1
|
Taira Y, Zhu L, Fukunaga R. RNA-binding protein Miso/CG44249 is crucial for minor splicing during oogenesis in Drosophila. RNA (NEW YORK, N.Y.) 2025; 31:822-835. [PMID: 40169226 DOI: 10.1261/rna.080311.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Accepted: 03/18/2025] [Indexed: 04/03/2025]
Abstract
Pre-mRNA introns are removed by two distinct spliceosomes: the major (U2-type) spliceosome, which splices over 99.5% of introns, and the minor (U12-type) spliceosome, responsible for a rare class of introns known as minor introns. While the major spliceosome contains U1, U2, U4, U5, and U6 small nuclear RNAs (snRNAs) along with numerous associated proteins, the minor spliceosome comprises U11, U12, U4atac, U5, and U6atac snRNAs and includes specialized proteins. The function and regulation of the minor spliceosome are critical. Mutations in its specific component, RNA-binding protein RNPC3/65K, are linked to human diseases such as primary ovarian insufficiency. In this study, we identify RNA-binding protein Miso (CG44249), which shares 31% and 27% amino acid sequence identity with human RNPC3 and RBM41, respectively, as a key factor in minor splicing and oogenesis in Drosophila Miso associates with U11 and U12 snRNAs in ovaries. miso mutant females exhibit smaller ovaries, reduced germline stem cell numbers, disrupted oogenesis, reduced fecundity, and lower fertility. In miso mutant ovaries, significant minor intron retention is observed, accompanied by a reduction in spliced RNAs and protein products. Our findings establish Miso as a critical factor for minor intron splicing and underscore its essential role in Drosophila oogenesis.
Collapse
Affiliation(s)
- Yuki Taira
- Department of Biological Chemistry, Johns Hopkins School of Medicine, Baltimore, Maryland 21205, USA
| | - Li Zhu
- Department of Biological Chemistry, Johns Hopkins School of Medicine, Baltimore, Maryland 21205, USA
| | - Ryuya Fukunaga
- Department of Biological Chemistry, Johns Hopkins School of Medicine, Baltimore, Maryland 21205, USA
| |
Collapse
|
2
|
Soggia G, ElMaghloob Y, Boromangnaeva AK, Al Jord A. Mechanical Remodeling of Nuclear Biomolecular Condensates. Physiology (Bethesda) 2025; 40:0. [PMID: 39109673 DOI: 10.1152/physiol.00027.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 08/05/2024] [Accepted: 08/06/2024] [Indexed: 08/15/2024] Open
Abstract
Organism health relies on cell proliferation, migration, and differentiation. These universal processes depend on cytoplasmic reorganization driven notably by the cytoskeleton and its force-generating motors. Their activity generates forces that mechanically agitate the cell nucleus and its interior. New evidence from reproductive cell biology revealed that these cytoskeletal forces can be tuned to remodel nuclear membraneless compartments, known as biomolecular condensates, and regulate their RNA processing function for the success of subsequent cell division that is critical for fertility. Both cytoskeletal and nuclear condensate reorganization are common to numerous physiological and pathological contexts, raising the possibility that mechanical remodeling of nuclear condensates may be a much broader mechanism regulating their function. Here, we review this newfound mechanism of condensate remodeling and venture into the contexts of health and disease where it may be relevant, with a focus on reproduction, cancer, and premature aging.
Collapse
Affiliation(s)
- Giulia Soggia
- Centre for Genomic Regulation, The Barcelona Institute of Science and Technology, Barcelona, Spain
- Universitat Pompeu Fabra, Barcelona, Spain
| | - Yasmin ElMaghloob
- Centre for Genomic Regulation, The Barcelona Institute of Science and Technology, Barcelona, Spain
- Systems Biology and Immunology Lab, Children's Cancer Hospital Egypt, Cairo, Egypt
| | | | - Adel Al Jord
- Centre for Genomic Regulation, The Barcelona Institute of Science and Technology, Barcelona, Spain
- Universitat Pompeu Fabra, Barcelona, Spain
| |
Collapse
|
3
|
Martinez G, Siu J, Dang S, Gage D, Kao E, Avila JC, You R, McGorty R. Convolutional neural networks applied to differential dynamic microscopy reduces noise when quantifying heterogeneous dynamics. SOFT MATTER 2024; 20:7880-7890. [PMID: 39315917 DOI: 10.1039/d4sm00881b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Differential dynamic microscopy (DDM) typically relies on movies containing hundreds or thousands of frames to accurately quantify motion in soft matter systems. Using movies much shorter in duration produces noisier and less accurate results. This limits the applicability of DDM to situations where the dynamics are stationary over extended times. Here, we investigate a method to denoise the DDM process, particularly suited to when a limited number of imaging frames are available or when dynamics are quickly evolving in time. We use a convolutional neural network encoder-decoder (CNN-ED) model to reduce the noise in the intermediate scattering function that is computed via DDM. We demonstrate this approach of combining machine learning and DDM on samples containing diffusing micron-sized colloidal particles. We quantify how the particles' diffusivities change over time as the fluid they are suspended in gels. We also quantify how the diffusivity of particles varies with position in a sample containing a viscosity gradient. These test cases demonstrate how studies of non-equilibrium dynamics and high-throughput screens could benefit from a method to denoise the outputs of DDM.
Collapse
Affiliation(s)
- Gildardo Martinez
- Department of Physics and Biophysics, University of San Diego, San Diego, CA 92110, USA.
| | - Justin Siu
- Department of Physics and Biophysics, University of San Diego, San Diego, CA 92110, USA.
| | - Steven Dang
- Department of Physics and Biophysics, University of San Diego, San Diego, CA 92110, USA.
| | - Dylan Gage
- Department of Physics and Biophysics, University of San Diego, San Diego, CA 92110, USA.
| | - Emma Kao
- Department of Physics and Biophysics, University of San Diego, San Diego, CA 92110, USA.
| | - Juan Carlos Avila
- Department of Physics and Biophysics, University of San Diego, San Diego, CA 92110, USA.
| | - Ruilin You
- Department of Physics and Biophysics, University of San Diego, San Diego, CA 92110, USA.
| | - Ryan McGorty
- Department of Physics and Biophysics, University of San Diego, San Diego, CA 92110, USA.
| |
Collapse
|
4
|
Guidolin C, Rio E, Cerbino R, Salonen A, Giavazzi F. Anomalous relaxation of coarsening foams with viscoelastic continuous phases. SOFT MATTER 2024; 20:7021-7029. [PMID: 39171748 DOI: 10.1039/d4sm00588k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
We investigate the ultraslow structural relaxation of ageing foams with rheologically tunable continuous phases. We probe the bubble dynamics associated with pressure-driven foam coarsening using differential dynamic microscopy, which allows characterising the sample dynamics in reciprocal space with imaging experiments. Similar to other out-of-equilibrium jammed soft systems, these foams exhibit compressed exponential relaxations, with a ballistic-like linear dependency of the relaxation rate on the scattering wavevector. By tuning the rheology of the continuous phase, we observe changes in the relaxation shape, where stiffer matrices yield larger compression exponents. Our results corroborate recent real-space observations obtained using bubble tracking, providing a comprehensive overview of structural relaxation in these complex systems, both in direct and reciprocal space.
Collapse
Affiliation(s)
- Chiara Guidolin
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Segrate, Italy.
| | - Emmanuelle Rio
- Laboratoire de Physique des Solides, Université Paris-Saclay, CNRS, Orsay, France
| | | | - Anniina Salonen
- Laboratoire de Physique des Solides, Université Paris-Saclay, CNRS, Orsay, France
| | - Fabio Giavazzi
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Segrate, Italy.
| |
Collapse
|
5
|
Joshi K, York HM, Wright CS, Biswas RR, Arumugam S, Iyer-Biswas S. Emergent Spatiotemporal Organization in Stochastic Intracellular Transport Dynamics. Annu Rev Biophys 2024; 53:193-220. [PMID: 38346244 DOI: 10.1146/annurev-biophys-030422-044448] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2024]
Abstract
The interior of a living cell is an active, fluctuating, and crowded environment, yet it maintains a high level of coherent organization. This dichotomy is readily apparent in the intracellular transport system of the cell. Membrane-bound compartments called endosomes play a key role in carrying cargo, in conjunction with myriad components including cargo adaptor proteins, membrane sculptors, motor proteins, and the cytoskeleton. These components coordinate to effectively navigate the crowded cell interior and transport cargo to specific intracellular locations, even though the underlying protein interactions and enzymatic reactions exhibit stochastic behavior. A major challenge is to measure, analyze, and understand how, despite the inherent stochasticity of the constituent processes, the collective outcomes show an emergent spatiotemporal order that is precise and robust. This review focuses on this intriguing dichotomy, providing insights into the known mechanisms of noise suppression and noise utilization in intracellular transport processes, and also identifies opportunities for future inquiry.
Collapse
Affiliation(s)
- Kunaal Joshi
- Department of Physics and Astronomy, Purdue University, West Lafayette, Indiana, USA;
| | - Harrison M York
- Monash Biomedicine Discovery Institute, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, Victoria, Australia;
| | - Charles S Wright
- Department of Physics and Astronomy, Purdue University, West Lafayette, Indiana, USA;
- Monash Biomedicine Discovery Institute, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, Victoria, Australia;
| | - Rudro R Biswas
- Department of Physics and Astronomy, Purdue University, West Lafayette, Indiana, USA;
| | - Senthil Arumugam
- ARC Centre of Excellence in Advanced Molecular Imaging, Monash University, Melbourne, Victoria, Australia
- Single Molecule Science, University of New South Wales, Sydney, New South Wales, Australia
- Monash Biomedicine Discovery Institute, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, Victoria, Australia;
- European Molecular Biological Laboratory Australia (EMBL Australia), Monash University, Melbourne, Victoria, Australia
| | - Srividya Iyer-Biswas
- Department of Physics and Astronomy, Purdue University, West Lafayette, Indiana, USA;
- Santa Fe Institute, Santa Fe, New Mexico, USA
| |
Collapse
|
6
|
Castellini S, Brizioli M, Giraudet C, Carpineti M, Croccolo F, Giavazzi F, Vailati A. Modeling and correction of image drift in dynamic shadowgraphy experiments. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2024; 47:25. [PMID: 38587607 PMCID: PMC11249426 DOI: 10.1140/epje/s10189-024-00413-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Accepted: 03/03/2024] [Indexed: 04/09/2024]
Abstract
The study of phoretic transport phenomena under non-stationary conditions presents several challenges, mostly related to the stability of the experimental apparatus. This is particularly true when investigating with optical means the subtle temperature and concentration fluctuations that arise during diffusion processes, superimposed to the macroscopic state of the system. Under these conditions, the tenuous signal from fluctuations is easily altered by the presence of artifacts. Here, we address an experimental issue frequently reported in the investigation by means of dynamic shadowgraphy of the non-equilibrium fluctuations arising in liquid mixtures under non-stationary conditions, such as those arising after the imposition or removal of a thermal stress, where experiments show systematically the presence of a spurious contribution in the reconstructed structure function of the fluctuations, which depends quadratically from the time delay. We clarify the mechanisms responsible for this artifact, showing that it is caused by the imperfect alignment of the sample cell with respect to gravity, which couples the temporal evolution of the concentration profile within the sample with the optical signal collected by the shadowgraph diagnostics. We propose a data analysis protocol that enables disentangling the spurious contributions and the genuine dynamics of the fluctuations, which can be thus reliably reconstructed.
Collapse
Affiliation(s)
- Stefano Castellini
- Dipartimento di Fisica"A. Pontremoli", Università degli Studi di Milano, Milan, Italy
| | - Matteo Brizioli
- Dipartimento di Biotecnologie Mediche e Medicina Traslazionale, Università degli Studi di Milano, Segrate, Italy
| | - Cédric Giraudet
- LFCR UMR5150, E2S UPPA, CNRS, Universite de Pau et des Pays de l'Adour, Anglet, France
| | - Marina Carpineti
- Dipartimento di Fisica"A. Pontremoli", Università degli Studi di Milano, Milan, Italy
| | - Fabrizio Croccolo
- LFCR UMR5150, E2S UPPA, CNRS, Universite de Pau et des Pays de l'Adour, Anglet, France
| | - Fabio Giavazzi
- Dipartimento di Biotecnologie Mediche e Medicina Traslazionale, Università degli Studi di Milano, Segrate, Italy.
| | - Alberto Vailati
- Dipartimento di Fisica"A. Pontremoli", Università degli Studi di Milano, Milan, Italy
| |
Collapse
|
7
|
Nolte DD. Coherent light scattering from cellular dynamics in living tissues. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2024; 87:036601. [PMID: 38433567 DOI: 10.1088/1361-6633/ad2229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 01/24/2024] [Indexed: 03/05/2024]
Abstract
This review examines the biological physics of intracellular transport probed by the coherent optics of dynamic light scattering from optically thick living tissues. Cells and their constituents are in constant motion, composed of a broad range of speeds spanning many orders of magnitude that reflect the wide array of functions and mechanisms that maintain cellular health. From the organelle scale of tens of nanometers and upward in size, the motion inside living tissue is actively driven rather than thermal, propelled by the hydrolysis of bioenergetic molecules and the forces of molecular motors. Active transport can mimic the random walks of thermal Brownian motion, but mean-squared displacements are far from thermal equilibrium and can display anomalous diffusion through Lévy or fractional Brownian walks. Despite the average isotropic three-dimensional environment of cells and tissues, active cellular or intracellular transport of single light-scattering objects is often pseudo-one-dimensional, for instance as organelle displacement persists along cytoskeletal tracks or as membranes displace along the normal to cell surfaces, albeit isotropically oriented in three dimensions. Coherent light scattering is a natural tool to characterize such tissue dynamics because persistent directed transport induces Doppler shifts in the scattered light. The many frequency-shifted partial waves from the complex and dynamic media interfere to produce dynamic speckle that reveals tissue-scale processes through speckle contrast imaging and fluctuation spectroscopy. Low-coherence interferometry, dynamic optical coherence tomography, diffusing-wave spectroscopy, diffuse-correlation spectroscopy, differential dynamic microscopy and digital holography offer coherent detection methods that shed light on intracellular processes. In health-care applications, altered states of cellular health and disease display altered cellular motions that imprint on the statistical fluctuations of the scattered light. For instance, the efficacy of medical therapeutics can be monitored by measuring the changes they induce in the Doppler spectra of livingex vivocancer biopsies.
Collapse
Affiliation(s)
- David D Nolte
- Department of Physics and Astronomy, Purdue University, West Lafayette, IN 47907, United States of America
| |
Collapse
|
8
|
Sittewelle M, Royle SJ. Passive diffusion accounts for the majority of intracellular nanovesicle transport. Life Sci Alliance 2024; 7:e202302406. [PMID: 37857498 PMCID: PMC10587482 DOI: 10.26508/lsa.202302406] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 10/12/2023] [Accepted: 10/12/2023] [Indexed: 10/21/2023] Open
Abstract
During membrane trafficking, a vesicle formed at the donor compartment must travel to the acceptor membrane before fusing. For large carriers, it is established that this transport is motor-driven; however, the mode by which small vesicles, which outnumber larger carriers, are transported is poorly characterized. Here, we show that intracellular nanovesicles (INVs), a substantial class of small vesicles, are highly mobile within cells and that this mobility depends almost entirely on passive diffusion (0.1-0.3 μm2 s-1). Using single particle tracking, we describe how other small trafficking vesicles have a similar diffusive mode of transport that contrasts with the motor-dependent movement of larger endolysosomal carriers. We also demonstrate that a subset of INVs is involved in exocytosis and that delivery of cargo to the plasma membrane during exocytosis is decreased when diffusion of INVs is specifically restricted. Our results suggest that passive diffusion is sufficient to explain the majority of small vesicle transport.
Collapse
Affiliation(s)
- Méghane Sittewelle
- Centre for Mechanochemical Cell Biology and Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry, UK
| | - Stephen J Royle
- Centre for Mechanochemical Cell Biology and Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry, UK
| |
Collapse
|
9
|
Sheung JY, Garamella J, Kahl SK, Lee BY, McGorty RJ, Robertson-Anderson RM. Motor-driven advection competes with crowding to drive spatiotemporally heterogeneous transport in cytoskeleton composites. FRONTIERS IN PHYSICS 2022; 10:1055441. [PMID: 37547053 PMCID: PMC10403238 DOI: 10.3389/fphy.2022.1055441] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
The cytoskeleton-a composite network of biopolymers, molecular motors, and associated binding proteins-is a paradigmatic example of active matter. Particle transport through the cytoskeleton can range from anomalous and heterogeneous subdiffusion to superdiffusion and advection. Yet, recapitulating and understanding these properties-ubiquitous to the cytoskeleton and other out-of-equilibrium soft matter systems-remains challenging. Here, we combine light sheet microscopy with differential dynamic microscopy and single-particle tracking to elucidate anomalous and advective transport in actomyosin-microtubule composites. We show that particles exhibit multi-mode transport that transitions from pronounced subdiffusion to superdiffusion at tunable crossover timescales. Surprisingly, while higher actomyosin content increases the range of timescales over which transport is superdiffusive, it also markedly increases the degree of subdiffusion at short timescales and generally slows transport. Corresponding displacement distributions display unique combinations of non-Gaussianity, asymmetry, and non-zero modes, indicative of directed advection coupled with caged diffusion and hopping. At larger spatiotemporal scales, particles in active composites exhibit superdiffusive dynamics with scaling exponents that are robust to changing actomyosin fractions, in contrast to normal, yet faster, diffusion in networks without actomyosin. Our specific results shed important new light on the interplay between non-equilibrium processes, crowding and heterogeneity in active cytoskeletal systems. More generally, our approach is broadly applicable to active matter systems to elucidate transport and dynamics across scales.
Collapse
Affiliation(s)
- Janet Y. Sheung
- W. M. Keck Science Department, Scripps College, Claremont, CA, United States
- W. M. Keck Science Department, Pitzer College, Claremont, CA, United States
| | - Jonathan Garamella
- Physics and Biophysics Department, University of San Diego, San Diego, CA, United States
| | - Stella K. Kahl
- W. M. Keck Science Department, Scripps College, Claremont, CA, United States
| | - Brian Y. Lee
- W. M. Keck Science Department, Pitzer College, Claremont, CA, United States
| | - Ryan J. McGorty
- Physics and Biophysics Department, University of San Diego, San Diego, CA, United States
| | | |
Collapse
|
10
|
Gomez-Solano JR, Rodríguez RF, Salinas-Rodríguez E. Nonequilibrium dynamical structure factor of a dilute suspension of active particles in a viscoelastic fluid. Phys Rev E 2022; 106:054602. [PMID: 36559383 DOI: 10.1103/physreve.106.054602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 10/11/2022] [Indexed: 11/06/2022]
Abstract
In this work we investigate the dynamics of the number-density fluctuations of a dilute suspension of active particles in a linear viscoelastic fluid. We propose a model for the frequency-dependent diffusion coefficient of the active particles which captures the effect of rotational diffusion on the persistence of their self-propelled motion and the viscoelasticity of the medium. Using fluctuating hydrodynamics, the linearized equations for the active suspension are derived, from which we calculate its dynamic structure factor and the corresponding intermediate scattering function. For a Maxwell-type rheological model, we find an intricate dependence of these functions on the parameters that characterize the viscoelasticity of the solvent and the activity of the particles, which can significantly deviate from those of an inert suspension of passive particles and of an active suspension in a Newtonian solvent. In particular, in some regions of the parameter space we uncover the emergence of oscillations in the intermediate scattering function at certain wave numbers which represent the hallmark of the nonequilibrium particle activity in the dynamical structure of the suspension and also encode the viscoelastic properties of the medium.
Collapse
Affiliation(s)
- Juan Ruben Gomez-Solano
- Instituto de Física, Universidad Nacional Autónoma de México, Ciudad de México, Código Postal 04510, Mexico
| | - Rosalío F Rodríguez
- Instituto de Física, Universidad Nacional Autónoma de México, Ciudad de México, Código Postal 04510, Mexico.,FENOMEC, Universidad Nacional Autónoma de México, Apdo. Postal 20-726, 01000 Ciudad de México, Mexico
| | - Elizabeth Salinas-Rodríguez
- Departamento I. P. H., Universidad Autónoma Metropolitana, Iztapalapa, Apdo. Postal 55-534, 09340 Ciudad de México, Mexico
| |
Collapse
|
11
|
Crowding and confinement act in concert to slow DNA diffusion within cell-sized droplets. iScience 2022; 25:105122. [PMID: 36185357 PMCID: PMC9523355 DOI: 10.1016/j.isci.2022.105122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 08/27/2022] [Accepted: 09/08/2022] [Indexed: 11/20/2022] Open
Abstract
Dynamics of biological macromolecules, such as DNA, in crowded and confined environments are critical to understanding cellular processes such as transcription, infection, and replication. However, the combined effects of cellular confinement and crowding on macromolecular dynamics remain poorly understood. Here, we use differential dynamic microscopy to investigate the diffusion of large DNA molecules confined in cell-sized droplets and crowded by dextran polymers. We show that confined and crowded DNA molecules exhibit universal anomalous subdiffusion with scaling that is insensitive to the degree of confinement and crowding. However, effective DNA diffusion coefficients Deff decrease up to 2 orders of magnitude as droplet size decreases—an effect that is enhanced by increased crowding. We mathematically model the coupling of crowding and confinement by combining polymer scaling theories with confinement-induced depletion effects. The generality and tunability of our system and models render them applicable to elucidating wide-ranging crowded and confined systems. DNA diffusion measured in cell-sized droplets with differential dynamic microscopy Combination of crowding and confinement leads to subdiffusion and slowing Diffusion coefficients of DNA decrease strongly with decreasing droplet size Polymer scaling theories and depletion effects predict observed dynamics
Collapse
|
12
|
Al-Shahrani M, Bryant G. Differential dynamic microscopy for the characterisation of motility in biological systems. Phys Chem Chem Phys 2022; 24:20616-20623. [PMID: 36048134 DOI: 10.1039/d2cp02034c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Differential Dynamic Microscopy (DDM) is a relatively new technique which measures the dynamics of suspended particles using a dynamic light scattering formalism. Videos are recorded using standard light microscopy at moderate frame rates, and fluctuations in pixel intensity are measured as a function of time. As only pixel intensity is analysed, it is not necessary to resolve individual particles. This allows for low magnifications and wide fields of view, and therefore dynamics can be measured on tens of thousands of scattering objects, providing robust statistics. A decade ago the technique was successfully applied to measure bacterial motility. Since then, it has been applied to a range of motile systems, but has not yet reached the wider biological community. This perspective reviews the work done so far, and provides the basic background to enable the broader application of this promising technique.
Collapse
Affiliation(s)
- Monerh Al-Shahrani
- Physics, School of Science, RMIT University, Melbourne, Australia. .,Department of Physics, College of Science, University of Bisha, Bisha, Saudi Arabia
| | - Gary Bryant
- Physics, School of Science, RMIT University, Melbourne, Australia.
| |
Collapse
|
13
|
Park M, Lee K, Granick S. Response of vesicle shapes to dense inner active matter. SOFT MATTER 2022; 18:6419-6425. [PMID: 35979740 DOI: 10.1039/d2sm00781a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
We consider experimentally the Takatori-Sahu model of vesicle shape fluctuations induced by enclosed active matter, a model till present tested only in the absence of collective motion because few enclosed bacteria were used to generate the desired active motion (S. C. Takatori and A. Sahu, Phys. Rev. Lett., 2020, 124, 158102). Using deformable giant unilamellar vesicles (GUVs) and phase contrast microscopy, we extract the mode-dependence of GUV shape fluctuations when hundreds of E. coli bacteria are contained within each GUV. In the microscope focal plane, patterns of collective bacteria flow include vortex flow, dipolar flow, and chaotic motion, all of which influence the GUV shapes. The Takatori-Sahu model generalizes well to this situation if one considers the moving element to be the experimentally-determined size of the collecively-moving flock.
Collapse
Affiliation(s)
- Myeonggon Park
- Center for Soft and Living Matter, Institute for Basic Science, Ulsan, South Korea.
- Department of Physics, Ulsan National Institute of Science and Technology (UNIST), Ulsan, South Korea
| | - Kisung Lee
- Center for Soft and Living Matter, Institute for Basic Science, Ulsan, South Korea.
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan, South Korea
| | - Steve Granick
- Center for Soft and Living Matter, Institute for Basic Science, Ulsan, South Korea.
- Department of Physics, Ulsan National Institute of Science and Technology (UNIST), Ulsan, South Korea
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan, South Korea
| |
Collapse
|
14
|
Cytoplasmic forces functionally reorganize nuclear condensates in oocytes. Nat Commun 2022; 13:5070. [PMID: 36038550 PMCID: PMC9424315 DOI: 10.1038/s41467-022-32675-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 08/05/2022] [Indexed: 12/21/2022] Open
Abstract
Cells remodel their cytoplasm with force-generating cytoskeletal motors. Their activity generates random forces that stir the cytoplasm, agitating and displacing membrane-bound organelles like the nucleus in somatic and germ cells. These forces are transmitted inside the nucleus, yet their consequences on liquid-like biomolecular condensates residing in the nucleus remain unexplored. Here, we probe experimentally and computationally diverse nuclear condensates, that include nuclear speckles, Cajal bodies, and nucleoli, during cytoplasmic remodeling of female germ cells named oocytes. We discover that growing mammalian oocytes deploy cytoplasmic forces to timely impose multiscale reorganization of nuclear condensates for the success of meiotic divisions. These cytoplasmic forces accelerate nuclear condensate collision-coalescence and molecular kinetics within condensates. Disrupting the forces decelerates nuclear condensate reorganization on both scales, which correlates with compromised condensate-associated mRNA processing and hindered oocyte divisions that drive female fertility. We establish that cytoplasmic forces can reorganize nuclear condensates in an evolutionary conserved fashion in insects. Our work implies that cells evolved a mechanism, based on cytoplasmic force tuning, to functionally regulate a broad range of nuclear condensates across scales. This finding opens new perspectives when studying condensate-associated pathologies like cancer, neurodegeneration and viral infections. Cytoskeletal activity generates mechanical forces known to agitate and displace membrane-bound organelles in the cytoplasm. In oocytes, Al Jord et al. discover that these cytoplasmic forces functionally remodel nuclear RNA-processing condensates across scales for developmental success.
Collapse
|
15
|
Okuda S, Sato K, Hiraiwa T. Continuum modeling of non-conservative fluid membrane for simulating long-term cell dynamics. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2022; 45:69. [PMID: 35984568 DOI: 10.1140/epje/s10189-022-00223-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 07/30/2022] [Indexed: 06/15/2023]
Abstract
Living cells actively deform and move by their force generations in three-dimensional (3D) space. These 3D cell dynamics occur over a long-term time scale, ranging from tens of minutes to days. On such a time scale, turnover of cell membrane constituents due to endocytosis and exocytosis cannot be ignored, i.e., the surface membrane dynamically deforms without mass conservation. Although membrane turnover is essential for large deformation of cells, there is no computational framework yet to simulate long-term cell dynamics with a non-conservative fluidic membrane. In this paper, we proposed a computational framework for simulating the long-term dynamics of a cell membrane in 3D space. For this purpose, in the proposed framework, the cell surface membrane is treated as a viscous fluid membrane without mass conservation. Cell shape is discretized by a triangular mesh, and its dynamics are expressed by effective energy and dissipation function. The mesh structure, distorted by membrane motion, is dynamically optimized by introducing a modified dynamic remeshing method. To validate the proposed framework, numerical simulations were performed, showing that the membrane flow is reproduced in a physically consistent manner and that the artificial effects of the remeshing method were negligible. To further demonstrate the applicability of the proposed framework, numerical simulations of cell migration induced by a mechanism similar to the Marangoni effect, i.e., the polarized surface tension actively generated by the cell, were performed. The observed cell behaviors agreed with existing analytical solutions, indicating that the proposed computational framework can quantitatively reproduce long-term active cell dynamics with membrane turnover. Based on the simple description of cell membrane dynamics, this framework provides a useful basis for analyzing various cell shaping and movement.
Collapse
Affiliation(s)
- Satoru Okuda
- Nano Life Science Institute, Kakuma-machi, Kanazawa, Japan.
| | - Katsuhiko Sato
- Research Institute for Electronic Science, Hokkaido University, Sapporo, Japan
- Global Station for Soft Matter, Global Institution for Collaborative Research and Education, Hokkaido University, Sapporo, Japan
| | - Tetsuya Hiraiwa
- Mechanobiology Institute, National University of Singapore, Singapore, Singapore
| |
Collapse
|
16
|
Verwei HN, Lee G, Leech G, Petitjean II, Koenderink GH, Robertson-Anderson RM, McGorty RJ. Quantifying Cytoskeleton Dynamics Using Differential Dynamic Microscopy. J Vis Exp 2022:10.3791/63931. [PMID: 35781524 PMCID: PMC10398790 DOI: 10.3791/63931] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/05/2023] Open
Abstract
Cells can crawl, self-heal, and tune their stiffness due to their remarkably dynamic cytoskeleton. As such, reconstituting networks of cytoskeletal biopolymers may lead to a host of active and adaptable materials. However, engineering such materials with precisely tuned properties requires measuring how the dynamics depend on the network composition and synthesis methods. Quantifying such dynamics is challenged by variations across the time, space, and formulation space of composite networks. The protocol here describes how the Fourier analysis technique, differential dynamic microscopy (DDM), can quantify the dynamics of biopolymer networks and is particularly well suited for studies of cytoskeleton networks. DDM works on time sequences of images acquired using a range of microscopy modalities, including laser-scanning confocal, widefield fluorescence, and brightfield imaging. From such image sequences, one can extract characteristic decorrelation times of density fluctuations across a span of wave vectors. A user-friendly, open-source Python package to perform DDM analysis is also developed. With this package, one can measure the dynamics of labeled cytoskeleton components or of embedded tracer particles, as demonstrated here with data of intermediate filament (vimentin) networks and active actin-microtubule networks. Users with no prior programming or image processing experience will be able to perform DDM using this software package and associated documentation.
Collapse
Affiliation(s)
- Hannah N Verwei
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University
| | - Gloria Lee
- Department of Physics and Biophysics, University of San Diego
| | - Gregor Leech
- Department of Physics and Biophysics, University of San Diego
| | - Irene Istúriz Petitjean
- Department of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology
| | - Gijsje H Koenderink
- Department of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology
| | | | | |
Collapse
|
17
|
Kim K, Gade VR, Kurzchalia TV, Guck J. Quantitative imaging of Caenorhabditis elegans dauer larvae during cryptobiotic transition. Biophys J 2022; 121:1219-1229. [PMID: 35192842 PMCID: PMC9034246 DOI: 10.1016/j.bpj.2022.02.031] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/09/2021] [Accepted: 02/16/2022] [Indexed: 11/02/2022] Open
Abstract
Upon starvation or overcrowding, the nematode Caenorhabditis elegans enters diapause by forming a dauer larva, which can then further survive harsh desiccation in an anhydrobiotic state. We have previously identified the genetic and biochemical pathways essential for survival-but without detailed knowledge of their material properties, the mechanistic understanding of this intriguing phenomenon remains incomplete. Here we employed optical diffraction tomography (ODT) to quantitatively assess the internal mass density distribution of living larvae in the reproductive and diapause stages. ODT revealed that the properties of the dauer larvae undergo a dramatic transition upon harsh desiccation. Moreover, mutants that are sensitive to desiccation displayed structural abnormalities in the anhydrobiotic stage that could not be observed by conventional microscopy. Our advance opens a door to quantitatively assessing the transitions in material properties and structure necessary to fully understand an organism on the verge of life and death.
Collapse
Affiliation(s)
- Kyoohyun Kim
- Biotechnology Center, Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, Dresden, Germany; Max Planck Institute for the Science of Light & Max-Planck-Zentrum für Physik und Medizin, Erlangen, Germany
| | - Vamshidhar R Gade
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | | | - Jochen Guck
- Biotechnology Center, Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, Dresden, Germany; Max Planck Institute for the Science of Light & Max-Planck-Zentrum für Physik und Medizin, Erlangen, Germany.
| |
Collapse
|
18
|
Distributed synthesis of sarcolemmal and sarcoplasmic reticulum membrane proteins in cardiac myocytes. Basic Res Cardiol 2021; 116:63. [PMID: 34713358 PMCID: PMC8553722 DOI: 10.1007/s00395-021-00895-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 08/30/2021] [Accepted: 09/11/2021] [Indexed: 02/05/2023]
Abstract
It is widely assumed that synthesis of membrane proteins, particularly in the heart, follows the classical secretory pathway with mRNA translation occurring in perinuclear regions followed by protein trafficking to sites of deployment. However, this view is based on studies conducted in less-specialized cells, and has not been experimentally addressed in cardiac myocytes. Therefore, we undertook direct experimental investigation of protein synthesis in cardiac tissue and isolated myocytes using single-molecule visualization techniques and a novel proximity-ligated in situ hybridization approach for visualizing ribosome-associated mRNA molecules for a specific protein species, indicative of translation sites. We identify here, for the first time, that the molecular machinery for membrane protein synthesis occurs throughout the cardiac myocyte, and enables distributed synthesis of membrane proteins within sub-cellular niches where the synthesized protein functions using local mRNA pools trafficked, in part, by microtubules. We also observed cell-wide distribution of membrane protein mRNA in myocardial tissue from both non-failing and hypertrophied (failing) human hearts, demonstrating an evolutionarily conserved distributed mechanism from mouse to human. Our results identify previously unanticipated aspects of local control of cardiac myocyte biology and highlight local protein synthesis in cardiac myocytes as an important potential determinant of the heart’s biology in health and disease.
Collapse
|
19
|
Hecw controls oogenesis and neuronal homeostasis by promoting the liquid state of ribonucleoprotein particles. Nat Commun 2021; 12:5488. [PMID: 34531401 PMCID: PMC8446043 DOI: 10.1038/s41467-021-25809-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 08/31/2021] [Indexed: 01/17/2023] Open
Abstract
Specialised ribonucleoprotein (RNP) granules are a hallmark of polarized cells, like neurons and germ cells. Among their main functions is the spatial and temporal modulation of the activity of specific mRNA transcripts that allow specification of primary embryonic axes. While RNPs composition and role are well established, their regulation is poorly defined. Here, we demonstrate that Hecw, a newly identified Drosophila ubiquitin ligase, is a key modulator of RNPs in oogenesis and neurons. Hecw depletion leads to the formation of enlarged granules that transition from a liquid to a gel-like state. Loss of Hecw activity results in defective oogenesis, premature aging and climbing defects associated with neuronal loss. At the molecular level, reduced ubiquitination of the Fmrp impairs its translational repressor activity, resulting in altered Orb expression in nurse cells and Profilin in neurons. Ribonucleoprotein (RNP) granules are responsible for mRNA transport and local translation required for neuronal and oocyte maturation. Here the authors show that loss of the Drosophila Ub ligase Hecw enlarges RNP granules, leads to a liquid to gel-like transition, and results in defective oogenesis and neuronal loss.
Collapse
|
20
|
Cerbino R, Giavazzi F, Helgeson ME. Differential dynamic microscopy for the characterization of polymer systems. JOURNAL OF POLYMER SCIENCE 2021. [DOI: 10.1002/pol.20210217] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Roberto Cerbino
- Faculty of Physics University of Vienna Vienna Austria
- Department of Medical Biotechnology and Translational Medicine University of Milan Segrate Italy
| | - Fabio Giavazzi
- Department of Medical Biotechnology and Translational Medicine University of Milan Segrate Italy
| | - Matthew E. Helgeson
- Department of Chemical Engineering University of California Santa Barbara Santa Barbara California USA
| |
Collapse
|
21
|
Wang Y, Yang Y, Wang X, Kawazoe N, Yang Y, Chen G. The varied influences of cell adhesion and spreading on gene transfection of mesenchymal stem cells on a micropatterned substrate. Acta Biomater 2021; 125:100-111. [PMID: 33524558 DOI: 10.1016/j.actbio.2021.01.042] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 01/08/2021] [Accepted: 01/26/2021] [Indexed: 12/17/2022]
Abstract
Transmembrane transport of exogenous genes is widely investigated because of high demand for gene therapy. Both gene carriers and cellular conditions can affect gene transfection efficiency. Although cell morphology has been reported to affect cell functions, the influence of cell adhesion area and cell spreading area on the transfection of exogenous genes remains unclear because it is difficult to separate the individual influence of these areas during normal cell culture. In this study, micropatterns were prepared to separately control the adhesion and spreading areas of human bone marrow-derived mesenchymal stem cells (hMSCs). Transfection efficiency of the green fluorescent protein gene to hMSCs cultured on the micropatterns was compared. Cells with a larger adhesion area showed higher transfection efficiency, while cell spreading area hardly affected gene transfection efficiency. Cell adhesion area had dominant influence on gene transfection. Microparticle uptake and BrdU staining showed that the cellular uptake capacity and DNA synthesis activity increased with the increase in cell adhesion area, but were not affected by cell spreading area. The different influence of cell adhesion area and cell spreading area on gene transfection was correlated with their influence on cellular uptake capacity, DNA synthesis activity, focal adhesion formation, cytoskeletal mechanics, and mechanotransduction signal activation. The results suggest that cell adhesion area and cell spreading area had different influence on gene transfection; this finding should provide useful information for the manipulation of cell functions in gene therapy, protein modification, and cell reprogramming. STATEMENT OF SIGNIFICANCE: Cell adhesion and spreading are important morphological factors during the interaction of cells with biomaterial surfaces or interfaces. However, the predominant morphological factor that affects cellular functions such as gene transfection remains unclear. In the present study, special micropatterns were used to precisely control cell adhesion and spreading areas independently. Mesenchymal stem cells cultured on the micropatterns were transfected with the green fluorescent protein gene to compare the different influence of cell adhesion and spreading areas on gene transfection efficiency. Cell adhesion area showed dominant influence on gene transfection, while cell spreading area did not affect gene transfection. The dominant influence of cell adhesion area could be explained by cellular uptake capacity and DNA synthesis activity through the formation of FAs, cytoskeletal mechanics, and YAP/TAZ nuclear localization. The results provide new insights of correlation between cell morphology and cellular functions for designing functional biomaterials.
Collapse
|
22
|
Lin C, Ashwin P, Steinberg G. Modelling the motion of organelles in an elongated cell via the coordination of heterogeneous drift-diffusion and long-range transport. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2021; 44:10. [PMID: 33683507 DOI: 10.1140/epje/s10189-020-00007-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 12/21/2020] [Indexed: 06/12/2023]
Abstract
Cellular distribution of organelles in living cells is achieved via a variety of transport mechanisms, including directed motion, mediated by molecular motors along microtubules (MTs), and diffusion which is predominantly heterogeneous in space. In this paper, we introduce a model for particle transport in elongated cells that couples poleward drift, long-range bidirectional transport and diffusion with spatial heterogeneity in a three-dimensional space. Using stochastic simulations and analysis of a related population model, we find parameter regions where the three-dimensional model can be reduced to a coupled one-dimensional model or even a one-dimensional scalar model. We explore the efficiency with which individual model components can overcome drift towards one of the cell poles to reach an approximately even distribution. In particular, we find that if lateral movement is well mixed, then increasing the binding ability of particles to MTs is an efficient way to overcome a poleward drift, whereas if lateral motion is not well mixed, then increasing the axial diffusivity away from MTs becomes an efficient way to overcome the poleward drift. Our three-dimensional model provides a new tool that will help to understand the mechanisms by which eukaryotic cells organize their organelles in an elongated cell, and in particular when the one-dimensional models are applicable.
Collapse
Affiliation(s)
- Congping Lin
- School of Mathematics and Statistics, Huazhong University of Science and Technology, Wuhan, China.
- Center for Mathematical Sciences, Huazhong University of Science and Technology, Wuhan, China.
- Hubei Key Lab of Engineering Modeling and Scientific Computing, Huazhong University of Science and Technology, Wuhan, China.
| | - Peter Ashwin
- Department of Mathematics, University of Exeter, Exeter, UK
| | | |
Collapse
|
23
|
Winter MR, Morgulis M, Gildor T, Cohen AR, Ben-Tabou de-Leon S. Calcium-vesicles perform active diffusion in the sea urchin embryo during larval biomineralization. PLoS Comput Biol 2021; 17:e1008780. [PMID: 33617532 PMCID: PMC7932551 DOI: 10.1371/journal.pcbi.1008780] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 03/04/2021] [Accepted: 02/08/2021] [Indexed: 11/18/2022] Open
Abstract
Biomineralization is the process by which organisms use minerals to harden their tissues and provide them with physical support. Biomineralizing cells concentrate the mineral in vesicles that they secret into a dedicated compartment where crystallization occurs. The dynamics of vesicle motion and the molecular mechanisms that control it, are not well understood. Sea urchin larval skeletogenesis provides an excellent platform for investigating the kinetics of mineral-bearing vesicles. Here we used lattice light-sheet microscopy to study the three-dimensional (3D) dynamics of calcium-bearing vesicles in the cells of normal sea urchin embryos and of embryos where skeletogenesis is blocked through the inhibition of Vascular Endothelial Growth Factor Receptor (VEGFR). We developed computational tools for displaying 3D-volumetric movies and for automatically quantifying vesicle dynamics. Our findings imply that calcium vesicles perform an active diffusion motion in both, calcifying (skeletogenic) and non-calcifying (ectodermal) cells of the embryo. The diffusion coefficient and vesicle speed are larger in the mesenchymal skeletogenic cells compared to the epithelial ectodermal cells. These differences are possibly due to the distinct mechanical properties of the two tissues, demonstrated by the enhanced f-actin accumulation and myosinII activity in the ectodermal cells compared to the skeletogenic cells. Vesicle motion is not directed toward the biomineralization compartment, but the vesicles slow down when they approach it, and probably bind for mineral deposition. VEGFR inhibition leads to an increase of vesicle volume but hardly changes vesicle kinetics and doesn’t affect f-actin accumulation and myosinII activity. Thus, calcium vesicles perform an active diffusion motion in the cells of the sea urchin embryo, with diffusion length and speed that inversely correlate with the strength of the actomyosin network. Overall, our studies provide an unprecedented view of calcium vesicle 3D-dynamics and point toward cytoskeleton remodeling as an important effector of the motion of mineral-bearing vesicles. Biomineralization is a widespread, fundamental process by which organisms use minerals to harden their tissues. Mineral-bearing vesicles were observed in biomineralizing cells and play an essential role in biomineralization, yet little is known about their three-dimensional (3D) dynamics. Here we quantify 3D-vesicle-dynamics during calcite skeleton formation in sea urchin larvae, using lattice-light-sheet microscopy. We discover that calcium vesicles perform a diffusive motion in both calcifying and non-calcifying cells of the embryo. The diffusion coefficient and vesicle speed are higher in the mesenchymal skeletogenic cells compared to the epithelial ectodermal cells. This difference is possibly due to the higher rigidity of the ectodermal cells as demonstrated by the enhanced signal of f-actin and myosinII activity in these cells compared to the skeletogenic cells. The motion of the vesicles in the skeletogenic cells, is not directed toward the biomineralization compartment but the vesicles slow down near it, possibly to deposit their content. Blocking skeletogenesis through the inhibition of Vascular Endothelial Growth Factor Receptor (VEGFR), increases vesicle volume but doesn’t change the diffusion mode and the cytoskeleton markers in the cells. Our studies reveal the active diffusive motion of mineral bearing vesicles that is apparently defined by the mechanical properties of the cells.
Collapse
Affiliation(s)
- Mark R. Winter
- Marine Biology Department, Charney School of Marine Sciences, the University of Haifa, Haifa, Israel
- * E-mail: (MRW); (SBD)
| | - Miri Morgulis
- Marine Biology Department, Charney School of Marine Sciences, the University of Haifa, Haifa, Israel
| | - Tsvia Gildor
- Marine Biology Department, Charney School of Marine Sciences, the University of Haifa, Haifa, Israel
| | - Andrew R. Cohen
- Dept of Electrical Engineering, Drexel University, Pennsylvania, United States of America
| | - Smadar Ben-Tabou de-Leon
- Marine Biology Department, Charney School of Marine Sciences, the University of Haifa, Haifa, Israel
- * E-mail: (MRW); (SBD)
| |
Collapse
|
24
|
Płochocka AZ, Ramirez Moreno M, Davie AM, Bulgakova NA, Chumakova L. Robustness of the microtubule network self-organization in epithelia. eLife 2021; 10:59529. [PMID: 33522481 PMCID: PMC7920549 DOI: 10.7554/elife.59529] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 01/26/2021] [Indexed: 12/24/2022] Open
Abstract
Robustness of biological systems is crucial for their survival, however, for many systems its origin is an open question. Here, we analyze one subcellular level system, the microtubule cytoskeleton. Microtubules self-organize into a network, along which cellular components are delivered to their biologically relevant locations. While the dynamics of individual microtubules is sensitive to the organism’s environment and genetics, a similar sensitivity of the overall network would result in pathologies. Our large-scale stochastic simulations show that the self-organization of microtubule networks is robust in a wide parameter range in individual cells. We confirm this robustness in vivo on the tissue-scale using genetic manipulations of Drosophila epithelial cells. Finally, our minimal mathematical model shows that the origin of robustness is the separation of time-scales in microtubule dynamics rates. Altogether, we demonstrate that the tissue-scale self-organization of a microtubule network depends only on cell geometry and the distribution of the microtubule minus-ends.
Collapse
Affiliation(s)
| | - Miguel Ramirez Moreno
- Department of Biomedical Science, The University of Sheffield, Sheffield, United Kingdom
| | - Alexander M Davie
- Maxwell Institute for Mathematical Sciences, School of Mathematics, Edinburgh University, Edinburgh, United Kingdom
| | - Natalia A Bulgakova
- Department of Biomedical Science, The University of Sheffield, Sheffield, United Kingdom
| | - Lyubov Chumakova
- Maxwell Institute for Mathematical Sciences, School of Mathematics, Edinburgh University, Edinburgh, United Kingdom
| |
Collapse
|
25
|
Lee G, Leech G, Rust MJ, Das M, McGorty RJ, Ross JL, Robertson-Anderson RM. Myosin-driven actin-microtubule networks exhibit self-organized contractile dynamics. SCIENCE ADVANCES 2021; 7:7/6/eabe4334. [PMID: 33547082 PMCID: PMC7864579 DOI: 10.1126/sciadv.abe4334] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 12/21/2020] [Indexed: 06/02/2023]
Abstract
The cytoskeleton is a dynamic network of proteins, including actin, microtubules, and their associated motor proteins, that enables essential cellular processes such as motility, division, and growth. While actomyosin networks are extensively studied, how interactions between actin and microtubules, ubiquitous in the cytoskeleton, influence actomyosin activity remains an open question. Here, we create a network of co-entangled actin and microtubules driven by myosin II. We combine dynamic differential microscopy, particle image velocimetry, and particle tracking to show that both actin and microtubules undergo ballistic contraction with unexpectedly indistinguishable characteristics. This contractility is distinct from faster disordered motion and rupturing that active actin networks exhibit. Our results suggest that microtubules enable self-organized myosin-driven contraction by providing flexural rigidity and enhanced connectivity to actin networks. Beyond the immediate relevance to cytoskeletal dynamics, our results shed light on the design of active materials that can be precisely tuned by the network composition.
Collapse
Affiliation(s)
- Gloria Lee
- Department of Physics and Biophysics, University of San Diego, San Diego, CA 92110, USA
| | - Gregor Leech
- Department of Physics and Biophysics, University of San Diego, San Diego, CA 92110, USA
| | - Michael J Rust
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL 60637, USA
| | - Moumita Das
- School of Physics and Astronomy, Rochester Institute of Technology, Rochester, NY 14623, USA
| | - Ryan J McGorty
- Department of Physics and Biophysics, University of San Diego, San Diego, CA 92110, USA
| | - Jennifer L Ross
- Department of Physics, Syracuse University, Syracuse, NY 13244, USA
| | | |
Collapse
|
26
|
Stein DB, De Canio G, Lauga E, Shelley MJ, Goldstein RE. Swirling Instability of the Microtubule Cytoskeleton. PHYSICAL REVIEW LETTERS 2021; 126:028103. [PMID: 33512217 PMCID: PMC7616086 DOI: 10.1103/physrevlett.126.028103] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 11/29/2020] [Indexed: 05/12/2023]
Abstract
In the cellular phenomena of cytoplasmic streaming, molecular motors carrying cargo along a network of microtubules entrain the surrounding fluid. The piconewton forces produced by individual motors are sufficient to deform long microtubules, as are the collective fluid flows generated by many moving motors. Studies of streaming during oocyte development in the fruit fly Drosophila melanogaster have shown a transition from a spatially disordered cytoskeleton, supporting flows with only short-ranged correlations, to an ordered state with a cell-spanning vortical flow. To test the hypothesis that this transition is driven by fluid-structure interactions, we study a discrete-filament model and a coarse-grained continuum theory for motors moving on a deformable cytoskeleton, both of which are shown to exhibit a swirling instability to spontaneous large-scale rotational motion, as observed.
Collapse
Affiliation(s)
- David B. Stein
- Center for Computational Biology, Flatiron Institute, 162 5th Avenue, New York, New York 10010, USA
| | - Gabriele De Canio
- Department of Applied Mathematics and Theoretical Physics, Centre for Mathematical Sciences, University of Cambridge, Cambridge CB3 0WA, United Kingdom
| | - Eric Lauga
- Department of Applied Mathematics and Theoretical Physics, Centre for Mathematical Sciences, University of Cambridge, Cambridge CB3 0WA, United Kingdom
| | - Michael J. Shelley
- Center for Computational Biology, Flatiron Institute, 162 5th Avenue, New York, New York 10010, USA
- Courant Institute, New York University, 251 Mercer Street, New York, New York 10012, USA
| | - Raymond E. Goldstein
- Department of Applied Mathematics and Theoretical Physics, Centre for Mathematical Sciences, University of Cambridge, Cambridge CB3 0WA, United Kingdom
| |
Collapse
|
27
|
Colin A, Letort G, Razin N, Almonacid M, Ahmed W, Betz T, Terret ME, Gov NS, Voituriez R, Gueroui Z, Verlhac MH. Active diffusion in oocytes nonspecifically centers large objects during prophase I and meiosis I. J Cell Biol 2020; 219:133616. [PMID: 31952078 PMCID: PMC7054987 DOI: 10.1083/jcb.201908195] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2019] [Revised: 11/14/2019] [Accepted: 12/15/2019] [Indexed: 12/12/2022] Open
Abstract
Nucleus centering in mouse oocytes results from a gradient of actin-positive vesicle activity and is essential for developmental success. Here, we analyze 3D model simulations to demonstrate how a gradient in the persistence of actin-positive vesicles can center objects of different sizes. We test model predictions by tracking the transport of exogenous passive tracers. The gradient of activity induces a centering force, akin to an effective pressure gradient, leading to the centering of oil droplets with velocities comparable to nuclear ones. Simulations and experimental measurements show that passive particles subjected to the gradient exhibit biased diffusion toward the center. Strikingly, we observe that the centering mechanism is maintained in meiosis I despite chromosome movement in the opposite direction; thus, it can counteract a process that specifically off-centers the spindle. In conclusion, our findings reconcile how common molecular players can participate in the two opposing functions of chromosome centering versus off-centering.
Collapse
Affiliation(s)
- Alexandra Colin
- Department of Chemistry, Ecole Normale Supérieure, Paris Sciences et Lettres Research University, CNRS-ENS-UPMC 24, Paris, France
| | - Gaëlle Letort
- Center for Interdisciplinary Research in Biology, Collège de France, CNRS, INSERM, Paris Sciences et Lettres Research University, Equipe Labellisée Fondation pour la Recherche Médicale, Paris, France
| | - Nitzan Razin
- Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot, Israel
| | - Maria Almonacid
- Center for Interdisciplinary Research in Biology, Collège de France, CNRS, INSERM, Paris Sciences et Lettres Research University, Equipe Labellisée Fondation pour la Recherche Médicale, Paris, France
| | - Wylie Ahmed
- Department of Physics, California State University, Fullerton, CA
| | - Timo Betz
- Institute of Cell Biology, Cells in Motion Interfaculty Center, Centre for Molecular Biology of Inflammation, Münster, Germany
| | - Marie-Emilie Terret
- Center for Interdisciplinary Research in Biology, Collège de France, CNRS, INSERM, Paris Sciences et Lettres Research University, Equipe Labellisée Fondation pour la Recherche Médicale, Paris, France
| | - Nir S Gov
- Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot, Israel
| | | | - Zoher Gueroui
- Department of Chemistry, Ecole Normale Supérieure, Paris Sciences et Lettres Research University, CNRS-ENS-UPMC 24, Paris, France
| | - Marie-Hélène Verlhac
- Center for Interdisciplinary Research in Biology, Collège de France, CNRS, INSERM, Paris Sciences et Lettres Research University, Equipe Labellisée Fondation pour la Recherche Médicale, Paris, France
| |
Collapse
|
28
|
S Mogre S, Brown AI, Koslover EF. Getting around the cell: physical transport in the intracellular world. Phys Biol 2020; 17:061003. [PMID: 32663814 DOI: 10.1088/1478-3975/aba5e5] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Eukaryotic cells face the challenging task of transporting a variety of particles through the complex intracellular milieu in order to deliver, distribute, and mix the many components that support cell function. In this review, we explore the biological objectives and physical mechanisms of intracellular transport. Our focus is on cytoplasmic and intra-organelle transport at the whole-cell scale. We outline several key biological functions that depend on physically transporting components across the cell, including the delivery of secreted proteins, support of cell growth and repair, propagation of intracellular signals, establishment of organelle contacts, and spatial organization of metabolic gradients. We then review the three primary physical modes of transport in eukaryotic cells: diffusive motion, motor-driven transport, and advection by cytoplasmic flow. For each mechanism, we identify the main factors that determine speed and directionality. We also highlight the efficiency of each transport mode in fulfilling various key objectives of transport, such as particle mixing, directed delivery, and rapid target search. Taken together, the interplay of diffusion, molecular motors, and flows supports the intracellular transport needs that underlie a broad variety of biological phenomena.
Collapse
Affiliation(s)
- Saurabh S Mogre
- Department of Physics, University of California, San Diego, San Diego, California 92093, United States of America
| | | | | |
Collapse
|
29
|
Drechsler M, Lang LF, Al-Khatib L, Dirks H, Burger M, Schönlieb CB, Palacios IM. Optical flow analysis reveals that Kinesin-mediated advection impacts the orientation of microtubules in the Drosophila oocyte. Mol Biol Cell 2020; 31:1246-1258. [PMID: 32267197 PMCID: PMC7353148 DOI: 10.1091/mbc.e19-08-0440] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The orientation of microtubule (MT) networks is exploited by motors to deliver cargoes to specific intracellular destinations and is thus essential for cell polarity and function. Reconstituted in vitro systems have largely contributed to understanding the molecular framework regulating the behavior of MT filaments. In cells, however, MTs are exposed to various biomechanical forces that might impact on their orientation, but little is known about it. Oocytes, which display forceful cytoplasmic streaming, are excellent model systems to study the impact of motion forces on cytoskeletons in vivo. Here we implement variational optical flow analysis as a new approach to analyze the polarity of MTs in the Drosophila oocyte, a cell that displays distinct Kinesin-dependent streaming. After validating the method as robust for describing MT orientation from confocal movies, we find that increasing the speed of flows results in aberrant plus end growth direction. Furthermore, we find that in oocytes where Kinesin is unable to induce cytoplasmic streaming, the growth direction of MT plus ends is also altered. These findings lead us to propose that cytoplasmic streaming - and thus motion by advection – contributes to the correct orientation of MTs in vivo. Finally, we propose a possible mechanism for a specialized cytoplasmic actin network (the actin mesh) to act as a regulator of flow speeds to counteract the recruitment of Kinesin to MTs.
Collapse
Affiliation(s)
- Maik Drechsler
- School of Biological and Chemical Sciences, Queen Mary University of London, London E1 4NS, UK.,Department of Zoology, University of Cambridge, Cambridge CB2 3EJ, United Kingdom.,Department of Zoology and Developmental Biology, University of Osnabrück, 49076 Osnabrück, Germany
| | - Lukas F Lang
- Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Cambridge CB3 0WA, United Kingdom
| | - Layla Al-Khatib
- School of Biological and Chemical Sciences, Queen Mary University of London, London E1 4NS, UK
| | - Hendrik Dirks
- Institute for Computational and Applied Mathematics, University of Münster, 48149 Münster, Germany
| | - Martin Burger
- Department of Mathematics, Friedrich-Alexander Universität Erlangen-Nürnberg, 91058 Erlangen, Germany
| | - Carola-Bibiane Schönlieb
- Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Cambridge CB3 0WA, United Kingdom
| | - Isabel M Palacios
- School of Biological and Chemical Sciences, Queen Mary University of London, London E1 4NS, UK.,Department of Zoology, University of Cambridge, Cambridge CB2 3EJ, United Kingdom
| |
Collapse
|
30
|
Wang J, McGorty R. Measuring capillary wave dynamics using differential dynamic microscopy. SOFT MATTER 2019; 15:7412-7419. [PMID: 31465080 DOI: 10.1039/c9sm01508f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The interface between two fluids is roughened by thermally excited capillary waves. By using colloid-polymer systems which exhibit liquid-gas phase separation, the time and length scales of capillary waves become accessible to optical microscopy methods. Here, we study such a system using bright-field optical microscopy combined with a novel extension of differential dynamic microscopy. With differential dynamic microscopy, we analyze images in order to determine the decay time of interfacial fluctuations spanning wavevectors from 0.1 to 1 μm-1. We find capillary velocities on the order of 0.1 μm s-1 that depend on the sample composition in expected ways and that match values from the literature. This work demonstrates the first application of differential dynamic microscopy to the study of interfacial dynamics.
Collapse
Affiliation(s)
- Jing Wang
- Department of Physics and Biophysics, University of San Diego, San Diego, CA 92110, USA.
| | | |
Collapse
|
31
|
Nötzel M, Rosso G, Möllmert S, Seifert A, Schlüßler R, Kim K, Hermann A, Guck J. Axonal Transport, Phase-Separated Compartments, and Neuron Mechanics - A New Approach to Investigate Neurodegenerative Diseases. Front Cell Neurosci 2018; 12:358. [PMID: 30356682 PMCID: PMC6189317 DOI: 10.3389/fncel.2018.00358] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Accepted: 09/24/2018] [Indexed: 01/07/2023] Open
Abstract
Many molecular and cellular pathogenic mechanisms of neurodegenerative diseases have been revealed. However, it is unclear what role a putatively impaired neuronal transport with respect to altered mechanical properties of neurons play in the initiation and progression of such diseases. The biochemical aspects of intracellular axonal transport, which is important for molecular movements through the cytoplasm, e.g., mitochondrial movement, has already been studied. Interestingly, transport deficiencies are associated with the emergence of the affliction and potentially linked to disease transmission. Transport along the axon depends on the normal function of the neuronal cytoskeleton, which is also a major contributor to neuronal mechanical properties. By contrast, little attention has been paid to the mechanical properties of neurons and axons impaired by neurodegeneration, and of membraneless, phase-separated organelles such as stress granules (SGs) within neurons. Mechanical changes may indicate cytoskeleton reorganization and function, and thus give information about the transport and other system impairment. Nowadays, several techniques to investigate cellular mechanical properties are available. In this review, we discuss how select biophysical methods to probe material properties could contribute to the general understanding of mechanisms underlying neurodegenerative diseases.
Collapse
Affiliation(s)
- Martin Nötzel
- Biotechnology Center, Dresden University of Technology, Dresden, Germany
| | - Gonzalo Rosso
- Biotechnology Center, Dresden University of Technology, Dresden, Germany
| | - Stephanie Möllmert
- Biotechnology Center, Dresden University of Technology, Dresden, Germany
| | - Anne Seifert
- Department of Neurology, Technische Universität Dresden, Dresden, Germany
- Center for Regenerative Therapies (CRTD), Technische Universität Dresden, Dresden, Germany
- German Center for Neurodegenerative Diseases, Dresden, Germany
| | - Raimund Schlüßler
- Biotechnology Center, Dresden University of Technology, Dresden, Germany
| | - Kyoohyun Kim
- Biotechnology Center, Dresden University of Technology, Dresden, Germany
| | - Andreas Hermann
- Department of Neurology, Technische Universität Dresden, Dresden, Germany
- Center for Regenerative Therapies (CRTD), Technische Universität Dresden, Dresden, Germany
- German Center for Neurodegenerative Diseases, Dresden, Germany
| | - Jochen Guck
- Biotechnology Center, Dresden University of Technology, Dresden, Germany
| |
Collapse
|
32
|
Lu W, Lakonishok M, Serpinskaya AS, Kirchenbüechler D, Ling SC, Gelfand VI. Ooplasmic flow cooperates with transport and anchorage in Drosophila oocyte posterior determination. J Cell Biol 2018; 217:3497-3511. [PMID: 30037924 PMCID: PMC6168253 DOI: 10.1083/jcb.201709174] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Revised: 03/27/2018] [Accepted: 07/03/2018] [Indexed: 12/21/2022] Open
Abstract
The posterior determination of the Drosophila melanogaster embryo is defined by the posterior localization of oskar (osk) mRNA in the oocyte. Defects of its localization result in a lack of germ cells and failure of abdomen specification. A microtubule motor kinesin-1 is essential for osk mRNA posterior localization. Because kinesin-1 is required for two essential functions in the oocyte-transport along microtubules and cytoplasmic streaming-it is unclear how individual kinesin-1 activities contribute to the posterior determination. We examined Staufen, an RNA-binding protein that is colocalized with osk mRNA, as a proxy of posterior determination, and we used mutants that either inhibit kinesin-driven transport along microtubules or cytoplasmic streaming. We demonstrated that late-stage streaming is partially redundant with early-stage transport along microtubules for Staufen posterior localization. Additionally, an actin motor, myosin V, is required for the Staufen anchoring to the actin cortex. We propose a model whereby initial kinesin-driven transport, subsequent kinesin-driven streaming, and myosin V-based cortical retention cooperate in posterior determination.
Collapse
Affiliation(s)
- Wen Lu
- Department of Cell and Molecular Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - Margot Lakonishok
- Department of Cell and Molecular Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - Anna S Serpinskaya
- Department of Cell and Molecular Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - David Kirchenbüechler
- Center for Advanced Microscopy and the Nikon Imaging Center, Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - Shuo-Chien Ling
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Program in Neuroscience and Behavior Disorders, Duke-National University of Singapore Medical School, Singapore
| | - Vladimir I Gelfand
- Department of Cell and Molecular Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL
| |
Collapse
|
33
|
Bernheim-Groswasser A, Gov NS, Safran SA, Tzlil S. Living Matter: Mesoscopic Active Materials. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30:e1707028. [PMID: 30256463 DOI: 10.1002/adma.201707028] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 03/27/2018] [Indexed: 06/08/2023]
Abstract
An introduction to the physical properties of living active matter at the mesoscopic scale (tens of nanometers to micrometers) and their unique features compared with "dead," nonactive matter is presented. This field of research is increasingly denoted as "biological physics" where physics includes chemical physics, soft matter physics, hydrodynamics, mechanics, and the related engineering sciences. The focus is on the emergent properties of these systems and their collective behavior, which results in active self-organization and how they relate to cellular-level biological function. These include locomotion (cell motility and migration) forces that give rise to cell division, the growth and form of cellular assemblies in development, the beating of heart cells, and the effects of mechanical perturbations such as shear flow (in the bloodstream) or adhesion to other cells or tissues. An introduction to the fundamental concepts and theory with selected experimental examples related to the authors' own research is presented, including red-blood-cell membrane fluctuations, motion of the nucleus within an egg cell, self-contracting acto-myosin gels, and structure and beating of heart cells (cardiomyocytes), including how they can be driven by an oscillating, mechanical probe.
Collapse
Affiliation(s)
- Anne Bernheim-Groswasser
- Department of Chemical Engineering and Ilse Katz Institute for Nanoscale Science and Technology, Ben Gurion University of the Negev, Beer-Sheva, 84105, Israel
| | - Nir S Gov
- Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Samuel A Safran
- Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Shelly Tzlil
- Department of Mechanical Engineering, Technion, Haifa, 3200003, Israel
| |
Collapse
|
34
|
Garner K, Goddard GK, Johnston M, Moruzzi M, Woolner S. Meeting report - Dynamic Cell III. J Cell Sci 2018; 131:131/16/jcs222927. [PMID: 30154086 DOI: 10.1242/jcs.222927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Dynamic Cell III, a meeting jointly organized by the British Society of Cell Biology (BSCB) and the Biochemical Society, took place at the Manchester Conference Centre, Manchester, UK in March 2018. It brought together a diverse group of scientists from around the world, all with a shared interest in understanding how dynamic functions of the cell are fulfilled. A particular focus was the regulation of the cytoskeleton: in cell division, cell migration and cell-cell interactions. Moreover, a key theme that ran through all presented work was the development of new and exciting technologies to study dynamic cell behaviour.
Collapse
Affiliation(s)
- Kirsten Garner
- Faculty of Biology, Medicine & Health, University of Manchester, Oxford Road, Manchester M13 9PT, UK
| | - Georgina K Goddard
- Wellcome Trust Centre for Cell-Matrix Research, Faculty of Biology, Medicine & Health, Manchester Academic Health Science Centre, University of Manchester, Oxford Road, Manchester M13 9PT, UK
| | - Mark Johnston
- Wellcome Trust Centre for Cell-Matrix Research, Faculty of Biology, Medicine & Health, Manchester Academic Health Science Centre, University of Manchester, Oxford Road, Manchester M13 9PT, UK
| | - Megan Moruzzi
- Wellcome Trust Centre for Cell-Matrix Research, Faculty of Biology, Medicine & Health, Manchester Academic Health Science Centre, University of Manchester, Oxford Road, Manchester M13 9PT, UK
| | - Sarah Woolner
- Wellcome Trust Centre for Cell-Matrix Research, Faculty of Biology, Medicine & Health, Manchester Academic Health Science Centre, University of Manchester, Oxford Road, Manchester M13 9PT, UK
| |
Collapse
|
35
|
Wei B, Sun M, Shang Y, Zhang C, Jiao X. Neurokinin 1 receptor promotes rat airway smooth muscle cell migration in asthmatic airway remodelling by enhancing tubulin expression. J Thorac Dis 2018; 10:4849-4857. [PMID: 30233858 DOI: 10.21037/jtd.2018.07.114] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Background Airway remodelling is a major contributor to hyper-responsiveness leading to chronic asthma; however, the underlying mechanisms remain unclear. This study aimed to investigate the effects of a neurokinin 1 receptor (NK1R) antagonist (WIN62577) on the migration of airway smooth muscle cells (ASMCs) and the expression of NK1R and alpha-tubulin in airway remodelling using young rats with asthma. Methods Sprague-Dawley rats were randomly divided into a control group and airway remodelling group. Rats in the model group were stimulated with ovalbumin for 8 weeks. Primary ASMCs were cultured and purified from all rats, and then treated with different doses of WIN62577. The expression of NK1R and α-tubulin in ASMCs was assessed using immunofluorescence, real-time quantitative polymerase chain reaction, and western blotting. Changes in ASMC migration were detected by a transwell chamber assay. Results The transwell assay showed that the number of migrating ASMCs in the asthmatic airway remodelling group was significantly greater than that in the control group (P<0.01), which was inhibited by WIN62577 in a dose-dependent manner, with peak inhibition detected at 10-8 mol/L. The mRNA and protein expression levels of NK1R and α-tubulin were significantly higher in the asthmatic airway remodelling group than in the control group (P<0.05 and P<0.01, respectively), and were significantly decreased after treatment with WIN62577 (P<0.01 and P<0.05, respectively). Conclusions NK1R antagonists may suppress ASMC migration in a rat model of airway remodelling by inhibiting tubulin expression, indicating a new potential target for the treatment and control of chronic asthma.
Collapse
Affiliation(s)
- Bing Wei
- Department of Pediatrics, General Hospital of Shenyang Military Area Command, Shenyang 110016, China
| | - Mingwei Sun
- Department of First Clinical Medicine, China Medical University, Shenyang 110122, China
| | - Yunxiao Shang
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Chao Zhang
- Department of Pediatrics, General Hospital of Shenyang Military Area Command, Shenyang 110016, China
| | - Xuyong Jiao
- Department of Pediatrics, General Hospital of Shenyang Military Area Command, Shenyang 110016, China
| |
Collapse
|