1
|
Li Y, Fu W, Wan Y, Yan X, Pan B. Direct Nano-Imaging Reveals the Underestimated Role of Lanthanum Phosphate Formation in Phosphorus Sequestration by Lanthanum Carbonate. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:10076-10086. [PMID: 40353762 DOI: 10.1021/acs.est.4c13885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2025]
Abstract
Lanthanum-based materials are recognized as highly effective adsorbents for advanced phosphorus removal, with a prevailing belief that acidic conditions promote phosphorus uptake via enhanced surface complexation. Herein, we demonstrate that lanthanum carbonate exhibits a 1.8-fold higher phosphate adsorption capacity at pH 7 (33.2 mg-P/g) compared to pH 4 (18.5 mg-P/g), attributed to the enhanced formation of LaPO4 nanocrystals. Leveraging in situ atomic force microscopy (AFM), we resolve real-time phosphorus sequestration dynamics, capturing LaPO4 nucleation within minutes, contradicting prior reports that LaPO4 formation is time-intensive. This discrepancy arises because conventional characterization techniques (e.g., X-ray diffraction) overlook transient amorphous LaPO4 intermediates due to insufficient sensitivity, whereas the nanoscale resolution of AFM directly tracks interfacial transformations. A dissolution-nucleation-growth mechanism was then proposed for the interfacial formation of LaPO4. This study revises the mechanistic framework for phosphorus removal and highlights the crucial role of LaPO4 formation in maximizing the utilization efficiency of lanthanum active sites for enhanced phosphate sequestration by La-based materials.
Collapse
Affiliation(s)
- Yuhang Li
- State Key Laboratory of Water Pollution Control and Green Resource Recycling, School of Environment, Nanjing University, Nanjing 210023, PR China
| | - Wanyi Fu
- State Key Laboratory of Water Pollution Control and Green Resource Recycling, School of Environment, Nanjing University, Nanjing 210023, PR China
| | - Yujie Wan
- State Key Laboratory of Water Pollution Control and Green Resource Recycling, School of Environment, Nanjing University, Nanjing 210023, PR China
| | - Xing Yan
- State Key Laboratory of Water Pollution Control and Green Resource Recycling, School of Environment, Nanjing University, Nanjing 210023, PR China
| | - Bingcai Pan
- State Key Laboratory of Water Pollution Control and Green Resource Recycling, School of Environment, Nanjing University, Nanjing 210023, PR China
- Research Center for Environmental Nanotechnology (RCENT), Nanjing University, Nanjing 210023, PR China
| |
Collapse
|
2
|
Sun S, Deng T, Ao M, Mo Y, Li J, Liu T, Yang W, Jin C, Qiu R, Tang Y. Release of chromium from Cr(III)- and Ni(II)-substituted goethite in presence of organic acids: Role of pH in the formation of colloids and complexes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 904:166979. [PMID: 37699483 DOI: 10.1016/j.scitotenv.2023.166979] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 09/08/2023] [Accepted: 09/09/2023] [Indexed: 09/14/2023]
Abstract
High levels of Cr(III) are hosted in Fe (oxyhydr)oxides in soils derived on (ultra)mafic rocks, which can pose potential risks to the environment. Organic acids can cause the solubilization of Fe (oxyhydr)oxides and the release of Cr(III). However, the release behaviors of Cr(III) from Fe (oxyhydr)oxides by organic acids and its main factors remain unclear. This study investigates the speciation of Cr released from Cr(III)-substituted goethite in the presence of citrate and oxalate and the effects of pH (3-7). Batch experiments showed that Fe(III) and Cr(III) dissolution were significantly enhanced by citrate and oxalate, and the extent of dissolution was negatively correlated with pH. When at relatively high pH (5-7), AF4-ICP-MS results revealed that large proportions of dissolved Fe (>58 %) and Cr (18 %-73 %) were presented in the form of Cr(III)-citrate colloids in the sizes of 1-125 nm and 125-350 nm. Further, FTIR and cryogenic XPS characterization demonstrated that the formation of·Cr(III)-citrate colloids was attributed to the adsorption and complexation of citrate on the substituted goethite surface. However, Cr was mainly released as soluble Cr(III)-organic complexes when presented at pH 3. While low pH inhibited the formation of Cr(III)-organic colloids, it promoted the release of Cr by facilitating the dissociation of surface Cr(III)-organic complexes. In addition, the incorporation of Ni(II) in Cr(III)-substituted goethite weakened the adsorption of organic acid by shortening the crystal size of goethite, thus significantly inhibiting the formation of Cr(III)-organic complexes and colloids. This study confirms the formation of Cr(III)-organic acid colloids and highlights the importance of pH on Cr release behavior, which is essential for evaluating Cr transport and fate in soils with high background values.
Collapse
Affiliation(s)
- Shengsheng Sun
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China; Institute of Quality Standard and Monitoring Technology for Agro-products of Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Tenghaobo Deng
- Institute of Quality Standard and Monitoring Technology for Agro-products of Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Ming Ao
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China
| | - Yijun Mo
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China
| | - Jingjing Li
- Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Ting Liu
- Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Wenjun Yang
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China.
| | - Chao Jin
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China
| | - Rongliang Qiu
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China; Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Yetao Tang
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| |
Collapse
|
3
|
Balogun FO, Aiken M, Namayandeh A, Duckworth OW, Polizzotto ML. Dissolved organic carbon diminishes manganese oxide-driven oxidation of chromium. CHEMOSPHERE 2023; 344:140424. [PMID: 37832888 DOI: 10.1016/j.chemosphere.2023.140424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 09/28/2023] [Accepted: 10/10/2023] [Indexed: 10/15/2023]
Abstract
Oxidation of chromium (Cr)-bearing minerals by manganese (Mn) oxides is viewed as the dominant mechanism controlling geogenic production of Cr(VI) and its contamination of groundwater. This process may be modulated by other chemical constituents found in the natural environment, but such confounding factors have not been quantified. Here, we evaluated the mechanism of Cr(III) oxidation by mixed-valence Mn oxide in the presence of citric and gallic acids, two natural organic matter (NOM) constituents commonly found in the soil environment. Incubation experiments showed that each organic acid enhanced solubilization of Cr(III) and Mn over controls without organic addition but increasing organic acid concentration decreased production of Cr(VI), with approximately 8.5 times less Cr(VI) produced in the citric acid than gallic acid experiments. X-ray absorption spectroscopy showed that negligible Cr(VI) was present in solid-phase reaction products, regardless of treatment. Geochemical modeling revealed that in the citric acid experiments, unprotonated Cr(III)-citrate was the dominant organo-metallic complex in solution, while (CrOH)2+ distribution positively correlated with concentrations of Cr(VI) produced. Collectively, these results illustrate how NOM can modify expected chemical pathways driving Cr cycling, and such mechanistic information should be better integrated into models predicting Cr redox dynamics and availability in the environment.
Collapse
Affiliation(s)
- F O Balogun
- Department of Earth Sciences, University of Oregon, Eugene, OR, 97403, USA
| | - M Aiken
- Environmental Toxicology Graduate Program, University of California, Riverside, 92521, USA
| | - A Namayandeh
- Department of Geosciences, Virginia Tech, Blacksburg, VA, 24060, USA
| | - O W Duckworth
- Department of Crop and Soil Science. North Carolina State University, 27695, USA
| | - M L Polizzotto
- Department of Earth Sciences, University of Oregon, Eugene, OR, 97403, USA.
| |
Collapse
|
4
|
Pederson MR, Withanage KPK, Hooshmand Z, Johnson AI, Baruah T, Yamamoto Y, Zope RR, Kao DY, Shukla PB, Johnson JK, Peralta JE, Jackson KA. Use of FLOSIC for understanding anion-solvent interactions. J Chem Phys 2023; 159:154112. [PMID: 37861122 DOI: 10.1063/5.0172300] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 09/20/2023] [Indexed: 10/21/2023] Open
Abstract
An Achille's heel of lower-rung density-functional approximations is that the highest-occupied-molecular-orbital energy levels of anions, known to be stable or metastable in nature, are often found to be positive in the worst case or above the lowest-unoccupied-molecular-orbital levels on neighboring complexes that are not expected to accept charge. A trianionic example, [Cr(C2O4)3]3-, is of interest for constraining models linking Cr isotope ratios in rock samples to oxygen levels in Earth's atmosphere over geological timescales. Here we describe how crowd sourcing can be used to carry out self-consistent Fermi-Löwdin-Orbital-Self-Interaction corrected calculations (FLOSIC) on this trianion in solution. The calculations give a physically correct description of the electronic structure of the trianion and water. In contrast, uncorrected local density approximation (LDA) calculations result in approximately half of the anion charge being transferred to the water bath due to the effects of self-interaction error. Use of group-theory and the intrinsic sparsity of the theory enables calculations roughly 125 times faster than our initial implementation in the large N limit reached here. By integrating charge density densities and Coulomb potentials over regions of space and analyzing core-level shifts of the Cr and O atoms as a function of position and functional, we unambiguously show that FLOSIC, relative to LDA, reverses incorrect solute-solvent charge transfer in the trianion-water complex. In comparison to other functionals investigated herein, including Hartree-Fock and the local density approximation, the FLOSIC Cr 1s eigenvalues provide the best agreement with experimental core ionization energies.
Collapse
Affiliation(s)
- Mark R Pederson
- Physics Department, University of Texas at El Paso, El Paso, Texas 79968, USA
| | | | - Zahra Hooshmand
- Physics Department, University of Texas at El Paso, El Paso, Texas 79968, USA
| | - Alex I Johnson
- Physics Department, University of Texas at El Paso, El Paso, Texas 79968, USA
| | - Tunna Baruah
- Physics Department, University of Texas at El Paso, El Paso, Texas 79968, USA
| | - Yoh Yamamoto
- Physics Department, University of Texas at El Paso, El Paso, Texas 79968, USA
| | - Rajendra R Zope
- Physics Department, University of Texas at El Paso, El Paso, Texas 79968, USA
| | - Der-You Kao
- NASA Postdoctoral Program, NASA Goddard Space Flight Center, Greenbelt, Maryland 20771, USA
| | - Priyanka B Shukla
- Department of Chemical and Petroleum Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, USA
| | - J Karl Johnson
- Department of Chemical and Petroleum Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, USA
| | - Juan E Peralta
- Physics Department, Central Michigan University, Mt. Pleasant, Michigan 48859, USA
| | - Koblar A Jackson
- Physics Department, Central Michigan University, Mt. Pleasant, Michigan 48859, USA
| |
Collapse
|
5
|
Huang Y, Huangfu X, Ma C, Liu Z. Sequestration and oxidation of heavy metals mediated by Mn(II) oxidizing microorganisms in the aquatic environment. CHEMOSPHERE 2023; 329:138594. [PMID: 37030347 DOI: 10.1016/j.chemosphere.2023.138594] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/30/2023] [Accepted: 04/01/2023] [Indexed: 05/03/2023]
Abstract
Microorganisms can oxidize Mn(II) to biogenic Mn oxides (BioMnOx), through enzyme-mediated processes and non-enzyme-mediated processes, which are generally considered as the source and sink of heavy metals due to highly reactive to sequestrate and oxidize heavy metals. Hence, the summary of interactions between Mn(II) oxidizing microorganisms (MnOM) and heavy metals is benefit for further work on microbial-mediated self-purification of water bodies. This review comprehensively summarizes the interactions between MnOM and heavy metals. The processes of BioMnOx production by MnOM has been firstly discussed. Moreover, the interactions between BioMnOx and various heavy metals are critically discussed. On the one hand, modes for heavy metals adsorbed on BioMnOx are summarized, such as electrostatic attraction, oxidative precipitation, ion exchange, surface complexation, and autocatalytic oxidation. On the other hand, adsorption and oxidation of representative heavy metals based on BioMnOx/Mn(II) are also discussed. Thirdly, the interactions between MnOM and heavy metals are also focused on. Finally, several perspectives which will contribute to future research are proposed. This review provides insight into the sequestration and oxidation of heavy metals mediated by Mn(II) oxidizing microorganisms. It might be helpful to understand the geochemical fate of heavy metals in the aquatic environment and the process of microbial-mediated water self-purification.
Collapse
Affiliation(s)
- Yuheng Huang
- Key Laboratory of Eco-Environments in Three Gorges Reservoir Region, Ministry of Education, College of Environment, and Ecology, Chongqing University, Chongqing, 400044, China
| | - Xiaoliu Huangfu
- Key Laboratory of Eco-Environments in Three Gorges Reservoir Region, Ministry of Education, College of Environment, and Ecology, Chongqing University, Chongqing, 400044, China.
| | - Chengxue Ma
- State Key Laboratory of Urban Water Resource, and Environment, School of Municipal, and Environmental Engineering, Harbin Institute of Technology, Harbin, 150090, China
| | - Ziqiang Liu
- Key Laboratory of Eco-Environments in Three Gorges Reservoir Region, Ministry of Education, College of Environment, and Ecology, Chongqing University, Chongqing, 400044, China
| |
Collapse
|
6
|
Sun SS, Ao M, Geng KR, Chen JQ, Deng THB, Li JJ, Guan ZT, Mo BL, Liu T, Yang WJ, Tang YT, Qiu RL. Enrichment and speciation of chromium during basalt weathering: Insights from variably weathered profiles in the Leizhou Peninsula, South China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 822:153304. [PMID: 35090923 DOI: 10.1016/j.scitotenv.2022.153304] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 01/16/2022] [Accepted: 01/17/2022] [Indexed: 06/14/2023]
Abstract
Basalt-derived soils are widespread worldwide. Such soils contain high levels of heavy metals like chromium (Cr), which is a serious environmental concern. However, little is known regarding the enrichment and speciation of Cr during the basalt weathering process. Therefore, two basalt-derived soil profiles (Nitisol and Ferralsol) in the Leizhou Peninsula, south tropical China, were investigated to explore the redistribution and transformation of Cr during basalt weathering. All profiles could be divided into three layers: rocks, saprolites, and soils. The Nitisol and Ferralsol profiles exhibited strong (kaolinization) and extreme (laterization) degrees of weathering, respectively. Results showed that Cr concentrations in the saprolites (234 to 315 mg·kg-1) were higher than those in basalt rocks (139 to 159 mg·kg-1), indicating that Cr was enriched with the continuous loss of Si and other mobile macro-elements. While high levels of Cr were also enriched in the soils (178 to 430 mg·kg-1) accompanied with Fe. However, in the upper soils of the Ferralsol profile, the acidity and organic matter could promote the leaching of Cr. Geochemical fractions and EPMA mapping showed that chromite and olivine were the main Cr-bearing minerals in basalt, but Fe-oxides (e.g., goethite and hematite) contained the highest portion of Cr in weathered saprolites and soils. The availability of Cr in the soil was extremely low due to the high stability of Cr bound to Fe-oxides. However, the decreasing contents of Cr bound to Fe-oxides in the upper soils of the Ferralsol profile indicated that Cr could also be released during Fe leaching. In conclusion, the weathering of basalt can lead to the enrichment of Cr in Fe-(hydro)oxides, which are the main controlling minerals for Cr mobility in basalt-derived soils. Further research is needed to evaluate the effect of Fe-(hydro)oxide formation and dissolution on the release of soil Cr.
Collapse
Affiliation(s)
- Sheng-Sheng Sun
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Guangdong Provincial Engineering Research Center for Heavy Metal Contaminated Soil Remediation, Sun Yat-sen University, Guangzhou 510006, China
| | - Ming Ao
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Guangdong Provincial Engineering Research Center for Heavy Metal Contaminated Soil Remediation, Sun Yat-sen University, Guangzhou 510006, China
| | - Ke-Rui Geng
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Guangdong Provincial Engineering Research Center for Heavy Metal Contaminated Soil Remediation, Sun Yat-sen University, Guangzhou 510006, China
| | - Jie-Qian Chen
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Guangdong Provincial Engineering Research Center for Heavy Metal Contaminated Soil Remediation, Sun Yat-sen University, Guangzhou 510006, China
| | - Teng-Hao-Bo Deng
- Institute of Quality Standard and Monitoring Technology for Agro-products of Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China.
| | - Jing-Jing Li
- Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Ze-Ting Guan
- Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Bing-Lan Mo
- Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Ting Liu
- Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Wen-Jun Yang
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Guangdong Provincial Engineering Research Center for Heavy Metal Contaminated Soil Remediation, Sun Yat-sen University, Guangzhou 510006, China
| | - Ye-Tao Tang
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Guangdong Provincial Engineering Research Center for Heavy Metal Contaminated Soil Remediation, Sun Yat-sen University, Guangzhou 510006, China.
| | - Rong-Liang Qiu
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Guangdong Provincial Engineering Research Center for Heavy Metal Contaminated Soil Remediation, Sun Yat-sen University, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| |
Collapse
|
7
|
Strong evidence for a weakly oxygenated ocean–atmosphere system during the Proterozoic. Proc Natl Acad Sci U S A 2022; 119:2116101119. [PMID: 35101984 PMCID: PMC8833159 DOI: 10.1073/pnas.2116101119] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/16/2021] [Indexed: 11/18/2022] Open
Abstract
Earth’s transition from anoxic oceans and atmosphere to a well-oxygenated state led to major changes in nearly every surficial system. However, estimates of surface oxygen levels in the billion years preceding this shift span two orders of magnitude, suggesting a poor understanding of the evolution of the oxygen cycle. We use the isotopic record of iron oxides deposited in ancient shallow marine environments to show that oxygen remained at extremely low levels in the ocean–atmosphere system for most of Earth’s history, and that a rise in oxygen occurred in step with the expansion of complex, eukaryotic ecosystems. These results indicate that Earth is capable of stabilizing at low atmospheric oxygen levels, with important implications for exploration of exoplanet biosignatures. Earth’s surface has undergone a protracted oxygenation, which is commonly assumed to have profoundly affected the biosphere. However, basic aspects of this history are still debated—foremost oxygen (O2) levels in the oceans and atmosphere during the billion years leading up to the rise of algae and animals. Here we use isotope ratios of iron (Fe) in ironstones—Fe-rich sedimentary rocks deposited in nearshore marine settings—as a proxy for O2 levels in shallow seawater. We show that partial oxidation of dissolved Fe(II) was characteristic of Proterozoic shallow marine environments, whereas younger ironstones formed via complete oxidation of Fe(II). Regardless of the Fe(II) source, partial Fe(II) oxidation requires low O2 in the shallow oceans, settings crucial to eukaryotic evolution. Low O2 in surface waters can be linked to markedly low atmospheric O2—likely requiring less than 1% of modern levels. Based on our records, these conditions persisted (at least periodically) until a shift toward higher surface O2 levels between ca. 900 and 750 Ma, coincident with an apparent rise in eukaryotic ecosystem complexity. This supports the case that a first-order shift in surface O2 levels during this interval may have selected for life modes adapted to more oxygenated habitats.
Collapse
|
8
|
Lee MG, Yang JW, Kwon HR, Jang HW. Crystal facet and phase engineering for advanced water splitting. CrystEngComm 2022. [DOI: 10.1039/d2ce00585a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This review covers the principles and recent advances in facet and phase engineering of catalysts for photocatalytic, photoelectrochemical, and electrochemical water splitting. It suggests the basis of catalyst design for advanced water splitting.
Collapse
Affiliation(s)
- Mi Gyoung Lee
- Department of Electrical and Computer Engineering, University of Toronto, Toronto, Ontario, M5S 1A4, Canada
| | - Jin Wook Yang
- Department of Materials Science and Engineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Hee Ryeong Kwon
- Department of Materials Science and Engineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Ho Won Jang
- Department of Materials Science and Engineering, Seoul National University, Seoul, 08826, Republic of Korea
- Advanced Institute of Convergence Technology, Seoul National University, Suwon, 16229, Republic of Korea
| |
Collapse
|
9
|
Liu X, Dong H, Hansel CM. Coupled Mn(II) and Cr(III) Oxidation Mediated by Ascomycete Fungi. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:16236-16245. [PMID: 34825822 DOI: 10.1021/acs.est.1c05341] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Manganese (Mn) oxides are considered as the primary oxidant of trivalent chromium [Cr(III)] in the environment. Microbial activities are responsible for the majority of Mn oxide formation in nature, thus likely influencing Cr(III) oxidation. Previous studies have been limited to Cr(III) oxidation by bacterial Mn oxides. Herein, we report coupled Mn(II) and Cr(III) oxidation in the presence of three Mn(II)-oxidizing Ascomycete fungi. In contrast to the previously reported inhibitory effect of Cr(III) on bacterial Mn(II) oxidation, varying effects of Cr(III) on fungal Mn(II) oxidation were observed, which may be linked to their Mn(II)-oxidation mechanisms. Under the concentrations of Mn(II) and Cr(III) applied in this study, Cr(III) promoted Mn(II) oxidation if it was mediated by hyphae-associated processes, but inhibited Mn(II) oxidation if it was achieved via extracellular enzymes/metabolites. The Cr(III) oxidation rate and extent were affected by Cr(III) speciation, Cr(VI) removal capacity (i.e., adsorption/reduction) of fungi, and organic content. The morphology and spatial relationship of Mn oxides with fungi varied, depending on fungal species and Cr(III) presence. Our findings highlight the importance of Mn(II)-oxidizing fungi in biogeochemical cycles of Mn and Cr and have significant implications for the origin of geogenic Cr(VI) and stability of reduced chromium in contaminated environments.
Collapse
Affiliation(s)
- Xiaolei Liu
- School of Water Resources and Environment, China University of Geosciences, Beijing 100083, China
- Key Laboratory of Mineralogy and Metallogeny, Guangzhou Institute of Geochemistry, Chinese Academy of Science, Guangzhou 510640, China
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Beijing 100083, China
| | - Hailiang Dong
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Beijing 100083, China
| | - Colleen M Hansel
- Department of Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts 02543, United States
| |
Collapse
|
10
|
Xia B, Zhu JM, Wang X, Zhang L, Wu G. Chromium isotope fractionation during black shale weathering and its environmental implications. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 783:147126. [PMID: 34088147 DOI: 10.1016/j.scitotenv.2021.147126] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 04/08/2021] [Accepted: 04/09/2021] [Indexed: 06/12/2023]
Abstract
Black shale contains abundant pyrite and organic matter that are susceptible to weathering when exposed to the air. In the process of weathering, acid mine drainage can be produced, and a range of toxic trace elements including Cr can be released and transported into rivers, groundwater and soils, potentially leading to severe environmental pollution. In order to study Cr migration and Cr isotopic fractionation during black shale weathering, we sampled metalliferous black shales and cherts from two weathering profiles at Shadi and Yutangba from the Permian Maokou Formation in Enshi Prefecture. The unweathered samples in Shadi and Yutangba have high Cr contents (1562 μg/g and 643 μg/g, respectively), and highly fractionated Cr isotopic compositions (2.04 ± 0.11‰ and 1.91 ± 0.09‰, respectively, expressed as δ53Cr). The narrow range of authigenic δ53Cr in these unweathered shales suggests that the δ53Cr value of the seawater was relatively stable during the period of deposition. Strongly weathered shales in Shadi and Yutangba both display significant Cr losses compared to the unweathered counterparts. Their average δ53Cr values are 1.75 ± 0.12‰ and 1.85 ± 0.39‰ for Shadi and Yutangba, respectively, which are isotopically lighter than fresh samples. This indicates that heavier Cr isotopes are preferentially leached into fluids, leaving the residues enriched in lighter isotopes during black shale weathering. However, the δ53Cr values of the samples close to the water table are higher than those of the unaltered ones, which can be explained by adsorption or quantitative reduction of Cr(VI) near the water table. The fact that Cr isotopes are fractionated during black shale weathering may complicate the application of δ53Cr in polluted samples to identify the Cr sources in areas with exposed black shales. The δ53Cr of seepage water can be measured and treated as a more realistic source signal.
Collapse
Affiliation(s)
- Bo Xia
- State Key Laboratory of Geological Processes and Mineral Resources, China University of Geosciences, Beijing 100083, China
| | - Jian-Ming Zhu
- State Key Laboratory of Geological Processes and Mineral Resources, China University of Geosciences, Beijing 100083, China.
| | - Xiangli Wang
- Department of Marine Sciences, University of South Alabama, Mobile, AL 36688, USA; Dauphin Island Sea Lab, Dauphin Island, AL 36528, USA
| | - Lixin Zhang
- School of Earth System Science, Tianjin University, Tianjin 300072, China
| | - Guangliang Wu
- State Key Laboratory of Geological Processes and Mineral Resources, China University of Geosciences, Beijing 100083, China
| |
Collapse
|
11
|
Roebbert Y, Rosendahl CD, Brown A, Schippers A, Bernier-Latmani R, Weyer S. Uranium Isotope Fractionation during the Anoxic Mobilization of Noncrystalline U(IV) by Ligand Complexation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:7959-7969. [PMID: 34038128 DOI: 10.1021/acs.est.0c08623] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Uranium (U) isotopes are suggested as a tool to trace U reduction. However, noncrystalline U(IV), formed predominantly in near-surface environments, may be complexed and remobilized using ligands under anoxic conditions. This may cause additional U isotope fractionation and alter the signatures generated by U reduction. Here, we investigate the efficacy of noncrystalline U(IV) mobilization by ligand complexation and the associated U isotope fractionation. Noncrystalline U(IV) was produced via the reduction of U(VI) (400 μM) by Shewanella oneidensis MR-1 and was subsequently mobilized with EDTA (1 mM), citrate (1 mM), or bicarbonate (500 mM) in batch experiments. Complexation with all investigated ligands resulted in significant mobilization of U(IV) and led to an enrichment of 238U in the mobilized fraction (δ238U = 0.4-0.7 ‰ for EDTA; 0.3 ‰ for citrate; 0.2-0.3 ‰ for bicarbonate). For mobilization with bicarbonate, a Rayleigh approach was the most suitable isotope fractionation model, yielding a fractionation factor α of 1.00026-1.00036. Mobilization with EDTA could be modeled with equilibrium isotope fractionation (α: 1.00039-1.00049). The results show that U isotope fractionation associated with U(IV) mobilization under anoxic conditions is significant and needs to be considered when applying U isotopes in remediation monitoring or as a paleo-redox proxy.
Collapse
Affiliation(s)
- Yvonne Roebbert
- Leibniz Universität Hannover, Institut für Mineralogie, Hannover D-30167, Germany
| | | | - Ashley Brown
- École polytechnique fédérale de Lausanne, Lausanne 1015, Switzerland
| | - Axel Schippers
- Federal Institute for Geosciences and Natural Resources, Hannover D-30655, Germany
| | | | - Stefan Weyer
- Leibniz Universität Hannover, Institut für Mineralogie, Hannover D-30167, Germany
| |
Collapse
|
12
|
Uhlein GJ, Caxito FA, Frei R, Uhlein A, Sial AN, Dantas EL. Microbially induced chromium isotope fractionation and trace elements behavior in lower Cambrian microbialites from the Jaíba Member, Bambuí Basin, Brazil. GEOBIOLOGY 2021; 19:125-146. [PMID: 33347697 DOI: 10.1111/gbi.12426] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 10/29/2020] [Accepted: 11/29/2020] [Indexed: 06/12/2023]
Abstract
In east-central Brazil, the Ediacaran-Cambrian Bambuí Basin has the potential to provide a record of unique geochemical responses of Earth's ocean and atmosphere evolution during this key time interval. From this perspective, we studied an interval of the upper Bambuí Basin using sedimentologic, stratigraphic, and chemostratigraphic tools. The lower Cambrian Jaíba Member of the uppermost Serra da Saudade Formation is an interval of up to 60 m-thick of carbonate rocks disposed into two shallowing upward trends. Inner to outer ramp and high-energy shoal deposits are described, in which laminated microbialites are the prevailing sedimentary facies. REE + Y data suggest contamination by iron (oxy)hydroxides that are dissociated from the riverine detritic flux. Sedimentary iron enrichment may be related to the settling of iron nanoparticles in coastal environments, diagenetic iron mobilization, or both. MREE enrichment is caused by microbial degradation of organic matter in the iron reduction zone during the anoxic early-diagenetic stage. Chromium isotopes yielded negatively fractionated values (δ53 Cr = -0.69 to -0.27‰), probably resulting from biotic and abiotic reduction of dissolved Cr(VI) to light and less toxic Cr(III) within pores of microbial mats. The δ53 Cr data of the Jaíba microbialite are thus a product of metabolic reactions in microbial mats and do not reflect seawater signal. The isotopic offset from seawater is feasible from molecular diffusion of Cr into pore water and reduction reactions occurring deep inside the mat, although the exact mechanism and consequences are not yet fully understood due to the poor preservation of metabolic reactions in the geological record. Our study suggests that Cr isotopes can be used to reconstruct Cr and other metals cycling within ancient microbial mats, and that caution should be taken when using past microbialites to infer seawater Cr records and redox state of the atmosphere and ocean.
Collapse
Affiliation(s)
- Gabriel J Uhlein
- Centro de Pesquisas Manoel Teixeira da Costa, Instituto de Geociências, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Fabrício A Caxito
- Centro de Pesquisas Manoel Teixeira da Costa, Instituto de Geociências, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Robert Frei
- Department of Geoscience and Natural Resource Management, University of Copenhagen, Copenhagen, Denmark
| | - Alexandre Uhlein
- Centro de Pesquisas Manoel Teixeira da Costa, Instituto de Geociências, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Alcides N Sial
- Departamento de Geologia, NEG-LABISE, Universidade Federal de Pernambuco, Recife, Brazil
| | - Elton L Dantas
- Instituto de Geociências, Universidade de Brasília, Brasília, Brazil
| |
Collapse
|
13
|
Abstract
Changes in stable chromium isotopes (denoted as δ53Cr) in ancient carbonate sediments are increasingly used to reconstruct the oxygenation history in Earth’s atmosphere and oceans through time. As a significant proportion of marine carbonate older than the Cambrian is microbially-mediated, the utility of δ53Cr values in ancient carbonates hinges on whether these sediments accurately capture the isotope composition of their environment. We report Cr concentrations (Cr) and δ53Cr values of modern marginal marine and non-marine microbial carbonates. These data are supported by stable C and O isotope compositions, as well as rare earth elements and yttrium (REY) concentrations. In addition, we present data on ancient analogs from Precambrian strata. Microbial carbonates from Marion Lake (Australia, δ53Cr ≈ 0.99‰) and Mono Lake (USA, ≈0.78‰) display significantly higher δ53Cr values compared with ancient microbialites from the Andrée Land Group in Greenland (720 Ma, ≈0.36‰) and the Bitter Springs Formation in Australia (800 Ma, ≈−0.12‰). The δ53Cr values are homogenous within microbialite specimens and within individual study sites. This indicates that biological parameters, such as vital effects, causing highly variable δ53Cr values in skeletal carbonates, do not induce variability in δ53Cr values in microbialites. Together with stable C and O isotope compositions and REY patterns, δ53Cr values in microbialites seem to be driven by environmental parameters such as background lithology and salinity. In support, our Cr and δ53Cr results of ancient microbial carbonates agree well with data of abiotically precipitated carbonates of the Proterozoic. If detrital contamination is carefully assessed, microbialites have the potential to record the δ53Cr values of the waters from which they precipitated. However, it remains unclear if these δ53Cr values record (paleo-) redox conditions or rather result from other physico-chemical parameters.
Collapse
|
14
|
Fang Z, Qin L, Liu W, Yao T, Chen X, Wei S. Absence of hexavalent chromium in marine carbonates: implications for chromium isotopes as paleoenvironment proxy. Natl Sci Rev 2020; 8:nwaa090. [PMID: 34691584 PMCID: PMC8288429 DOI: 10.1093/nsr/nwaa090] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 04/29/2020] [Accepted: 05/07/2020] [Indexed: 11/23/2022] Open
Abstract
The oxygenation of Earth's atmosphere is widely regarded to have played an important role in early-life evolution. Chromium (Cr) isotopes recorded in sedimentary rocks have been used to constrain the atmospheric oxygen level (AOL) over geological times based on the fact that a positive Cr isotopic signature is linked to the presence of Cr(VI) as a result of oxidative continental weathering. However, there is no direct evidence of the presence of Cr(VI) in sedimentary rocks yet. Carbonates are most widely distributed over geological times and were thought to have incorporated Cr(VI) directly from seawater. Here, we present results of Cr valence states in carbonates which show Cr(III) is the dominant species in all samples spanning a wide range of geological times. These findings indicate that Cr(VI) in seawater was reduced either before or after carbonate precipitation, which might have caused Cr isotopic fractionation between seawater and carbonates, or marine carbonates preferentially uptake Cr(III) from seawater. As Cr(III) can come from non-redox Cr cycling, which also can cause isotopic fractionation, we suggest that positively fractionated Cr isotopic values do not necessarily correspond to the rise in AOL.
Collapse
Affiliation(s)
- Ziyao Fang
- CAS Key Laboratory of Crust-Mantle Materials and Environments, University of Science and Technology of China, Hefei 230026, China
| | - Liping Qin
- CAS Key Laboratory of Crust-Mantle Materials and Environments, University of Science and Technology of China, Hefei 230026, China
| | - Wei Liu
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029, China
| | - Tao Yao
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029, China
| | - Xiaoyan Chen
- CAS Key Laboratory of Crust-Mantle Materials and Environments, University of Science and Technology of China, Hefei 230026, China
| | - Shiqiang Wei
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029, China
| |
Collapse
|
15
|
Yin H, Sun J, Yan X, Yang X, Feng X, Tan W, Qiu G, Zhang J, Ginder-Vogel M, Liu F. Effects of Co(II) ion exchange, Ni(II)- and V(V)-doping on the transformation behaviors of Cr(III) on hexagonal turbostratic birnessite-water interfaces. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 256:113462. [PMID: 31706772 DOI: 10.1016/j.envpol.2019.113462] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 09/19/2019] [Accepted: 10/21/2019] [Indexed: 06/10/2023]
Abstract
Natural birnessite-like minerals are commonly enriched in various transitional metals (TMs), which greatly modify the mineral structure and properties. However few studies are yet conducted systematically on the effects of TM doping on birnessite reactivity towards Cr(III) oxidation. In the present study, the transformation behaviors of Cr(III) on Co-, Ni-, V-containing birnessites were investigated. Co and Ni doping generally decrease the mineral crystalline sizes and hydrodynamic sizes (DH) while V-doping greatly decreases the crystalline sizes but not the DH, owing to particle aggregation. Co and Ni firstly decrease and then increase the mineral zeta potentials (ζ) at pH4 while V decreases ζ. Electrochemical specific capacitances for Co-containing birnessites are gradually reduced, while those for Ni-doped birnessites are slightly reduced and for V-doped birnessites increased, which have a positively linear relationship with the amounts of Cr(III) oxidized by these samples. Cr(III) removal efficiencies from solution by these Co-, Ni- and V-containing birnessites are 26-51%, ∼62-72% and ∼96-100%, respectively, compared to ∼92% by pure birnessite. Cr(III) oxidation kinetics analysis demonstrates the gradual decrease of Mn(IV) and concurrent increase of Mn(III) and the adsorption of mainly Cr(III) on mineral surfaces. A negatively linear relationship exists between birnessite lateral sizes and the proportions of Mn(IV/III) consumed to oxidize Cr(III). Apparent initial Cr(III) oxidation rate (kobs) for Co-containing birnessites are greatly reduced, while those for Ni-doped samples moderately decreased and for V-doped samples first increased and then decreased. A positively or negatively linear relationship exists between kobs or the amount of Mn(II) released and the mineral Mn(IV) content respectively. Cr(III) oxidation probably initiates from layer edge sites of Ni-doped birnessites but the vacancies of Co- and V-containing birnessites. These results provide insights into the reaction mechanisms of Cr(III) with natural birnessite-like minerals.
Collapse
Affiliation(s)
- Hui Yin
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River) Ministry of Agriculture, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China; Department of Civil & Environmental Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Jiewei Sun
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River) Ministry of Agriculture, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Xinran Yan
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River) Ministry of Agriculture, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiong Yang
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River) Ministry of Agriculture, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Xionghan Feng
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River) Ministry of Agriculture, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Wenfeng Tan
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River) Ministry of Agriculture, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Guohong Qiu
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River) Ministry of Agriculture, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Jing Zhang
- Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100039, China
| | - Matthew Ginder-Vogel
- Department of Civil & Environmental Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Fan Liu
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River) Ministry of Agriculture, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
16
|
Colwyn DA, Sheldon ND, Maynard JB, Gaines R, Hofmann A, Wang X, Gueguen B, Asael D, Reinhard CT, Planavsky NJ. A paleosol record of the evolution of Cr redox cycling and evidence for an increase in atmospheric oxygen during the Neoproterozoic. GEOBIOLOGY 2019; 17:579-593. [PMID: 31436043 DOI: 10.1111/gbi.12360] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 07/05/2019] [Accepted: 07/29/2019] [Indexed: 06/10/2023]
Abstract
Atmospheric oxygen levels control the oxidative side of key biogeochemical cycles and place limits on the development of high-energy metabolisms. Understanding Earth's oxygenation is thus critical to developing a clearer picture of Earth's long-term evolution. However, there is currently vigorous debate about even basic aspects of the timing and pattern of the rise of oxygen. Chemical weathering in the terrestrial environment occurs in contact with the atmosphere, making paleosols potentially ideal archives to track the history of atmospheric O2 levels. Here we present stable chromium isotope data from multiple paleosols that offer snapshots of Earth surface conditions over the last three billion years. The results indicate a secular shift in the oxidative capacity of Earth's surface in the Neoproterozoic and suggest low atmospheric oxygen levels (<1% PAL pO2 ) through the majority of Earth's history. The paleosol record also shows that localized Cr oxidation may have begun as early as the Archean, but efficient, modern-like transport of hexavalent Cr under an O2 -rich atmosphere did not become common until the Neoproterozoic.
Collapse
Affiliation(s)
| | - Nathan D Sheldon
- Department of Earth and Environmental Sciences, University of Michigan, Ann Arbor, MI, USA
| | - J Barry Maynard
- Department of Geology, University of Cincinnati, Cincinnati, OH, USA
| | - Robert Gaines
- Geology Department, Pomona College, Claremont, CA, USA
| | - Axel Hofmann
- Department of Geology, University of Johannesburg, Johannesburg, South Africa
| | - Xiangli Wang
- Department of Geology and Geophysics, Yale University, New Haven, CT, USA
- Department of Marine Sciences, University of South Alabama, Mobile, AL, USA
- Dauphin Island Sea Lab, Dauphin Island, AL, USA
| | - Bleuenn Gueguen
- Department of Geology and Geophysics, Yale University, New Haven, CT, USA
- Institut Universitaire Européen de la Mer, CNRS UMS 3113, Université de Brest, Plouzané, France
| | - Dan Asael
- Department of Geology and Geophysics, Yale University, New Haven, CT, USA
| | - Christopher T Reinhard
- School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - Noah J Planavsky
- Department of Geology and Geophysics, Yale University, New Haven, CT, USA
| |
Collapse
|
17
|
Xu L, Frank AB, Lehmann B, Zhu J, Mao J, Ju Y, Frei R. Subtle Cr isotope signals track the variably anoxic Cryogenian interglacial period with voluminous manganese accumulation and decrease in biodiversity. Sci Rep 2019; 9:15056. [PMID: 31636318 PMCID: PMC6803686 DOI: 10.1038/s41598-019-51495-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 10/02/2019] [Indexed: 11/09/2022] Open
Abstract
Earth’s atmosphere experienced a step of profound oxygenation during the Neoproterozoic era, accompanied by diversification of animals. However, during the Cryogenian period (720–635 million years ago) Earth experienced its most severe glaciations which likely impacted marine ecosystems and multicellular life in the oceans. In particular, large volumes of Mn and Fe accumulated during the interglacial intervals of the Cryogenian glaciations, indicating large anoxic marine metal reservoirs. Here we present chromium isotope-, rare earth element-, and redox-sensitive trace element data of sedimentary rocks from the interglacial Datangpo Formation deposited between the Sturtian and Marinoan glaciations in South China, in an attempt to investigate the oxidation state of the oceans and atmosphere. Both the Cr isotope and trace element data indicate mainly anoxic water conditions with cryptic oxic surface water incursions after the Sturtian glaciation. Glacial-fed manganese precipitated as manganese carbonate in anoxic basins, and the non-fractionated δ53Cr record of −0.10 ± 0.06‰ identifies anoxic conditions with a cryptic component of slightly fractionated Cr isotope composition in manganese ore, in line with distinctly fractionated Mo isotope composition. Both the manganese carbonate ore and the black shales exhibit very low redox-sensitive element concentrations. Our study demonstrates that the oxygenation of the seawater, and inferably of the atmosphere, at the beginning of the Cryogenian interglacial interval was much subdued. The post-glacial rebound then allowed the Ediacaran biological diversity.
Collapse
Affiliation(s)
- Lingang Xu
- State Key Laboratory of Geological Processes and Mineral Resources, China University of Geoscience, 100083, Beijing, China.
| | - Anja B Frank
- Department of Geosciences and Natural Resource Management, University of Copenhagen, 1350, Copenhagen, Denmark
| | - Bernd Lehmann
- Mineral Resources Unit, Technical University of Clausthal, 38678, Clausthal-Zellerfeld, Germany
| | - Jianming Zhu
- State Key Laboratory of Geological Processes and Mineral Resources, China University of Geoscience, 100083, Beijing, China
| | - Jingwen Mao
- State Key Laboratory of Geological Processes and Mineral Resources, China University of Geoscience, 100083, Beijing, China
| | - Yongze Ju
- China Aero Geophysical Survey & Remote Sensing Center for Land and Resources, 100083, Beijing, China
| | - Robert Frei
- Department of Geosciences and Natural Resource Management, University of Copenhagen, 1350, Copenhagen, Denmark
| |
Collapse
|
18
|
Toma J, Holmden C, Shakotko P, Pan Y, Ootes L. Cr isotopic insights into ca. 1.9 Ga oxidative weathering of the continents using the Beaverlodge Lake paleosol, Northwest Territories, Canada. GEOBIOLOGY 2019; 17:467-489. [PMID: 31006990 DOI: 10.1111/gbi.12342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2018] [Revised: 03/05/2019] [Accepted: 03/26/2019] [Indexed: 06/09/2023]
Abstract
The ca. 1.9 Ga Beaverlodge Lake paleosol was studied using redox-sensitive Cr isotopes in order to determine the isotopic response to paleoweathering of a rhyodacite parent rock 500 million years after the Great Oxidation Event. Redox reactions occurring in modern weathering environments produce Cr(VI) that is enriched in heavy Cr isotopes compared to the igneous inventory. Cr(VI) species are soluble and easily leached from soils into streams and rivers, thus, leaving particle-reactive and isotopically light Cr(III) species to build up in soils. The Beaverlodge Lake paleosol and two other published weathering profiles of similar age, the Flin Flon and Schreiber Beach paleosols, are not as isotopically light as modern soils, indicating that rivers were not as isotopically heavy at that time. Considering that the global average δ53 Cr value for the oxidative weathering flux of Cr to the oceans today is just 0.27 ± 0.30‰ (1σ) based on a steady-state analysis of the modern ocean Cr cycle, the oxidative weathering flux of Cr to the oceans at ca. 1.9 Ga would have likely been shifted to lower δ53 Cr values, and possibly lower than the igneous inventory (-0.12 ± 0.10‰, 2σ). Mn oxides are the main oxidant of Cr(III) in modern soils, but there is no evidence that they formed in the studied paleosols. Cr(VI) may have formed by direct oxidation of Cr(III) using molecular oxygen or H2 O2 , but neither pathway is as efficient as Mn oxides for producing Cr(VI). The picture that emerges from this and other studies of Cr isotope variation in ca. 1.9 Ga paleosols is of atmospheric oxygen concentrations that are high enough to oxidize iron, but too low to oxidize Mn, resulting in low Cr(VI) inventories in Earth surface environments.
Collapse
Affiliation(s)
- Jonathan Toma
- Department of Earth and Atmospheric Sciences, University of Alberta, Edmonton, AB, Canada
| | - Chris Holmden
- Department of Geological Sciences, University of Saskatchewan, Saskatoon, SK, Canada
| | | | - Yuanming Pan
- Department of Geological Sciences, University of Saskatchewan, Saskatoon, SK, Canada
| | - Luke Ootes
- British Columbia Geological Survey, Stn Prov Govt, Victoria, BC, Canada
| |
Collapse
|
19
|
Veselská V, Šillerová H, Göttlicher J, Michálková Z, Siddique JA, Číhalová S, Chrastný V, Steininger R, Mangold S, Komárek M. The role of soil components in synthetic mixtures during the adsorption and speciation changes of Cr(VI): Conjunction of the modeling approach with spectroscopic and isotopic investigations. ENVIRONMENT INTERNATIONAL 2019; 127:848-857. [PMID: 31075676 DOI: 10.1016/j.envint.2019.03.066] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 02/26/2019] [Accepted: 03/27/2019] [Indexed: 06/09/2023]
Abstract
This study investigates redox transitions associated with the adsorption of Cr(VI) on commonly occurring soil components (silicates, oxides and humic acids) and their synthetic mixtures by coupling the mechanistic surface complexation modeling with spectroscopic and isotopic analyses. The mixtures of soil components were prepared to reflect the composition of the real anthroposol sample, determined by X-ray Powder Diffraction (XRD), total organic carbon (TOC) measurement and extraction methods. The effect of different initial Cr(VI) concentrations (2×10-2, 5×10-4, 10-4, 10-5, and 10-6M), background electrolyte (10-3, 10-2, and 10-1M KNO3), pH values (3-9), and sorbate/sorbent ratios (2g/L - 20g/L) were investigated. Maghemite and ferrihydrite were confirmed to be the main phases controlling Cr(VI) adsorption with increasing Cr(VI) concentration. Humic acids were primarily responsible for Cr(VI) reduction, especially at low pH values. The reduction of Cr(VI) was also proved in case of illite and kaolinite by XAS and isotopic analyses. Illite revealed higher reduction capacity in comparison with kaolinite based on XAS measurements. Chromium isotopic fractionation, resulting from Cr(VI) reduction, was the highest in the case of humic acids, followed by kaolinite and illite. However, a dissolution of intrinsic Cr originally present within kaolinite and illite might affect the final Cr isotopic composition of the supernatants due to its different Cr isotopic signature. In general, the combination of three different approaches was confirmed to offer more comprehensive information about Cr(VI) adsorption and/or reduction in soils. Detailed studies using soil mixtures can help to predict how the soil components affect Cr(VI) behavior in natural soils and possibly could improve the environmental remediation processes.
Collapse
Affiliation(s)
- Veronika Veselská
- Department of Environmental Geosciences, Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcká 129, CZ-16500 Prague, Czech Republic.
| | - Hana Šillerová
- Department of Environmental Geosciences, Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcká 129, CZ-16500 Prague, Czech Republic
| | - Jörg Göttlicher
- Institute for Photon Science and Synchrotron Radiation, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, DE-76344 Eggenstein-Leopoldshafen, Germany
| | - Zuzana Michálková
- Department of Environmental Geosciences, Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcká 129, CZ-16500 Prague, Czech Republic
| | - Jamal A Siddique
- Department of Environmental Geosciences, Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcká 129, CZ-16500 Prague, Czech Republic
| | - Sylva Číhalová
- Department of Environmental Geosciences, Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcká 129, CZ-16500 Prague, Czech Republic
| | - Vladislav Chrastný
- Department of Environmental Geosciences, Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcká 129, CZ-16500 Prague, Czech Republic
| | - Ralph Steininger
- Institute for Photon Science and Synchrotron Radiation, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, DE-76344 Eggenstein-Leopoldshafen, Germany
| | - Stefan Mangold
- Institute for Photon Science and Synchrotron Radiation, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, DE-76344 Eggenstein-Leopoldshafen, Germany
| | - Michael Komárek
- Department of Environmental Geosciences, Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcká 129, CZ-16500 Prague, Czech Republic
| |
Collapse
|
20
|
A case for low atmospheric oxygen levels during Earth's middle history. Emerg Top Life Sci 2018; 2:149-159. [PMID: 32412619 DOI: 10.1042/etls20170161] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 05/29/2018] [Accepted: 05/31/2018] [Indexed: 11/17/2022]
Abstract
The oxygenation of the atmosphere - one of the most fundamental transformations in Earth's history - dramatically altered the chemical composition of the oceans and provides a compelling example of how life can reshape planetary surface environments. Furthermore, it is commonly proposed that surface oxygen levels played a key role in controlling the timing and tempo of the origin and early diversification of animals. Although oxygen levels were likely more dynamic than previously imagined, we make a case here that emerging records provide evidence for low atmospheric oxygen levels for the majority of Earth's history. Specifically, we review records and present a conceptual framework that suggest that background oxygen levels were below 1% of the present atmospheric level during the billon years leading up to the diversification of early animals. Evidence for low background oxygen levels through much of the Proterozoic bolsters the case that environmental conditions were a critical factor in controlling the structure of ecosystems through Earth's history.
Collapse
|
21
|
Canfield DE, Zhang S, Frank AB, Wang X, Wang H, Su J, Ye Y, Frei R. Highly fractionated chromium isotopes in Mesoproterozoic-aged shales and atmospheric oxygen. Nat Commun 2018; 9:2871. [PMID: 30030422 PMCID: PMC6054612 DOI: 10.1038/s41467-018-05263-9] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Accepted: 06/15/2018] [Indexed: 11/28/2022] Open
Abstract
The history of atmospheric oxygen through the Mesoproterozoic Era is uncertain, but may have played a role in the timing of major evolutionary developments among eukaryotes. Previous work using chromium isotopes in sedimentary rocks has suggested that Mesoproterozoic Era atmospheric oxygen levels were too low in concentration (<0.1% of present-day levels (PAL)) for the expansion of eukaryotic algae and for the evolution of crown-group animals that occurred later in the Neoproterozoic Era. In contrast, our new results on chromium isotopes from Mesoproterozoic-aged sedimentary rocks from the Shennongjia Group from South China is consistent with atmospheric oxygen concentrations of >1% PAL and thus the possibility that a permissive environment existed long before the expansion of various eukaryotic clades. There is a long standing debate whether low atmospheric oxygen levels during the Mesoproterozoic Era hindered the evolution of crown-group animals. Here, the authors show with shale-hosted chromium isotopes that sufficient atmospheric oxygen for crown-group animals likely predated their evolution by over 400 million years.
Collapse
Affiliation(s)
- Donald E Canfield
- Key Laboratory of Petroleum Geochemistry, Research Institute of Petroleum Exploration and Development, China National Petroleum Corporation, 100083, Beijing, China. .,Nordcee, Institute of Biology, University of Southern Denmark, Campusvej 55, 5230, Odense M, Denmark.
| | - Shuichang Zhang
- Key Laboratory of Petroleum Geochemistry, Research Institute of Petroleum Exploration and Development, China National Petroleum Corporation, 100083, Beijing, China
| | - Anja B Frank
- Department of Geoscience and Natural Resource Management, University of Copenhagen, Øster Voldgade 10, 1350, Copenhagen K, Denmark
| | - Xiaomei Wang
- Key Laboratory of Petroleum Geochemistry, Research Institute of Petroleum Exploration and Development, China National Petroleum Corporation, 100083, Beijing, China
| | - Huajian Wang
- Key Laboratory of Petroleum Geochemistry, Research Institute of Petroleum Exploration and Development, China National Petroleum Corporation, 100083, Beijing, China
| | - Jin Su
- Key Laboratory of Petroleum Geochemistry, Research Institute of Petroleum Exploration and Development, China National Petroleum Corporation, 100083, Beijing, China
| | - Yuntao Ye
- Key Laboratory of Petroleum Geochemistry, Research Institute of Petroleum Exploration and Development, China National Petroleum Corporation, 100083, Beijing, China
| | - Robert Frei
- Department of Geoscience and Natural Resource Management, University of Copenhagen, Øster Voldgade 10, 1350, Copenhagen K, Denmark
| |
Collapse
|