1
|
Hsieh WC, Hsu TS, Wu KW, Lai MZ. Therapeutic application of regulatory T cell in osteoarthritis. JOURNAL OF MICROBIOLOGY, IMMUNOLOGY, AND INFECTION = WEI MIAN YU GAN RAN ZA ZHI 2025:S1684-1182(25)00083-0. [PMID: 40300967 DOI: 10.1016/j.jmii.2025.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 03/07/2025] [Accepted: 04/22/2025] [Indexed: 05/01/2025]
Abstract
Regulatory T cells (Tregs) are the specific T cell population that suppress inflammatory immunity. Independent of their inhibitory activities, Tregs exhibit unique capacity to repair tissue damage. Rapid progresses are made in the processing and engineering of Tregs for clinical applications. Tregs have been used in the treatment of autoimmune diseases, transplantation rejection and graft-versus-host disease. Osteoarthritis is one of the major diseases that affect at least 600 million people worldwide. Osteoarthritis is characterized by physical erosion of cartilage, accompanied with chronic and low-grade inflammation. Tregs possess abilities to increase osteoclast differentiation and bone resorption, repair bone physical damage, and increase bone mass. Tregs are therefore candidate therapeutics for osteoarthritis for both inflammation resolution and tissue repairing. In this review, we will summarize the recent development in using Tregs in immunotherapy, and the potential of using Tregs in osteoarthritis.
Collapse
Affiliation(s)
- Wan-Chen Hsieh
- Institute of Molecular and Cellular Biology and Department of Life Science, National Tsing Hua University, Hsinchu, Taiwan.
| | - Tzu-Sheng Hsu
- Institute of Molecular and Cellular Biology and Department of Life Science, National Tsing Hua University, Hsinchu, Taiwan.
| | - Kuan-Wen Wu
- Department of Orthopedic Surgery, National Taiwan University Hospital, Taipei, Taiwan.
| | - Ming-Zong Lai
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan.
| |
Collapse
|
2
|
Zhou Z, Xu J, Liu S, Lv Y, Zhang R, Zhou X, Zhang Y, Weng S, Xu H, Ba Y, Zuo A, Han X, Liu Z. Infiltrating treg reprogramming in the tumor immune microenvironment and its optimization for immunotherapy. Biomark Res 2024; 12:97. [PMID: 39227959 PMCID: PMC11373505 DOI: 10.1186/s40364-024-00630-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 07/31/2024] [Indexed: 09/05/2024] Open
Abstract
Immunotherapy has shown promising anti-tumor effects across various tumors, yet it encounters challenges from the inhibitory tumor immune microenvironment (TIME). Infiltrating regulatory T cells (Tregs) are important contributors to immunosuppressive TIME, limiting tumor immunosurveillance and blocking effective anti-tumor immune responses. Although depletion or inhibition of systemic Tregs enhances the anti-tumor immunity, autoimmune sequelae have diminished expectations for the approach. Herein, we summarize emerging strategies, specifically targeting tumor-infiltrating (TI)-Tregs, that elevate the capacity of organisms to resist tumors by reprogramming their phenotype. The regulatory mechanisms of Treg reprogramming are also discussed as well as how this knowledge could be utilized to develop novel and effective cancer immunotherapies.
Collapse
Affiliation(s)
- Zhaokai Zhou
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
- Department of Urology, The First Affiliated Hospital of Zhengzhou University, Henan, 450052, China
| | - Jiaxin Xu
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
- Department of Human Anatomy, School of Medical Sciences, Zhengzhou University, Zhengzhou, Henan, 450001, China
| | - Shutong Liu
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Yingying Lv
- Department of Pediatrics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Ruiqi Zhang
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Xing Zhou
- Department of Pediatric Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Yuyuan Zhang
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Siyuan Weng
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Hui Xu
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Yuhao Ba
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Anning Zuo
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Xinwei Han
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China.
- Interventional Institute of Zhengzhou University, Zhengzhou, Henan, 450052, China.
- Interventional Treatment and Clinical Research Center of Henan Province, Zhengzhou, Henan, 450052, China.
| | - Zaoqu Liu
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China.
- Interventional Institute of Zhengzhou University, Zhengzhou, Henan, 450052, China.
- Interventional Treatment and Clinical Research Center of Henan Province, Zhengzhou, Henan, 450052, China.
- Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China.
| |
Collapse
|
3
|
Wang H, Chen G, Gong Q, Wu J, Chen P. Primary immunodeficiency-related genes and varicella-zoster virus reactivation syndrome: a Mendelian randomization study. Front Immunol 2024; 15:1403429. [PMID: 39253091 PMCID: PMC11381235 DOI: 10.3389/fimmu.2024.1403429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 08/08/2024] [Indexed: 09/11/2024] Open
Abstract
Background Currently, evidence regarding the causal relationship between primary immunodeficiency-related genes and varicella-zoster virus reactivation syndrome is limited and inconsistent. Therefore, this study employs Mendelian randomization (MR) methodology to investigate the causal relationship between the two. Methods This study selected 110 single-nucleotide polymorphisms (SNPs) of primary immunodeficiency-related genes as instrumental variables (IVs). Genetic associations of primary immunodeficiency-related genes were derived from recent genome-wide association studies (GWAS) data on human plasma protein levels and circulating immune cells. Data on genes associated with varicella-zoster virus reactivation syndrome were obtained from the GWAS Catalog and FINNGEN database, primarily analyzed using inverse variance weighting (IVW) and sensitivity analysis. Results Through MR analysis, we identified 9 primary immunodeficiency-related genes causally associated with herpes zoster and its subsequent neuralgia; determined causal associations of 20 primary immunodeficiency-related genes with three vascular lesions (stroke, cerebral aneurysm, giant cell arteritis); revealed causal associations of 10 primary immunodeficiency-related genes with two ocular diseases (retinopathy, keratitis); additionally, three primary immunodeficiency-related genes each were associated with encephalitis, cranial nerve palsy, and gastrointestinal infections. Conclusions This study discovers a certain association between primary immunodeficiency-related genes and varicella-zoster virus reactivation syndrome, yet further investigations are warranted to explore the specific mechanisms underlying these connections.
Collapse
Affiliation(s)
- Hao Wang
- Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, China
| | - Guanglei Chen
- Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, China
| | - Qian Gong
- Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Jing Wu
- Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, China
| | - Peng Chen
- Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, China
| |
Collapse
|
4
|
Van Berckelaer C, Van Laere S, Lee S, Morse MA, Geradts J, Dirix L, Kockx M, Bertucci F, Van Dam P, Devi GR. XIAP overexpressing inflammatory breast cancer patients have high infiltration of immunosuppressive subsets and increased TNFR1 signaling targetable with Birinapant. Transl Oncol 2024; 43:101907. [PMID: 38412664 PMCID: PMC10907867 DOI: 10.1016/j.tranon.2024.101907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 01/30/2024] [Accepted: 02/02/2024] [Indexed: 02/29/2024] Open
Abstract
OBJECTIVE To assess the expression pattern of X-linked inhibitor of apoptosis protein (XIAP), a cellular stress sensor, and delineate the associated changes in the tumor immune microenvironment (TiME) for prognostic value and new therapeutic targets in inflammatory breast cancer (IBC). METHODS Immunohistochemistry was conducted to assess the spatial localization of immune subsets, XIAP, and PDL1 expression in IBC and non-inflammatory breast cancer (nIBC) pretreatment tumors (n = 142). Validation and further exploration were performed by gene expression analysis of patient tumors along with signaling studies in a co-culture model. RESULTS High XIAP in 37/81 IBC patients correlated significantly with high PD-L1, increased infiltration of FOXP3+ Tregs, CD163+ tumor-associated macrophages (TAMs), low CD8/CD163 ratio in both tumor stroma (TS) and invasive margins (IM), and higher CD8+ T cells and CD79α+ B cells in the IM. Gene set enrichment analysis identified cellular stress response- and inflammation-related genes along with tumor necrosis factor receptor 1 (TNFR1) expression in high-XIAP IBC tumors. Induction of TNFR1 and XIAP was observed when patient-derived SUM149 IBC cells were co-cultured with human macrophage-conditioned media simulating TAMs, further demonstrating that the TNF-α signaling pathway is a likely candidate governing TAM-induced XIAP overexpression in IBC cells. Finally, addition of Birinapant, a pan IAP antagonist, induced cell death in the pro-survival cytokine-enriched conditions. CONCLUSION Using immunophenotyping and gene expression analysis in patient biospecimens along with in silico modeling and a preclinical model with a pan-IAP antagonist, this study revealed an interplay between increased TAMs, TNF-α signaling, and XIAP activation during (immune) stress in IBC. These data demonstrate the potential of IAP antagonists as immunomodulators for improving IBC therapeutic regimens.
Collapse
Affiliation(s)
- Christophe Van Berckelaer
- Multidisciplinary Breast Clinic, Antwerp University Hospital (UZA), Molecular Imaging, Pathology, Radiotherapy, Oncology (MIPRO); Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium; Center for Oncological Research (CORE), Integrated Personalized and Precision Oncology Network (IPPON), University of Antwerp, Antwerp, Belgium; Duke Consortium for Inflammatory Breast Cancer, Duke Cancer Institute, Duke University School of Medicine, Durham, NC, USA
| | - Steven Van Laere
- Center for Oncological Research (CORE), Integrated Personalized and Precision Oncology Network (IPPON), University of Antwerp, Antwerp, Belgium
| | - Seayoung Lee
- Department of Surgery, Division of Surgical Sciences, Duke University School of Medicine, Durham, NC, USA; Duke Consortium for Inflammatory Breast Cancer, Duke Cancer Institute, Duke University School of Medicine, Durham, NC, USA
| | - Michael A Morse
- Department of Surgery, Division of Surgical Sciences, Duke University School of Medicine, Durham, NC, USA; Duke Consortium for Inflammatory Breast Cancer, Duke Cancer Institute, Duke University School of Medicine, Durham, NC, USA; Department of Medicine, Duke University, Durham, NC, USA
| | - Joseph Geradts
- Duke Consortium for Inflammatory Breast Cancer, Duke Cancer Institute, Duke University School of Medicine, Durham, NC, USA; Department of Pathology, Duke University School of Medicine, Durham, NC, USA; Department of Medicine, Duke University, Durham, NC, USA; Department of Pathology, East Carolina University Brody School of Medicine, Greenville, NC, USA
| | - Luc Dirix
- Department of Oncology, GZA Hospitals, University of Antwerp, Antwerpen, Belgium
| | | | - François Bertucci
- Predictive Oncology team, Centre de Recherche en Cancérologie de Marseille (CRCM), Inserm, CNRS, Aix-Marseille Université, Institut Paoli-Calmettes, Marseille, France
| | - Peter Van Dam
- Multidisciplinary Breast Clinic, Antwerp University Hospital (UZA), Molecular Imaging, Pathology, Radiotherapy, Oncology (MIPRO); Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium; Center for Oncological Research (CORE), Integrated Personalized and Precision Oncology Network (IPPON), University of Antwerp, Antwerp, Belgium.
| | - Gayathri R Devi
- Department of Surgery, Division of Surgical Sciences, Duke University School of Medicine, Durham, NC, USA; Duke Consortium for Inflammatory Breast Cancer, Duke Cancer Institute, Duke University School of Medicine, Durham, NC, USA; Department of Pathology, Duke University School of Medicine, Durham, NC, USA.
| |
Collapse
|
5
|
Oshima M, Matsukawa Y, Ikeda Y, Sakamoto K, Taga T, Maruo Y. Allogeneic Hematopoietic Cell Transplantation Ameliorated Asymptomatic Granulomatous and Lymphocytic Interstitial Lung Disease in a Patient With XIAP Deficiency. J Pediatr Hematol Oncol 2024; 46:e191-e194. [PMID: 38277621 DOI: 10.1097/mph.0000000000002819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 01/02/2024] [Indexed: 01/28/2024]
Abstract
X-linked inhibitor of apoptosis protein (XIAP) deficiency is an inborn error of immunity (IEI). Allogeneic hematopoietic cell transplantation (HCT) is currently the only curative therapy available for XIAP deficiency. Granulomatous and lymphocytic interstitial lung disease (GLILD) is a common immune-related lung complication of IEIs. We present a 6-year-old boy with XIAP deficiency and GLILD. Computed tomography showed lung nodes but no symptoms. Before HCT, GLILD was not managed with immunosuppressive therapy, because he was asymptomatic. The HCT procedure was subsequently performed. The post-HCT course was uneventful; follow-up computed tomography on day 46 showed nodules had disappeared. HCT could potentially ameliorate GLILD like other inflammatory processes associated with the underlying IEIs.
Collapse
Affiliation(s)
- Mai Oshima
- Department of Pediatrics, Shiga University of Medical Science, Otsu, Japan
| | | | | | | | | | | |
Collapse
|
6
|
Kennedy-Batalla R, Acevedo D, Luo Y, Esteve-Solé A, Vlagea A, Correa-Rocha R, Seoane-Reula ME, Alsina L. Treg in inborn errors of immunity: gaps, knowns and future perspectives. Front Immunol 2024; 14:1278759. [PMID: 38259469 PMCID: PMC10800401 DOI: 10.3389/fimmu.2023.1278759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 12/13/2023] [Indexed: 01/24/2024] Open
Abstract
Regulatory T cells (Treg) are essential for immune balance, preventing overreactive responses and autoimmunity. Although traditionally characterized as CD4+CD25+CD127lowFoxP3hi, recent research has revealed diverse Treg subsets such as Tr1, Tr1-like, and CD8 Treg. Treg dysfunction leads to severe autoimmune diseases and immune-mediated inflammatory disorders. Inborn errors of immunity (IEI) are a group of disorders that affect correct functioning of the immune system. IEI include Tregopathies caused by genetic mutations affecting Treg development or function. In addition, Treg dysfunction is also observed in other IEIs, whose underlying mechanisms are largely unknown, thus requiring further research. This review provides a comprehensive overview and discussion of Treg in IEI focused on: A) advances and controversies in the evaluation of Treg extended subphenotypes and function; B) current knowledge and gaps in Treg disturbances in Tregopathies and other IEI including Treg subpopulation changes, genotype-phenotype correlation, Treg changes with disease activity, and available therapies, and C) the potential of Treg cell-based therapies for IEI with immune dysregulation. The aim is to improve both the diagnostic and the therapeutic approaches to IEI when there is involvement of Treg. We performed a non-systematic targeted literature review with a knowledgeable selection of current, high-quality original and review articles on Treg and IEI available since 2003 (with 58% of the articles within the last 6 years) in the PubMed database.
Collapse
Affiliation(s)
- Rebeca Kennedy-Batalla
- Laboratory of Immune-Regulation, Gregorio Marañón Health Research Institute (IISGM), Madrid, Spain
| | - Daniel Acevedo
- Clinical Immunology and Primary Immunodeficiencies Unit, Allergy and Clinical Immunology Department, Hospital Sant Joan de Déu, Barcelona, Spain
- Clinical Immunology Unit, Hospital Sant Joan de Déu-Hospital Clínic, Barcelona, Spain
- Study Group for Immune Dysfunction Diseases in Children (GEMDIP), Institut de Recerca Sant Joan de Déu, Barcelona, Spain
| | - Yiyi Luo
- Clinical Immunology and Primary Immunodeficiencies Unit, Allergy and Clinical Immunology Department, Hospital Sant Joan de Déu, Barcelona, Spain
- Clinical Immunology Unit, Hospital Sant Joan de Déu-Hospital Clínic, Barcelona, Spain
- Study Group for Immune Dysfunction Diseases in Children (GEMDIP), Institut de Recerca Sant Joan de Déu, Barcelona, Spain
| | - Ana Esteve-Solé
- Clinical Immunology and Primary Immunodeficiencies Unit, Allergy and Clinical Immunology Department, Hospital Sant Joan de Déu, Barcelona, Spain
- Clinical Immunology Unit, Hospital Sant Joan de Déu-Hospital Clínic, Barcelona, Spain
- Study Group for Immune Dysfunction Diseases in Children (GEMDIP), Institut de Recerca Sant Joan de Déu, Barcelona, Spain
| | - Alexandru Vlagea
- Clinical Immunology Unit, Hospital Sant Joan de Déu-Hospital Clínic, Barcelona, Spain
- Immunology Department, Biomedic Diagnostic Center (CDB), Hospital Clínic of Barcelona, Clinical Immunology Unit Hospital Sant Joan de Déu-Hospital Clínic de Barcelona, Barcelona, Spain
| | - Rafael Correa-Rocha
- Laboratory of Immune-Regulation, Gregorio Marañón Health Research Institute (IISGM), Madrid, Spain
| | - Ma Elena Seoane-Reula
- Laboratory of Immune-Regulation, Gregorio Marañón Health Research Institute (IISGM), Madrid, Spain
- Pediatric Immuno-Allergy Unit, Allergy Department, Hospital General Universitario Gregorio Marañón, Madrid, Spain
- Primary Immunodeficiencies Unit, Hospital General Universitario Gregorio Marañón, Madrid, Spain
| | - Laia Alsina
- Clinical Immunology and Primary Immunodeficiencies Unit, Allergy and Clinical Immunology Department, Hospital Sant Joan de Déu, Barcelona, Spain
- Clinical Immunology Unit, Hospital Sant Joan de Déu-Hospital Clínic, Barcelona, Spain
- Study Group for Immune Dysfunction Diseases in Children (GEMDIP), Institut de Recerca Sant Joan de Déu, Barcelona, Spain
- Department of Surgery and Surgical Specializations, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, Barcelona, Spain
| |
Collapse
|
7
|
Ma J, Hu W, Liu Y, Duan C, Zhang D, Wang Y, Cheng K, Yang L, Wu S, Jin B, Zhang Y, Zhuang R. CD226 maintains regulatory T cell phenotype stability and metabolism by the mTOR/Myc pathway under inflammatory conditions. Cell Rep 2023; 42:113306. [PMID: 37864795 DOI: 10.1016/j.celrep.2023.113306] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 09/22/2023] [Accepted: 10/04/2023] [Indexed: 10/23/2023] Open
Abstract
Regulatory T (Treg) cells exhibit immunosuppressive phenotypes and particular metabolic patterns with certain degrees of plasticity. Previous studies of the effects of the co-stimulatory molecule CD226 on Treg cells are controversial. Here, we show that CD226 primarily maintains the Treg cell stability and metabolism phenotype under inflammatory conditions. Conditional deletion of CD226 within Foxp3+ cells exacerbates symptoms in murine graft versus host disease models. Treg cell-specific deletion of CD226 increases the Treg cell percentage in immune organs but weakens their immunosuppressive function with a T helper 1-like phenotype conversion under inflammation. CD226-deficient Treg cells exhibit reduced oxidative phosphorylation and increased glycolysis rates, which are regulated by the adenosine 5'-monophosphate-activated protein kinase (AMPK)/mammalian target of rapamycin (mTOR)/myelocytomatosis oncogene (Myc) pathway, and inhibition of Myc signaling restores the impaired functions of CD226-deficient Treg cells in an inflammatory disease model of colitis. This study reveals an Myc-mediated CD226 regulation of Treg cell phenotypic stability and metabolism, providing potential therapeutic strategies for targeted interventions of Treg cell-specific CD226 in inflammatory diseases.
Collapse
Affiliation(s)
- Jingchang Ma
- Department of Immunology, Fourth Military Medical University, #169 West Changle Road, Xi'an, Shaanxi 710032, China
| | - Wei Hu
- Department of Immunology, Fourth Military Medical University, #169 West Changle Road, Xi'an, Shaanxi 710032, China; Department of Emergency, The Fifth Medical Center of Chinese PLA General Hospital, #100 Western 4th Ring Road, Beijing 100039, China
| | - Yitian Liu
- Department of Immunology, Fourth Military Medical University, #169 West Changle Road, Xi'an, Shaanxi 710032, China
| | - Chujun Duan
- Department of Immunology, Fourth Military Medical University, #169 West Changle Road, Xi'an, Shaanxi 710032, China; Institute of Medical Research, Northwestern Polytechnical University, #127 West Youyi Road, Xi'an, Shaanxi 710072, China
| | - Dongliang Zhang
- Department of Immunology, Fourth Military Medical University, #169 West Changle Road, Xi'an, Shaanxi 710032, China
| | - Yuling Wang
- Department of Immunology, Fourth Military Medical University, #169 West Changle Road, Xi'an, Shaanxi 710032, China
| | - Kun Cheng
- Department of Immunology, Fourth Military Medical University, #169 West Changle Road, Xi'an, Shaanxi 710032, China
| | - Lu Yang
- Department of Immunology, Fourth Military Medical University, #169 West Changle Road, Xi'an, Shaanxi 710032, China
| | - Shuwen Wu
- Institute of Medical Research, Northwestern Polytechnical University, #127 West Youyi Road, Xi'an, Shaanxi 710072, China
| | - Boquan Jin
- Department of Immunology, Fourth Military Medical University, #169 West Changle Road, Xi'an, Shaanxi 710032, China
| | - Yuan Zhang
- Department of Immunology, Fourth Military Medical University, #169 West Changle Road, Xi'an, Shaanxi 710032, China; Institute of Medical Research, Northwestern Polytechnical University, #127 West Youyi Road, Xi'an, Shaanxi 710072, China.
| | - Ran Zhuang
- Department of Immunology, Fourth Military Medical University, #169 West Changle Road, Xi'an, Shaanxi 710032, China; Institute of Medical Research, Northwestern Polytechnical University, #127 West Youyi Road, Xi'an, Shaanxi 710072, China.
| |
Collapse
|
8
|
Liu S, Xiao G, Wang Q, Zhang Q, Tian J, Li W, Gong L. Effects of Dietary Bacillus subtilis HC6 on Growth Performance, Antioxidant Capacity, Immunity, and Intestinal Health in Broilers. Animals (Basel) 2023; 13:2915. [PMID: 37760314 PMCID: PMC10526030 DOI: 10.3390/ani13182915] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 08/31/2023] [Accepted: 09/11/2023] [Indexed: 09/29/2023] Open
Abstract
This study aimed to investigate the impact of Bacillus subtilis HC6 on the growth performance, immunity, antioxidant capacity, and intestinal health of broilers. A total of 180 one-day-old white feather broilers were randomly divided into two experimental groups, each comprising six replicates of fifteen chicks from 1 to 50 d of age. The groups were either fed a basal diet (CON) or the same diet supplemented with 5 × 108 cfu/kg of Bacillus subtilis HC6 (BS). Our results indicated that compared with the CON, dietary supplementation with BS increased feed efficiency during d 21-50 and d 1-50 (p < 0.05). Moreover, BS supplementation enhanced antioxidant capacity in the serum and liver, and also decreased the activity of diamine oxidase and the level of endotoxins (p < 0.05). Additionally, BS treatment increased the villi height in the jejunum and ileum, increased the ratio of villus height/crypt depth in the ileum, upregulated the expression of tight junction proteins in the jejunal mucosa, and downregulated the levels of IL-22 and IFN-γ on day 50 (p < 0.05). Principal coordinates analysis yielded clear clustering of two groups; dietary BS increased the relative abundance of Bacteroidales_unclassified (genus) and Olsenella (genus), and decreased the abundance of genera Alistipes on day 50, which identified a strong correlation with FCR, serum differential metabolites, or differential gene expression in the jejunal mucosa by spearman correlation analysis. The PICRUSt2 analysis revealed that supplementation with BS enriched the pathways related to xenobiotics biodegradation and metabolism, carbohydrate metabolism, energy metabolism, signaling molecules and interaction, the digestive system, and transport and catabolism. These results demonstrated that dietary BS increased feed efficiency, antioxidant capacity, and the mRNA expression of pro-inflammatory cytokines in the jejunal mucosa; and decreased the activity of diamine oxidase in serum, which might be attributed to the modulation of community composition and the functions of cecal microbiota in white-feathered broilers.
Collapse
Affiliation(s)
- Shun Liu
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan 528225, China; (S.L.); (G.X.); (Q.Z.); (J.T.)
| | - Gengsheng Xiao
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan 528225, China; (S.L.); (G.X.); (Q.Z.); (J.T.)
| | - Qi Wang
- College of Animal Science, Zhejiang University, Hangzhou 310058, China; (Q.W.); (W.L.)
| | - Qingyang Zhang
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan 528225, China; (S.L.); (G.X.); (Q.Z.); (J.T.)
| | - Jinpeng Tian
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan 528225, China; (S.L.); (G.X.); (Q.Z.); (J.T.)
| | - Weifen Li
- College of Animal Science, Zhejiang University, Hangzhou 310058, China; (Q.W.); (W.L.)
| | - Li Gong
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan 528225, China; (S.L.); (G.X.); (Q.Z.); (J.T.)
| |
Collapse
|
9
|
Li Z, Wang Y, Liu J, Chen D, Feng G, Chen M, Feng Y, Zhang R, Yan X. The potential role of alfalfa polysaccharides and their sulphated derivatives in the alleviation of obesity. Food Funct 2023; 14:7586-7602. [PMID: 37526987 DOI: 10.1039/d3fo01390a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/03/2023]
Abstract
Sulfated alfalfa polysaccharides (SAPs) as derivatives of alfalfa polysaccharides (APs) showed better in vitro antioxidant activity and potential obesity inhibition. The purpose of this study was to investigate the effect and mechanisms of APs and SAPs on obesity alleviation. Different concentrations of APs and SAPs were tested for effects on body conditions, gut flora, antioxidant capacity, and immunological factors. The results showed that APs and SAPs improved the physical conditions of obese mice, including organ weight, body weight, intraperitoneal fat ratio, and lipid levels. APs and SAPs increased the antioxidant capacity of the obese mice, enhanced the activity of SOD and CAT, and decreased the activity of MDA in the serum, liver, and colon. APs and SAPs upregulated the mRNA expression of IL-4 and IL-10 and downregulated the mRNA expression of NF-κB, IFN-γ, TNF-α, and IL-6 in the liver and colon. Meanwhile, APs and SAPs improved lipid absorption in the jejunum, upregulated LXR and GLP-2, and down-regulated the mRNA expression of NPC1L1. APs and SAPs also contributed to restoring short-chain fatty acid levels in the colon. APs and SAPs improved the structure of the intestinal flora, promoted the proliferation of bacteria associated with short-chain fatty acid metabolism, and inhibited the proliferation of pathogenic bacteria. At the same concentration, the effect of SAPs on the antioxidant capacity was stronger than that of APs. In the AP group, high concentrations of APs showed the best anti-inflammatory effect, while in the SAP group, medium concentrations of SAPs showed the best inhibition of inflammation. Our results suggest that APs and SAPs alleviate obesity symptoms by relieving inflammation, improving the antioxidant capacity, and regulating intestinal flora and therefore could be used as potential probiotic products to alleviate obesity.
Collapse
Affiliation(s)
- Zhiwei Li
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu Province 225009, China.
| | - Yawen Wang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu Province 225009, China.
| | - Jun Liu
- College of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu Province 225127, China
| | - Dan Chen
- College of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu Province 225127, China
| | - Guilan Feng
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu Province 225009, China.
| | - Min Chen
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu Province 225009, China.
| | - Yuxi Feng
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu Province 225009, China.
| | - Ran Zhang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu Province 225009, China.
| | - Xuebing Yan
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu Province 225009, China.
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu Province 225009, China
| |
Collapse
|
10
|
Thangavelu G, Andrejeva G, Bolivar-Wagers S, Jin S, Zaiken MC, Loschi M, Aguilar EG, Furlan SN, Brown CC, Lee YC, Hyman CM, Feser CJ, Panoskaltsis-Mortari A, Hippen KL, MacDonald KP, Murphy WJ, Maillard I, Hill GR, Munn DH, Zeiser R, Kean LS, Rathmell JC, Chi H, Noelle RJ, Blazar BR. Retinoic acid signaling acts as a rheostat to balance Treg function. Cell Mol Immunol 2022; 19:820-833. [PMID: 35581350 PMCID: PMC9243059 DOI: 10.1038/s41423-022-00869-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Accepted: 04/14/2022] [Indexed: 02/03/2023] Open
Abstract
Regulatory T cells (Tregs) promote immune homeostasis by maintaining self-tolerance and regulating inflammatory responses. Under certain inflammatory conditions, Tregs can lose their lineage stability and function. Previous studies have reported that ex vivo exposure to retinoic acid (RA) enhances Treg function and stability. However, it is unknown how RA receptor signaling in Tregs influences these processes in vivo. Herein, we employed mouse models in which RA signaling is silenced by the expression of the dominant negative receptor (DN) RARα in all T cells. Despite the fact that DNRARα conventional T cells are hypofunctional, Tregs had increased CD25 expression, STAT5 pathway activation, mTORC1 signaling and supersuppressor function. Furthermore, DNRARα Tregs had increased inhibitory molecule expression, amino acid transporter expression, and metabolic fitness and decreased antiapoptotic proteins. Supersuppressor function was observed when wild-type mice were treated with a pharmacologic pan-RAR antagonist. Unexpectedly, Treg-specific expression of DNRARα resulted in distinct phenotypes, such that a single allele of DNRARα in Tregs heightened their suppressive function, and biallelic expression led to loss of suppression and autoimmunity. The loss of Treg function was not cell intrinsic, as Tregs that developed in a noninflammatory milieu in chimeric mice reconstituted with DNRARα and wild-type bone marrow maintained the enhanced suppressive capacity. Fate mapping suggested that maintaining Treg stability in an inflammatory milieu requires RA signaling. Our findings indicate that RA signaling acts as a rheostat to balance Treg function in inflammatory and noninflammatory conditions in a dose-dependent manner.
Collapse
Affiliation(s)
- Govindarajan Thangavelu
- Department of Pediatrics, Center for Immunology, University of Minnesota, Minneapolis, MN, USA.
| | - Gabriela Andrejeva
- Center for Immunobiology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Sara Bolivar-Wagers
- Department of Pediatrics, Center for Immunology, University of Minnesota, Minneapolis, MN, USA
| | - Sujeong Jin
- Department of Pediatrics, Center for Immunology, University of Minnesota, Minneapolis, MN, USA
| | - Michael C Zaiken
- Department of Pediatrics, Center for Immunology, University of Minnesota, Minneapolis, MN, USA
| | - Michael Loschi
- Department of Pediatrics, Center for Immunology, University of Minnesota, Minneapolis, MN, USA
| | - Ethan G Aguilar
- Department of Pediatrics, Center for Immunology, University of Minnesota, Minneapolis, MN, USA
| | - Scott N Furlan
- Department of Pediatrics, University of Washington, Seattle, WA, USA
- Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Chrysothemis C Brown
- Howard Hughes Medical Institute, Immunology Program, and Ludwig Center, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Yu-Chi Lee
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Norris Cotton Cancer Center, Lebanon, USA
| | - Cameron McDonald Hyman
- Department of Pediatrics, Center for Immunology, University of Minnesota, Minneapolis, MN, USA
| | - Colby J Feser
- Department of Pediatrics, Center for Immunology, University of Minnesota, Minneapolis, MN, USA
| | | | - Keli L Hippen
- Department of Pediatrics, Center for Immunology, University of Minnesota, Minneapolis, MN, USA
| | - Kelli P MacDonald
- Department of Immunology, Queensland Institute of Medical Research (QIMR) Berghofer Medical Research Institute and School of Medicine, University of Queensland, Brisbane, QLD, Australia
| | - William J Murphy
- Department of Dermatology, School of Medicine, University of California, Davis, Sacramento, CA, USA
| | - Ivan Maillard
- Division of Hematology/Oncology, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | | | - David H Munn
- Georgia Cancer Center, Augusta University, Augusta, GA, USA
| | - Robert Zeiser
- Department of Haematology, Oncology and Stem Cell Transplantation, Faculty of Medicine, Freiburg University Medical Centre, Freiburg, Germany
| | - Leslie S Kean
- Boston Children's Hospital and the Dana-Farber Cancer Institute, Boston, MA, USA
| | - Jeffrey C Rathmell
- Center for Immunobiology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Hongbo Chi
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Randolph J Noelle
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Norris Cotton Cancer Center, Lebanon, USA
| | - Bruce R Blazar
- Department of Pediatrics, Center for Immunology, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
11
|
Molecular biology exploration and targeted therapy strategy of Ameloblastoma. Arch Oral Biol 2022; 140:105454. [DOI: 10.1016/j.archoralbio.2022.105454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 05/09/2022] [Accepted: 05/10/2022] [Indexed: 11/19/2022]
|
12
|
Ruan J, Schlüter D, Naumann M, Waisman A, Wang X. Ubiquitin-modifying enzymes as regulators of colitis. Trends Mol Med 2022; 28:304-318. [PMID: 35177326 DOI: 10.1016/j.molmed.2022.01.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 01/24/2022] [Accepted: 01/24/2022] [Indexed: 12/18/2022]
Abstract
Inflammatory bowel disease (IBD), including Crohn's disease (CD) and ulcerative colitis (UC), is a chronic inflammatory disorder of the gastrointestinal tract. Although the pathophysiology of IBD is multifaceted, ubiquitination, a post-translational modification, has been shown to have essential roles in its pathogenesis and development. Ubiquitin-modifying enzymes (UMEs) work in synergy to orchestrate the optimal ubiquitination of target proteins, thereby maintaining intestinal homeostasis. Genome-wide association studies (GWAS) have identified multiple UME genes as IBD susceptibility loci, implying the importance of UMEs in IBD. Furthermore, accumulative evidence demonstrates that UMEs affect intestinal inflammation by regulating various aspects, such as intestinal barrier functions and immune responses. Considering the significant functions of UMEs in IBD, targeting UMEs could become a favorable therapeutic approach for IBD.
Collapse
Affiliation(s)
- Jing Ruan
- Department of Pathology, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, China
| | - Dirk Schlüter
- Institute of Medical Microbiology and Hospital Epidemiology, Hannover Medical School, Hannover, Germany; Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Hannover, Germany
| | - Michael Naumann
- Institute of Experimental Internal Medicine, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Ari Waisman
- Institute for Molecular Medicine, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Xu Wang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China; Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou, China; Institute of Medical Microbiology and Hospital Epidemiology, Hannover Medical School, Hannover, Germany.
| |
Collapse
|
13
|
Ku C, Chen I, Lai M. Infection-induced inflammation from specific inborn errors of immunity to COVID-19. FEBS J 2021; 288:5021-5041. [PMID: 33971084 PMCID: PMC8236961 DOI: 10.1111/febs.15961] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 04/10/2021] [Accepted: 05/07/2021] [Indexed: 01/07/2023]
Abstract
Inborn errors of immunity (IEIs) are a group of genetically defined disorders leading to defective immunity. Some IEIs have been linked to mutations of immune receptors or signaling molecules, resulting in defective signaling of respective cascades essential for combating specific pathogens. However, it remains incompletely understood why in selected IEIs, such as X-linked lymphoproliferative syndrome type 2 (XLP-2), hypo-immune response to specific pathogens results in persistent inflammation. Moreover, mechanisms underlying the generation of anticytokine autoantibodies are mostly unknown. Recently, IEIs have been associated with coronavirus disease 2019 (COVID-19), with a small proportion of patients that contract severe COVID-19 displaying loss-of-function mutations in genes associated with type I interferons (IFNs). Moreover, approximately 10% of patients with severe COVID-19 possess anti-type I IFN-neutralizing autoantibodies. Apart from IEIs that impair immune responses to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), SARS-CoV-2 encodes several proteins that suppress early type I IFN production. One primary consequence of the lack of type I IFNs during early SARS-CoV-2 infection is the increased inflammation associated with COVID-19. In XLP-2, resolution of inflammation rescued experimental subjects from infection-induced mortality. Recent studies also indicate that targeting inflammation could alleviate COVID-19. In this review, we discuss infection-induced inflammation in IEIs, using XLP-2 and COVID-19 as examples. We suggest that resolving inflammation may represent an effective therapeutic approach to these diseases.
Collapse
Affiliation(s)
- Cheng‐Lung Ku
- Laboratory of Human Immunology and Infectious DiseasesGraduate Institute of Clinical Medical SciencesChang Gung UniversityTaoyuanTaiwan
- Department of NephrologyLinkou Chang Gung Memorial HospitalTaoyuanTaiwan
| | - I‐Ting Chen
- Institute of Molecular BiologyAcademia SinicaTaipeiTaiwan
| | - Ming‐Zong Lai
- Institute of Molecular BiologyAcademia SinicaTaipeiTaiwan
| |
Collapse
|
14
|
Korn T, Hiltensperger M. Role of IL-6 in the commitment of T cell subsets. Cytokine 2021; 146:155654. [PMID: 34325116 PMCID: PMC8375581 DOI: 10.1016/j.cyto.2021.155654] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 07/11/2021] [Accepted: 07/13/2021] [Indexed: 12/23/2022]
Abstract
IL-6 is a non-redundant differentiation factor for Th17 cells and Tfh cells. The induction of ROR-γt+ Treg cells in the lamina propria depends on IL-6. Generation of distinct T helper cell subsets might depend on different IL-6 signaling modalities. IL-6-directed therapies must consider the disease-relevant IL-6 signaling modality.
IL-6 gained much attention with the discovery that this cytokine is a non-redundant differentiation factor for Th17 cells and T follicular helper cells. Adaptive immune responses to fungi and extracellular bacteria are impaired in the absence of IL-6. IL-6 is also required for the induction of ROR-γt+ Treg cells, which are gatekeepers of homeostasis in the gut lamina propria in the presence of commensal bacteria. Conversely, severe immunopathology in T cell-mediated autoimmunity is mediated by Th17 cells that rely on IL-6 for their generation and maintenance. Recently, it has been discovered that the differentiation of these distinct T helper cell subsets may be linked to distinct signaling modalities of IL-6. Here, we summarize the current knowledge on the mode of action of IL-6 in the differentiation and maintenance of T cell subsets and propose that a context-dependent understanding of the impact of IL-6 on T cell subsets might inform rational IL-6-directed interventions in autoimmunity and chronic inflammation.
Collapse
Affiliation(s)
- Thomas Korn
- Institute for Experimental Neuroimmunology, Klinikum rechts der Isar, Technical University of Munich, Ismaninger Str. 22, 81675 Munich, Germany; Dept. of Neurology, Klinikum rechts der Isar, Technical University of Munich, Ismaninger Str. 22, 81675 Munich, Germany; Munich Cluster for Systems Neurology (SyNergy), Feodor-Lynen-Str. 17, 81377 Munich, Germany.
| | - Michael Hiltensperger
- Institute for Experimental Neuroimmunology, Klinikum rechts der Isar, Technical University of Munich, Ismaninger Str. 22, 81675 Munich, Germany
| |
Collapse
|
15
|
Pan Y, Zhao S, Chen F. The potential value of dequalinium chloride in the treatment of cancer: Focus on malignant glioma. Clin Exp Pharmacol Physiol 2021; 48:445-454. [PMID: 33496065 DOI: 10.1111/1440-1681.13466] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 01/05/2021] [Indexed: 12/12/2022]
Abstract
Dequalinium chloride has been known as one kind of antibiotic that displays a broad antimicrobial spectrum and has been clinically proven to be very safe. In recent years, studies have shown that dequalinium chloride can inhibit the growth of malignant tumours, and reports were mainly used for solid tumours. Glioblastoma is the most common malignant neuroepithelial tumour of the central nervous system in adults, and the prognosis of glioblastoma is poor as it has a high resistance to apoptosis. This review summarizes the current understanding of dequalinium chloride-induced cancer cell apoptosis and its potential role in glioblastoma resistance and progression. Particularly, we focus on dequalinium chloride as it exerts a wide range of anti-cancer activity through its ability to target and accumulate in the mitochondria, and it effectively inhibits the growth of glioblastoma cells in vitro and vivo. Dequalinium chloride is an inhibitor of XIAP and can also act as a mitochondrial targeting agent, which gives it an interesting perspective regarding recent advances in the treatment of malignant glioma.
Collapse
Affiliation(s)
- Yuehai Pan
- Department of Hand and foot surgery, The affiliated hospital of QingDao university, ShangDong, China
| | - Shuai Zhao
- Department of Anesthesiology, Bonn University, Bonn, Germany
| | - Fan Chen
- Department of Neurosurgery, The affiliated hospital of QingDao university, ShangDong, China
| |
Collapse
|
16
|
Hsu TS, Lin YL, Wang YA, Mo ST, Chi PY, Lai ACY, Pan HY, Chang YJ, Lai MZ. HIF-2α is indispensable for regulatory T cell function. Nat Commun 2020; 11:5005. [PMID: 33024109 PMCID: PMC7538433 DOI: 10.1038/s41467-020-18731-y] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2019] [Accepted: 09/10/2020] [Indexed: 12/12/2022] Open
Abstract
Hypoxia-inducible factor 1α (HIF-1α) and HIF-2α are master transcription factors that regulate cellular responses to hypoxia, but the exact function in regulatory T (Treg) cells is controversial. Here, we show that Treg cell development is normal in mice with Foxp3-specific knockout (KO) of HIF-1α or HIF-2α. However, HIF-2α-KO (but not HIF-1α-KO) Treg cells are functionally defective in suppressing effector T cell-induced colitis and inhibiting airway hypersensitivity. HIF-2α-KO Treg cells have enhanced reprogramming into IL-17-secreting cells. We show crosstalk between HIF-2α and HIF-1α, and that HIF-2α represses HIF-1α expression. HIF-1α is upregulated in HIF-2α-KO Treg cells and further deletion of HIF-1α restores the inhibitory function of HIF-2α-KO Treg cells. Mice with Foxp3-conditional KO of HIF-2α are resistant to growth of MC38 colon adenocarcinoma and metastases of B16F10 melanoma. Together, these results indicate that targeting HIF-2α to destabilize Treg cells might be an approach for regulating the functional activity of Treg cells.
Collapse
Affiliation(s)
- Tzu-Sheng Hsu
- Institute of Molecular Biology, Academia Sinica, 11529, Taipei, Taiwan
| | - Yen-Lin Lin
- Institute of Molecular Biology, Academia Sinica, 11529, Taipei, Taiwan
| | - Yu-An Wang
- Institute of Molecular Biology, Academia Sinica, 11529, Taipei, Taiwan
| | - Shu-Ting Mo
- Institute of Molecular Biology, Academia Sinica, 11529, Taipei, Taiwan
| | - Po-Yu Chi
- Institute of Biomedical Sciences, Academia Sinica, 11529, Taipei, Taiwan
| | | | - Hsuan-Yin Pan
- Institute of Molecular Biology, Academia Sinica, 11529, Taipei, Taiwan
| | - Ya-Jen Chang
- Institute of Biomedical Sciences, Academia Sinica, 11529, Taipei, Taiwan
| | - Ming-Zong Lai
- Institute of Molecular Biology, Academia Sinica, 11529, Taipei, Taiwan.
| |
Collapse
|
17
|
AlHaddad J, Melhem G, Allos H, Azzi J. Regulatory T Cells: Promises and Challenges. CURRENT TRANSPLANTATION REPORTS 2020. [DOI: 10.1007/s40472-020-00292-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
18
|
IAP-Mediated Protein Ubiquitination in Regulating Cell Signaling. Cells 2020; 9:cells9051118. [PMID: 32365919 PMCID: PMC7290580 DOI: 10.3390/cells9051118] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 04/27/2020] [Accepted: 04/28/2020] [Indexed: 12/12/2022] Open
Abstract
Over the last decade, the E3-ubiquitine ligases from IAP (Inhibitor of Apoptosis) family have emerged as potent regulators of immune response. In immune cells, they control signaling pathways driving differentiation and inflammation in response to stimulation of tumor necrosis factor receptor (TNFR) family, pattern-recognition receptors (PRRs), and some cytokine receptors. They are able to control the activity, the cellular fate, or the stability of actors of signaling pathways, acting at different levels from components of receptor-associated multiprotein complexes to signaling effectors and transcription factors, as well as cytoskeleton regulators. Much less is known about ubiquitination substrates involved in non-immune signaling pathways. This review aimed to present IAP ubiquitination substrates and the role of IAP-mediated ubiquitination in regulating signaling pathways.
Collapse
|
19
|
Immunity to X-linked inhibitor of apoptosis protein (XIAP) in malignant melanoma and check-point blockade. Cancer Immunol Immunother 2019; 68:1331-1340. [PMID: 31317218 DOI: 10.1007/s00262-019-02370-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 07/12/2019] [Indexed: 12/13/2022]
Abstract
Expression of inhibitors of apoptosis protein (IAP) family members is associated with poor prognosis in cancer patients. Immunity to ML-IAP (livin) and survivin has been well studied in patients with a variety of tumors. XIAP, the most potent inhibitor of apoptosis, is widely expressed in melanoma. To better define its potential role as an immunogenic target, cellular and humoral responses to XIAP were investigated in patients with advanced melanoma. An overlapping peptide library covering the full length of the XIAP protein was used to screen T cell responses of peripheral blood mononuclear cells (PBMC) from stage-IV melanoma patients treated with or without anti-CTLA4 (ipilimumab). The screen identified an array of peptides that predominantly induced CD4+ T cell responses. XIAP epitope-specific CD4+ T cells revealed proliferative responses to melanoma cells that express XIAP. Humoral responses to XIAP were also explored. Cellular and humoral responses to XIAP were associated with beneficial clinical outcomes after ipilimumab-based treatment, supporting XIAP as a potential therapeutic target.
Collapse
|
20
|
Treg-mediated prolonged survival of skin allografts without immunosuppression. Proc Natl Acad Sci U S A 2019; 116:13508-13516. [PMID: 31196957 PMCID: PMC6613183 DOI: 10.1073/pnas.1903165116] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Injection of Interleukin-2 (IL-2) complexed with a particular anti-IL-2 monoclonal antibody (mab) JES6-1 has been shown to selectively expand CD4+Foxp3+ T regulatory T cells (Tregs) in vivo. Although the potency of this approach with regard to transplantation has already been proven in an islet transplantation model, skin graft survival could not be prolonged. Since the latter is relevant to human allograft survival, we sought to improve the efficiency of IL-2 complex (cplx) treatment for skin allograft survival in a stringent murine skin graft model. Here, we show that combining low doses of IL-2 cplxs with rapamycin and blockade of the inflammatory cytokine IL-6 leads to long-term (>75 d) survival of major histocompatibility complex-different skin allografts without the need for immunosuppression. Allograft survival was critically dependent on CD25+FoxP3+ Tregs and was not accompanied by impaired responsiveness toward donor alloantigens in vitro after IL-2 cplx treatment was stopped. Furthermore, second donor-type skin grafts were rejected and provoked rejection of the primary graft, suggesting that operational tolerance is not systemic but restricted to the graft. These findings plus the lack of donor-specific antibody formation imply that prolonged graft survival was largely a reflection of immunological ignorance. The results may represent a potentially clinically translatable strategy for the development of protocols for tolerance induction.
Collapse
|
21
|
Shabani M, Razaghian A, Alimadadi H, Shiari R, Shahrooei M, Parvaneh N. Different phenotypes of the same XIAP mutation in a family: A case of XIAP deficiency with juvenile idiopathic arthritis. Pediatr Blood Cancer 2019; 66:e27593. [PMID: 30604482 DOI: 10.1002/pbc.27593] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Accepted: 12/13/2018] [Indexed: 01/04/2023]
Affiliation(s)
- Mahsima Shabani
- Division of Allergy and Clinical Immunology, Department of Pediatrics, Tehran University of Medical Sciences, Tehran, Iran.,Research Center for Immunodeficiencies, Tehran University of Medical Sciences, Tehran, Iran
| | - Anahita Razaghian
- Division of Allergy and Clinical Immunology, Department of Pediatrics, Tehran University of Medical Sciences, Tehran, Iran
| | - Hosein Alimadadi
- Department of Pediatric Gastroeneterology, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Reza Shiari
- Department of Pediatric Rheumatology, Mofid Children Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Shahrooei
- Department of Microbiology and Immunology, Laboratory of Clinical Bacteriology and Mycology, KU Leuven, Leuven, Belgium.,Specialized Immunology Laboratory, Ahvaz, Iran
| | - Nima Parvaneh
- Division of Allergy and Clinical Immunology, Department of Pediatrics, Tehran University of Medical Sciences, Tehran, Iran.,Research Center for Immunodeficiencies, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
22
|
Hsu TS, Lai MZ. Hypoxia-inducible factor 1α plays a predominantly negative role in regulatory T cell functions. J Leukoc Biol 2018; 104:911-918. [PMID: 29901858 DOI: 10.1002/jlb.mr1217-481r] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2018] [Revised: 04/25/2018] [Accepted: 04/30/2018] [Indexed: 12/17/2022] Open
Abstract
Hypoxia-inducible factor 1α (HIF-1α) regulates cellular responses to hypoxia. However, conflicting roles for HIF-1α in the functions of regulatory T cells (Tregs) have been reported. In this review, we summarize observations on the requirement for HIF-1α for FOXP3 expression and Tregs development, as well as for HIF-1α-mediated downregulation of FOXP3 and Tregs destabilization. We also examine the association of HIF-1α with Tregs under pathogenic conditions. Based on these findings, we suggest that HIF-1α mainly plays a detrimental role in the function and stability of Tregs and that HIF-1α is disposable for the development and suppressive function of Tregs.
Collapse
Affiliation(s)
- Tzu-Sheng Hsu
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| | - Ming-Zong Lai
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| |
Collapse
|