
- Department of Infectious Diseases, Medical Microbiology and Hospital Hygiene, University Hospital Heidelberg, Heidelberg, Germany
| | - Delal Sahin
- Department of Infectious Diseases, Medical Microbiology and Hospital Hygiene, University Hospital Heidelberg, Heidelberg, Germany
| | - Alexandra Heininger
- Department of Infectious Diseases, Medical Microbiology and Hospital Hygiene, University Hospital Heidelberg, Heidelberg, Germany; Stabsstelle Krankenhaushygiene, Universitätsmedizin Mannheim, Mannheim, Germany
| | - Klaus Heeg
- Department of Infectious Diseases, Medical Microbiology and Hospital Hygiene, University Hospital Heidelberg, Heidelberg, Germany
| | - Dennis Nurjadi
- Department of Infectious Diseases, Medical Microbiology and Hospital Hygiene, University Hospital Heidelberg, Heidelberg, Germany
| |
Collapse
|
41
|
Twidale RM, Hinchliffe P, Spencer J, Mulholland AJ. Crystallography and QM/MM Simulations Identify Preferential Binding of Hydrolyzed Carbapenem and Penem Antibiotics to the L1 Metallo-β-Lactamase in the Imine Form. J Chem Inf Model 2021; 61:5988-5999. [PMID: 34637298 DOI: 10.1021/acs.jcim.1c00663] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Widespread bacterial resistance to carbapenem antibiotics is an increasing global health concern. Resistance has emerged due to carbapenem-hydrolyzing enzymes, including metallo-β-lactamases (MβLs), but despite their prevalence and clinical importance, MβL mechanisms are still not fully understood. Carbapenem hydrolysis by MβLs can yield alternative product tautomers with the potential to access different binding modes. Here, we show that a combined approach employing crystallography and quantum mechanics/molecular mechanics (QM/MM) simulations allow tautomer assignment in MβL:hydrolyzed antibiotic complexes. Molecular simulations also examine (meta)stable species of alternative protonation and tautomeric states, providing mechanistic insights into β-lactam hydrolysis. We report the crystal structure of the hydrolyzed carbapenem ertapenem bound to the L1 MβL from Stenotrophomonas maltophilia and model alternative tautomeric and protonation states of both hydrolyzed ertapenem and faropenem (a related penem antibiotic), which display different binding modes with L1. We show how the structures of both complexed β-lactams are best described as the (2S)-imine tautomer with the carboxylate formed after β-lactam ring cleavage deprotonated. Simulations show that enamine tautomer complexes are significantly less stable (e.g., showing partial loss of interactions with the L1 binuclear zinc center) and not consistent with experimental data. Strong interactions of Tyr32 and one zinc ion (Zn1) with ertapenem prevent a C6 group rotation, explaining the different binding modes of the two β-lactams. Our findings establish the relative stability of different hydrolyzed (carba)penem forms in the L1 active site and identify interactions important to stable complex formation, information that should assist inhibitor design for this important antibiotic resistance determinant.
Collapse
Affiliation(s)
- Rebecca M Twidale
- Centre for Computational Chemistry, School of Chemistry, University of Bristol, Cantock's Close, Bristol BS8 1TS, U.K
| | - Philip Hinchliffe
- School of Cellular and Molecular Medicine, University of Bristol, Biomedical Sciences Building, University Walk, Bristol BS8 1TD, U.K
| | - James Spencer
- School of Cellular and Molecular Medicine, University of Bristol, Biomedical Sciences Building, University Walk, Bristol BS8 1TD, U.K
| | - Adrian J Mulholland
- Centre for Computational Chemistry, School of Chemistry, University of Bristol, Cantock's Close, Bristol BS8 1TS, U.K
| |
Collapse
|
42
|
Medina FE, Jaña GA. QM/MM Study of a VIM-1 Metallo-β-Lactamase Enzyme: The Catalytic Reaction Mechanism. ACS Catal 2021. [DOI: 10.1021/acscatal.1c04786] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Fabiola E. Medina
- Departamento de Ciencias Químicas, Facultad de Ciencias Exactas, Universidad Andres Bello, Autopista Concepción-Talcahuano, 7100 Talcahuano, Chile
- Departamento de Química, Facultad de Ciencias, Universidad del Bío-Bío, 4051381 Concepción, Chile
| | - Gonzalo A. Jaña
- Departamento de Ciencias Químicas, Facultad de Ciencias Exactas, Universidad Andres Bello, Autopista Concepción-Talcahuano, 7100 Talcahuano, Chile
| |
Collapse
|
43
|
Stroek R, Wilson L, Goracke W, Kang T, Vermue F, Krco S, Mendels Y, Douw A, Morris M, Knaven EG, Mitić N, Gutierrez MCR, Schenk EB, Clark A, Garcia D, Monteiro Pedroso M, Schenk G. LAM-1 from Lysobacter antibioticus: A potent zinc-dependent activity that inactivates β-lactam antibiotics. J Inorg Biochem 2021; 226:111637. [PMID: 34749064 DOI: 10.1016/j.jinorgbio.2021.111637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 10/11/2021] [Accepted: 10/13/2021] [Indexed: 11/25/2022]
Abstract
Resistance to β-lactam antibiotics, including the "last-resort" carbapenems, has emerged as a major threat to global health. A major resistance mechanism employed by pathogens involves the use of metallo-β-lactamases (MBLs), zinc-dependent enzymes that inactivate most of the β-lactam antibiotics used to treat infections. Variants of MBLs are frequently discovered in clinical environments. However, an increasing number of such enzymes have been identified in microorganisms that are less impacted by human activities. Here, an MBL from Lysobacter antibioticus, isolated from the rhizosphere, has been shown to be highly active toward numerous β-lactam antibiotics. Its activity is higher than that of some of the most effective MBLs linked to hospital-acquired antibiotic resistance and thus poses an interesting system to investigate evolutionary pressures that drive the emergence of such biocatalysts.
Collapse
Affiliation(s)
- Rozanne Stroek
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Liam Wilson
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - William Goracke
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Taeuk Kang
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Febe Vermue
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Stefan Krco
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Yonatan Mendels
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Andrew Douw
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Marc Morris
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Esmee G Knaven
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Nataša Mitić
- Department of Chemistry, Maynooth University, Maynooth, Co. Kildare, Ireland
| | - Maria C R Gutierrez
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Elaine B Schenk
- School of Mathematics and Physics, The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Alice Clark
- Sustainable Minerals Institute, The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - David Garcia
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Marcelo Monteiro Pedroso
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, Queensland 4072, Australia; Sustainable Minerals Institute, The University of Queensland, St. Lucia, Queensland 4072, Australia.
| | - Gerhard Schenk
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, Queensland 4072, Australia; Sustainable Minerals Institute, The University of Queensland, St. Lucia, Queensland 4072, Australia; Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St. Lucia, Queensland 4072, Australia.
| |
Collapse
|
44
|
Yan YH, Li W, Chen W, Li C, Zhu KR, Deng J, Dai QQ, Yang LL, Wang Z, Li GB. Structure-guided optimization of 1H-imidazole-2-carboxylic acid derivatives affording potent VIM-Type metallo-β-lactamase inhibitors. Eur J Med Chem 2021; 228:113965. [PMID: 34763944 DOI: 10.1016/j.ejmech.2021.113965] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 10/24/2021] [Accepted: 10/25/2021] [Indexed: 02/08/2023]
Abstract
Production of metallo-β-lactamases (MBLs) in bacterial pathogens is an important cause of resistance to the 'last-resort' carbapenem antibiotics. Development of effective MBL inhibitors to reverse carbapenem resistance in Gram-negative bacteria is still needed. We herein report X-ray structure-guided optimization of 1H-imidazole-2-carboxylic acid (ICA) derivatives by considering how to engage with the active-site flexible loops and improve penetration into Gram-negative bacteria. Structure-activity relationship studies revealed the importance of appropriate substituents at ICA 1-position to achieve potent inhibition to class B1 MBLs, particularly the Verona Integron-encoded MBLs (VIMs), mainly by involving ingenious interactions with the flexible active site loops as observed by crystallographic analyses. Of the tested ICA inhibitors, 55 displayed potent synergistic antibacterial activity with meropenem against engineered Escherichia coli strains and even intractable clinically isolated Pseudomonas aeruginosa producing VIM-2 MBL. The morphologic and internal structural changes of bacterial cells after treatment further demonstrated that 55 crossed the outer membrane and reversed the activity of meropenem. Moreover, 55 showed good pharmacokinetic and safety profile in vivo, which could be a potential candidate for combating VIM-mediated Gram-negative carbapenem resistance.
Collapse
Affiliation(s)
- Yu-Hang Yan
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Department of Medicinal Chemistry, West China School of Pharmacy, Sichuan University, Sichuan, 610041, China
| | - Wenfang Li
- State Key Laboratory of Biotherapy and Cancer Center, Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Wei Chen
- College of Food and Bioengineering, Xihua University, Sichuan, 610039, China
| | - Chao Li
- College of Food and Bioengineering, Xihua University, Sichuan, 610039, China
| | - Kai-Rong Zhu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Department of Medicinal Chemistry, West China School of Pharmacy, Sichuan University, Sichuan, 610041, China
| | - Ji Deng
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Department of Medicinal Chemistry, West China School of Pharmacy, Sichuan University, Sichuan, 610041, China
| | - Qing-Qing Dai
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Department of Medicinal Chemistry, West China School of Pharmacy, Sichuan University, Sichuan, 610041, China
| | - Ling-Ling Yang
- College of Food and Bioengineering, Xihua University, Sichuan, 610039, China
| | - Zhenling Wang
- State Key Laboratory of Biotherapy and Cancer Center, Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Guo-Bo Li
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Department of Medicinal Chemistry, West China School of Pharmacy, Sichuan University, Sichuan, 610041, China.
| |
Collapse
|
45
|
Cafiero JH, Martini MC, Lozano MJ, Vacca C, Lagares A, Tomatis PE, Del Papa MF. BioF is a novel B2 metallo-β-lactamase from Pseudomonas sp. isolated from an on-farm biopurification system. Environ Microbiol 2021; 24:1247-1262. [PMID: 34725905 DOI: 10.1111/1462-2920.15822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 09/13/2021] [Accepted: 10/13/2021] [Indexed: 11/30/2022]
Abstract
Antimicrobial resistance represents a major global health concern and environmental bacteria are considered a source of resistance genes. Carbapenems are often used as the last antibiotic option to treat multidrug-resistant bacteria. Metallo-β-lactamases (MBLs) are able to render resistance to almost all β-lactam antibiotics, including carbapenems. Unfortunately, there are no inhibitors against MBLs for clinical use. Subclass B2 MBLs are the only enzymes working as strict carbapenemases, under-represented, encoded in chromosome genes and only functional as mono-zinc enzymes. Despite current efforts in MBLs inhibitor development, B2 carbapenemase activity is especially difficult to suppress, even in vitro. In this study we characterized BioF, a novel subclass B2 MBL identified in a new environmental Pseudomonas sp. strain isolated from an on-farm biopurification system (BPS). Although blaBioF is most likely a chromosomal gene, it is found in a genomic island and may represent a step previous to the horizontal transmission of B2 genes. The new B2 MBL is active as a mono-zinc enzyme and is a potent carbapenemase with incipient activity against some cephalosporins. BioF activity is not affected by excess zinc and is only inhibited at high metal chelator concentrations. The discovery and characterization of B2 MBL BioF as a potent carbapenemase in a BPS bacterial isolate emphasizes the importance of exploring antibiotic resistances existing in the environmental microbiota under the influence of human activities before they could emerge clinically.
Collapse
Affiliation(s)
- Juan Hilario Cafiero
- Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Instituto de Biotecnología y Biología Molecular (IBBM, CCT-CONICET-La Plata), Universidad Nacional de La Plata, Calle 115 entre 49 y 50, La Plata, 1900, Argentina
| | - María Carla Martini
- Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Instituto de Biotecnología y Biología Molecular (IBBM, CCT-CONICET-La Plata), Universidad Nacional de La Plata, Calle 115 entre 49 y 50, La Plata, 1900, Argentina
| | - Mauricio Javier Lozano
- Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Instituto de Biotecnología y Biología Molecular (IBBM, CCT-CONICET-La Plata), Universidad Nacional de La Plata, Calle 115 entre 49 y 50, La Plata, 1900, Argentina
| | - Carolina Vacca
- Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Instituto de Biotecnología y Biología Molecular (IBBM, CCT-CONICET-La Plata), Universidad Nacional de La Plata, Calle 115 entre 49 y 50, La Plata, 1900, Argentina
| | - Antonio Lagares
- Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Instituto de Biotecnología y Biología Molecular (IBBM, CCT-CONICET-La Plata), Universidad Nacional de La Plata, Calle 115 entre 49 y 50, La Plata, 1900, Argentina
| | - Pablo Emiliano Tomatis
- Instituto de Biología Molecular y Celular de Rosario (IBR, CONICET-UNR), Ocampo y Esmeralda, Rosario, 2000, Argentina.,Área Biofísica, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, Rosario, 2000, Argentina
| | - María Florencia Del Papa
- Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Instituto de Biotecnología y Biología Molecular (IBBM, CCT-CONICET-La Plata), Universidad Nacional de La Plata, Calle 115 entre 49 y 50, La Plata, 1900, Argentina
| |
Collapse
|
46
|
Yahiaoui S, Voos K, Haupenthal J, Wichelhaus TA, Frank D, Weizel L, Rotter M, Brunst S, Kramer JS, Proschak E, Ducho C, Hirsch AKH. N-Aryl mercaptoacetamides as potential multi-target inhibitors of metallo-β-lactamases (MBLs) and the virulence factor LasB from Pseudomonas aeruginosa. RSC Med Chem 2021; 12:1698-1708. [PMID: 34778771 PMCID: PMC8528214 DOI: 10.1039/d1md00187f] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 07/23/2021] [Indexed: 12/18/2022] Open
Abstract
Increasing antimicrobial resistance is evolving to be one of the major threats to public health. To reduce the selection pressure and thus to avoid a fast development of resistance, novel approaches aim to target bacterial virulence instead of growth. Another strategy is to restore the activity of antibiotics already in clinical use. This can be achieved by the inhibition of resistance factors such as metallo-β-lactamases (MBLs). Since MBLs can cleave almost all β-lactam antibiotics, including the “last resort” carbapenems, their inhibition is of utmost importance. Here, we report on the synthesis and in vitro evaluation of N-aryl mercaptoacetamides as inhibitors of both clinically relevant MBLs and the virulence factor LasB from Pseudomonas aeruginosa. All tested N-aryl mercaptoacetamides showed low micromolar to submicromolar activities on the tested enzymes IMP-7, NDM-1 and VIM-1. The two most promising compounds were further examined in NDM-1 expressing Klebsiella pneumoniae isolates, where they restored the full activity of imipenem. Together with their LasB-inhibitory activity in the micromolar range, this class of compounds can now serve as a starting point for a multi-target inhibitor approach against both bacterial resistance and virulence, which is unprecedented in antibacterial drug discovery. Simultaneous inhibition of metallo-β-lactamases (MBLs) and virulence factors such as LasB from Pseudomonas aeruginosa offers a new approach to combat antibiotic-resistant pathogens.![]()
Collapse
Affiliation(s)
- Samir Yahiaoui
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS) - Helmholtz Centre for Infection Research (HZI) Campus E8 1 66123 Saarbrücken Germany
| | - Katrin Voos
- Department of Pharmacy, Pharmaceutical and Medicinal Chemistry, Saarland University Campus C2 3 66123 Saarbrücken Germany
| | - Jörg Haupenthal
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS) - Helmholtz Centre for Infection Research (HZI) Campus E8 1 66123 Saarbrücken Germany
| | - Thomas A Wichelhaus
- Institute of Medical Microbiology and Infection Control, University Hospital Frankfurt Paul-Ehrlich-Straße 40 60596 Frankfurt Germany
| | - Denia Frank
- Institute of Medical Microbiology and Infection Control, University Hospital Frankfurt Paul-Ehrlich-Straße 40 60596 Frankfurt Germany
| | - Lilia Weizel
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt Max-von-Laue-Straße 9 60438 Frankfurt Germany
| | - Marco Rotter
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt Max-von-Laue-Straße 9 60438 Frankfurt Germany
| | - Steffen Brunst
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt Max-von-Laue-Straße 9 60438 Frankfurt Germany
| | - Jan S Kramer
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt Max-von-Laue-Straße 9 60438 Frankfurt Germany
| | - Ewgenij Proschak
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt Max-von-Laue-Straße 9 60438 Frankfurt Germany
| | - Christian Ducho
- Department of Pharmacy, Pharmaceutical and Medicinal Chemistry, Saarland University Campus C2 3 66123 Saarbrücken Germany
| | - Anna K H Hirsch
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS) - Helmholtz Centre for Infection Research (HZI) Campus E8 1 66123 Saarbrücken Germany .,Department of Pharmacy, Saarland University Campus Building E8 1 66123 Saarbrücken Germany
| |
Collapse
|
47
|
Hinchliffe P, Moreno DM, Rossi MA, Mojica MF, Martinez V, Villamil V, Spellberg B, Drusano GL, Banchio C, Mahler G, Bonomo RA, Vila AJ, Spencer J. 2-Mercaptomethyl Thiazolidines (MMTZs) Inhibit All Metallo-β-Lactamase Classes by Maintaining a Conserved Binding Mode. ACS Infect Dis 2021; 7:2697-2706. [PMID: 34355567 DOI: 10.1021/acsinfecdis.1c00194] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Metallo-β-lactamase (MBL) production in Gram-negative bacteria is an important contributor to β-lactam antibiotic resistance. Combining β-lactams with β-lactamase inhibitors (BLIs) is a validated route to overcoming resistance, but MBL inhibitors are not available in the clinic. On the basis of zinc utilization and sequence, MBLs are divided into three subclasses, B1, B2, and B3, whose differing active-site architectures hinder development of BLIs capable of "cross-class" MBL inhibition. We previously described 2-mercaptomethyl thiazolidines (MMTZs) as B1 MBL inhibitors (e.g., NDM-1) and here show that inhibition extends to the clinically relevant B2 (Sfh-I) and B3 (L1) enzymes. MMTZs inhibit purified MBLs in vitro (e.g., Sfh-I, Ki 0.16 μM) and potentiate β-lactam activity against producer strains. X-ray crystallography reveals that inhibition involves direct interaction of the MMTZ thiol with the mono- or dizinc centers of Sfh-I/L1, respectively. This is further enhanced by sulfur-π interactions with a conserved active site tryptophan. Computational studies reveal that the stereochemistry at chiral centers is critical, showing less potent MMTZ stereoisomers (up to 800-fold) as unable to replicate sulfur-π interactions in Sfh-I, largely through steric constraints in a compact active site. Furthermore, in silico replacement of the thiazolidine sulfur with oxygen (forming an oxazolidine) resulted in less favorable aromatic interactions with B2 MBLs, though the effect is less than that previously observed for the subclass B1 enzyme NDM-1. In the B3 enzyme L1, these effects are offset by additional MMTZ interactions with the protein main chain. MMTZs can therefore inhibit all MBL classes by maintaining conserved binding modes through different routes.
Collapse
Affiliation(s)
- Philip Hinchliffe
- School of Cellular and Molecular Medicine, University of Bristol, Biomedical Sciences
Building, University Walk, Bristol BS8 1TD, U.K
| | - Diego M. Moreno
- Instituto de Química de Rosario (IQUIR, CONICET-UNR), Suipacha 570, S2002LRK Rosario, Argentina
- Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, S2002LRK Rosario, Argentina
| | - Maria-Agustina Rossi
- Instituto de Biología Molecular y Celular de Rosario (IBR, CONICET-UNR), Ocampo and Esmeralda, S2002LRK Rosario, Argentina
| | - Maria F. Mojica
- Infectious Diseases Department, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106, United States
- Research Service, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, Ohio 44106, United States
- Grupo de Resistencia Antimicrobiana y Epidemiología Hospitalaria, Universidad El Bosque, Bogotá 11001, DC Colombia
| | - Veronica Martinez
- Laboratorio de Química Farmacéutica, Departamento de Química Orgánica, Facultad de Química, Universidad de la República (UdelaR), Avda. General Flores 2124, Montevideo 11800, Uruguay
| | - Valentina Villamil
- Laboratorio de Química Farmacéutica, Departamento de Química Orgánica, Facultad de Química, Universidad de la República (UdelaR), Avda. General Flores 2124, Montevideo 11800, Uruguay
| | - Brad Spellberg
- Los Angeles County and University of Southern California (LAC + USC) Medical Center, Los Angeles, California 90033, United States
| | - George L. Drusano
- Center for Pharmacometrics and Systems Pharmacology, Department of Pharmaceutics, College of Pharmacy, University of Florida, Orlando, Florida 32827-7400, United States
| | - Claudia Banchio
- Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, S2002LRK Rosario, Argentina
- Instituto de Biología Molecular y Celular de Rosario (IBR, CONICET-UNR), Ocampo and Esmeralda, S2002LRK Rosario, Argentina
| | - Graciela Mahler
- Laboratorio de Química Farmacéutica, Departamento de Química Orgánica, Facultad de Química, Universidad de la República (UdelaR), Avda. General Flores 2124, Montevideo 11800, Uruguay
| | - Robert A. Bonomo
- Research Service, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, Ohio 44106, United States
- Departments of Medicine, Pharmacology, Molecular Biology and Microbiology, Biochemistry, and Proteomics and Bioinformatics, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106, United States
- Medical Service, GRECC, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, Ohio 44106, United States
- CWRU-Cleveland VAMC Center for Antimicrobial Resistance and Epidemiology (Case VA CARES), Cleveland, Ohio 44106,United States
| | - Alejandro J. Vila
- Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, S2002LRK Rosario, Argentina
- Instituto de Biología Molecular y Celular de Rosario (IBR, CONICET-UNR), Ocampo and Esmeralda, S2002LRK Rosario, Argentina
| | - James Spencer
- School of Cellular and Molecular Medicine, University of Bristol, Biomedical Sciences
Building, University Walk, Bristol BS8 1TD, U.K
| |
Collapse
|
48
|
Exploring the Role of L10 Loop in New Delhi Metallo-β-lactamase (NDM-1): Kinetic and Dynamic Studies. Molecules 2021; 26:molecules26185489. [PMID: 34576958 PMCID: PMC8467308 DOI: 10.3390/molecules26185489] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 08/30/2021] [Accepted: 09/06/2021] [Indexed: 11/24/2022] Open
Abstract
Four NDM-1 mutants (L218T, L221T, L269H and L221T/Y229W) were generated in order to investigate the role of leucines positioned in L10 loop. A detailed kinetic analysis stated that these amino acid substitutions modified the hydrolytic profile of NDM-1 against some β-lactams. Significant reduction of kcat values of L218T and L221T for carbapenems, cefazolin, cefoxitin and cefepime was observed. The stability of the NDM-1 and its mutants was explored by thermofluor assay in real-time PCR. The determination of TmB and TmD demonstrated that NDM-1 and L218T were the most stable enzymes. Molecular dynamic studies were performed to justify the differences observed in the kinetic behavior of the mutants. In particular, L218T fluctuated more than NDM-1 in L10, whereas L221T would seem to cause a drift between residues 75 and 125. L221T/Y229W double mutant exhibited a decrease in the flexibility with respect to L221T, explaining enzyme activity improvement towards some β-lactams. Distances between Zn1-Zn2 and Zn1-OH- or Zn2-OH- remained unaffected in all systems analysed. Significant changes were found between Zn1/Zn2 and first sphere coordination residues.
Collapse
|
49
|
Sychantha D, Rotondo CM, Tehrani KHME, Martin NI, Wright GD. Aspergillomarasmine A inhibits metallo-β-lactamases by selectively sequestering Zn 2. J Biol Chem 2021; 297:100918. [PMID: 34181945 PMCID: PMC8319579 DOI: 10.1016/j.jbc.2021.100918] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 06/14/2021] [Accepted: 06/23/2021] [Indexed: 11/05/2022] Open
Abstract
Class B metallo-β-lactamases (MBLs) are Zn2+-dependent enzymes that catalyze the hydrolysis of β-lactam antibiotics to confer resistance in bacteria. Several problematic groups of MBLs belong to subclass B1, including the binuclear New Delhi MBL (NDM), Verona integrin-encoded MBL, and imipenemase-type enzymes, which are responsible for widespread antibiotic resistance. Aspergillomarasmine A (AMA) is a natural aminopolycarboxylic acid that functions as an effective inhibitor of class B1 MBLs. The precise mechanism of action of AMA is not thoroughly understood, but it is known to inactivate MBLs by removing one catalytic Zn2+ cofactor. We investigated the kinetics of MBL inactivation in detail and report that AMA is a selective Zn2+ scavenger that indirectly inactivates NDM-1 by encouraging the dissociation of a metal cofactor. To further investigate the mechanism in living bacteria, we used an active site probe and showed that AMA causes the loss of a Zn2+ ion from a low-affinity binding site of NDM-1. Zn2+-depleted NDM-1 is rapidly degraded, contributing to the efficacy of AMA as a β-lactam potentiator. However, MBLs with higher metal affinity and stability such as NDM-6 and imipenemase-7 exhibit greater tolerance to AMA. These results indicate that the mechanism of AMA is broadly applicable to diverse Zn2+ chelators and highlight that leveraging Zn2+ availability can influence the survival of MBL-producing bacteria when they are exposed to β-lactam antibiotics.
Collapse
Affiliation(s)
- David Sychantha
- David Braley Centre for Antibiotic Discovery, McMaster University, Hamilton, Ontario, Canada; M.G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada; Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
| | - Caitlyn M Rotondo
- David Braley Centre for Antibiotic Discovery, McMaster University, Hamilton, Ontario, Canada; M.G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada; Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
| | - Kamaleddin H M E Tehrani
- Biological Chemistry Group, Institute of Biology Leiden, Leiden University, Leiden, The Netherlands
| | - Nathaniel I Martin
- Biological Chemistry Group, Institute of Biology Leiden, Leiden University, Leiden, The Netherlands
| | - Gerard D Wright
- David Braley Centre for Antibiotic Discovery, McMaster University, Hamilton, Ontario, Canada; M.G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada; Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada.
| |
Collapse
|
50
|
Bahr G, González LJ, Vila AJ. Metallo-β-lactamases in the Age of Multidrug Resistance: From Structure and Mechanism to Evolution, Dissemination, and Inhibitor Design. Chem Rev 2021; 121:7957-8094. [PMID: 34129337 PMCID: PMC9062786 DOI: 10.1021/acs.chemrev.1c00138] [Citation(s) in RCA: 132] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Antimicrobial resistance is one of the major problems in current practical medicine. The spread of genes coding for resistance determinants among bacteria challenges the use of approved antibiotics, narrowing the options for treatment. Resistance to carbapenems, last resort antibiotics, is a major concern. Metallo-β-lactamases (MBLs) hydrolyze carbapenems, penicillins, and cephalosporins, becoming central to this problem. These enzymes diverge with respect to serine-β-lactamases by exhibiting a different fold, active site, and catalytic features. Elucidating their catalytic mechanism has been a big challenge in the field that has limited the development of useful inhibitors. This review covers exhaustively the details of the active-site chemistries, the diversity of MBL alleles, the catalytic mechanism against different substrates, and how this information has helped developing inhibitors. We also discuss here different aspects critical to understand the success of MBLs in conferring resistance: the molecular determinants of their dissemination, their cell physiology, from the biogenesis to the processing involved in the transit to the periplasm, and the uptake of the Zn(II) ions upon metal starvation conditions, such as those encountered during an infection. In this regard, the chemical, biochemical and microbiological aspects provide an integrative view of the current knowledge of MBLs.
Collapse
Affiliation(s)
- Guillermo Bahr
- Instituto de Biología Molecular y Celular de Rosario (IBR), CONICET, Universidad Nacional de Rosario, Ocampo y Esmeralda S/N, 2000 Rosario, Argentina
- Area Biofísica, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, 2000 Rosario, Argentina
| | - Lisandro J. González
- Instituto de Biología Molecular y Celular de Rosario (IBR), CONICET, Universidad Nacional de Rosario, Ocampo y Esmeralda S/N, 2000 Rosario, Argentina
- Area Biofísica, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, 2000 Rosario, Argentina
| | - Alejandro J. Vila
- Instituto de Biología Molecular y Celular de Rosario (IBR), CONICET, Universidad Nacional de Rosario, Ocampo y Esmeralda S/N, 2000 Rosario, Argentina
- Area Biofísica, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, 2000 Rosario, Argentina
| |
Collapse
|