1
|
Pek JW. The idiosyncrasies of oocytes. Trends Cell Biol 2025; 35:305-315. [PMID: 39142921 DOI: 10.1016/j.tcb.2024.07.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 07/17/2024] [Accepted: 07/18/2024] [Indexed: 08/16/2024]
Abstract
Animal oocytes face extreme challenges. They remain dormant in the body for long periods of time. To support offspring development and health, they need to store genetic material and maternal factors stably and at the same time manage cellular damage in a reliable manner. Recent studies have provided new insights on how oocytes cope with such challenges. This review discusses the many unusual or idiosyncratic nature of oocytes and how understanding oocyte biology can help us address issues of reproduction and intergenerational inheritance.
Collapse
Affiliation(s)
- Jun Wei Pek
- Temasek Life Sciences Laboratory, 1 Research Link National University of Singapore, Singapore 117604, Singapore; Department of Biological Sciences, National University of Singapore, 14 Science Drive, 117543, Singapore.
| |
Collapse
|
2
|
Wu C, Wang X, Li Y, Zhen W, Wang C, Wang X, Xie Z, Xu X, Guo S, Botella JR, Zheng B, Wang W, Song CP, Hu Z. Sequestration of DBR1 to stress granules promotes lariat intronic RNAs accumulation for heat-stress tolerance. Nat Commun 2024; 15:7696. [PMID: 39227617 PMCID: PMC11371829 DOI: 10.1038/s41467-024-52034-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Accepted: 08/22/2024] [Indexed: 09/05/2024] Open
Abstract
Heat stress (HS) poses a significant challenge to plant survival, necessitating sophisticated molecular mechanisms to maintain cellular homeostasis. Here, we identify SICKLE (SIC) as a key modulator of HS responses in Arabidopsis (Arabidopsis thaliana). SIC is required for the sequestration of RNA DEBRANCHING ENZYME 1 (DBR1), a rate-limiting enzyme of lariat intronic RNA (lariRNA) decay, into stress granules (SGs). The sequestration of DBR1 by SIC enhances the accumulation of lariRNAs, branched circular RNAs derived from excised introns during pre-mRNA splicing, which in turn promote the transcription of their parental genes. Our findings further demonstrate that SIC-mediated DBR1 sequestration in SGs is crucial for plant HS tolerance, as deletion of the N-terminus of SIC (SIC1-244) impairs DBR1 sequestration and compromises plant response to HS. Overall, our study unveils a mechanism of transcriptional regulation in the HS response, where lariRNAs are enriched through DBR1 sequestration, ultimately promoting the transcription of heat stress tolerance genes.
Collapse
Affiliation(s)
- Chengyun Wu
- The Zhongzhou Laboratory for Integrative Biology, State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, 475004, China
- Sanya Institute, Henan University, Sanya, 572025, China
- The National Engineering Lab of Crop Stress Resistance Breeding, School of Life Sciences, Anhui Agricultural University, Hefei, 230036, China
| | - Xingsong Wang
- The Zhongzhou Laboratory for Integrative Biology, State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, 475004, China
| | - Yan Li
- The Zhongzhou Laboratory for Integrative Biology, State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, 475004, China
| | - Weibo Zhen
- The Zhongzhou Laboratory for Integrative Biology, State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, 475004, China
| | - Chunfei Wang
- The Zhongzhou Laboratory for Integrative Biology, State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, 475004, China
| | - Xiaoqing Wang
- The Zhongzhou Laboratory for Integrative Biology, State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, 475004, China
| | - Zhouli Xie
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, China
| | - Xiumei Xu
- The Zhongzhou Laboratory for Integrative Biology, State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, 475004, China
- Sanya Institute, Henan University, Sanya, 572025, China
| | - Siyi Guo
- The Zhongzhou Laboratory for Integrative Biology, State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, 475004, China
- Sanya Institute, Henan University, Sanya, 572025, China
| | - José Ramón Botella
- Plant Genetic Engineering Laboratory, School of Agriculture and Food Sciences, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Binglian Zheng
- State Key Laboratory of Genetic Engineering, Ministry of Education Key Laboratory of Biodiversity Sciences and Ecological Engineering, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Wei Wang
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, China
- Center for Life Sciences, Beijing, 100871, China
| | - Chun-Peng Song
- The Zhongzhou Laboratory for Integrative Biology, State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, 475004, China.
- Sanya Institute, Henan University, Sanya, 572025, China.
| | - Zhubing Hu
- The Zhongzhou Laboratory for Integrative Biology, State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, 475004, China.
- Sanya Institute, Henan University, Sanya, 572025, China.
| |
Collapse
|
3
|
Ng AYE, Chan SN, Pek JW. Genetic compensation between ribosomal protein paralogs mediated by a cognate circular RNA. Cell Rep 2024; 43:114228. [PMID: 38735045 DOI: 10.1016/j.celrep.2024.114228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 04/19/2024] [Accepted: 04/26/2024] [Indexed: 05/14/2024] Open
Abstract
Inter-regulation between related genes, such as ribosomal protein (RP) paralogs, has been observed to be important for genetic compensation and paralog-specific functions. However, how paralogs communicate to modulate their expression levels is unknown. Here, we report a circular RNA involved in the inter-regulation between RP paralogs RpL22 and RpL22-like during Drosophila spermatogenesis. Both paralogs are mutually regulated by the circular stable intronic sequence RNA (sisRNA) circRpL22(NE,3S) produced from the RpL22 locus. RpL22 represses itself and RpL22-like. Interestingly, circRpL22 binds to RpL22 to repress RpL22-like, but not RpL22, suggesting that circRpL22 modulates RpL22's function. circRpL22 is in turn controlled by RpL22-like, which regulates RpL22 binding to circRpL22 to indirectly modulate RpL22. This circRpL22-centric inter-regulatory circuit enables the loss of RpL22-like to be genetically compensated by RpL22 upregulation to ensure robust male germline development. Thus, our study identifies sisRNA as a possible mechanism of genetic crosstalk between paralogous genes.
Collapse
Affiliation(s)
- Amanda Yunn Ee Ng
- Temasek Life Sciences Laboratory, 1 Research Link National University of Singapore, Singapore 117604, Singapore; Department of Biological Sciences, National University of Singapore, 14 Science Drive Singapore 117543, Singapore
| | - Seow Neng Chan
- Temasek Life Sciences Laboratory, 1 Research Link National University of Singapore, Singapore 117604, Singapore
| | - Jun Wei Pek
- Temasek Life Sciences Laboratory, 1 Research Link National University of Singapore, Singapore 117604, Singapore; Department of Biological Sciences, National University of Singapore, 14 Science Drive Singapore 117543, Singapore.
| |
Collapse
|
4
|
Liu S, Huang J, Zhou J, Chen S, Zheng W, Liu C, Lin Q, Zhang P, Wu D, He S, Ye J, Liu S, Zhou K, Li B, Qu L, Yang J. NAP-seq reveals multiple classes of structured noncoding RNAs with regulatory functions. Nat Commun 2024; 15:2425. [PMID: 38499544 PMCID: PMC10948791 DOI: 10.1038/s41467-024-46596-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 03/04/2024] [Indexed: 03/20/2024] Open
Abstract
Up to 80% of the human genome produces "dark matter" RNAs, most of which are noncapped RNAs (napRNAs) that frequently act as noncoding RNAs (ncRNAs) to modulate gene expression. Here, by developing a method, NAP-seq, to globally profile the full-length sequences of napRNAs with various terminal modifications at single-nucleotide resolution, we reveal diverse classes of structured ncRNAs. We discover stably expressed linear intron RNAs (sliRNAs), a class of snoRNA-intron RNAs (snotrons), a class of RNAs embedded in miRNA spacers (misRNAs) and thousands of previously uncharacterized structured napRNAs in humans and mice. These napRNAs undergo dynamic changes in response to various stimuli and differentiation stages. Importantly, we show that a structured napRNA regulates myoblast differentiation and a napRNA DINAP interacts with dyskerin pseudouridine synthase 1 (DKC1) to promote cell proliferation by maintaining DKC1 protein stability. Our approach establishes a paradigm for discovering various classes of ncRNAs with regulatory functions.
Collapse
Affiliation(s)
- Shurong Liu
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, Guangdong, China
| | - Junhong Huang
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, Guangdong, China
- The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, 519082, Guangdong, China
| | - Jie Zhou
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, Guangdong, China
| | - Siyan Chen
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, Guangdong, China
- The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, 519082, Guangdong, China
| | - Wujian Zheng
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, Guangdong, China
| | - Chang Liu
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, Guangdong, China
| | - Qiao Lin
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, Guangdong, China
| | - Ping Zhang
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, Guangdong, China
| | - Di Wu
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, Guangdong, China
- The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, 519082, Guangdong, China
| | - Simeng He
- The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, 519082, Guangdong, China
| | - Jiayi Ye
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, Guangdong, China
| | - Shun Liu
- Department of Chemistry, The University of Chicago, Chicago, IL, 60637, USA
| | - Keren Zhou
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA, 91016, USA
| | - Bin Li
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, Guangdong, China.
| | - Lianghu Qu
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, Guangdong, China.
| | - Jianhua Yang
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, Guangdong, China.
- The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, 519082, Guangdong, China.
| |
Collapse
|
5
|
Ng AQE, Chan SN, Pek JW. Nutrient-dependent regulation of a stable intron modulates germline mitochondrial quality control. Nat Commun 2024; 15:1252. [PMID: 38341415 PMCID: PMC10858910 DOI: 10.1038/s41467-024-45651-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 01/29/2024] [Indexed: 02/12/2024] Open
Abstract
Mitochondria are inherited exclusively from the mothers and are required for the proper development of embryos. Hence, germline mitochondrial quality is highly regulated during oogenesis to ensure oocyte viability. How nutrient availability influences germline mitochondrial quality control is unclear. Here we find that fasting leads to the accumulation of mitochondrial clumps and oogenesis arrest in Drosophila. Fasting induces the downregulation of the DIP1-Clueless pathway, leading to an increase in the expression of a stable intronic sequence RNA called sisR-1. Mechanistically, sisR-1 localizes to the mitochondrial clumps to inhibit the poly-ubiquitination of the outer mitochondrial protein Porin/VDAC1, thereby suppressing p62-mediated mitophagy. Alleviation of the fasting-induced high sisR-1 levels by either sisR-1 RNAi or refeeding leads to mitophagy, the resumption of oogenesis and an improvement in oocyte quality. Thus, our study provides a possible mechanism by which fasting can improve oocyte quality by modulating the mitochondrial quality control pathway. Of note, we uncover that the sisR-1 response also regulates mitochondrial clumping and oogenesis during protein deprivation, heat shock and aging, suggesting a broader role for this mechanism in germline mitochondrial quality control.
Collapse
Affiliation(s)
- Annabel Qi En Ng
- Temasek Life Sciences Laboratory, 1 Research Link National University of Singapore, Singapore, 117604, Singapore
| | - Seow Neng Chan
- Temasek Life Sciences Laboratory, 1 Research Link National University of Singapore, Singapore, 117604, Singapore
| | - Jun Wei Pek
- Temasek Life Sciences Laboratory, 1 Research Link National University of Singapore, Singapore, 117604, Singapore.
- Department of Biological Sciences, National University of Singapore, 14 Science Drive, Singapore, 117543, Singapore.
| |
Collapse
|
6
|
Kazmi I, Altamimi ASA, Afzal M, Majami AA, Abbasi FA, Almalki WH, Alzera SI, Kukreti N, Fuloria NK, Fuloria S, Sekar M, Abida. Non-coding RNAs: Emerging biomarkers and therapeutic targets in ulcerative colitis. Pathol Res Pract 2024; 253:155037. [PMID: 38160482 DOI: 10.1016/j.prp.2023.155037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 12/10/2023] [Accepted: 12/11/2023] [Indexed: 01/03/2024]
Abstract
Ulcerative colitis (UC) is a persistent inflammatory condition affecting the colon's mucosal lining, leading to chronic bowel inflammation. Despite extensive research, the precise molecular mechanisms underlying UC pathogenesis remain elusive. NcRNAs form a category of functional RNA molecules devoid of protein-coding capacity. They have recently surfaced as pivotal modulators of gene expression and integral participants in various pathological processes, particularly those related to inflammatory disorders. The diverse classes of ncRNAs, encompassing miRNAs, circRNAs, and lncRNAs, have been implicated in UC. It highlights their involvement in key UC-related processes, such as immune cell activation, epithelial barrier integrity, and the production of pro-inflammatory mediators. ncRNAs have been identified as potential biomarkers for UC diagnosis and monitoring disease progression, offering promising avenues for personalized medicine. This approach may pave the way for novel, more specific treatments with reduced side effects, addressing the current limitations of conventional therapies. A comprehensive understanding of the interplay between ncRNAs and UC will advance our knowledge of the disease, potentially leading to more effective and personalized treatments for patients suffering from this debilitating condition. This review explores the pivotal role of ncRNAs in the context of UC, shedding light on their possible targets for diagnosis, prognosis, and therapeutic interventions.
Collapse
Affiliation(s)
- Imran Kazmi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | | | - Muhammad Afzal
- Department of Pharmaceutical Sciences, Pharmacy Program, Batterjee Medical College, P.O. Box 6231, Jeddah 21442, Saudi Arabia
| | - Abdullah A Majami
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Fahad Al Abbasi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Waleed Hassan Almalki
- Department of Pharmacology, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Sami I Alzera
- Department of Pharmacology, College of Pharmacy, Jouf University, Sakaka 72341, Al-Jouf, Saudi Arabia
| | - Neelima Kukreti
- School of Pharmacy, Graphic Era Hill University, Dehradun 248007, India
| | | | - Shivkanya Fuloria
- Faculty of Pharmacy, AIMST University, Bedong 08100, Kedah, Malaysia
| | - Mahendran Sekar
- School of Pharmacy, Monash University Malaysia, Bandar Sunway, Subang Jaya 47500, Selangor, Malaysia
| | - Abida
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Northern Border University, Rafha 91911, Saudi Arabia
| |
Collapse
|
7
|
Li H, Zhang Y, Bing J, Han J, Hu J, Zhao H, Sun X. Intron-capture RNA-seq reveals the landscape of intronic RNAs in Arabidopsis. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 196:75-88. [PMID: 36701993 DOI: 10.1016/j.plaphy.2023.01.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 01/19/2023] [Indexed: 06/17/2023]
Abstract
Intronic RNAs have been overlooked for a long time: They are functional, but treated as "junk." In this work, we designed a new sequencing strategy to investigate intronic RNAs. By using intron-capture RNA-seq, we systematically analyzed the intronic RNAs in Arabidopsis by zooming into the intronic regions an order of magnitude deeper than in previous work. Our key findings include: (1) Intron-capture RNA-seq is a much more efficient approach to analyze intronic RNAs than total RNA-seq and mRNA-seq. (2) We identified three types of intronic RNAs, and found that the GC pattern differs significantly between the introns with and without intronic RNAs. (3) We detected many hidden elements in introns, including circular RNAs, splice junctions, and transcripts that have previously been overlooked. (4) The expression of these intronic RNAs varies during the time course of pathogen infection, which indicates that an unknown mechanism may exist for these RNAs. (5) We also demonstrated that most of intronic RNAs are detectable in both Arabidopsis and rice, suggesting that these non-coding molecules are conserved. Taken together, this work proposes an efficient strategy to analyze intronic RNAs, and provides an unprecedented view of this essential component in biological pathways.
Collapse
Affiliation(s)
- Han Li
- Agricultural Big-Data Research Center, College of Information Science and Engineering, Shandong Agricultural University, Taian, China
| | - Yimai Zhang
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Jianhao Bing
- Agricultural Big-Data Research Center, College of Information Science and Engineering, Shandong Agricultural University, Taian, China
| | - Jinyu Han
- Agricultural Big-Data Research Center, College of Information Science and Engineering, Shandong Agricultural University, Taian, China
| | - Jiming Hu
- Agricultural Big-Data Research Center, College of Information Science and Engineering, Shandong Agricultural University, Taian, China
| | - Hongwei Zhao
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, China.
| | - Xiaoyong Sun
- Agricultural Big-Data Research Center, College of Information Science and Engineering, Shandong Agricultural University, Taian, China.
| |
Collapse
|
8
|
Chan SN, Pek JW. Distinct biogenesis pathways may have led to functional divergence of the human and Drosophila Arglu1 sisRNA. EMBO Rep 2023; 24:e54350. [PMID: 36533631 PMCID: PMC9900350 DOI: 10.15252/embr.202154350] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 11/28/2022] [Accepted: 12/02/2022] [Indexed: 12/23/2022] Open
Abstract
Stable intronic sequence RNAs (sisRNAs) are stable, long noncoding RNAs containing intronic sequences. While sisRNAs have been found across diverse species, their level of conservation remains poorly understood. Here we report that the biogenesis and functions of a sisRNA transcribed from the highly conserved Arglu1 locus are distinct in human and Drosophila melanogaster. The Arglu1 genes in both species show similar exon-intron structures where the intron 2 is orthologous and positionally conserved. In humans, Arglu1 sisRNA retains the entire intron 2 and promotes host gene splicing. Mechanistically, Arglu1 sisRNA represses the splicing-inhibitory activity of ARGLU1 protein by binding to ARGLU1 protein and promoting its localization to nuclear speckles, away from the Arglu1 gene locus. In contrast, Drosophila dArglu1 sisRNA forms via premature cleavage of intron 2 and represses host gene splicing. This repression occurs through a local accumulation of dARGLU1 protein and inhibition of telescripting by U1 snRNPs at the dArglu1 locus. We propose that distinct biogenesis of positionally conserved Arglu1 sisRNAs in both species may have led to functional divergence.
Collapse
Affiliation(s)
- Seow Neng Chan
- Temasek Life Sciences LaboratoryNational University of SingaporeSingaporeSingapore
| | - Jun Wei Pek
- Temasek Life Sciences LaboratoryNational University of SingaporeSingaporeSingapore
- Department of Biological SciencesNational University of SingaporeSingaporeSingapore
| |
Collapse
|
9
|
Maternal starvation primes progeny response to nutritional stress. PLoS Genet 2021; 17:e1009932. [PMID: 34843464 PMCID: PMC8659306 DOI: 10.1371/journal.pgen.1009932] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Revised: 12/09/2021] [Accepted: 11/05/2021] [Indexed: 12/22/2022] Open
Abstract
Organisms adapt to environmental changes in order to survive. Mothers exposed to nutritional stresses can induce an adaptive response in their offspring. However, the molecular mechanisms behind such inheritable links are not clear. Here we report that in Drosophila, starvation of mothers primes the progeny against subsequent nutritional stress. We found that RpL10Ab represses TOR pathway activity by genetically interacting with TOR pathway components TSC2 and Rheb. In addition, starved mothers produce offspring with lower levels of RpL10Ab in the germline, which results in higher TOR pathway activity, conferring greater resistance to starvation-induced oocyte loss. The RpL10Ab locus encodes for the RpL10Ab mRNA and a stable intronic sequence RNA (sisR-8), which collectively repress RpL10Ab pre-mRNA splicing in a negative feedback mechanism. During starvation, an increase in maternally deposited RpL10Ab and sisR-8 transcripts leads to the reduction of RpL10Ab expression in the offspring. Our study suggests that the maternally deposited RpL10Ab and sisR-8 transcripts trigger a negative feedback loop that mediates intergenerational adaptation to nutritional stress as a starvation response. In the wild, animals need to adapt to frequent changes in the environment. Mothers who are exposed to nutritional stresses are known to produce offspring which are preconditioned to adapt to the mothers’ environment. However, it is unclear how such maternal “memory” is being passed on to the offspring. Here we show that Drosophila mothers exposed to starvation produce offspring which are more resistant to starvation during oogenesis. This process is mediated by maternally inherited RpL10Ab mRNA and a stable intronic sequence RNA (sisR-8), which collectively repress the splicing of RpL10Ab pre-mRNA, leading to lower RpL10Ab expression in the offspring ovaries. As a consequence, lower RpL10Ab expression results in higher TOR pathway activity, conferring greater resistance to starvation during oogenesis. Hence, maternally inherited transcripts may play a role as mediators in conferring intergenerational adaption to starvation.
Collapse
|
10
|
Ng AYE, Pek JW. Circular sisRNA identification and characterisation. Methods 2021; 196:138-146. [PMID: 33838268 DOI: 10.1016/j.ymeth.2021.04.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 03/30/2021] [Accepted: 04/02/2021] [Indexed: 01/22/2023] Open
Abstract
Stable Intronic Sequence RNA (sisRNA) is a relatively new class of non-coding RNA. Found in many organisms, these sisRNA produced from their host genes are generally involved in regulatory roles, controlling gene expression at multiple levels through active involvement in regulatory feedback loops. Large scale identification of sisRNA via genome-wide RNA sequencing has been difficult, largely in part due to its low abundance. Done on its own, RNA sequencing often yields a large mass of information that is ironically uninformative; the potential sisRNA reads being masked by other highly abundant RNA species like ribosomal RNA and messenger RNA. In this review, we present a practical workflow for the enrichment of circular sisRNA through the use of transcriptionally quiescent systems, rRNA-depletion, and RNase R treatment prior to deep sequencing. This workflow allows circular sisRNA to be reliably detected. We also present various methods to experimentally validate the circularity and stability of the circular sisRNA identified, as well as a few methods for further functional characterisation.
Collapse
Affiliation(s)
- Amanda Yunn Ee Ng
- Temasek Life Sciences Laboratory, 1 Research Link National University of Singapore, Singapore 117604, Singapore; Department of Biological Sciences, National University of Singapore, 14 Science Drive, Singapore 117543, Singapore
| | - Jun Wei Pek
- Temasek Life Sciences Laboratory, 1 Research Link National University of Singapore, Singapore 117604, Singapore; Department of Biological Sciences, National University of Singapore, 14 Science Drive, Singapore 117543, Singapore.
| |
Collapse
|
11
|
Wang T, Zhang X, Zheng B. Identification of Intronic Lariat-Derived Circular RNAs in Arabidopsis by RNA Deep Sequencing. Methods Mol Biol 2021; 2362:93-100. [PMID: 34195958 DOI: 10.1007/978-1-0716-1645-1_5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Lariat RNAs are well-known by-products of pre-mRNA splicing in eukaryotes, which are produced by the excised introns when the 5' splice site (5' ss) joins with the branchpoint (BP) during splicing. In general, most of lariat RNAs are usually linearized by RNA debranching enzyme 1 (DBR1), followed by degradation for intron turnover. However, with the high-throughput RNA sequencing technology and bioinformatics methods, increasing evidences have shown that many lariat RNAs can stably accumulate under physiological conditions in both animals and plants. Here, we describe a large-scale analysis to systematically identify the lariat RNAs (i.e., intronic circular RNAs) in Arabidopsis by utilizing the RNA-sequencing data.
Collapse
Affiliation(s)
- Taiyun Wang
- State Key Laboratory of Genetic Engineering, Ministry of Education Key Laboratory of Biodiversity Sciences and Ecological Engineering, Collaborative Innovation Center of Genetics and Development, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, China
| | - Xiaotuo Zhang
- State Key Laboratory of Genetic Engineering, Ministry of Education Key Laboratory of Biodiversity Sciences and Ecological Engineering, Collaborative Innovation Center of Genetics and Development, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, China
| | - Binglian Zheng
- State Key Laboratory of Genetic Engineering, Ministry of Education Key Laboratory of Biodiversity Sciences and Ecological Engineering, Collaborative Innovation Center of Genetics and Development, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, China.
| |
Collapse
|
12
|
Maternally inherited intron coordinates primordial germ cell homeostasis during Drosophila embryogenesis. Cell Death Differ 2020; 28:1208-1221. [PMID: 33093656 DOI: 10.1038/s41418-020-00642-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 10/07/2020] [Accepted: 10/08/2020] [Indexed: 12/12/2022] Open
Abstract
Primordial germ cells (PGCs) give rise to the germline stem cells (GSCs) in the adult Drosophila gonads. Both PGCs and GSCs need to be tightly regulated to safeguard the survival of the entire species. During larval development, a non-cell autonomous homeostatic mechanism is in place to maintain PGC number in the gonads. Whether such germline homeostasis occurs during early embryogenesis before PGCs reach the gonads remains unclear. We have previously shown that the maternally deposited sisRNA sisR-2 can influence GSC number in the female progeny. Here we uncover the presence of a homeostatic mechanism regulating PGCs during embryogenesis. sisR-2 represses PGC number by promoting PGC death. Surprisingly, increasing maternal sisR-2 leads to an increase in PGC death, but no drop in PGC number was observed. This is due to ectopic division of PGCs via the de-repression of Cyclin B, which is governed by a genetic pathway involving sisR-2, bantam and brat. We propose a cell autonomous model whereby germline homeostasis is achieved by preserving PGC number during embryogenesis.
Collapse
|
13
|
Jin J, He X, Silva E. Stable intronic sequence RNAs (sisRNAs) are selected regions in introns with distinct properties. BMC Genomics 2020; 21:287. [PMID: 32264855 PMCID: PMC7137253 DOI: 10.1186/s12864-020-6687-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 03/18/2020] [Indexed: 12/31/2022] Open
Abstract
Background Stable introns and intronic fragments make up the largest population of RNA in the oocyte nucleus of the frog Xenopus tropicalis. These stable intronic sequence RNAs (sisRNAs) persist through the onset of zygotic transcription when synchronous cell division has ended, and the developing embryo consists of approximately 8000 cells. Despite their abundance, the sequence properties and biological function of sisRNAs are just beginning to be understood. Results To characterize this population of non-coding RNA, we identified all of the sisRNAs in the X. tropicalis oocyte nucleus using published high-throughput RNA sequencing data. Our analysis revealed that sisRNAs, have an average length of ~ 360 nt, are widely expressed from genes with multiple introns, and are derived from specific regions of introns that are GC and TG rich, while CpG poor. They are enriched in introns at both ends of transcripts but preferentially at the 3′ end. The consensus binding sites of specific transcription factors such as Stat3 are enriched in sisRNAs, suggesting an association between sisRNAs and transcription factors involved in early development. Evolutionary conservation analysis of sisRNA sequences in seven vertebrate genomes indicates that sisRNAs are as conserved as other parts of introns, but much less conserved than exons. Conclusion In total, our results indicate sisRNAs are selected intron regions with distinct properties and may play a role in gene expression regulation.
Collapse
Affiliation(s)
- Jing Jin
- Department of Physiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China.,Department of Biology, Georgetown University, 37th and O Sts, NW, Washington DC, 20057, USA
| | - Ximiao He
- Department of Physiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China.
| | - Elena Silva
- Department of Biology, Georgetown University, 37th and O Sts, NW, Washington DC, 20057, USA.
| |
Collapse
|
14
|
Grandon B, Rincheval-Arnold A, Jah N, Corsi JM, Araujo LM, Glatigny S, Prevost E, Roche D, Chiocchia G, Guénal I, Gaumer S, Breban M. HLA-B27 alters BMP/TGFβ signalling in Drosophila, revealing putative pathogenic mechanism for spondyloarthritis. Ann Rheum Dis 2019; 78:1653-1662. [PMID: 31563893 DOI: 10.1136/annrheumdis-2019-215832] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 09/08/2019] [Accepted: 09/09/2019] [Indexed: 01/16/2023]
Abstract
OBJECTIVES The human leucocyte antigen (HLA)-B27 confers an increased risk of spondyloarthritis (SpA) by unknown mechanism. The objective of this work was to uncover HLA-B27 non-canonical properties that could explain its pathogenicity, using a new Drosophila model. METHODS We produced transgenic Drosophila expressing the SpA-associated HLA-B*27:04 or HLA-B*27:05 subtypes, or the non-associated HLA-B*07:02 allele, alone or in combination with human β2-microglobulin (hβ2m), under tissue-specific drivers. Consequences of transgenes expression in Drosophila were examined and affected pathways were investigated by the genetic interaction experiments. Predictions of the model were further tested in immune cells from patients with SpA. RESULTS Loss of crossveins in the wings and a reduced eye phenotype were observed after expression of HLA-B*27:04 or HLA-B*27:05 in Drosophila but not in fruit flies expressing the non-associated HLA-B*07:02 allele. These HLA-B27-induced phenotypes required the presence of hβ2m that allowed expression of well-folded HLA-B conformers at the cell surface. Loss of crossveins resulted from a dominant negative effect of HLA-B27 on the type I bone morphogenetic protein (BMP) receptor saxophone (Sax) with which it interacted, resulting in elevated mothers against decapentaplegic (Mad, a Drosophila receptor-mediated Smad) phosphorylation. Likewise, in immune cells from patients with SpA, HLA-B27 specifically interacted with activin receptor-like kinase-2 (ALK2), the mammalian Sax ortholog, at the cell surface and elevated Smad phosphorylation was observed in response to activin A and transforming growth factor β (TGFβ). CONCLUSIONS Antagonistic interaction of HLA-B27 with ALK2, which exerts inhibitory functions on the TGFβ/BMP signalling pathway at the cross-road between inflammation and ossification, could adequately explain SpA development.
Collapse
Affiliation(s)
- Benjamin Grandon
- LGBC, EA4589, UVSQ/Université Paris-Saclay, EPHE/PSL Research University, Montigny-le-Bretonneux, France
- Infection & Inflammation, UMR 1173, Inserm, UVSQ/ Université Paris Saclay, Montigny-le-Bretonneux, France
| | - Aurore Rincheval-Arnold
- LGBC, EA4589, UVSQ/Université Paris-Saclay, EPHE/PSL Research University, Montigny-le-Bretonneux, France
| | - Nadège Jah
- Infection & Inflammation, UMR 1173, Inserm, UVSQ/ Université Paris Saclay, Montigny-le-Bretonneux, France
| | - Jean-Marc Corsi
- LGBC, EA4589, UVSQ/Université Paris-Saclay, EPHE/PSL Research University, Montigny-le-Bretonneux, France
| | - Luiza M Araujo
- Infection & Inflammation, UMR 1173, Inserm, UVSQ/ Université Paris Saclay, Montigny-le-Bretonneux, France
| | - Simon Glatigny
- Infection & Inflammation, UMR 1173, Inserm, UVSQ/ Université Paris Saclay, Montigny-le-Bretonneux, France
| | - Erwann Prevost
- LGBC, EA4589, UVSQ/Université Paris-Saclay, EPHE/PSL Research University, Montigny-le-Bretonneux, France
- Infection & Inflammation, UMR 1173, Inserm, UVSQ/ Université Paris Saclay, Montigny-le-Bretonneux, France
| | - Delphine Roche
- LGBC, EA4589, UVSQ/Université Paris-Saclay, EPHE/PSL Research University, Montigny-le-Bretonneux, France
| | - Gilles Chiocchia
- Infection & Inflammation, UMR 1173, Inserm, UVSQ/ Université Paris Saclay, Montigny-le-Bretonneux, France
| | - Isabelle Guénal
- LGBC, EA4589, UVSQ/Université Paris-Saclay, EPHE/PSL Research University, Montigny-le-Bretonneux, France
| | - Sébastien Gaumer
- LGBC, EA4589, UVSQ/Université Paris-Saclay, EPHE/PSL Research University, Montigny-le-Bretonneux, France
| | - Maxime Breban
- Infection & Inflammation, UMR 1173, Inserm, UVSQ/ Université Paris Saclay, Montigny-le-Bretonneux, France
- Rheumatology, Ambroise Paré Hospital, Boulogne Billancourt, France
| |
Collapse
|
15
|
Tay MLI, Pek JW. SON protects nascent transcripts from unproductive degradation by counteracting DIP1. PLoS Genet 2019; 15:e1008498. [PMID: 31730657 PMCID: PMC6881055 DOI: 10.1371/journal.pgen.1008498] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 11/27/2019] [Accepted: 10/28/2019] [Indexed: 11/18/2022] Open
Abstract
Gene expression involves the transcription and splicing of nascent transcripts through the removal of introns. In Drosophila, a double-stranded RNA binding protein Disco-interacting protein 1 (DIP1) targets INE-1 stable intronic sequence RNAs (sisRNAs) for degradation after splicing. How nascent transcripts that also contain INE-1 sequences escape degradation remains unknown. Here we observe that these nascent transcripts can also be bound by DIP1 but the Drosophila homolog of SON (Dsn) protects them from unproductive degradation in ovaries. Dsn localizes to the satellite body where active decay of INE-1 sisRNAs by DIP1 occurs. Dsn is a repressor of DIP1 posttranslational modifications (primarily sumoylation) that are assumed to be required for efficient DIP1 activity. Moreover, the pre-mRNA destabilization caused by Dsn depletion is rescued in DIP1 or Sumo heterozygous mutants, suggesting that Dsn is a negative regulator of DIP1. Our results reveal that under normal circumstances nascent transcripts are susceptible to DIP1-mediated degradation, however intronic sequences are protected by Dsn until intron excision has taken place.
Collapse
Affiliation(s)
| | - Jun Wei Pek
- Temasek Life Sciences Laboratory, Singapore, Singapore
- Department of Biological Sciences, National University of Singapore, Singapore
- * E-mail:
| |
Collapse
|
16
|
Kahney EW, Snedeker JC, Chen X. Regulation of Drosophila germline stem cells. Curr Opin Cell Biol 2019; 60:27-35. [PMID: 31014993 DOI: 10.1016/j.ceb.2019.03.008] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 03/12/2019] [Accepted: 03/15/2019] [Indexed: 12/16/2022]
Abstract
The asymmetric division of adult stem cells into one self-renewing stem cell and one differentiating cell is critical for maintaining homeostasis in many tissues. One paradigmatic model of this division is the Drosophila male and female germline stem cell, which provides two model systems not only sharing common features but also having distinct characteristics for studying asymmetric stem cell division in vivo. This asymmetric division is controlled by a combination of extrinsic signaling molecules and intrinsic factors that are either asymmetrically segregated or regulated differentially following division. In this review, we will discuss recent advances in understanding the molecular and cellular mechanisms guiding this asymmetric outcome, including extrinsic cues, intrinsic factors governing cell fate specification, and cell cycle control.
Collapse
Affiliation(s)
- Elizabeth W Kahney
- Department of Biology, The Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218, USA
| | - Jonathan C Snedeker
- Department of Biology, The Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218, USA
| | - Xin Chen
- Department of Biology, The Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218, USA.
| |
Collapse
|
17
|
Stable Intronic Sequence RNAs (sisRNAs): An Expanding Universe. Trends Biochem Sci 2018; 44:258-272. [PMID: 30391089 DOI: 10.1016/j.tibs.2018.09.016] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 09/11/2018] [Accepted: 09/21/2018] [Indexed: 12/26/2022]
Abstract
Intronic sequences are often regarded as 'nonsense' transcripts that are rapidly degraded. We highlight here recent studies on intronic sequences that play regulatory roles as long noncoding RNAs (lncRNAs) which are classified as sisRNAs. Interestingly, sisRNAs come in different forms and are produced via a variety of ways. They regulate genes at the DNA, RNA, and protein levels, and frequently engage in autoregulatory feedback loops to ensure cellular homeostasis under normal and stress conditions. Future directions, evolutionary insights, and potential implications of dysregulated sisRNAs are also discussed, especially in relation to human pathogenesis.
Collapse
|
18
|
Osman I, Pek JW. A sisRNA/miRNA Axis Prevents Loss of Germline Stem Cells during Starvation in Drosophila. Stem Cell Reports 2018; 11:4-12. [PMID: 30008327 PMCID: PMC6067505 DOI: 10.1016/j.stemcr.2018.06.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2018] [Revised: 06/04/2018] [Accepted: 06/04/2018] [Indexed: 12/19/2022] Open
Abstract
Animal reproduction responds to nutritional status. During starvation, Drosophila and Caenorhabditis elegans enter a period of reproductive diapause with increase apoptosis, while maintaining a stable pool of germline stem cells (GSCs). How GSCs are protected is not understood. Here, we show that a sisRNA/miRNA axis maintains ovarian GSCs during starvation in Drosophila. Starvation induces the expression of an ovary-enriched sisRNA sisR-2, which negatively regulates GSC maintenance via a fatty acid metabolism gene dFAR1. sisR-2 promotes the expression of bantam, which in turn inhibits the activity of sisR-2, forming a negative feedback loop. Therefore, bantam acts as a buffer to counteract sisR-2 activity to prevent GSC loss during starvation. We propose that the sisR-2/bantam axis confers robustness to GSCs in Drosophila. sisR-2 regulates the number of GSCs sisR-2 regulates GSC maintenance by repressing dFAR1 bantam regulates GSC maintenance by repressing sisR-2 activity sisR-2/bantam axis protects GSCs from starvation
Collapse
Affiliation(s)
- Ismail Osman
- Temasek Life Sciences Laboratory, National University of Singapore, 1 Research Link, Singapore 117604, Singapore; Department of Biological Sciences, National University of Singapore, Singapore 117543, Singapore
| | - Jun Wei Pek
- Temasek Life Sciences Laboratory, National University of Singapore, 1 Research Link, Singapore 117604, Singapore.
| |
Collapse
|
19
|
Ng AYE, Peralta KRG, Pek JW. Germline Stem Cell Heterogeneity Supports Homeostasis in Drosophila. Stem Cell Reports 2018; 11:13-21. [PMID: 29887366 PMCID: PMC6066994 DOI: 10.1016/j.stemcr.2018.05.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 05/07/2018] [Accepted: 05/07/2018] [Indexed: 01/05/2023] Open
Abstract
Adult and embryonic stem cells exhibit fluctuating gene expression; however, the biological significance of stem cell heterogeneity is not well understood. We show that, in Drosophila, female germline stem cells (GSCs) exhibit heterogeneous expression of a GSC differentiation-promoting factor Regena (Rga). The Drosophila homolog of human SON, dsn, is required to maintain GSC heterogeneity by suppressing sustained high levels of Rga. Reducing the expression of Rga in dsn mutants restores GSC heterogeneity and self-renewal. Thus, GSC heterogeneity is linked to GSC homeostasis. Female germline stem cells have heterogeneous Rga expression dsn suppresses rga transcription and maintains heterogeneity dsn maintains germline stem cells Lowering rga restores heterogeneity and suppresses dsn phenotypes
Collapse
Affiliation(s)
- Amanda Yunn Ee Ng
- Temasek Life Sciences Laboratory, National University of Singapore, 1 Research Link, Singapore 117604, Singapore
| | | | - Jun Wei Pek
- Temasek Life Sciences Laboratory, National University of Singapore, 1 Research Link, Singapore 117604, Singapore.
| |
Collapse
|
20
|
Jia Ng SS, Zheng RT, Osman I, Pek JW. Generation of Drosophila sisRNAs by Independent Transcription from Cognate Introns. iScience 2018; 4:68-75. [PMID: 30240754 PMCID: PMC6146417 DOI: 10.1016/j.isci.2018.05.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 04/25/2018] [Accepted: 05/14/2018] [Indexed: 01/26/2023] Open
Abstract
Although stable intronic sequence RNAs (sisRNAs) are conserved in plants and animals, their functional significance is still unclear. We identify a pool of polyadenylated maternally deposited sisRNAs in Drosophila melanogaster. These sisRNAs can be generated by independent transcription from the cognate introns. The ovary-specific poly(A) polymerase Wispy mediates the polyadenylation of maternal sisRNAs and confers their stability as maternal transcripts. A developmentally regulated sisRNA sisR-3 represses the expression of a long noncoding RNA CR44148 and is required during development. Our results expand the pool of sisRNAs and suggest that sisRNAs perform regulatory functions during development in Drosophila. Identification of polyadenylated sisRNAs sisRNAs can be produced from independent transcription sisR-3 regulates a long noncoding RNA sisR-3 is required during development
Collapse
Affiliation(s)
- Sharon Si Jia Ng
- Temasek Polytechnic, 21 Tampines Avenue 1, Singapore 529757, Singapore
| | - Ruther Teo Zheng
- Ngee Ann Polytechnic, 535 Clementi Road, Singapore 599489, Singapore
| | - Ismail Osman
- Temasek Life Sciences Laboratory, National University of Singapore, 1 Research Link, Singapore 117604, Singapore; Department of Biological Sciences, National University of Singapore 117543, Singapore, Singapore
| | - Jun Wei Pek
- Temasek Life Sciences Laboratory, National University of Singapore, 1 Research Link, Singapore 117604, Singapore.
| |
Collapse
|
21
|
Pek JW. Stable Intronic Sequence RNAs Engage in Feedback Loops. Trends Genet 2018; 34:330-332. [DOI: 10.1016/j.tig.2018.01.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 01/10/2018] [Indexed: 01/27/2023]
|