1
|
Kufa M, Finger V, Kovar O, Soukup O, Torruellas C, Roh J, Korabecny J. Revolutionizing tuberculosis treatment: Breakthroughs, challenges, and hope on the horizon. Acta Pharm Sin B 2025; 15:1311-1332. [PMID: 40370552 PMCID: PMC12069392 DOI: 10.1016/j.apsb.2025.01.023] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 10/30/2024] [Accepted: 11/25/2024] [Indexed: 05/16/2025] Open
Abstract
Tuberculosis (TB), an infectious disease caused by the bacterium Mycobacterium tuberculosis (Mtb), was responsible for the deaths of approximately 1.3 million people in 2022. In addition, 7.5 million new cases of TB have been reported. Present-day treatments require a daily dosing of a multiple-drug regimen for a minimum of six-month, but poor adherence and other factors often lead to treatment failure. Consequently, drug-resistant TB strains have become a growing concern, leading to more complex and expensive treatments. Promising drugs such as bedaquiline, delamanid, and pretomanid have been recently released, and 19 drug candidates are currently at different phases of clinical trials, addressing the problem of drug-resistant TB. Notwithstanding recent advances, the development of effective and safe drugs with novel mechanisms of action remains a challenge due to the unique nature of Mtb. Despite the persistent need for new treatments, TB research remains underfunded, highlighting the importance of collaborations between academia and the private sector in the advancement of anti-TB drug development. This review provides a perspective on the dynamic landscape of anti-TB drug discovery in recent years, offering hope for a more effective approach to combat this persistent global health threat.
Collapse
Affiliation(s)
- Martin Kufa
- Faculty of Pharmacy in Hradec Kralové, Charles University, Hradec Kralove 50003, Czech Republic
- Biomedical Research Center, University Hospital Hradec Kralove, Hradec Kralove 50003, Czech Republic
| | - Vladimir Finger
- Faculty of Pharmacy in Hradec Kralové, Charles University, Hradec Kralove 50003, Czech Republic
- Biomedical Research Center, University Hospital Hradec Kralove, Hradec Kralove 50003, Czech Republic
| | - Ondrej Kovar
- Faculty of Pharmacy in Hradec Kralové, Charles University, Hradec Kralove 50003, Czech Republic
- Biomedical Research Center, University Hospital Hradec Kralove, Hradec Kralove 50003, Czech Republic
| | - Ondrej Soukup
- Biomedical Research Center, University Hospital Hradec Kralove, Hradec Kralove 50003, Czech Republic
| | | | - Jaroslav Roh
- Faculty of Pharmacy in Hradec Kralové, Charles University, Hradec Kralove 50003, Czech Republic
| | - Jan Korabecny
- Biomedical Research Center, University Hospital Hradec Kralove, Hradec Kralove 50003, Czech Republic
| |
Collapse
|
2
|
Islam T, Josephs EA. Genome editing outcomes reveal mycobacterial NucS participates in a short-patch repair of DNA mismatches. Nucleic Acids Res 2024; 52:12295-12307. [PMID: 38747340 PMCID: PMC11551744 DOI: 10.1093/nar/gkae402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 04/24/2024] [Accepted: 05/01/2024] [Indexed: 05/28/2024] Open
Abstract
In the canonical DNA mismatch repair (MMR) mechanism in bacteria, if a nucleotide is incorrectly mis-paired with the template strand during replication, the resulting repair of this mis-pair can result in the degradation and re-synthesis of hundreds or thousands of nucleotides on the newly-replicated strand (long-patch repair). While mycobacteria, which include important pathogens such as Mycobacterium tuberculosis, lack the otherwise highly-conserved enzymes required for the canonical MMR reaction, it was found that disruption of a mycobacterial mismatch-sensitive endonuclease NucS results in a hyper-mutative phenotype, leading to the idea that NucS might be involved in a cryptic, independently-evolved DNA MMR mechanism, perhaps mediated by homologous recombination (HR) with a sister chromatid. Using oligonucleotide recombination, which allows us to introduce mismatches specifically into the genomes of a model for M. tuberculosis, Mycobacterium smegmatis, we find that NucS participates in a direct repair of DNA mismatches where the patch of excised nucleotides is largely confined to within ∼5-6 bp of the mis-paired nucleotides, which is inconsistent with mechanistic models of canonical mycobacterial HR or other double-strand break (DSB) repair reactions. The results presented provide evidence of a novel NucS-associated mycobacterial MMR mechanism occurring in vivo to regulate genetic mutations in mycobacteria.
Collapse
Affiliation(s)
- Tanjina Islam
- Department of Nanoscience, University of North Carolina at Greensboro, Greensboro, NC 27401, USA
| | - Eric A Josephs
- Department of Nanoscience, University of North Carolina at Greensboro, Greensboro, NC 27401, USA
- Department of Biology, University of North Carolina at Greensboro, Greensboro, NC 27401, USA
| |
Collapse
|
3
|
Islam T, Josephs EA. Genome Editing Outcomes Reveal Mycobacterial NucS Participates in a Short-Patch Repair of DNA Mismatches. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.23.563644. [PMID: 37961639 PMCID: PMC10634747 DOI: 10.1101/2023.10.23.563644] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
In the canonical DNA mismatch repair (MMR) mechanism in bacteria, if during replication a nucleotide is incorrectly mis-paired with the template strand, the resulting repair of this mis-pair can result in the degradation and re-synthesis of hundreds or thousands of nucleotides on the newly-replicated strand (long-patch repair). While mycobacteria, which include important pathogens such as Mycobacterium tuberculosis, lack the otherwise highly-conserved enzymes required for the canonical MMR reaction, it was found that disruption of a mycobacterial mismatch-sensitive endonuclease NucS results in a hyper-mutative phenotype, which has led to the idea that NucS might be involved in a cryptic, independently-evolved DNA MMR mechanism. It has been proposed that nuclease activity at a mismatch might result in correction by homologous recombination (HR) with a sister chromatid. Using oligonucleotide recombination, which allows us to introduce mismatches during replication specifically into the genomes of a model for M. tuberculosis, Mycobacterium smegmatis, we find that NucS participates in a direct repair of DNA mismatches where the patch of excised nucleotides is largely confined to within ~5 - 6 bp of the mis-paired nucleotides, which is inconsistent with mechanistic models of canonical mycobacterial HR or other double-strand break (DSB) repair reactions. The results presented provide evidence of a novel NucS-associated mycobacterial MMR mechanism occurring in vivo to regulate genetic mutations in mycobacteria.
Collapse
Affiliation(s)
- Tanjina Islam
- Department of Nanoscience, University of North Carolina at Greensboro, Greensboro, NC, 27401, USA
| | - Eric A. Josephs
- Department of Nanoscience, University of North Carolina at Greensboro, Greensboro, NC, 27401, USA
- Department of Biology, University of North Carolina at Greensboro, Greensboro, NC, 27401, USA
| |
Collapse
|
4
|
Cai N, Chen J, Gao N, Ni X, Lei Y, Pu W, Wang L, Che B, Fan L, Zhou W, Feng J, Wang Y, Zheng P, Sun J. Engineering of the DNA replication and repair machinery to develop binary mutators for rapid genome evolution of Corynebacterium glutamicum. Nucleic Acids Res 2023; 51:8623-8642. [PMID: 37449409 PMCID: PMC10484736 DOI: 10.1093/nar/gkad602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 06/29/2023] [Accepted: 07/06/2023] [Indexed: 07/18/2023] Open
Abstract
Corynebacterium glutamicum is an important industrial workhorse for production of amino acids and chemicals. Although recently developed genome editing technologies have advanced the rational genetic engineering of C. glutamicum, continuous genome evolution based on genetic mutators is still unavailable. To address this issue, the DNA replication and repair machinery of C. glutamicum was targeted in this study. DnaQ, the homolog of ϵ subunit of DNA polymerase III responsible for proofreading in Escherichia coli, was proven irrelevant to DNA replication fidelity in C. glutamicum. However, the histidinol phosphatase (PHP) domain of DnaE1, the α subunit of DNA polymerase III, was characterized as the key proofreading element and certain variants with PHP mutations allowed elevated spontaneous mutagenesis. Repression of the NucS-mediated post-replicative mismatch repair pathway or overexpression of newly screened NucS variants also impaired the DNA replication fidelity. Simultaneous interference with the DNA replication and repair machinery generated a binary genetic mutator capable of increasing the mutation rate by up to 2352-fold. The mutators facilitated rapid evolutionary engineering of C. glutamicum to acquire stress tolerance and protein overproduction phenotypes. This study provides efficient tools for evolutionary engineering of C. glutamicum and could inspire the development of mutagenesis strategy for other microbial hosts.
Collapse
Affiliation(s)
- Ningyun Cai
- Tianjin University of Science and Technology, Tianjin 300457, China
- Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Jiuzhou Chen
- Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Ning Gao
- Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaomeng Ni
- Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Yu Lei
- Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Wei Pu
- Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Lixian Wang
- Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Bin Che
- Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Liwen Fan
- Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Wenjuan Zhou
- Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Jinhui Feng
- Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Yu Wang
- Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- National Center of Technology Innovation for Synthetic Biology, Tianjin 300308, China
- Haihe Laboratory of Synthetic Biology, Tianjin 300308, China
| | - Ping Zheng
- Tianjin University of Science and Technology, Tianjin 300457, China
- Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- National Center of Technology Innovation for Synthetic Biology, Tianjin 300308, China
| | - Jibin Sun
- Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- National Center of Technology Innovation for Synthetic Biology, Tianjin 300308, China
| |
Collapse
|
5
|
Shaffer JM, Jiou J, Tripathi K, Olaluwoye OS, Fung HYJ, Chook YM, D'Arcy S. Molecular basis of RanGTP-activated release of Histones H2A-H2B from Importin-9. Structure 2023; 31:903-911.e3. [PMID: 37379840 PMCID: PMC10527638 DOI: 10.1016/j.str.2023.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/22/2023] [Accepted: 06/02/2023] [Indexed: 06/30/2023]
Abstract
Imp9 is the primary importin for shuttling H2A-H2B from the cytoplasm to the nucleus. It employs an unusual mechanism where the binding of RanGTP is insufficient to release H2A-H2B. The resulting stable RanGTP·Imp9·H2A-H2B complex gains nucleosome assembly activity with H2A-H2B able to be deposited into an assembling nucleosome in vitro. Using hydrogen-deuterium exchange coupled with mass spectrometry (HDX), we show that Imp9 stabilizes H2A-H2B beyond the direct-binding site, like other histone chaperones. HDX also shows that binding of RanGTP releases H2A-H2B contacts at Imp9 HEAT repeats 4-5, but not 18-19. DNA- and histone-binding surfaces of H2A-H2B are exposed in the ternary complex, facilitating nucleosome assembly. We also reveal that RanGTP has a weaker affinity for Imp9 when H2A-H2B is bound. Imp9 thus provides a connection between the nuclear import of H2A-H2B and its deposition into chromatin.
Collapse
Affiliation(s)
- Joy M Shaffer
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson 75080, USA
| | - Jenny Jiou
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas 75390, USA
| | - Kiran Tripathi
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson 75080, USA
| | - Oladimeji S Olaluwoye
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson 75080, USA
| | - Ho Yee Joyce Fung
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas 75390, USA
| | - Yuh Min Chook
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas 75390, USA
| | - Sheena D'Arcy
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson 75080, USA.
| |
Collapse
|
6
|
Botto M, Murthy S, Lamers MH. High-Throughput Exonuclease Assay Based on the Fluorescent Base Analogue 2-Aminopurine. ACS OMEGA 2023; 8:8285-8292. [PMID: 36910963 PMCID: PMC9996622 DOI: 10.1021/acsomega.2c06577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 01/20/2023] [Indexed: 06/18/2023]
Abstract
Exonucleases are essential enzymes that remove nucleotides from free DNA ends during DNA replication, DNA repair, and telomere maintenance. Due to their essential role, they are potential targets for novel anticancer and antimicrobial drugs but have so far been little exploited. Here, we present a simple and versatile real-time exonuclease assay based on 2-aminopurine, an intrinsically fluorescent nucleotide that is quenched by neighboring bases when embedded in DNA. We show that our assay is applicable to different eukaryotic and bacterial exonucleases acting on both 3' and 5' DNA ends over a wide range of protein activities and suitable for a high-throughput inhibitor screening campaign. Using our assay, we discover a novel inhibitor of the Mycobacterium tuberculosis PHP-exonuclease that is part of the replicative DNA polymerase DnaE1. Hence, our novel assay will be a useful tool for high-throughput screening for novel exonuclease inhibitors that may interfere with DNA replication or DNA maintenance.
Collapse
|
7
|
Shaffer JM, Jiou J, Tripathi K, Olaluwoye OS, Fung HYJ, Chook YM, D’Arcy S. Molecular basis of RanGTP-activated nucleosome assembly with Histones H2A-H2B bound to Importin-9. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.27.525896. [PMID: 36747879 PMCID: PMC9901172 DOI: 10.1101/2023.01.27.525896] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Padavannil et al. 2019 show that Importin-9 (Imp9) transports Histones H2A-H2B from the cytoplasm to the nucleus using a non-canonical mechanism whereby binding of a GTP-bound Ran GTPase (RanGTP) fails to evict the H2A-H2B cargo. Instead, a stable complex forms, comprised of equimolar RanGTP, Imp9, and H2A-H2B. Unlike the binary Imp9•H2A-H2B complex, this RanGTP•Imp9•H2A-H2B ternary complex can release H2A-H2B to an assembling nucleosome. Here, we define the molecular basis for this RanGTP-activated nucleosome assembly by Imp9. We use hydrogen-deuterium exchange coupled with mass spectrometry and compare the dynamics and interfaces of the RanGTP•Imp9•H2A-H2B ternary complex to those in the Imp9•H2A-H2B or Imp9•RanGTP binary complexes. Our data are consistent with the Imp9•H2A-H2B structure by Padavannil et al. 2019 showing that Imp9 HEAT repeats 4-5 and 18-19 contact H2A-H2B, as well as many homologous importin•RanGTP structures showing that importin HEAT repeats 1 and 3, and the h8 loop, contact RanGTP. We show that Imp9 stabilizes H2A-H2B beyond the direct binding site, similar to other histone chaperones. Importantly, we reveal that binding of RanGTP releases H2A-H2B interaction at Imp9 HEAT repeats 4-5, but not 18-19. This exposes DNA- and histone-binding surfaces of H2A-H2B, thereby facilitating nucleosome assembly. We also reveal that RanGTP has a weaker affinity for Imp9 when H2A-H2B is bound. This may ensure that H2A-H2B is only released in high RanGTP concentrations near chromatin. We delineate the molecular link between the nuclear import of H2A-H2B and its deposition into chromatin by Imp9. Significance Imp9 is the primary importin for shuttling H2A-H2B from the cytoplasm to the nucleus. It employs an unusual mechanism where the binding of RanGTP alone is insufficient to release H2A-H2B. The resulting stable RanGTP•Imp9•H2A-H2B complex gains nucleosome assembly activity as H2A-H2B can be deposited onto an assembling nucleosome. We show that H2A-H2B is allosterically stabilized via interactions with both N- and C-terminal portions of Imp9, reinforcing its chaperone-like behavior. RanGTP binding causes H2A-H2B release from the N-terminal portion of Imp9 only. The newly-exposed H2A-H2B surfaces can interact with DNA or H3-H4 in nucleosome assembly. Imp9 thus plays a multi-faceted role in histone import, storage, and deposition regulated by RanGTP, controlling histone supply in the nucleus and to chromatin.
Collapse
Affiliation(s)
- Joy M. Shaffer
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, United States, 75080
| | - Jenny Jiou
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, United States, 75390
| | - Kiran Tripathi
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, United States, 75080
| | - Oladimeji S. Olaluwoye
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, United States, 75080
| | - Ho Yee Joyce Fung
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, United States, 75390
| | - Yuh Min Chook
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, United States, 75390
| | - Sheena D’Arcy
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, United States, 75080
| |
Collapse
|
8
|
Tsui CKM, Sorrentino F, Narula G, Mendoza-Losana A, del Rio RG, Herrán EP, Lopez A, Bojang A, Zheng X, Remuiñán-Blanco MJ, Av-Gay Y. Hit Compounds and Associated Targets in Intracellular Mycobacterium tuberculosis. Molecules 2022; 27:molecules27144446. [PMID: 35889319 PMCID: PMC9324642 DOI: 10.3390/molecules27144446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 07/04/2022] [Accepted: 07/07/2022] [Indexed: 02/04/2023] Open
Abstract
Mycobacterium tuberculosis (Mtb), the etiological agent of tuberculosis, is one of the most devastating infectious agents in the world. Chemical-genetic characterization through in vitro evolution combined with whole genome sequencing analysis was used identify novel drug targets and drug resistance genes in Mtb associated with its intracellular growth in human macrophages. We performed a genome analysis of 53 Mtb mutants resistant to 15 different hit compounds. We found nonsynonymous mutations/indels in 30 genes that may be associated with drug resistance acquisitions. Beyond confirming previously identified drug resistance mechanisms such as rpoB and lead targets reported in novel anti-tuberculosis drug screenings such as mmpL3, ethA, and mbtA, we have discovered several unrecognized candidate drug targets including prrB. The exploration of the Mtb chemical mutant genomes could help novel drug discovery and the structural biology of compounds and associated mechanisms of action relevant to tuberculosis treatment.
Collapse
Affiliation(s)
- Clement K. M. Tsui
- Department of Medicine and Microbiology and Immunology, Life Science Institute, University of British Columbia, Vancouver, BC V6T 1Z3, Canada; (C.K.M.T.); (F.S.); (G.N.); (A.L.); (A.B.); (X.Z.)
- National Centre for Infectious Diseases, Tan Tock Seng Hospital, Singapore 308442, Singapore
| | - Flavia Sorrentino
- Department of Medicine and Microbiology and Immunology, Life Science Institute, University of British Columbia, Vancouver, BC V6T 1Z3, Canada; (C.K.M.T.); (F.S.); (G.N.); (A.L.); (A.B.); (X.Z.)
- GSK, Global Health Medicines R&D, PTM, Tres Cantos, 28760 Madrid, Spain; (A.M.-L.); (R.G.d.R.); (E.P.H.); (M.J.R.-B.)
| | - Gagandeep Narula
- Department of Medicine and Microbiology and Immunology, Life Science Institute, University of British Columbia, Vancouver, BC V6T 1Z3, Canada; (C.K.M.T.); (F.S.); (G.N.); (A.L.); (A.B.); (X.Z.)
| | - Alfonso Mendoza-Losana
- GSK, Global Health Medicines R&D, PTM, Tres Cantos, 28760 Madrid, Spain; (A.M.-L.); (R.G.d.R.); (E.P.H.); (M.J.R.-B.)
- Department of Bioengineering and Aerospace Engineering, Carlos III University of Madrid, 28040 Madrid, Spain
| | - Ruben Gonzalez del Rio
- GSK, Global Health Medicines R&D, PTM, Tres Cantos, 28760 Madrid, Spain; (A.M.-L.); (R.G.d.R.); (E.P.H.); (M.J.R.-B.)
| | - Esther Pérez Herrán
- GSK, Global Health Medicines R&D, PTM, Tres Cantos, 28760 Madrid, Spain; (A.M.-L.); (R.G.d.R.); (E.P.H.); (M.J.R.-B.)
| | - Abraham Lopez
- Department of Medicine and Microbiology and Immunology, Life Science Institute, University of British Columbia, Vancouver, BC V6T 1Z3, Canada; (C.K.M.T.); (F.S.); (G.N.); (A.L.); (A.B.); (X.Z.)
- GSK, Global Health Medicines R&D, PTM, Tres Cantos, 28760 Madrid, Spain; (A.M.-L.); (R.G.d.R.); (E.P.H.); (M.J.R.-B.)
| | - Adama Bojang
- Department of Medicine and Microbiology and Immunology, Life Science Institute, University of British Columbia, Vancouver, BC V6T 1Z3, Canada; (C.K.M.T.); (F.S.); (G.N.); (A.L.); (A.B.); (X.Z.)
| | - Xingji Zheng
- Department of Medicine and Microbiology and Immunology, Life Science Institute, University of British Columbia, Vancouver, BC V6T 1Z3, Canada; (C.K.M.T.); (F.S.); (G.N.); (A.L.); (A.B.); (X.Z.)
| | - Modesto Jesus Remuiñán-Blanco
- GSK, Global Health Medicines R&D, PTM, Tres Cantos, 28760 Madrid, Spain; (A.M.-L.); (R.G.d.R.); (E.P.H.); (M.J.R.-B.)
| | - Yossef Av-Gay
- Department of Medicine and Microbiology and Immunology, Life Science Institute, University of British Columbia, Vancouver, BC V6T 1Z3, Canada; (C.K.M.T.); (F.S.); (G.N.); (A.L.); (A.B.); (X.Z.)
- Correspondence: ; Tel.: +1-604-822-3432
| |
Collapse
|
9
|
Chengalroyen MD, Mason MK, Borsellini A, Tassoni R, Abrahams GL, Lynch S, Ahn YM, Ambler J, Young K, Crowley BM, Olsen DB, Warner DF, Barry III CE, Boshoff HIM, Lamers MH, Mizrahi V. DNA-Dependent Binding of Nargenicin to DnaE1 Inhibits Replication in Mycobacterium tuberculosis. ACS Infect Dis 2022; 8:612-625. [PMID: 35143160 PMCID: PMC8922275 DOI: 10.1021/acsinfecdis.1c00643] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Indexed: 12/15/2022]
Abstract
Natural products provide a rich source of potential antimicrobials for treating infectious diseases for which drug resistance has emerged. Foremost among these diseases is tuberculosis. Assessment of the antimycobacterial activity of nargenicin, a natural product that targets the replicative DNA polymerase of Staphylococcus aureus, revealed that it is a bactericidal genotoxin that induces a DNA damage response in Mycobacterium tuberculosis (Mtb) and inhibits growth by blocking the replicative DNA polymerase, DnaE1. Cryo-electron microscopy revealed that binding of nargenicin to Mtb DnaE1 requires the DNA substrate such that nargenicin is wedged between the terminal base pair and the polymerase and occupies the position of both the incoming nucleotide and templating base. Comparative analysis across three bacterial species suggests that the activity of nargenicin is partly attributable to the DNA binding affinity of the replicative polymerase. This work has laid the foundation for target-led drug discovery efforts focused on Mtb DnaE1.
Collapse
Affiliation(s)
- Melissa D. Chengalroyen
- SAMRC/NHLS/UCT
Molecular Mycobacteriology Research Unit, DST/NRF Centre of Excellence
for Biomedical TB Research, Institute of Infectious Disease and Molecular
Medicine and Department of Pathology, Faculty of Health Sciences, University of Cape Town, Anzio Road, Observatory 7925, South Africa
| | - Mandy K. Mason
- SAMRC/NHLS/UCT
Molecular Mycobacteriology Research Unit, DST/NRF Centre of Excellence
for Biomedical TB Research, Institute of Infectious Disease and Molecular
Medicine and Department of Pathology, Faculty of Health Sciences, University of Cape Town, Anzio Road, Observatory 7925, South Africa
| | - Alessandro Borsellini
- Cell
and Chemical Biology, Leiden University
Medical Center, Einthovenweg 20, 2333 ZC Leiden, The Netherlands
| | - Raffaella Tassoni
- Cell
and Chemical Biology, Leiden University
Medical Center, Einthovenweg 20, 2333 ZC Leiden, The Netherlands
| | - Garth L. Abrahams
- SAMRC/NHLS/UCT
Molecular Mycobacteriology Research Unit, DST/NRF Centre of Excellence
for Biomedical TB Research, Institute of Infectious Disease and Molecular
Medicine and Department of Pathology, Faculty of Health Sciences, University of Cape Town, Anzio Road, Observatory 7925, South Africa
- Tuberculosis
Research Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Disease,
National Institutes of Health, 9000 Rockville Pike, Bethesda, Maryland 20892, United
States
| | - Sasha Lynch
- SAMRC/NHLS/UCT
Molecular Mycobacteriology Research Unit, DST/NRF Centre of Excellence
for Biomedical TB Research, Institute of Infectious Disease and Molecular
Medicine and Department of Pathology, Faculty of Health Sciences, University of Cape Town, Anzio Road, Observatory 7925, South Africa
| | - Yong-Mo Ahn
- Tuberculosis
Research Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Disease,
National Institutes of Health, 9000 Rockville Pike, Bethesda, Maryland 20892, United
States
| | - Jon Ambler
- Wellcome
Centre for Infectious Diseases Research in Africa, University of Cape Town, Anzio Road, Observatory 7925, South Africa
| | - Katherine Young
- Infectious
Disease, Merck & Co. Inc., West Point, Pennsylvania 19446, United States
| | - Brendan M. Crowley
- Discovery
Chemistry, Merck & Co. Inc., West Point, Pennsylvania 19446, United States
| | - David B. Olsen
- Infectious
Disease, Merck & Co. Inc., West Point, Pennsylvania 19446, United States
| | - Digby F. Warner
- SAMRC/NHLS/UCT
Molecular Mycobacteriology Research Unit, DST/NRF Centre of Excellence
for Biomedical TB Research, Institute of Infectious Disease and Molecular
Medicine and Department of Pathology, Faculty of Health Sciences, University of Cape Town, Anzio Road, Observatory 7925, South Africa
| | - Clifton E. Barry III
- Tuberculosis
Research Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Disease,
National Institutes of Health, 9000 Rockville Pike, Bethesda, Maryland 20892, United
States
| | - Helena I. M. Boshoff
- Tuberculosis
Research Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Disease,
National Institutes of Health, 9000 Rockville Pike, Bethesda, Maryland 20892, United
States
| | - Meindert H. Lamers
- Cell
and Chemical Biology, Leiden University
Medical Center, Einthovenweg 20, 2333 ZC Leiden, The Netherlands
| | - Valerie Mizrahi
- SAMRC/NHLS/UCT
Molecular Mycobacteriology Research Unit, DST/NRF Centre of Excellence
for Biomedical TB Research, Institute of Infectious Disease and Molecular
Medicine and Department of Pathology, Faculty of Health Sciences, University of Cape Town, Anzio Road, Observatory 7925, South Africa
| |
Collapse
|
10
|
Structural basis for recognition of distinct deaminated DNA lesions by endonuclease Q. Proc Natl Acad Sci U S A 2021; 118:2021120118. [PMID: 33658373 DOI: 10.1073/pnas.2021120118] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Spontaneous deamination of DNA cytosine and adenine into uracil and hypoxanthine, respectively, causes C to T and A to G transition mutations if left unrepaired. Endonuclease Q (EndoQ) initiates the repair of these premutagenic DNA lesions in prokaryotes by cleaving the phosphodiester backbone 5' of either uracil or hypoxanthine bases or an apurinic/apyrimidinic (AP) lesion generated by the excision of these damaged bases. To understand how EndoQ achieves selectivity toward these structurally diverse substrates without cleaving undamaged DNA, we determined the crystal structures of Pyrococcus furiosus EndoQ bound to DNA substrates containing uracil, hypoxanthine, or an AP lesion. The structures show that substrate engagement by EndoQ depends both on a highly distorted conformation of the DNA backbone, in which the target nucleotide is extruded out of the helix, and direct hydrogen bonds with the deaminated bases. A concerted swing motion of the zinc-binding and C-terminal helical domains of EndoQ toward its catalytic domain allows the enzyme to clamp down on a sharply bent DNA substrate, shaping a deep active-site pocket that accommodates the extruded deaminated base. Within this pocket, uracil and hypoxanthine bases interact with distinct sets of amino acid residues, with positioning mediated by an essential magnesium ion. The EndoQ-DNA complex structures reveal a unique mode of damaged DNA recognition and provide mechanistic insights into the initial step of DNA damage repair by the alternative excision repair pathway. Furthermore, we demonstrate that the unique activity of EndoQ is useful for studying DNA deamination and repair in mammalian systems.
Collapse
|
11
|
Fagan SP, Mukherjee P, Jaremko WJ, Nelson-Rigg R, Wilson RC, Dangerfield TL, Johnson KA, Lahiri I, Pata JD. Pyrophosphate release acts as a kinetic checkpoint during high-fidelity DNA replication by the Staphylococcus aureus replicative polymerase PolC. Nucleic Acids Res 2021; 49:8324-8338. [PMID: 34302475 PMCID: PMC8373059 DOI: 10.1093/nar/gkab613] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 06/29/2021] [Accepted: 07/21/2021] [Indexed: 12/22/2022] Open
Abstract
Bacterial replication is a fast and accurate process, with the bulk of genome duplication being catalyzed by the α subunit of DNA polymerase III within the bacterial replisome. Structural and biochemical studies have elucidated the overall properties of these polymerases, including how they interact with other components of the replisome, but have only begun to define the enzymatic mechanism of nucleotide incorporation. Using transient-state methods, we have determined the kinetic mechanism of accurate replication by PolC, the replicative polymerase from the Gram-positive pathogen Staphylococcus aureus. Remarkably, PolC can recognize the presence of the next correct nucleotide prior to completing the addition of the current nucleotide. By modulating the rate of pyrophosphate byproduct release, PolC can tune the speed of DNA synthesis in response to the concentration of the next incoming nucleotide. The kinetic mechanism described here would allow PolC to perform high fidelity replication in response to diverse cellular environments.
Collapse
Affiliation(s)
- Sean P Fagan
- Wadsworth Center, New York State Department of Health, Albany, NY, USA.,Department of Biomedical Sciences, University at Albany, Albany, NY, USA
| | - Purba Mukherjee
- Wadsworth Center, New York State Department of Health, Albany, NY, USA.,Department of Biomedical Sciences, University at Albany, Albany, NY, USA
| | - William J Jaremko
- Wadsworth Center, New York State Department of Health, Albany, NY, USA
| | - Rachel Nelson-Rigg
- Wadsworth Center, New York State Department of Health, Albany, NY, USA.,Department of Biomedical Sciences, University at Albany, Albany, NY, USA
| | - Ryan C Wilson
- Wadsworth Center, New York State Department of Health, Albany, NY, USA
| | - Tyler L Dangerfield
- Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX, USA
| | - Kenneth A Johnson
- Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX, USA
| | - Indrajit Lahiri
- Wadsworth Center, New York State Department of Health, Albany, NY, USA.,Department of Biomedical Sciences, University at Albany, Albany, NY, USA.,Department of Biological Sciences, Indian Institute of Science Education and Research, Mohali, Punjab, India
| | - Janice D Pata
- Wadsworth Center, New York State Department of Health, Albany, NY, USA.,Department of Biomedical Sciences, University at Albany, Albany, NY, USA
| |
Collapse
|
12
|
Ando T, Jongruja N, Okumura N, Morikawa K, Kanaya S, Takao T. Identification of the ternary complex of ribonuclease HI:RNA/DNA hybrid:metal ions by ESI mass spectrometry. J Biol Chem 2021; 296:100462. [PMID: 33639158 PMCID: PMC8042393 DOI: 10.1016/j.jbc.2021.100462] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 02/14/2021] [Accepted: 02/23/2021] [Indexed: 12/17/2022] Open
Abstract
Ribonuclease HI, an endoribonuclease, catalyzes the hydrolysis of the RNA strand of an RNA/DNA hybrid and requires divalent metal ions for its enzymatic activity. However, the mechanistic details of the activity of ribonuclease HI and its interaction with divalent metal ions remain unclear. In this study, we performed real-time monitoring of the enzyme–substrate complex in the presence of divalent metal ions (Mn2+ or Zn2+) using electrospray ionization–mass spectrometry (ESI-MS). The findings provide clear evidence that the enzymatic activity of the ternary complex requires the binding of two divalent metal ions. The Zn2+ ions bind to both the enzyme itself and the enzyme:substrate complex more strongly than Mn2+ ions, and gives, in part, the ternary complex, [RNase HI:nicked RNA/DNA hybrid:2Zn2+], suggesting that the ternary complex is retained, even after the hydrolysis of the substrate. The collective results presented herein shed new light on the essential role of divalent metal ions in the activity of ribonuclease HI and demonstrate how Zn2+ ions confer inhibitory properties on the activity of this enzyme by forming a highly stable complex with the substrate.
Collapse
Affiliation(s)
- Tomoshige Ando
- Institute for Protein Research, Osaka University, Osaka, Japan
| | | | - Nobuaki Okumura
- Institute for Protein Research, Osaka University, Osaka, Japan
| | - Kosuke Morikawa
- Department of Gene Mechanisms, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | | | - Toshifumi Takao
- Institute for Protein Research, Osaka University, Osaka, Japan.
| |
Collapse
|
13
|
Novel Antibiotics Targeting Bacterial Replicative DNA Polymerases. Antibiotics (Basel) 2020; 9:antibiotics9110776. [PMID: 33158178 PMCID: PMC7694242 DOI: 10.3390/antibiotics9110776] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 10/31/2020] [Accepted: 11/02/2020] [Indexed: 12/15/2022] Open
Abstract
Multidrug resistance is a worldwide problem that is an increasing threat to global health. Therefore, the development of new antibiotics that inhibit novel targets is of great urgency. Some of the most successful antibiotics inhibit RNA transcription, RNA translation, and DNA replication. Transcription and translation are inhibited by directly targeting the RNA polymerase or ribosome, respectively. DNA replication, in contrast, is inhibited indirectly through targeting of DNA gyrases, and there are currently no antibiotics that inhibit DNA replication by directly targeting the replisome. This contrasts with antiviral therapies where the viral replicases are extensively targeted. In the last two decades there has been a steady increase in the number of compounds that target the bacterial replisome. In particular a variety of inhibitors of the bacterial replicative polymerases PolC and DnaE have been described, with one of the DNA polymerase inhibitors entering clinical trials for the first time. In this review we will discuss past and current work on inhibition of DNA replication, and the potential of bacterial DNA polymerase inhibitors in particular as attractive targets for a new generation of antibiotics.
Collapse
|
14
|
Ghosh S, Goldgur Y, Shuman S. Mycobacterial DNA polymerase I: activities and crystal structures of the POL domain as apoenzyme and in complex with a DNA primer-template and of the full-length FEN/EXO-POL enzyme. Nucleic Acids Res 2020; 48:3165-3180. [PMID: 32034423 PMCID: PMC7102940 DOI: 10.1093/nar/gkaa075] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 01/23/2020] [Accepted: 02/06/2020] [Indexed: 02/06/2023] Open
Abstract
Mycobacterial Pol1 is a bifunctional enzyme composed of an N-terminal DNA flap endonuclease/5' exonuclease domain (FEN/EXO) and a C-terminal DNA polymerase domain (POL). Here we document additional functions of Pol1: FEN activity on the flap RNA strand of an RNA:DNA hybrid and reverse transcriptase activity on a DNA-primed RNA template. We report crystal structures of the POL domain, as apoenzyme and as ternary complex with 3'-dideoxy-terminated DNA primer-template and dNTP. The thumb, palm, and fingers subdomains of POL form an extensive interface with the primer-template and the triphosphate of the incoming dNTP. Progression from an open conformation of the apoenzyme to a nearly closed conformation of the ternary complex entails a disordered-to-ordered transition of several segments of the thumb and fingers modules and an inward motion of the fingers subdomain-especially the O helix-to engage the primer-template and dNTP triphosphate. Distinctive structural features of mycobacterial Pol1 POL include a manganese binding site in the vestigial 3' exonuclease subdomain and a non-catalytic water-bridged magnesium complex at the protein-DNA interface. We report a crystal structure of the bifunctional FEN/EXO-POL apoenzyme that reveals the positions of two active site metals in the FEN/EXO domain.
Collapse
Affiliation(s)
- Shreya Ghosh
- Molecular Biology Program, Sloan-Kettering Institute, New York, NY 10065, USA
| | - Yehuda Goldgur
- Structural Biology Program, Sloan-Kettering Institute, New York, NY 10065, USA
| | - Stewart Shuman
- Molecular Biology Program, Sloan-Kettering Institute, New York, NY 10065, USA
| |
Collapse
|
15
|
Castro RAD, Ross A, Kamwela L, Reinhard M, Loiseau C, Feldmann J, Borrell S, Trauner A, Gagneux S. The Genetic Background Modulates the Evolution of Fluoroquinolone-Resistance in Mycobacterium tuberculosis. Mol Biol Evol 2020; 37:195-207. [PMID: 31532481 PMCID: PMC6984360 DOI: 10.1093/molbev/msz214] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Fluoroquinolones (FQ) form the backbone in experimental treatment regimens against drug-susceptible tuberculosis. However, little is known on whether the genetic variation present in natural populations of Mycobacterium tuberculosis (Mtb) affects the evolution of FQ-resistance (FQ-R). To investigate this question, we used nine genetically distinct drug-susceptible clinical isolates of Mtb and measured their frequency of resistance to the FQ ofloxacin (OFX) in vitro. We found that the Mtb genetic background led to differences in the frequency of OFX-resistance (OFX-R) that spanned two orders of magnitude and substantially modulated the observed mutational profiles for OFX-R. Further, in vitro assays showed that the genetic background also influenced the minimum inhibitory concentration and the fitness effect conferred by a given OFX-R mutation. To test the clinical relevance of our in vitro work, we surveyed the mutational profile for FQ-R in publicly available genomic sequences from clinical Mtb isolates, and found substantial Mtb lineage-dependent variability. Comparison of the clinical and the in vitro mutational profiles for FQ-R showed that 51% and 39% of the variability in the clinical frequency of FQ-R gyrA mutation events in Lineage 2 and Lineage 4 strains, respectively, can be attributed to how Mtb evolves FQ-R in vitro. As the Mtb genetic background strongly influenced the evolution of FQ-R in vitro, we conclude that the genetic background of Mtb also impacts the evolution of FQ-R in the clinic.
Collapse
Affiliation(s)
- Rhastin A D Castro
- Swiss Tropical and Public Health Institute, Basel, Switzerland.,University of Basel, Basel, Switzerland
| | - Amanda Ross
- Swiss Tropical and Public Health Institute, Basel, Switzerland.,University of Basel, Basel, Switzerland
| | - Lujeko Kamwela
- Swiss Tropical and Public Health Institute, Basel, Switzerland.,University of Basel, Basel, Switzerland
| | - Miriam Reinhard
- Swiss Tropical and Public Health Institute, Basel, Switzerland.,University of Basel, Basel, Switzerland
| | - Chloé Loiseau
- Swiss Tropical and Public Health Institute, Basel, Switzerland.,University of Basel, Basel, Switzerland
| | - Julia Feldmann
- Swiss Tropical and Public Health Institute, Basel, Switzerland.,University of Basel, Basel, Switzerland
| | - Sonia Borrell
- Swiss Tropical and Public Health Institute, Basel, Switzerland.,University of Basel, Basel, Switzerland
| | - Andrej Trauner
- Swiss Tropical and Public Health Institute, Basel, Switzerland.,University of Basel, Basel, Switzerland
| | - Sebastien Gagneux
- Swiss Tropical and Public Health Institute, Basel, Switzerland.,University of Basel, Basel, Switzerland
| |
Collapse
|
16
|
Castañeda-García A, Martín-Blecua I, Cebrián-Sastre E, Chiner-Oms A, Torres-Puente M, Comas I, Blázquez J. Specificity and mutagenesis bias of the mycobacterial alternative mismatch repair analyzed by mutation accumulation studies. SCIENCE ADVANCES 2020; 6:eaay4453. [PMID: 32095527 PMCID: PMC7015689 DOI: 10.1126/sciadv.aay4453] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Accepted: 11/25/2019] [Indexed: 05/09/2023]
Abstract
The postreplicative mismatch repair (MMR) is an almost ubiquitous DNA repair essential for maintaining genome stability. It has been suggested that Mycobacteria have an alternative MMR in which NucS, an endonuclease with no structural homology to the canonical MMR proteins (MutS/MutL), is the key factor. Here, we analyze the spontaneous mutations accumulated in a neutral manner over thousands of generations by Mycobacterium smegmatis and its MMR-deficient derivative (ΔnucS). The base pair substitution rates per genome per generation are 0.004 and 0.165 for wild type and ΔnucS, respectively. By comparing the activity of different bacterial MMR pathways, we demonstrate that both MutS/L- and NucS-based systems display similar specificity and mutagenesis bias, revealing a functional evolutionary convergence. However, NucS is not able to repair indels in vivo. Our results provide an unparalleled view of how this mycobacterial system works in vivo to maintain genome stability and how it may affect Mycobacterium evolution.
Collapse
Affiliation(s)
- A. Castañeda-García
- Centro Nacional de Biotecnología–CSIC, Madrid, Spain
- Corresponding author. (A.C.-G.); (J.B.)
| | | | | | - A. Chiner-Oms
- Instituto de Biomedicina de Valencia, IBV-CSIC, Valencia, Spain
| | | | - I. Comas
- Instituto de Biomedicina de Valencia, IBV-CSIC, Valencia, Spain
- CIBER in Epidemiology and Public Health
| | - J. Blázquez
- Centro Nacional de Biotecnología–CSIC, Madrid, Spain
- Corresponding author. (A.C.-G.); (J.B.)
| |
Collapse
|
17
|
An array of basic residues is essential for the nucleolytic activity of the PHP domain of bacterial/archaeal PolX DNA polymerases. Sci Rep 2019; 9:9947. [PMID: 31289311 PMCID: PMC6616362 DOI: 10.1038/s41598-019-46349-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Accepted: 06/26/2019] [Indexed: 12/15/2022] Open
Abstract
Bacterial/archaeal family X DNA polymerases (PolXs) have a C-terminal PHP domain with an active site formed by nine histidines and aspartates that catalyzes 3′-5′ exonuclease, AP-endonuclease, 3′-phosphodiesterase and 3′-phosphatase activities. Multiple sequence alignments have allowed us to identify additional highly conserved residues along the PHP domain of bacterial/archaeal PolXs that form an electropositive path to the catalytic site and whose potential role in the nucleolytic activities had not been established. Here, site directed mutagenesis at the corresponding Bacillus subtilis PolX (PolXBs) residues, Arg469, Arg474, Asn498, Arg503 and Lys545, as well as to the highly conserved residue Phe440 gave rise to enzymes severely affected in all the nucleolytic activities of the enzyme while conserving a wild-type gap-filling activity, indicating a function of those residues in DNA binding at the PHP domain. Altogether, the results obtained with the mutant proteins, the spatial arrangement of those DNA binding residues, the intermolecular transference of the 3′-terminus between the PHP and polymerization active sites, and the available 3D structures of bacterial PolXs led us to propose the requirement to a great degree of a functional/structural flexibility to coordinate the synthetic and degradative activities in these enzymes.
Collapse
|
18
|
Masson GR, Burke JE, Ahn NG, Anand GS, Borchers C, Brier S, Bou-Assaf GM, Engen JR, Englander SW, Faber J, Garlish R, Griffin PR, Gross ML, Guttman M, Hamuro Y, Heck AJR, Houde D, Iacob RE, Jørgensen TJD, Kaltashov IA, Klinman JP, Konermann L, Man P, Mayne L, Pascal BD, Reichmann D, Skehel M, Snijder J, Strutzenberg TS, Underbakke ES, Wagner C, Wales TE, Walters BT, Weis DD, Wilson DJ, Wintrode PL, Zhang Z, Zheng J, Schriemer DC, Rand KD. Recommendations for performing, interpreting and reporting hydrogen deuterium exchange mass spectrometry (HDX-MS) experiments. Nat Methods 2019; 16:595-602. [PMID: 31249422 PMCID: PMC6614034 DOI: 10.1038/s41592-019-0459-y] [Citation(s) in RCA: 476] [Impact Index Per Article: 79.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 05/23/2019] [Indexed: 12/20/2022]
Abstract
Hydrogen deuterium exchange mass spectrometry (HDX-MS) is a powerful biophysical technique being increasingly applied to a wide variety of problems. As the HDX-MS community continues to grow, adoption of best practices in data collection, analysis, presentation and interpretation will greatly enhance the accessibility of this technique to nonspecialists. Here we provide recommendations arising from community discussions emerging out of the first International Conference on Hydrogen-Exchange Mass Spectrometry (IC-HDX; 2017). It is meant to represent both a consensus viewpoint and an opportunity to stimulate further additions and refinements as the field advances.
Collapse
Affiliation(s)
| | - John E Burke
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC, Canada.
| | - Natalie G Ahn
- Department of Biochemistry, University of Colorado, Boulder, CO, USA
| | - Ganesh S Anand
- Department of Biological Science, National University of Singapore, Singapore, Singapore
| | - Christoph Borchers
- Genome BC Proteomics Centre, University of Victoria, Victoria, BC, Canada
| | - Sébastien Brier
- Institut Pasteur, Chemistry and Structural Biology Department, Paris, France
| | | | - John R Engen
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA, USA
| | - S Walter Englander
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA, USA
| | | | | | - Patrick R Griffin
- Department of Integrative Structural and Computational Biology, Scripps Florida, The Scripps Research Institute, Jupiter, FL, USA
| | - Michael L Gross
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO, USA
| | - Miklos Guttman
- Department of Medicinal Chemistry, School of Pharmacy, University of Washington, Seattle, WA, USA
| | - Yoshitomo Hamuro
- Johnson & Johnson Pharmaeutical Research and Development, Jersey City, NJ, USA
| | - Albert J R Heck
- Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, the Netherlands
| | | | - Roxana E Iacob
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA, USA
| | - Thomas J D Jørgensen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej, Odense, Denmark
| | - Igor A Kaltashov
- Department of Chemistry, University of Massachusetts-Amherst, Amherst, MA, USA
| | - Judith P Klinman
- Department of Chemistry, University of California, Berkeley, Berkeley, CA, USA
| | - Lars Konermann
- Department of Chemistry, The University of Western Ontario, London, ON, Canada
| | - Petr Man
- Institute of Microbiology, Czech Academy of Sciences, Prague, Czech Republic
| | - Leland Mayne
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA, USA
| | - Bruce D Pascal
- Department of Molecular Medicine, The Scripps Research Institute, Jupiter, FL, USA
| | - Dana Reichmann
- Department of Biological Chemistry, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Mark Skehel
- MRC Laboratory of Molecular Biology, Cambridge, UK
| | - Joost Snijder
- Department of Medicinal Chemistry, School of Pharmacy, University of Washington, Seattle, WA, USA
| | - Timothy S Strutzenberg
- Department of Integrative Structural and Computational Biology, Scripps Florida, The Scripps Research Institute, Jupiter, FL, USA
| | - Eric S Underbakke
- Roy J. Carver Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, Ames, IA, USA
| | | | - Thomas E Wales
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA, USA
| | - Benjamin T Walters
- Department of Early Stage Pharmaceutical Development, Genentech, Inc., South San Francisco, CA, USA
| | - David D Weis
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, KS, USA
| | - Derek J Wilson
- Department of Chemistry, York University, Toronto, ON, Canada
| | - Patrick L Wintrode
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD, USA
| | | | - Jie Zheng
- Department of Integrative Structural and Computational Biology, Scripps Florida, The Scripps Research Institute, Jupiter, FL, USA
| | - David C Schriemer
- Department of Biochemistry & Molecular Biology, University of Calgary, Calgary, AB, Canada.
| | - Kasper D Rand
- Department of Pharmacy, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
19
|
Nasir N, Kisker C. Mechanistic insights into the enzymatic activity and inhibition of the replicative polymerase exonuclease domain from Mycobacterium tuberculosis. DNA Repair (Amst) 2019; 74:17-25. [PMID: 30641156 DOI: 10.1016/j.dnarep.2018.12.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 12/25/2018] [Accepted: 12/25/2018] [Indexed: 01/12/2023]
Abstract
DNA replication fidelity maintains low mutation rates in bacteria. The ε-subunit of a replisome generally acts as the main proofreader during replication, using its 3'-5' exonuclease activity to excise misincorporated bases thereby maintaining faithful replication. In Mycobacterium tuberculosis (Mtb), however, the polymerase and histidinol phosphatase (PHP) domain of the DNA polymerase DnaE1 is the primary proofreader. This domain thus maintains low mutation rates during replication and is an attractive target for drug development. Even though the structures of DnaE polymerases are available from various organisms, including Mtb, the mechanism of exonuclease activity remains elusive. In this study, we sought to unravel the mechanism and also to identify scaffolds that can specifically inhibit the exonuclease activity. To gain insight into the mode of action, we also characterized the PHP domain of the Mtb error-prone polymerase DnaE2 which shares a nearly identical active site with DnaE1-PHP. Kinetic and mutational studies allowed us to identify the critical residue involved in catalysis. Combined inhibition and computational studies also revealed a specific mode of inhibition of DnaE1-PHP by nucleoside diphosphates. Thus, this study lays the foundation for the rational design of novel inhibitors which target the Mtb replicative proofreader.
Collapse
Affiliation(s)
- Nazia Nasir
- Rudolf Virchow Center for Experimental Biomedicine, University of Würzburg, 97080 Würzburg, Germany.
| | - Caroline Kisker
- Rudolf Virchow Center for Experimental Biomedicine, University of Würzburg, 97080 Würzburg, Germany
| |
Collapse
|
20
|
An updated structural classification of replicative DNA polymerases. Biochem Soc Trans 2019; 47:239-249. [PMID: 30647142 DOI: 10.1042/bst20180579] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 11/30/2018] [Accepted: 12/07/2018] [Indexed: 12/13/2022]
Abstract
Replicative DNA polymerases are nano-machines essential to life, which have evolved the ability to copy the genome with high fidelity and high processivity. In contrast with cellular transcriptases and ribosome machines, which evolved by accretion of complexity from a conserved catalytic core, no replicative DNA polymerase is universally conserved. Strikingly, four different families of DNA polymerases have evolved to perform DNA replication in the three domains of life. In Bacteria, the genome is replicated by DNA polymerases belonging to the A- and C-families. In Eukarya, genomic DNA is copied mainly by three distinct replicative DNA polymerases, Polα, Polδ, and Polε, which all belong to the B-family. Matters are more complicated in Archaea, which contain an unusual D-family DNA polymerase (PolD) in addition to PolB, a B-family replicative DNA polymerase that is homologous to the eukaryotic ones. PolD is a heterodimeric DNA polymerase present in all Archaea discovered so far, except Crenarchaea. While PolD is an essential replicative DNA polymerase, it is often underrepresented in the literature when the diversity of DNA polymerases is discussed. Recent structural studies have shown that the structures of both polymerase and proofreading active sites of PolD differ from other structurally characterized DNA polymerases, thereby extending the repertoire of folds known to perform DNA replication. This review aims to provide an updated structural classification of all replicative DNAPs and discuss their evolutionary relationships, both regarding the DNA polymerase and proofreading active sites.
Collapse
|
21
|
Ilic S, Cohen S, Singh M, Tam B, Dayan A, Akabayov B. DnaG Primase-A Target for the Development of Novel Antibacterial Agents. Antibiotics (Basel) 2018; 7:E72. [PMID: 30104489 PMCID: PMC6163395 DOI: 10.3390/antibiotics7030072] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 08/06/2018] [Accepted: 08/09/2018] [Indexed: 12/21/2022] Open
Abstract
The bacterial primase-an essential component in the replisome-is a promising but underexploited target for novel antibiotic drugs. Bacterial primases have a markedly different structure than the human primase. Inhibition of primase activity is expected to selectively halt bacterial DNA replication. Evidence is growing that halting DNA replication has a bacteriocidal effect. Therefore, inhibitors of DNA primase could provide antibiotic agents. Compounds that inhibit bacterial DnaG primase have been developed using different approaches. In this paper, we provide an overview of the current literature on DNA primases as novel drug targets and the methods used to find their inhibitors. Although few inhibitors have been identified, there are still challenges to develop inhibitors that can efficiently halt DNA replication and may be applied in a clinical setting.
Collapse
Affiliation(s)
- Stefan Ilic
- Department of Chemistry, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel.
| | - Shira Cohen
- Department of Chemistry, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel.
| | - Meenakshi Singh
- Department of Chemistry, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel.
| | - Benjamin Tam
- Department of Chemistry, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel.
| | - Adi Dayan
- Department of Chemistry, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel.
| | - Barak Akabayov
- Department of Chemistry, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel.
| |
Collapse
|
22
|
Reiche MA, Warner DF, Mizrahi V. Targeting DNA Replication and Repair for the Development of Novel Therapeutics against Tuberculosis. Front Mol Biosci 2017; 4:75. [PMID: 29184888 PMCID: PMC5694481 DOI: 10.3389/fmolb.2017.00075] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Accepted: 10/31/2017] [Indexed: 12/11/2022] Open
Abstract
Mycobacterium tuberculosis is the etiological agent of tuberculosis (TB), an infectious disease which results in approximately 10 million incident cases and 1.4 million deaths globally each year, making it the leading cause of mortality from infection. An effective frontline combination chemotherapy exists for TB; however, this regimen requires the administration of four drugs in a 2 month long intensive phase followed by a continuation phase of a further 4 months with two of the original drugs, and is only effective for the treatment of drug-sensitive TB. The emergence and global spread of multidrug-resistant (MDR) as well as extensively drug-resistant (XDR) strains of M. tuberculosis, and the complications posed by co-infection with the human immunodeficiency virus (HIV) and other co-morbidities such as diabetes, have prompted urgent efforts to develop shorter regimens comprising new compounds with novel mechanisms of action. This demands that researchers re-visit cellular pathways and functions that are essential to M. tuberculosis survival and replication in the host but which are inadequately represented amongst the targets of current anti-mycobacterial agents. Here, we consider the DNA replication and repair machinery as a source of new targets for anti-TB drug development. Like most bacteria, M. tuberculosis encodes a complex array of proteins which ensure faithful and accurate replication and repair of the chromosomal DNA. Many of these are essential; so, too, are enzymes in the ancillary pathways of nucleotide biosynthesis, salvage, and re-cycling, suggesting the potential to inhibit replication and repair functions at multiple stages. To this end, we provide an update on the state of chemotherapeutic inhibition of DNA synthesis and related pathways in M. tuberculosis. Given the established links between genotoxicity and mutagenesis, we also consider the potential implications of targeting DNA metabolic pathways implicated in the development of drug resistance in M. tuberculosis, an organism which is unusual in relying exclusively on de novo mutations and chromosomal rearrangements for evolution, including the acquisition of drug resistance. In that context, we conclude by discussing the feasibility of targeting mutagenic pathways in an ancillary, “anti-evolution” strategy aimed at protecting existing and future TB drugs.
Collapse
Affiliation(s)
- Michael A Reiche
- SAMRC/NHLS/UCT Molecular Mycobacteriology Research Unit, DST/NRF Centre of Excellence for Biomedical Tuberculosis Research, Department of Pathology, Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Digby F Warner
- SAMRC/NHLS/UCT Molecular Mycobacteriology Research Unit, DST/NRF Centre of Excellence for Biomedical Tuberculosis Research, Department of Pathology, Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Valerie Mizrahi
- SAMRC/NHLS/UCT Molecular Mycobacteriology Research Unit, DST/NRF Centre of Excellence for Biomedical Tuberculosis Research, Department of Pathology, Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| |
Collapse
|