1
|
Cao H, Shang L, Hu D, Huang J, Wang Y, Li M, Song Y, Yang Q, Luo Y, Wang Y, Cai X, Liu J. Neuromodulation techniques for modulating cognitive function: Enhancing stimulation precision and intervention effects. Neural Regen Res 2026; 21:491-501. [PMID: 39665818 DOI: 10.4103/nrr.nrr-d-24-00836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 11/19/2024] [Indexed: 12/13/2024] Open
Abstract
Neuromodulation techniques effectively intervene in cognitive function, holding considerable scientific and practical value in fields such as aerospace, medicine, life sciences, and brain research. These techniques utilize electrical stimulation to directly or indirectly target specific brain regions, modulating neural activity and influencing broader brain networks, thereby regulating cognitive function. Regulating cognitive function involves an understanding of aspects such as perception, learning and memory, attention, spatial cognition, and physical function. To enhance the application of cognitive regulation in the general population, this paper reviews recent publications from the Web of Science to assess the advancements and challenges of invasive and non-invasive stimulation methods in modulating cognitive functions. This review covers various neuromodulation techniques for cognitive intervention, including deep brain stimulation, vagus nerve stimulation, and invasive methods using microelectrode arrays. The non-invasive techniques discussed include transcranial magnetic stimulation, transcranial direct current stimulation, transcranial alternating current stimulation, transcutaneous electrical acupoint stimulation, and time interference stimulation for activating deep targets. Invasive stimulation methods, which are ideal for studying the pathogenesis of neurological diseases, tend to cause greater trauma and have been less researched in the context of cognitive function regulation. Non-invasive methods, particularly newer transcranial stimulation techniques, are gentler and more appropriate for regulating cognitive functions in the general population. These include transcutaneous acupoint electrical stimulation using acupoints and time interference methods for activating deep targets. This paper also discusses current technical challenges and potential future breakthroughs in neuromodulation technology. It is recommended that neuromodulation techniques be combined with neural detection methods to better assess their effects and improve the accuracy of non-invasive neuromodulation. Additionally, researching closed-loop feedback neuromodulation methods is identified as a promising direction for future development.
Collapse
Affiliation(s)
- Hanwen Cao
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, China
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing, China
| | - Li Shang
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, China
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing, China
| | - Deheng Hu
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, China
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing, China
| | - Jianbing Huang
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, China
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing, China
| | - Yu Wang
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, China
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing, China
| | - Ming Li
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, China
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing, China
| | - Yilin Song
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, China
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing, China
| | - Qianzi Yang
- Department of Anesthesiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yan Luo
- Department of Anesthesiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ying Wang
- Department of Anesthesiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xinxia Cai
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, China
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing, China
| | - Juntao Liu
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, China
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
2
|
Liu M, Meng Y, Ouyang S, Zhai M, Yang L, Yang Y, Wang Y. Neuromodulation technologies improve functional recovery after brain injury: From bench to bedside. Neural Regen Res 2026; 21:506-520. [PMID: 39851132 DOI: 10.4103/nrr.nrr-d-24-00652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 11/05/2024] [Indexed: 01/26/2025] Open
Abstract
Spontaneous recovery frequently proves maladaptive or insufficient because the plasticity of the injured adult mammalian central nervous system is limited. This limited plasticity serves as a primary barrier to functional recovery after brain injury. Neuromodulation technologies represent one of the fastest-growing fields in medicine. These techniques utilize electricity, magnetism, sound, and light to restore or optimize brain functions by promoting reorganization or long-term changes that support functional recovery in patients with brain injury. Therefore, this review aims to provide a comprehensive overview of the effects and underlying mechanisms of neuromodulation technologies in supporting motor function recovery after brain injury. Many of these technologies are widely used in clinical practice and show significant improvements in motor function across various types of brain injury. However, studies report negative findings, potentially due to variations in stimulation protocols, differences in observation periods, and the severity of functional impairments among participants across different clinical trials. Additionally, we observed that different neuromodulation techniques share remarkably similar mechanisms, including promoting neuroplasticity, enhancing neurotrophic factor release, improving cerebral blood flow, suppressing neuroinflammation, and providing neuroprotection. Finally, considering the advantages and disadvantages of various neuromodulation techniques, we propose that future development should focus on closed-loop neural circuit stimulation, personalized treatment, interdisciplinary collaboration, and precision stimulation.
Collapse
Affiliation(s)
- Mei Liu
- Department of Neurosurgery, Wuxi Clinical College of Anhui Medical University (The 904 Hospital of PLA), Wuxi, Jiangsu Province, China
| | - Yijing Meng
- Department of Neurosurgery, Wuxi Clinical College of Anhui Medical University (The 904 Hospital of PLA), Wuxi, Jiangsu Province, China
| | - Siguang Ouyang
- Department of Neurosurgery, Wuxi Clinical College of Anhui Medical University (The 904 Hospital of PLA), Wuxi, Jiangsu Province, China
| | - Meng'ai Zhai
- Department of Neurosurgery, The 904 Hospital of PLA, Jiangnan University, Wuxi, Jiangsu Province, China
| | - Likun Yang
- Department of Neurosurgery, Wuxi Clinical College of Anhui Medical University (The 904 Hospital of PLA), Wuxi, Jiangsu Province, China
| | - Yang Yang
- Department of Neurosurgery, Wuxi Clinical College of Anhui Medical University (The 904 Hospital of PLA), Wuxi, Jiangsu Province, China
| | - Yuhai Wang
- Department of Neurosurgery, Wuxi Clinical College of Anhui Medical University (The 904 Hospital of PLA), Wuxi, Jiangsu Province, China
| |
Collapse
|
3
|
Madadi Asl M, Valizadeh A. Entrainment by transcranial alternating current stimulation: Insights from models of cortical oscillations and dynamical systems theory. Phys Life Rev 2025; 53:147-176. [PMID: 40106964 DOI: 10.1016/j.plrev.2025.03.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2025] [Accepted: 03/12/2025] [Indexed: 03/22/2025]
Abstract
Signature of neuronal oscillations can be found in nearly every brain function. However, abnormal oscillatory activity is linked with several brain disorders. Transcranial alternating current stimulation (tACS) is a non-invasive brain stimulation technique that can potentially modulate neuronal oscillations and influence behavior both in health and disease. Yet, a complete understanding of how interacting networks of neurons are affected by tACS remains elusive. Entrainment effects by which tACS synchronizes neuronal oscillations is one of the main hypothesized mechanisms, as evidenced in animals and humans. Computational models of cortical oscillations may shed light on the entrainment effects of tACS, but current modeling studies lack specific guidelines to inform experimental investigations. This study addresses the existing gap in understanding the mechanisms of tACS effects on rhythmogenesis within the brain by providing a comprehensive overview of both theoretical and experimental perspectives. We explore the intricate interactions between oscillators and periodic stimulation through the lens of dynamical systems theory. Subsequently, we present a synthesis of experimental findings that demonstrate the effects of tACS on both individual neurons and collective oscillatory patterns in animal models and humans. Our review extends to computational investigations that elucidate the interplay between tACS and neuronal dynamics across diverse cortical network models. To illustrate these concepts, we conclude with a simple oscillatory neuron model, showcasing how fundamental theories of oscillatory behavior derived from dynamical systems, such as phase response of neurons to external perturbation, can account for the entrainment effects observed with tACS. Studies reviewed here render the necessity of integrated experimental and computational approaches for effective neuromodulation by tACS in health and disease.
Collapse
Affiliation(s)
- Mojtaba Madadi Asl
- School of Biological Sciences, Institute for Research in Fundamental Sciences (IPM), Tehran, Iran; Pasargad Institute for Advanced Innovative Solutions (PIAIS), Tehran, Iran.
| | - Alireza Valizadeh
- Pasargad Institute for Advanced Innovative Solutions (PIAIS), Tehran, Iran; Department of Physics, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan, Iran; The Zapata-Briceño Institute of Neuroscience, Madrid, Spain
| |
Collapse
|
4
|
Schulze-Bonhage A, Antonio-Arce VS, Kalousios S, Martinez-Lizana E, Coenen VA, Hirsch M. Epicranial focal cortex stimulation for minimally invasive neuromodulation of the epileptogenic region: A review. Epilepsy Behav 2025; 168:110390. [PMID: 40184829 DOI: 10.1016/j.yebeh.2025.110390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 03/10/2025] [Accepted: 03/21/2025] [Indexed: 04/07/2025]
Abstract
Epicranial focal cortex stimulation (FCS) is a new type of neurostimulation for pharmacoresistant focal epilepsy, which has recently been CE-certified for treatment of European patients. Stimulation is performed via an epicranially placed five-contact electrode array, which applies high frequency stimulation and DC-like cathodal stimulation to the individual epileptogenic brain region. Stimulation at appropriate intensities is not perceived by patients, and first evidence from two prospective unblinded clinical trials suggests excellent tolerability of both, subgaleal implantation and transcranial stimulation. In epilepsies arising from the dorsolateral brain convexity, FCS resulted in a median seizure reduction of >50 % after 6 months which further increased to >60 % after 2 years. This compares favorably to more invasive neurostimulation approaches.
Collapse
Affiliation(s)
| | | | - Sotirios Kalousios
- Epilepsy Center, University Medical Center, University of Freiburg, Germany
| | | | - Volker Arnd Coenen
- Department of Stereotactic and Functional Neurosurgery, University Medical Center, University of Freiburg, Germany
| | - Martin Hirsch
- Epilepsy Center, University Medical Center, University of Freiburg, Germany
| |
Collapse
|
5
|
Meng W, Zhang C, Wu C, Huo X, Zhang G. Direction of TIS envelope electric field: Perpendicular to the longitudinal axis of the hippocampus. J Neurosci Methods 2025; 418:110416. [PMID: 40057203 DOI: 10.1016/j.jneumeth.2025.110416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 02/27/2025] [Accepted: 03/02/2025] [Indexed: 03/14/2025]
Abstract
BACKGROUND Temporal Interference Stimulation (TIS) is a non-invasive approach to deep brain stimulation. However, most research has focused on the intensity of modulation, with limited attention given to the directional properties of the induced electric fields, despite their potential importance for precise stimulation. NEW METHODS A novel analytical framework was developed to analyze TIS-induced electric field directions using individual imaging data. For each voxel, the direction corresponding to the maximal modulation depth was calculated. The consistency of these directions within regions of interest (ROIs) and their alignment with the ROI principal axes, derived from principal component analysis (PCA), were assessed. RESULTS Simulations revealed complex spatial and temporal trajectories of the electric field at the voxel level. In the left putamen, the maximal modulation depth reached 0.241 ± 0.041 V/m, whereas in the target region, the left hippocampus, it was lower (0.15 ± 0.032 V/m). Notably, in the left hippocampus, the directions of maximal modulation depth were predominantly perpendicular to its longitudinal axis (84.547 ± 8.776°), reflecting structural specificity across its anterior, middle, and posterior regions. COMPARISON WITH EXISTING METHODS Unlike previous approaches, this study integrates directional analysis into TIS modeling, providing a foundation for precise stimulation by exploring structural alignment. CONCLUSION Our analysis revealed that the orientations of maximal modulation depth in the left hippocampus were perpendicular to its longitudinal axis under the current electrode configuration, but they shifted to parallel alignment when the electrode pairs were swapped. This directional specificity offers insights for optimizing TIS by aligning with structural features, presenting a potential strategy to enhance stimulation precision and broaden its clinical and research applications.
Collapse
Affiliation(s)
- Weiyu Meng
- Beijing Key Laboratory of Bioelectromagnetism, Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing 100190, PR China; School of Electrical, Electronics and Communications Engineering, University of Chinese Academy of Sciences, Beijing 100149, PR China
| | - Cheng Zhang
- Beijing Key Laboratory of Bioelectromagnetism, Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing 100190, PR China; School of Electrical, Electronics and Communications Engineering, University of Chinese Academy of Sciences, Beijing 100149, PR China
| | - Changzhe Wu
- Beijing Key Laboratory of Bioelectromagnetism, Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing 100190, PR China; School of Electrical, Electronics and Communications Engineering, University of Chinese Academy of Sciences, Beijing 100149, PR China
| | - Xiaolin Huo
- Beijing Key Laboratory of Bioelectromagnetism, Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing 100190, PR China; School of Electrical, Electronics and Communications Engineering, University of Chinese Academy of Sciences, Beijing 100149, PR China.
| | - Guanghao Zhang
- Beijing Key Laboratory of Bioelectromagnetism, Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing 100190, PR China; School of Electrical, Electronics and Communications Engineering, University of Chinese Academy of Sciences, Beijing 100149, PR China.
| |
Collapse
|
6
|
Rosenthal ZP, Majeski JB, Somarowthu A, Quinn DK, Lindquist BE, Putt ME, Karaj A, Favilla CG, Baker WB, Hosseini G, Rodriguez JP, Cristancho MA, Sheline YI, William Shuttleworth C, Abbott CC, Yodh AG, Goldberg EM. Electroconvulsive therapy generates a postictal wave of spreading depolarization in mice and humans. Nat Commun 2025; 16:4619. [PMID: 40383825 PMCID: PMC12086196 DOI: 10.1038/s41467-025-59900-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Accepted: 05/08/2025] [Indexed: 05/20/2025] Open
Abstract
Electroconvulsive therapy (ECT) is a fast-acting, highly effective, and safe treatment for medication-resistant depression. Historically, the clinical benefits of ECT have been attributed to generating a controlled seizure; however, the underlying neurobiology is understudied and unresolved. Using optical neuroimaging of neural activity and hemodynamics in a mouse model of ECT, we demonstrated that a second brain event follows seizure: cortical spreading depolarization (CSD). We found that ECT pulse parameters and electrode configuration directly shaped the wave dynamics of seizure and subsequent CSD. To translate these findings to human patients, we used non-invasive diffuse optical monitoring of cerebral blood flow and oxygenation during routine ECT treatments. We observed that human brains reliably generate hyperemic waves after ECT seizure which are highly consistent with CSD. These results challenge a long-held assumption that seizure is the primary outcome of ECT and point to new opportunities for optimizing ECT stimulation parameters and treatment outcomes.
Collapse
Affiliation(s)
- Zachary P Rosenthal
- Psychiatry Residency Physician-Scientist Research Track, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| | - Joseph B Majeski
- Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, PA, USA
| | - Ala Somarowthu
- Division of Neurology, Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Davin K Quinn
- Department of Psychiatry, University of New Mexico School of Medicine, Albuquerque, NM, USA
| | - Britta E Lindquist
- Department of Neurology, University of California San Francisco School of Medicine, San Francisco, CA, USA
| | - Mary E Putt
- Department of Biostatistics, Epidemiology & Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Antoneta Karaj
- Department of Biostatistics, Epidemiology & Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Chris G Favilla
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Wesley B Baker
- Division of Neurology, Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Golkoo Hosseini
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Jenny P Rodriguez
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Mario A Cristancho
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Center for Neuromodulation in Depression and Stress, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Yvette I Sheline
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Center for Neuromodulation in Depression and Stress, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - C William Shuttleworth
- Department of Neurosciences, University of New Mexico School of Medicine, Albuquerque, NM, USA
| | - Christopher C Abbott
- Department of Psychiatry, University of New Mexico School of Medicine, Albuquerque, NM, USA
| | - Arjun G Yodh
- Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, PA, USA
| | - Ethan M Goldberg
- Division of Neurology, Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
7
|
Schulze-Bonhage A, Hirsch M, Knake S, Mertens A, Rademacher M, Kaufmann E, Kegele J, Jenkner C, Coenen V, Glaser M, Groppa S, Winter Y. Two-year outcomes of epicranial focal cortex stimulation in pharmacoresistant focal epilepsy. Epilepsia 2025. [PMID: 40377414 DOI: 10.1111/epi.18448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2025] [Revised: 04/23/2025] [Accepted: 04/23/2025] [Indexed: 05/18/2025]
Abstract
OBJECTIVE This study was undertaken to report on the long-term safety and efficacy of epicranial focal cortex stimulation (FCS) using the EASEE device as adjunctive neuromodulatory therapy in improving seizure control in adults with pharmacoresistant epilepsy originating from one predominant epileptogenic zone. METHODS Prospective open-label follow-up of patients from the EASEE II and PIMIDES I clinical trials was done for a period of 2 years after the epicranial implantation of the EASEE electrode and stimulator device. RESULTS Thirty-three patients underwent device implantation, and stimulation was activated in 32 patients. Of these, 26 patients continued stimulation up to 2-year follow-up and provided seizure diary data for efficacy analysis. The 50% responder rate at 2-year follow-up was 65.4% (95% confidence interval = 44.3-82.8), corresponding to a median seizure frequency reduction of 68%. Patients reported improved health-related quality of life. Tolerability was excellent, and there were no severe adverse events considered to be related to implantation or stimulation, nor were adverse effects on mood or cognition reported. SIGNIFICANCE Results of the 2-year follow-up show that epicranial FCS is well tolerated by patients while providing improved seizure control in the long term. It thus offers a minimally invasive treatment option for patients with a predominant epileptic focus.
Collapse
Affiliation(s)
- Andreas Schulze-Bonhage
- Epilepsy Center, University Medical Center, University of Freiburg, Freiburg, Germany
- NeuroModul Basic, University of Freiburg, Freiburg, Germany
- Bernstein Center of Computational Neuroscience, University of Freiburg, Freiburg, Germany
- European Reference Network EpiCARE, Lyon, France
| | - Martin Hirsch
- Epilepsy Center, University Medical Center, University of Freiburg, Freiburg, Germany
| | - Susanne Knake
- Neurology, University Hospital Marburg, Marburg, Germany
| | - Ann Mertens
- Neurology, University Hospital Gent, Ghent, Belgium
| | | | - Elisabeth Kaufmann
- Department of Neurology, University Hospital, Ludwig Maximilian University, Munich, Germany
| | - Josua Kegele
- Department of Neurology and Epileptology, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Carolin Jenkner
- Clinical Trials Unit, University Medical Center, University of Freiburg, Freiburg, Germany
| | - Volker Coenen
- Department of Stereotactic and Functional Neurosurgery, University Medical Center, University of Freiburg, Freiburg, Germany
| | - Martin Glaser
- Department of Neurosurgery, University of Mainz, Mainz, Germany
| | - Sergiu Groppa
- Department of Neurology, Saarland University Medical Center, University of Saarland, Homburg, Germany
| | - Yaroslav Winter
- Neurology, University Hospital Marburg, Marburg, Germany
- Department of Neurology, Saarland University Medical Center, University of Saarland, Homburg, Germany
| |
Collapse
|
8
|
Farahani F, Vöröslakos M, Birnbaum AM, FallahRad M, Williams PTJA, Martin JH, Parra LC. Repeated tDCS at Clinically Relevant Field Intensity Can Boost Concurrent Motor Learning in Rats. J Neurosci 2025; 45:e1495242025. [PMID: 40216548 PMCID: PMC12079733 DOI: 10.1523/jneurosci.1495-24.2025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 01/27/2025] [Accepted: 02/05/2025] [Indexed: 04/25/2025] Open
Abstract
Clinical trials with transcranial direct current stimulation (tDCS) use weak electric fields that have yet to demonstrate measurable behavioral effects in animal models. We hypothesized that weak stimulation will produce sizable effects, provided it is applied concurrently with behavioral training and repeated over multiple sessions. We tested this in a rodent model of dexterous motor skill learning using a pellet-reaching task in ad libitum behaving rats. The task was automated to minimize experimenter bias. We measured field magnitudes intracranially to calibrate the stimulation current. Male rats were trained for 20 min with concurrent epicranial tDCS over 10 daily sessions. We developed a new electrode montage that enabled stable stimulation over the 10 sessions with a field intensity of 2 V/m at the motor cortex. Behavior was recorded with high-speed video to quantify reaching dynamics. We also measured motor-evoked potentials (MEPs) bilaterally with epidural microstimulation. The number of successful reaches improved across days of training, and the rate of learning was higher in the anodal group as compared with sham-control animals (F (1) = 7.12; p = 0.008; N = 24). MEPs were not systematically affected by tDCS. Post hoc analysis suggests that tDCS modulated motor learning only for right-pawed animals, improving success of reaching but limiting stereotypy in these animals. Repeated and concurrent anodal tDCS can boost motor skill learning at clinically relevant field intensities. In this animal model, the effect interacted with paw preference and was not associated with corticospinal excitability.
Collapse
Affiliation(s)
- Forouzan Farahani
- Biomedical Engineering Department, City College of New York, New York, New York 10031
| | - Mihály Vöröslakos
- Neuroscience Institute, NYU Grossman School of Medicine, New York University, New York, New York 10016
| | - Andrew M Birnbaum
- Biomedical Engineering Department, City College of New York, New York, New York 10031
| | - Mohamad FallahRad
- Biomedical Engineering Department, City College of New York, New York, New York 10031
| | - Preston T J A Williams
- Molecular, Cellular and Biomedical Science, CUNY School of Medicine, New York, New York 10031
| | - John H Martin
- Molecular, Cellular and Biomedical Science, CUNY School of Medicine, New York, New York 10031
| | - Lucas C Parra
- Biomedical Engineering Department, City College of New York, New York, New York 10031
| |
Collapse
|
9
|
Guo W, He Y, Song X, Heng D, Zhang X, Ke Y, Liu S, Ming D. 40-Hz Temporally Interfering Electrical Stimulation Over the Temporal Lobe Induced Antidepressant-Like Effects in Chronic Unpredictable Mild Stress Rats. IEEE Trans Neural Syst Rehabil Eng 2025; 33:1796-1804. [PMID: 40293890 DOI: 10.1109/tnsre.2025.3565099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/30/2025]
Abstract
Temporally interfering (TI) electrical stimulation provides a promising noninvasive and focused stimulation for neuropsychiatric disorders. However, the feasible stimulation strategy and potential effects require further study. Our previous studies have identified gamma oscillatory abnormalities of temporal regions in depressed patients and rats. We accordingly aim to develop an effective TI antidepressant strategy. The stimulation strategy was firstly determined by modeling and simulation, and verified by c-Fos immunofluorescence staining. 32 rats were randomized into control (n = 8) and depression (n = 24) groups induced by chronic unpredictable mild stress (CUS), which were exposed to stimulation for 5 days, 20 mins per day. The behavioral and electrophysiology experiments were performed to examine the antidepressant-like effects of TI, using transcranial alternating current stimulation (tACS) as a positive control. In the electrophysiology experiment, local field potential (LFP) signals were recorded from bilateral primary auditory cortex (A1) before and after stimulation. We found that TI activated more c-Fos-positive cells in A1 target than tACS, exhibiting better stimulation focality. Both TI and tACS significantly ameliorated depression-like behaviors compared to sham group, and TI made more improvements. Furthermore, TI largely restored the gamma deficits by increasing gamma power and phase locking value (PLV) compared with tACS. And the gamma-band deficits were found remarkably correlated with depression-like behaviors. Overall, TI ameliorated depression-like behaviors in CUS rats, which may be associated with the restoration of aberrant gamma oscillations. With the advantages of both spatial targeting and noninvasive character, TI holds great promise for the clinical application of depression.
Collapse
|
10
|
van Bree S, Levenstein D, Krause MR, Voytek B, Gao R. Processes and measurements: a framework for understanding neural oscillations in field potentials. Trends Cogn Sci 2025; 29:448-466. [PMID: 39753446 DOI: 10.1016/j.tics.2024.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 12/03/2024] [Accepted: 12/04/2024] [Indexed: 05/09/2025]
Abstract
Various neuroscientific theories maintain that brain oscillations are important for neuronal computation, but opposing views claim that these macroscale dynamics are 'exhaust fumes' of more relevant processes. Here, we approach the question of whether oscillations are functional or epiphenomenal by distinguishing between measurements and processes, and by reviewing whether causal or inferentially useful links exist between field potentials, electric fields, and neurobiological events. We introduce a vocabulary for the role of brain signals and their underlying processes, demarcating oscillations as a distinct entity where both processes and measurements can exhibit periodicity. Leveraging this distinction, we suggest that electric fields, oscillating or not, are causally and computationally relevant, and that field potential signals can carry information even without causality.
Collapse
Affiliation(s)
- Sander van Bree
- Department of Medicine, Justus Liebig University, Giessen, Germany; Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany; Centre for Cognitive Neuroimaging, School of Psychology and Neuroscience, University of Glasgow, Glasgow, UK
| | - Daniel Levenstein
- MILA - Quebec AI Institute, Montreal, QC, Canada; Montreal Neurological Institute and Hospital, McGill University, Montreal, QC, Canada
| | - Matthew R Krause
- Montreal Neurological Institute and Hospital, McGill University, Montreal, QC, Canada
| | - Bradley Voytek
- Department of Cognitive Science, Halıcıŏglu Data Science Institute, Kavli Institute for Brain & Mind, University of California, San Diego, La Jolla, CA, USA
| | - Richard Gao
- Machine Learning in Science, Excellence Cluster Machine Learning and Tübingen AI Center, University of Tübingen, Tübingen, Germany.
| |
Collapse
|
11
|
Chiang C, Chien M, Huang Y, Lin J, Liang S, Hsu K, Durand DM, Wu Y. Cathodal weak direct current decreases epileptic excitability with reduced neuronal activity and enhanced delta oscillations. J Physiol 2025; 603:2763-2782. [PMID: 40193544 PMCID: PMC12072238 DOI: 10.1113/jp287969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Accepted: 03/12/2025] [Indexed: 04/09/2025] Open
Abstract
Seizures are manifestations of hyperexcitability in the brain. Non-invasive weak current stimulation, delivered through cathodal transcranial direct current stimulation (ctDCS), has emerged to treat refractory epilepsy and seizures, although the cellular-to-populational electrophysiological mechanisms remain unclear. Using the ctDCS in vivo model, we investigate how neural excitability is modulated through weak direct currents by analysing the local field potential (LFP) and extracellular unit spike recordings before, during and after ctDCS versus sham stimulation. In rats with kainic acid (KA)-induced acute hippocampal seizures, ctDCS reduced seizure excitability by decreasing the number and amplitude of epileptic spikes in LFP and enhancing delta (δ) power. We identified unit spikes of putative excitatory neurons in CA1 stratum pyramidale based on waveform sorting and validated via optogenetic inhibitions which increased aberrantly in seizure animals. Notably, cathodal stimulation significantly reduced these unit spikes, whereas anodal stimulation exhibited the opposite effect, showing polarity-specific and current strength-dependent responses. The reduced unit spikes after ctDCS coupled to δ oscillations with an increased coupling strength. These effects occurred during stimulation and lasted 90 min post-stimulation, accompanied by inhibitory short-term synaptic plasticity changes shown in paired-pulse stimulation after ctDCS. Consistently, neuronal activations measured by c-Fos significantly decreased after ctDCS, particularly in CaMKII+-excitatory neurons while increased in GAD+-inhibitory neurons. In conclusion, epileptic excitability was alleviated with cathodal weak direct current stimulation by diminishing excitatory neuronal activity and enhancing endogenous δ oscillations through strengthened coupling between unit spikes and δ waves, along with inhibitory plasticity changes, highlighting the potential implications to treat brain disorders characterized by hyperexcitability. KEY POINTS: Electric fields generated by transcranial weak electric current stimulation were measured at CA1, showing polarity-specific and current strength-dependent modulation of unit spike activity. Polyspike epileptiform discharges were observed in rats with kainic acid (KA)-induced hippocampal seizures. Cathodal transcranial direct current stimulation (ctDCS) reduced the number and amplitude of the epileptic spikes in local field potentials (LFPs) while increased δ oscillations. Neuronal unit spikes aberrantly increased in seizures and coupled with epileptiform discharges. ctDCS reduced excitatory neuronal firings at CA1 and strengthened the coupling between unit spikes and δ waves. Neuronal activations, measured by c-Fos, decreased in CaMKII+-excitatory neurons while increased in GAD+-inhibitory neurons after ctDCS. These effects on LFP and unit spikes lasted up to 90 min post-stimulation. Inhibitory short-term plasticity changes detected through paired-pulse stimulation underpin the enduring effects of ctDCS on seizures.
Collapse
Affiliation(s)
- Chia‐Chu Chiang
- Department of Biomedical EngineeringCase Western Reserve UniversityClevelandOhioUSA
- Department of Biomedical Engineering, Neural Engineering CenterCase Western Reserve UniversityClevelandOhioUSA
| | - Miao‐Er Chien
- Institute of Clinical Medicine, College of MedicineNational Cheng Kung UniversityTainanTaiwan
| | - Yu‐Chieh Huang
- Institute of Clinical Medicine, College of MedicineNational Cheng Kung UniversityTainanTaiwan
| | - Jyun‐Ting Lin
- Department of Computer Science and Information EngineeringNational Cheng Kung UniversityTainanTaiwan
| | - Sheng‐Fu Liang
- Department of Computer Science and Information EngineeringNational Cheng Kung UniversityTainanTaiwan
| | - Kuei‐Sen Hsu
- Department of Pharmacology, College of MedicineNational Cheng Kung UniversityTainanTaiwan
- Institute of Basic Medical Sciences, College of MedicineNational Cheng Kung UniversityTainanTaiwan
| | - Dominique M. Durand
- Department of Biomedical EngineeringCase Western Reserve UniversityClevelandOhioUSA
- Department of Biomedical Engineering, Neural Engineering CenterCase Western Reserve UniversityClevelandOhioUSA
| | - Yi‐Jen Wu
- Institute of Clinical Medicine, College of MedicineNational Cheng Kung UniversityTainanTaiwan
- Department of Neurology, National Cheng Kung University Hospital, College of MedicineNational Cheng Kung UniversityTainanTaiwan
| |
Collapse
|
12
|
Schlaug G, Cassarly C, Feld JA, Wolf SL, Rowe VT, Fritz S, Chhatbar PY, Shinde A, Su Z, Broderick JP, Zorowitz R, Awosika O, Edwards D, Lin C, Franciso GE, Wittenberg GF, Pundik S, Gregory C, Borich MR, Ramakrishnan V, Feng W. Safety and efficacy of transcranial direct current stimulation in addition to constraint-induced movement therapy for post-stroke motor recovery (TRANSPORT2): a phase 2, multicentre, randomised, sham-controlled triple-blind trial. Lancet Neurol 2025; 24:400-412. [PMID: 40157380 DOI: 10.1016/s1474-4422(25)00044-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Revised: 02/03/2025] [Accepted: 02/03/2025] [Indexed: 04/01/2025]
Abstract
BACKGROUND Motor impairments contribute substantially to long-term disability following stroke. Studies of transcranial direct current stimulation (tDCS), combined with various rehabilitation therapies, have shown promising results in reducing motor impairment. We aimed to evaluate the safety and efficacy of three doses of tDCS in combination with modified constraint-induced movement therapy (mCIMT) in people who have had their first ischaemic stroke in the preceding 1-6 months. METHODS We conducted a phase 2, multicentre, randomised, triple-blind, sham-controlled study with a blinded centrally scored primary outcome. The trial was conducted at 15 medical centres in the USA. Eligible participants were enrolled between 1 month and 6 months after their first ischaemic stroke. Inclusion criteria required participants to have a persistent motor deficit, defined as a Fugl-Meyer Upper-Extremity (FM-UE) score of 54 or lower (out of 66), and two consecutive baseline visits (separated by 7-14 days) with an absolute difference of 2 or fewer points on the FM-UE scale. Participants were randomly assigned to treatment groups by an adaptive randomisation algorithm hosted on the TRANSPORT2 WebDCU study website. Participants received either sham, 2 mA, or 4 mA of bi-hemispheric tDCS for the first 30 min and mCIMT with 120 min of active therapy time per session, administered over ten sessions during a 2-week period. The primary endpoint was the change in FM-UE score from baseline to day 15, which was analysed in all participants who have data both at baseline and post-baseline (modified intention-to-treat group). Safety outcomes were analysed in all participants. TRANSPORT2 is registered at clinicaltrials.gov (NCT03826030) and its status is completed. FINDINGS 129 participants were recruited between Sept 9, 2019, and June 14, 2024, and 43 participants were randomly assigned to each group. 54 (42%) of 129 participants were female, and 69 (53%) were White. Two participants in the sham plus mCIMT group withdrew consent before the day 15 assessment and were excluded from the primary analysis. The median baseline FM-UE score was 39·0 (IQR 30·0-46·0) in the sham plus mCIMT group, 39·0 (27·0-48·0) in the 2 mA plus mCIMT group, and 40·0 (27·0-48·0) in the 4 mA plus mCIMT group. For the primary outcome, the adjusted mean change from baseline to day 15 in FM-UE was 4·91 (3·00-6·82) for sham plus mCIMT, 3·87 (2·00-5·74) for 2 mA plus mCIMT, and 5·53 (3·64-7·42) for 4 mA plus mCIMT (p=0·39). No clinically important adverse events were observed in any group and no deaths were reported. INTERPRETATION tDCS at doses of 2 mA or 4 mA, in addition to mCIMT, did not lead to further reduction in motor impairment in patients 1-6 months after stroke, but it was safe, well tolerated, and feasible for clinical practice. tDCS at higher doses (ie, >4 mA) might be a consideration for future trials in addition to balancing known covariates affecting stroke recovery during the group allocation. FUNDING National Institute of Neurological Disorders and Stroke.
Collapse
Affiliation(s)
- Gottfried Schlaug
- Department of Neurology, University of Massachusetts Chan Medical School-Baystate, and Department of Biomedical Engineering, Institute of Applied Life Sciences, University of Massachusetts, Amherst, MA, USA
| | - Christy Cassarly
- Department of Public Health Sciences, Medical University of South Carolina, Charleston, SC, USA
| | - Jody A Feld
- Department of Neurology, School of Medicine, Duke University, Durham, NC, USA
| | - Steve L Wolf
- Department of Rehabilitation Medicine, Emory University, Atlanta, GA, USA
| | - Veronica T Rowe
- Department of Occupational Therapy, Georgia State University, Atlanta, GA, USA
| | - Stacy Fritz
- Arnold School of Public Health, Physical Therapy Program, University of South Carolina, Columbia, SC, USA
| | - Pratik Y Chhatbar
- Department of Neurology, School of Medicine, Duke University, Durham, NC, USA
| | - Anant Shinde
- Department of Neurology, University of Massachusetts Chan Medical School-Baystate, and Department of Biomedical Engineering, Institute of Applied Life Sciences, University of Massachusetts, Amherst, MA, USA
| | - Zemin Su
- Department of Public Health Sciences, Medical University of South Carolina, Charleston, SC, USA
| | - Joseph P Broderick
- Department of Neurology and Rehabilitation Medicine, University of Cincinnati Gardner Neuroscience Institute, University of Cincinnati, Cincinnati, OH, USA
| | - Richard Zorowitz
- Department of Rehabilitation Medicine, Georgetown University, Washington, DC, USA; MedStar National Rehabilitation Network, Washington, DC, USA
| | - Oluwole Awosika
- Department of Neurology and Rehabilitation Medicine, University of Cincinnati Gardner Neuroscience Institute, University of Cincinnati, Cincinnati, OH, USA
| | - Dylan Edwards
- Jefferson Moss Rehabilitation Research Institute, Thomas Jefferson University, Philadelphia, PA, USA
| | - Chen Lin
- Department of Neurology, University of Alabama, Birmingham, AL, USA; Birmingham Veterans Affairs Medical Center, Birmingham, AL USA
| | - Gerard E Franciso
- Department of Physical Medicine and Rehabilitation, University of Texas Health Science Center, University of Texas, Houston, TX, USA
| | - George F Wittenberg
- Departments of Neurology, Physical Medicine & Rehabilitation, and Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA; Technology Enhancing Cognition and Health-Geriatric Research Education and Clinical Center and Human Engineering Research Labs, Veterans Affairs Pittsburgh Healthcare System, Pittsburgh, PA, USA
| | - Svetlana Pundik
- Cleveland Veterans Affairs Medical Center, Cleveland, OH, USA; Department of Neurology, Case Western Reserve University, Cleveland, OH, USA
| | - Christopher Gregory
- Department of Health Science, Medical University of South Carolina, Charleston, SC, USA
| | - Michael R Borich
- Department of Rehabilitation Medicine, Emory University, Atlanta, GA, USA
| | | | - Wuwei Feng
- Department of Neurology, School of Medicine, Duke University, Durham, NC, USA.
| |
Collapse
|
13
|
Sánchez-León CA, Sánchez-Garrido Campos G, Fernández M, Sánchez-López Á, Medina JF, Márquez-Ruiz J. Somatodendritic orientation determines tDCS-induced neuromodulation of Purkinje cell activity in awake mice. eLife 2025; 13:RP100941. [PMID: 40228055 PMCID: PMC11996176 DOI: 10.7554/elife.100941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/16/2025] Open
Abstract
Transcranial direct-current stimulation (tDCS) of the cerebellum is a promising non-invasive neuromodulatory technique being proposed for the treatment of neurological and neuropsychiatric disorders. However, there is a lack of knowledge about how externally applied currents affect neuronal spiking activity in cerebellar circuits in vivo. We investigated how Cb-tDCS affects the firing rate of Purkinje cells (PC) and non-PC in the mouse cerebellar cortex to understand the underlying mechanisms behind the polarity-dependent modulation of neuronal activity induced by tDCS. Mice (n=9) were prepared for the chronic recording of local field potentials (LFPs) to assess the actual electric field gradient imposed by Cb-tDCS in our experimental design. Single-neuron extracellular recording of PCs in awake (n=24) and anesthetized (n=27) mice was combined with juxtacellular recordings and subsequent staining of PC with neurobiotin under anesthesia (n=8) to correlate their neuronal orientation with their response to Cb-tDCS. Finally, a high-density Neuropixels recording system was used to demonstrate the relevance of neuronal orientation during the application of Cb-tDCS in awake mice (n=6). In this study, we observe that Cb-tDCS induces a heterogeneous polarity-dependent modulation of the firing rate of PCs and non-PC in the mouse cerebellar cortex. We demonstrate that the apparently heterogeneous effects of tDCS on PC activity can be explained by taking into account the somatodendritic orientation relative to the electric field. Our findings highlight the need to consider neuronal orientation and morphology to improve tDCS computational models, enhance stimulation protocol reliability, and optimize effects in both basic and clinical applications.
Collapse
Affiliation(s)
- Carlos A Sánchez-León
- Department of Physiology, Anatomy and Cell Biology, Pablo de Olavide University, Ctra. de UtreraSevilleSpain
- Department of Neurology and Neurobiology, University of California, Los AngelesLos AngelesUnited States
| | | | - Marta Fernández
- Department of Psychiatry, University of California, Los AngelesLos AngelesUnited States
- Department of Pharmacology, University of the Basque Country (UPV/EHU)LeioaSpain
| | | | - Javier F Medina
- Department of Neuroscience, Baylor College of MedicineHoustonUnited States
| | - Javier Márquez-Ruiz
- Department of Physiology, Anatomy and Cell Biology, Pablo de Olavide University, Ctra. de UtreraSevilleSpain
| |
Collapse
|
14
|
Kim MJ, Youn J, Lee HJ, Lee S, Kim T, Jung Y, Shin Y, Choi BT, Jeong J, Shin HK. Hybrid Electro-optical Stimulation Improves Ischemic Brain Damage by Augmenting the Glymphatic System. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2417449. [PMID: 39927473 PMCID: PMC11967803 DOI: 10.1002/advs.202417449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 01/28/2025] [Indexed: 02/11/2025]
Abstract
Ischemic brain injury not only results in significant neurological, motor, and cognitive impairment but also contributes to the accumulation of toxic solutes and proinflammatory cytokines in the infarction region, exacerbating ischemic brain damage. The glymphatic system, which is crucial for brain waste clearance and homeostasis, is impaired by ischemic injury, highlighting the importance of developing therapeutic strategies for poststroke complications. Herein, a novel hybrid electro-optical stimulation device is proposed that integrates near-infrared micro-light-emitting diode with transparent microneedles, enabling efficient noninvasive stimulation of the cortical area for ischemic stroke treatment. This study investigates whether this hybrid electro-optical stimulation enhances the glymphatic system function and ameliorates ischemic brain injury in the middle cerebral artery occlusion and reperfusion (MCAO/R) mice model. The results demonstrate that hybrid stimulation improves the neurological, motor, and cognitive functions and reduces brain atrophy following MCAO/R. Moreover, hybrid stimulation restores impaired glymphatic system function by modulation of aquaporin-4 (AQP4) polarization and alleviates the accumulation of proinflammatory cytokines such as IL-1β. Notably, AQP4 inhibition partly reverses the improved functional outcomes of hybrid stimulation. The findings suggest that targeting glymphatic drainage using hybrid electro-optical stimulation is a promising therapeutic approach for treating ischemic brain injury.
Collapse
Affiliation(s)
- Min Jae Kim
- Department of Korean Medical ScienceSchool of Korean MedicinePusan National UniversityYangsanGyeongnam50612Republic of Korea
- Graduate Training Program of Korean Medical Therapeutics for Healthy‐AgingPusan National UniversityYangsanGyeongnam50612Republic of Korea
| | - Jiman Youn
- Department of Information Convergence EngineeringPusan National UniversityYangsan50612Republic of Korea
| | - Hong Ju Lee
- Department of Korean Medical ScienceSchool of Korean MedicinePusan National UniversityYangsanGyeongnam50612Republic of Korea
- Graduate Training Program of Korean Medical Therapeutics for Healthy‐AgingPusan National UniversityYangsanGyeongnam50612Republic of Korea
| | - Seo‐Yeon Lee
- Department of PharmacologyWonkwang University School of MedicineIksan54538Republic of Korea
| | - Tae‐Gyu Kim
- School of Healthcare and Biomedical EngineeringChonnam National UniversityYeosu59626Republic of Korea
| | - Young‐Jin Jung
- School of Healthcare and Biomedical EngineeringChonnam National UniversityYeosu59626Republic of Korea
| | - Yong‐Il Shin
- Department of Rehabilitation MedicineSchool of MedicinePusan National UniversityYangsanGyeongnam50612Republic of Korea
| | - Byung Tae Choi
- Department of Korean Medical ScienceSchool of Korean MedicinePusan National UniversityYangsanGyeongnam50612Republic of Korea
- Graduate Training Program of Korean Medical Therapeutics for Healthy‐AgingPusan National UniversityYangsanGyeongnam50612Republic of Korea
| | - Joonsoo Jeong
- Department of Information Convergence EngineeringPusan National UniversityYangsan50612Republic of Korea
- School of Biomedical Convergence EngineeringPusan National UniversityYangsan50612Republic of Korea
| | - Hwa Kyoung Shin
- Department of Korean Medical ScienceSchool of Korean MedicinePusan National UniversityYangsanGyeongnam50612Republic of Korea
- Graduate Training Program of Korean Medical Therapeutics for Healthy‐AgingPusan National UniversityYangsanGyeongnam50612Republic of Korea
| |
Collapse
|
15
|
Matta R, Reato D, Lombardini A, Moreau D, O’Connor RP. Inkjet-printed transparent electrodes: Design, characterization, and initial in vivo evaluation for brain stimulation. PLoS One 2025; 20:e0320376. [PMID: 40168427 PMCID: PMC11960977 DOI: 10.1371/journal.pone.0320376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Accepted: 02/17/2025] [Indexed: 04/03/2025] Open
Abstract
Electrical stimulation is a powerful tool for investigating and modulating brain activity, as well as for treating neurological disorders. However, understanding the precise effects of electrical stimulation on neural activity has been hindered by limitations in recording neuronal responses near the stimulating electrode, such as stimulation artifacts in electrophysiology or obstruction of the field of view in imaging. In this study, we introduce a novel stimulation device fabricated from conductive polymers that is transparent and therefore compatible with optical imaging techniques. The device is manufactured using a combination of microfabrication and inkjet printing techniques and is flexible, allowing better adherence to the brain's natural curvature. We characterized the electrical and optical properties of the electrodes, focusing on the trade-off between the maximum current that can be delivered and optical transmittance. We found that a 1 mm diameter, 350 nm thick PEDOT:PSS electrode could be used to apply a maximum current of 130 μA while maintaining 84% transmittance (approximately 50% under 2-photon imaging conditions). We then evaluated the electrode performance in the brain of an anesthetized mouse by measuring the electric field with a nearby recording electrode and found values up to 30 V/m. Finally, we combined experimental data with a finite-element model of the in vivo experimental setup to estimate the distribution of the electric field underneath the electrode in the mouse brain. Our findings indicate that the device can generate an electric field as high as 300 V/m directly beneath the electrode, demonstrating its potential for studying and manipulating neural activity using a range of electrical stimulation techniques relevant to human applications. Overall, this work presents a promising approach for developing versatile new tools to apply and study electrical brain stimulation.
Collapse
Affiliation(s)
- Rita Matta
- Mines Saint-Etienne, Centre CMP, Departement BEL, F - 13541 Gardanne, France
| | - Davide Reato
- Mines Saint-Etienne, Centre CMP, Departement BEL, F - 13541 Gardanne, France
- Institut de Neurosciences de la Timone, UMR 7289, CNRS and Aix Marseille Université, 13005 Marseille, France
| | - Alberto Lombardini
- Institut de Neurosciences de la Timone, UMR 7289, CNRS and Aix Marseille Université, 13005 Marseille, France
| | - David Moreau
- Mines Saint-Etienne, Centre CMP, Departement BEL, F - 13541 Gardanne, France
| | - Rodney P. O’Connor
- Mines Saint-Etienne, Centre CMP, Departement BEL, F - 13541 Gardanne, France
| |
Collapse
|
16
|
Bao Z, Frewen P. Alpha rhythm transcranial electrical stimulation to inferior parietal cortex increases alpha power and phase synchrony while attending to mind-body self-states. Neuroscience 2025; 570:173-184. [PMID: 39984028 DOI: 10.1016/j.neuroscience.2025.01.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 12/18/2024] [Accepted: 01/07/2025] [Indexed: 02/23/2025]
Abstract
Self-referential processing (SRP) refers to the human brain's response to semantic and somatic self-related information. Recent developments in modulating semantic and somatic SRP using non-invasive brain stimulation supported the efficacy of transcranial direct current stimulation in modulating alpha electroencephalography (alpha-EEG) during SRP. Meanwhile, although alpha transcranial alternating current stimulation (alpha-tACS) shows greater efficacy in modulating alpha-EEG, the efficacy of alpha-tACS for modulating alpha-EEG during SRP has not been evaluated. The current study investigates the effects of alpha-tACS compared to sham stimulation over the medial prefrontal cortex and the bilateral inferior parietal lobule on alpha-EEG during both semantic and somatic SRP in two separate experiments. Semantic SRP was provoked by introspection on life roles (e.g., "friend"), while somatic SRP was provoked by interoception upon sensations occurring in the exterior body (e.g., "shoulders") during the experimental task, and alpha-EEG responses during SRP were compared to those occurring during resting state and an external attention control condition. Results indicated that while alpha-tACS to the medial prefrontal cortex did not produce significant source-level alpha-EEG changes, alpha-tACS to inferior parietal cortex increased alpha-EEG source power and phase synchrony when participants received real stimulation during the first experimental session. An exploratory analysis also indicated that real stimulation reduced alpha-EEG power during semantic but not somatic SRP during the first session but not the second session. Our results demonstrate that while alpha-tACS can modulate alpha-EEG during SRP, the effects may be dependent on the ordering of real vs. sham stimulation sessions and stimulation sites.
Collapse
Affiliation(s)
- Zhongjie Bao
- The Royal Institute of Mental Health Research, University of Ottawa, Ottawa, ON, Canada
| | - Paul Frewen
- Department of Psychiatry, Schulich School of Medicine and Dentistry, Western University, 339 Windermere Road, London, ON N6A 5A5, Canada.
| |
Collapse
|
17
|
Zou R, Jin L, Liu Y, Zhao L, Cao L, Hu X, Yin X. Design and optimization of a high-definition transcranial electrical stimulation device with envelope wave. BIOMED ENG-BIOMED TE 2025:bmt-2024-0284. [PMID: 40079764 DOI: 10.1515/bmt-2024-0284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 02/19/2025] [Indexed: 03/15/2025]
Abstract
OBJECTIVES Transcranial electrical stimulation (tES) has been widely used in neuroscience research, and the spatial focusing and penetration of the process are currently the main constraints on the effectiveness of treatment. METHODS A high-definition electrical stimulation (HD-tES) device with envelope waves was designed. The device utilized a 4 × 1 electrode structure and was designed with an impedance adjustment circuit to evenly distribute the current among the four return channels. The output performance and safety of the device were verified in in vitro experiments. The spatial focusing of the 4 × 1 electrode structure and the high penetration advantage of envelope waves are explored through simulations. Finally, experiments were performed on 10 healthy adults. RESULTS The 4 × 1 electrode structure has the best spatial focusing effect. Current frequencies above 1 kHz may have higher tissue penetration. In addition, the safety of envelope wave stimulation has been verified in human trials, and no adverse reactions occurred during stimulation. CONCLUSIONS The low and medium frequency (<10 kHz) envelope wave HD-tES device is expected to have a positive impact in the field of medicine and neuroscience.
Collapse
Affiliation(s)
- Renling Zou
- University of Shanghai for Science and Technology, Shanghai, China
| | - Linpeng Jin
- University of Shanghai for Science and Technology, Shanghai, China
| | - Yuhao Liu
- University of Shanghai for Science and Technology, Shanghai, China
| | - Liang Zhao
- University of Shanghai for Science and Technology, Shanghai, China
| | - Li Cao
- University of Shanghai for Science and Technology, Shanghai, China
| | - Xiufang Hu
- University of Shanghai for Science and Technology, Shanghai, China
| | - Xuezhi Yin
- Shanghai Berry Electronic Technology Co., Ltd., Shanghai, China
| |
Collapse
|
18
|
Sánchez-Garrido Campos G, Zafra ÁM, Estévez-Rodríguez M, Cordones I, Ruffini G, Márquez-Ruiz J. Preclinical insights into gamma-tACS: foundations for clinical translation in neurodegenerative diseases. Front Neurosci 2025; 19:1549230. [PMID: 40143845 PMCID: PMC11936909 DOI: 10.3389/fnins.2025.1549230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Accepted: 02/26/2025] [Indexed: 03/28/2025] Open
Abstract
Gamma transcranial alternating current stimulation (gamma-tACS) represents a novel neuromodulation technique with promising therapeutic applications across neurodegenerative diseases. This mini-review consolidates recent preclinical and clinical findings, examining the mechanisms by which gamma-tACS influences neural oscillations, enhances synaptic plasticity, and modulates neuroimmune responses. Preclinical studies have demonstrated the capacity of gamma-tACS to synchronize neuronal firing, support long-term neuroplasticity, and reduce markers of neuroinflammation, suggesting its potential to counteract neurodegenerative processes. Early clinical studies indicate that gamma-tACS may improve cognitive functions and network connectivity, underscoring its ability to restore disrupted oscillatory patterns central to cognitive performance. Given the intricate and multifactorial nature of gamma oscillations, the development of tailored, optimized tACS protocols informed by extensive animal research is crucial. Overall, gamma-tACS presents a promising avenue for advancing treatments that support cognitive resilience in a range of neurodegenerative conditions.
Collapse
Affiliation(s)
| | - Ángela M. Zafra
- Department of Physiology, Anatomy and Cell Biology, Pablo de Olavide University, Seville, Spain
| | - Marta Estévez-Rodríguez
- Department of Physiology, Anatomy and Cell Biology, Pablo de Olavide University, Seville, Spain
| | - Isabel Cordones
- Department of Physiology, Anatomy and Cell Biology, Pablo de Olavide University, Seville, Spain
| | - Giulio Ruffini
- Brain Modeling Department, Neuroelectrics Barcelona, Barcelona, Spain
| | - Javier Márquez-Ruiz
- Department of Physiology, Anatomy and Cell Biology, Pablo de Olavide University, Seville, Spain
| |
Collapse
|
19
|
Geffen A, Bland N, Sale M. μ-Transcranial Alternating Current Stimulation Induces Phasic Entrainment and Plastic Facilitation of Corticospinal Excitability. Eur J Neurosci 2025; 61:e70042. [PMID: 40040311 PMCID: PMC11880748 DOI: 10.1111/ejn.70042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 02/04/2025] [Accepted: 02/19/2025] [Indexed: 03/06/2025]
Abstract
Transcranial alternating current stimulation (tACS) has been proposed to modulate neural activity through two primary mechanisms: entrainment and neuroplasticity. The current study aimed to probe both of these mechanisms in the context of the sensorimotor μ-rhythm using transcranial magnetic stimulation (TMS) and electroencephalography (EEG) to assess entrainment of corticospinal excitability (CSE) during stimulation (i.e., online) and immediately following stimulation, as well as neuroplastic aftereffects on CSE and μ EEG power. Thirteen participants received three sessions of stimulation. Each session consisted of 90 trials of μ-tACS tailored to each participant's individual μ frequency (IMF), with each trial consisting of 16 s of tACS followed by 8 s of rest (for a total of 24 min of tACS and 12 min of rest per session). Motor-evoked potentials (MEPs) were acquired at the start and end of the session (n = 41), and additional MEPs were acquired across the different phases of tACS at three epochs within each tACS trial (n = 90 for each epoch): early online, late online and offline echo. Resting EEG activity was recorded at the start, end and throughout the tACS session. The data were then pooled across the three sessions for each participant to maximise the MEP sample size per participant. We present preliminary evidence of CSE entrainment persisting immediately beyond tACS and have also replicated the plastic CSE facilitation observed in previous μ-tACS studies, thus supporting both entrainment and neuroplasticity as mechanisms by which tACS can modulate neural activity.
Collapse
Affiliation(s)
- Asher Geffen
- School of Health and Rehabilitation SciencesThe University of QueenslandSt LuciaQueenslandAustralia
| | - Nicholas Bland
- School of Health and Rehabilitation SciencesThe University of QueenslandSt LuciaQueenslandAustralia
| | - Martin V. Sale
- School of Health and Rehabilitation SciencesThe University of QueenslandSt LuciaQueenslandAustralia
| |
Collapse
|
20
|
Lipp C, Laamari L, Bertsch A, Podlesek D, Bensafi M, Hummel T, Brugger J. Devices for the electrical stimulation of the olfactory system: A review. Biosens Bioelectron 2025; 271:117063. [PMID: 39729754 DOI: 10.1016/j.bios.2024.117063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 12/09/2024] [Accepted: 12/12/2024] [Indexed: 12/29/2024]
Abstract
The loss of olfactory function has a profound impact on quality of life, affecting not only sensory perception but also memory, emotion, and overall well-being. Despite this, advancements in olfactory prostheses have lagged significantly behind those made for vision and hearing restoration. This review offers a comprehensive analysis of the current state of devices for electrical stimulation of the olfactory system. We begin by providing an overview of the olfactory system's structure and function, emphasizing the neural pathways involved in smell perception. Following this, we explore the key challenges associated with chronic implantation and electrical stimulation, material biocompatibility, inflammation risks, and ensuring long-term functionality and durability. A detailed analysis of existing neural stimulation devices-including ECoG, intracortical, and depth electrodes-is presented, assessing their potential for application in olfactory stimulation. We also discuss the limitations and pitfalls of current approaches and explore new emerging technologies aimed at overcoming these obstacles. A comprehensive literature review about the olfactory system electrical stimulation is reported, and results are analyzed to identify the most promising routes. Finally, the review highlights emerging technologies, ongoing research, and the ethical considerations associated with olfactory implants, along with future directions for developing more effective, safe, and durable solutions to restore the sense of smell for individuals with olfactory disorders.
Collapse
Affiliation(s)
- Clémentine Lipp
- Laboratory of Microsystems LMIS1, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland.
| | - Lara Laamari
- Laboratory of Microsystems LMIS1, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland
| | - Arnaud Bertsch
- Laboratory of Microsystems LMIS1, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland
| | - Dino Podlesek
- Department of Neurosurgery, University Clinic "Carl Gustav Carus", TU Dresden, Germany
| | - Moustafa Bensafi
- Centre de Recherche en Neurosciences de Lyon, INSERM U1028, CNRS UMR5292, Université Lyon 1 Centre Hospitalier Le Vinatier, 69675, Bron, France
| | - Thomas Hummel
- Smell & Taste Clinic, Department of Otorhinolaryngology, Technische Universität Dresden, Fetscherstrasse 74, Dresden, 01307, Germany
| | - Jürgen Brugger
- Laboratory of Microsystems LMIS1, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland
| |
Collapse
|
21
|
Rosenthal ZP, Majeski JB, Somarowthu A, Quinn DK, Lindquist BE, Putt ME, Karaj A, Favilla CG, Baker WB, Hosseini G, Rodriguez JP, Cristancho MA, Sheline YI, Shuttleworth CW, Abbott CC, Yodh AG, Goldberg EM. Electroconvulsive therapy generates a postictal wave of spreading depolarization in mice and humans. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.10.31.621357. [PMID: 39554135 PMCID: PMC11565954 DOI: 10.1101/2024.10.31.621357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
Electroconvulsive therapy (ECT) is a fast-acting, highly effective, and safe treatment for medication-resistant depression. Historically, the clinical benefits of ECT have been attributed to generating a controlled seizure; however, the underlying neurobiology is understudied and unresolved. Using optical neuroimaging of neural activity and hemodynamics in a mouse model of ECT, we demonstrated that a second brain event follows seizure: cortical spreading depolarization (CSD). We found that ECT pulse parameters and electrode configuration directly shaped the wave dynamics of seizure and subsequent CSD. To translate these findings to human patients, we used non-invasive diffuse optical monitoring of cerebral blood flow and oxygenation during routine ECT treatments. We observed that human brains reliably generate hyperemic waves after ECT seizure which are highly consistent with CSD. These results challenge a long-held assumption that seizure is the primary outcome of ECT and point to new opportunities for optimizing ECT stimulation parameters and treatment outcomes.
Collapse
Affiliation(s)
- Zachary P Rosenthal
- Psychiatry Residency Physician-Scientist Research Track, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Joseph B. Majeski
- Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, PA, USA
| | - Ala Somarowthu
- Division of Neurology, Department of Pediatrics, The Children’s Hospital of Philadelphia, PA, USA
| | - Davin K Quinn
- Department of Psychiatry, University of New Mexico School of Medicine, Albuquerque, NM, USA
| | - Britta E. Lindquist
- Department of Neurology, University of California San Francisco School of Medicine, San Francisco, CA, USA
| | - Mary E. Putt
- Department of Biostatistics, Epidemiology & Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Antoneta Karaj
- Department of Biostatistics, Epidemiology & Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Chris G Favilla
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Wesley B. Baker
- Division of Neurology, Department of Pediatrics, The Children’s Hospital of Philadelphia, PA, USA
| | - Golkoo Hosseini
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Jenny P Rodriguez
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Mario A Cristancho
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Center for Neuromodulation in Depression and Stress, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Yvette I Sheline
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Center for Neuromodulation in Depression and Stress, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - C. William Shuttleworth
- Department of Neurosciences, University of New Mexico School of Medicine, Albuquerque, NM, USA
| | - Christopher C. Abbott
- Department of Psychiatry, University of New Mexico School of Medicine, Albuquerque, NM, USA
| | - Arjun G Yodh
- Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, PA, USA
| | - Ethan M Goldberg
- Division of Neurology, Department of Pediatrics, The Children’s Hospital of Philadelphia, PA, USA
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
22
|
Daoud M, Medina-Villalon S, Garnier E, Bratu IF, Damiani G, Salvador R, Wendling F, Ruffini G, Bénar C, Pizzo F, Bartolomei F. Epileptogenic zone characteristics determine effectiveness of electrical transcranial stimulation in epilepsy treatment. Brain Commun 2025; 7:fcaf012. [PMID: 39974175 PMCID: PMC11837341 DOI: 10.1093/braincomms/fcaf012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 11/30/2024] [Accepted: 02/14/2025] [Indexed: 02/21/2025] Open
Abstract
Transcranial direct current stimulation shows promise as a non-invasive therapeutic method for patients with focal drug-resistant epilepsy. However, there is considerable variability in individual responses to transcranial direct current stimulation, and the factors influencing treatment effectiveness in targeted regions are not well understood. We aimed to assess how the extent and depth of the epileptogenic zone and associated networks impact patient responses to transcranial direct current stimulation therapy. We conducted a retrospective analysis of stereoelectroencephalography data from 23 patients participating in a personalized multichannel transcranial direct current stimulation protocol. We evaluated the extent and depth of the epileptogenic zone network, propagation zone network, and the combined network of the entire epileptogenic and propagation zones, correlating these factors with clinical response measured by the reduction in seizure frequency following repeated transcranial direct current stimulation sessions. Among the patients, 10 (43.5%) were classified as responders (R), experiencing a significant (>50%) decrease in seizure frequency, while 13 were non-responders, showing minimal improvement or increased seizure frequency. Importantly, we found a significant positive correlation between the extent of the epileptogenic zone network and changes in seizure frequency. A smaller epileptogenic zone network extent was associated with better transcranial direct current stimulation efficacy, with responders demonstrating a significantly smaller epileptogenic and propagation zones compared with non-responders. Additionally, non-responders tended to have a significantly deeper epileptogenic zone network compared with responders. Our results highlight the significant impact of the extent and depth of the epileptogenic zone network on transcranial direct current stimulation efficacy in patients with refractory focal epilepsy. Responders typically exhibited a smaller and shallower epileptogenic zone network compared with non-responders. These findings suggest that utilizing individualized epileptogenic zone network characteristics could help refine patient selection for personalized transcranial direct current stimulation protocols, potentially improving therapeutic outcomes.
Collapse
Affiliation(s)
- Maëva Daoud
- Epileptology Department and Institut de Neurosciences des Systèmes, INSERM/AMU, 13005 Marseille, France
| | | | - Elodie Garnier
- Epileptology Department and Institut de Neurosciences des Systèmes, INSERM/AMU, 13005 Marseille, France
| | - Ionuț-Flavius Bratu
- Epileptology Department and Institut de Neurosciences des Systèmes, INSERM/AMU, 13005 Marseille, France
| | | | | | | | | | - Christian Bénar
- Epileptology Department and Institut de Neurosciences des Systèmes, INSERM/AMU, 13005 Marseille, France
| | - Francesca Pizzo
- APHM, Timone Hospital, Epileptology and Cerebral Rhythmology, 13005 Marseille, France
| | - Fabrice Bartolomei
- APHM, Timone Hospital, Epileptology and Cerebral Rhythmology, 13005 Marseille, France
| |
Collapse
|
23
|
Chen IC, Lin HY, Liu ZY, Cheng WJ, Yeh TY, Yang WB, Tran HY, Lai MJ, Wang CH, Kao TY, Hung CY, Huang YL, Liou KC, Hsieh CM, Hsu TI, Liou JP. Repurposing Linezolid in Conjunction with Histone Deacetylase Inhibitor Access in the Realm of Glioblastoma Therapies. J Med Chem 2025; 68:2779-2803. [PMID: 39836457 PMCID: PMC11831592 DOI: 10.1021/acs.jmedchem.4c02086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 11/23/2024] [Accepted: 12/10/2024] [Indexed: 01/22/2025]
Abstract
Since decades after temozolomide was approved, no effective drugs have been developed. Undoubtedly, blood-brain barrier (BBB) penetration is a severe issue that should be overcome in glioblastoma multiforme (GBM) drug development. In this research, we were inspired by linezolid through structural modification with several bioactive moieties to achieve the desired brain delivery. The results indicated that the histone deacetylase modification, referred to as compound 1, demonstrated promising cytotoxic effects in various brain tumor cell lines. Further comprehensive mechanism studies indicated that compound 1 induced acetylation, leading to DNA double-strand breaks, and induced the ubiquitination of RAD51, disrupting the DNA repair process. Furthermore, compound 1 also exhibited dramatic improvement in the orthotopic GBM mouse model, demonstrating its efficacy and satisfying BBB penetration. Therefore, the reported compound 1, provided with an independent therapeutic pathway, satisfying elongation in survival and tumor size reduction, and the ability to penetrate the BBB, was potent to achieve further development.
Collapse
Affiliation(s)
- I-Chung Chen
- School
of Pharmacy, College of Pharmacy, Taipei
Medical University, Taipei 110, Taiwan
| | - Hong-Yi Lin
- Taipei
Neuroscience Institute, New Taipei
City 235, Taiwan
- Graduate
Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
- Taiwan Brain Disease Foundation, Taipei 100, Taiwan
| | - Zheng-Yang Liu
- School
of Pharmacy, College of Pharmacy, Taipei
Medical University, Taipei 110, Taiwan
| | - Wei-Jie Cheng
- TMU
Research Center for Drug Discovery, Taipei
Medical University, Taipei 110, Taiwan
| | - Tzu-Yi Yeh
- School
of Pharmacy, College of Pharmacy, Taipei
Medical University, Taipei 110, Taiwan
| | - Wen-Bin Yang
- Ph.D.
Program in Medical Neuroscience, College of Medical Science and Technology, Taipei Medical University and National Health Research
Institutes, Taipei 110, Taiwan
- International
Master Program in Medical Neuroscience, College of Medical Science
and Technology, Taipei Medical University Taipei 110, Taiwan
- TMU Research
Center of Neuroscience, Taipei Medical University, Taipei 110, Taiwan
| | - Hoang Yen Tran
- School
of Pharmacy, College of Pharmacy, Taipei
Medical University, Taipei 110, Taiwan
- Department
of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Can Tho University of Medicine and Pharmacy, Can Tho 902342, Vietnam
| | - Mei-Jung Lai
- TMU
Research Center for Drug Discovery, Taipei
Medical University, Taipei 110, Taiwan
| | - Chung-Han Wang
- Ph.D.
Program in Medical Neuroscience, College of Medical Science and Technology, Taipei Medical University and National Health Research
Institutes, Taipei 110, Taiwan
| | - Tzu-Yuan Kao
- Ph.D.
Program in Medical Neuroscience, College of Medical Science and Technology, Taipei Medical University and National Health Research
Institutes, Taipei 110, Taiwan
| | - Chia-Yang Hung
- Department
of Immuno-Oncology, Beckman Research Institute, City of Hope, Duarte, California 91010, United States
| | - Ya-Lin Huang
- School
of Pharmacy, College of Pharmacy, Taipei
Medical University, Taipei 110, Taiwan
| | - Ke-Chi Liou
- School
of Pharmacy, College of Pharmacy, Taipei
Medical University, Taipei 110, Taiwan
| | - Chien-Ming Hsieh
- School
of Pharmacy, College of Pharmacy, Taipei
Medical University, Taipei 110, Taiwan
- TMU
Research Center for Drug Discovery, Taipei
Medical University, Taipei 110, Taiwan
- Ph.D.
Program in Drug Discovery and Development Industry, College of Pharmacy, Taipei Medical University, Taipei 110, Taiwan
- Department of Pharmaceutics,
School of Pharmacy, University College, London WC1N 1AX, U.K.
| | - Tsung-I Hsu
- Ph.D.
Program in Medical Neuroscience, College of Medical Science and Technology, Taipei Medical University and National Health Research
Institutes, Taipei 110, Taiwan
- International
Master Program in Medical Neuroscience, College of Medical Science
and Technology, Taipei Medical University Taipei 110, Taiwan
- TMU Research
Center of Neuroscience, Taipei Medical University, Taipei 110, Taiwan
- TMU
Research Center for Drug Discovery, Taipei
Medical University, Taipei 110, Taiwan
- Ph.D.
Program in Drug Discovery and Development Industry, College of Pharmacy, Taipei Medical University, Taipei 110, Taiwan
- TMU Research Center of Cancer Translational
Medicine, Taipei Medical University, Taipei 110, Taiwan
| | - Jing-Ping Liou
- School
of Pharmacy, College of Pharmacy, Taipei
Medical University, Taipei 110, Taiwan
- TMU
Research Center for Drug Discovery, Taipei
Medical University, Taipei 110, Taiwan
- Ph.D.
Program in Drug Discovery and Development Industry, College of Pharmacy, Taipei Medical University, Taipei 110, Taiwan
- TMU Research Center of Cancer Translational
Medicine, Taipei Medical University, Taipei 110, Taiwan
| |
Collapse
|
24
|
Sánchez-León CA, Campos GSG, Fernández M, Sánchez-López A, Medina JF, Márquez-Ruiz J. Somatodendritic orientation determines tDCS-induced neuromodulation of Purkinje cell activity in awake mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2023.02.18.529047. [PMID: 36824866 PMCID: PMC9949160 DOI: 10.1101/2023.02.18.529047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2023]
Abstract
Transcranial direct-current stimulation (tDCS) of the cerebellum is a promising non-invasive neuromodulatory technique being proposed for the treatment of neurological and neuropsychiatric disorders. However, there is a lack of knowledge about how externally applied currents affect neuronal spiking activity in cerebellar circuits in vivo. We investigated how Cb-tDCS affects the firing rate of Purkinje cells (PC) and non-PC in the mouse cerebellar cortex to understand the underlying mechanisms behind the polarity-dependent modulation of neuronal activity induced by tDCS. Mice (n = 9) were prepared for the chronic recording of LFPs to assess the actual electric field gradient imposed by Cb-tDCS in our experimental design. Single-neuron extracellular recording of PCs in awake (n = 24) and anesthetized (n = 27) mice was combined with juxtacellular recordings and subsequent staining of PC with neurobiotin under anesthesia (n = 8) to correlate their neuronal orientation with their response to Cb-tDCS. Finally, a high-density Neuropixels recording system was used to demonstrate the relevance of neuronal orientation during the application of Cb-tDCS in awake mice (n = 6). In this study, we observe that Cb-tDCS induces a heterogeneous polarity-dependent modulation of the firing rate of Purkinje cells (PC) and non-PC in the mouse cerebellar cortex. We demonstrate that the apparently heterogeneous effects of tDCS on PC activity can be explained by taking into account the somatodendritic orientation relative to the electric field. Our findings highlight the need to consider neuronal orientation and morphology to improve tDCS computational models, enhance stimulation protocol reliability, and optimize effects in both basic and clinical applications.
Collapse
Affiliation(s)
- Carlos A Sánchez-León
- Department of Physiology, Anatomy and Cell Biology, Pablo de Olavide University, Ctra. de Utrera, km. 1, 41013, Seville, Spain
- Department of Neurology and Neurobiology, University of California Los Angeles, Los Angeles 90095, USA
| | | | - Marta Fernández
- Department of Psychiatry, University of California Los Angeles, Los Angeles 90095, USA
- Department of Pharmacology, University of the Basque Country (UPV/EHU), Leioa 48940, Spain
| | | | - Javier F Medina
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | - Javier Márquez-Ruiz
- Department of Physiology, Anatomy and Cell Biology, Pablo de Olavide University, Ctra. de Utrera, km. 1, 41013, Seville, Spain
| |
Collapse
|
25
|
Kaiser M, Wang Y, Ten Oever S, Duecker F, Sack AT, van de Ven V. Simultaneous tACS-fMRI reveals state- and frequency-specific modulation of hippocampal-cortical functional connectivity. COMMUNICATIONS PSYCHOLOGY 2025; 3:19. [PMID: 39900978 PMCID: PMC11791075 DOI: 10.1038/s44271-025-00202-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 01/23/2025] [Indexed: 02/05/2025]
Abstract
Non-invasive indirect hippocampal-targeted stimulation is of broad scientific and clinical interest. Transcranial alternating current stimulation (tACS) is appealing because it allows oscillatory stimulation to study hippocampal theta (3-8 Hz) activity. We found that tACS administered during functional magnetic resonance imaging yielded a frequency-, mental state- and topologically-specific effect of theta stimulation (but not other frequencies) enhancing right (but not left) hippocampal-cortical connectivity during resting blocks but not during task blocks. Control analyses showed that this effect was not due to possible stimulation-induced changes in signal quality or head movement. Our findings are promising for targeted network modulations of deep brain structures for research and clinical intervention.
Collapse
Affiliation(s)
- Max Kaiser
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, PO Box 616, 6200MD, The Netherlands
| | - Yuejuan Wang
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, PO Box 616, 6200MD, The Netherlands
| | - Sanne Ten Oever
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, PO Box 616, 6200MD, The Netherlands
| | - Felix Duecker
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, PO Box 616, 6200MD, The Netherlands
| | - Alexander T Sack
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, PO Box 616, 6200MD, The Netherlands
| | - Vincent van de Ven
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, PO Box 616, 6200MD, The Netherlands.
| |
Collapse
|
26
|
Sanchez-Romero R, Akyuz S, Krekelberg B. EFMouse: a Matlab toolbox to model stimulation-induced electric fields in the mouse brain. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.07.25.605227. [PMID: 39091807 PMCID: PMC11291114 DOI: 10.1101/2024.07.25.605227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
Compared to the rapidly growing literature on transcranial electrical stimulation (tES) in humans, research into the mechanisms underlying neuromodulation by tES using in-vivo animal models is growing but still relatively rare. Such research, however, is key to overcome experimental limitations in humans and essential to build a detailed understanding of the in-vivo consequences of tES that can ultimately lead to development of targeted and effective therapeutic applications of non-invasive brain stimulation. The sheer difference in scale and geometry between animal models and the human brain contributes to the complexity of designing and interpreting animal studies. Here, we introduce EFMouse, a toolbox that extends previous approaches to model intracranial electric fields and is optimized to generate predictions that can be tested with in-vivo intracranial recordings in mice. Although the EFMouse toolbox has general applicability and could be used to predict intracranial fields for any electrical stimulation study using mice, we illustrate its usage by comparing fields in a tES high-density multi-electrode montage with a more traditional two-electrode montage. Our simulations show that both montages can produce strong focal homogeneous electric fields in targeted areas. However, the high-density montage produces a field that is more perpendicular to the visual cortical surface, which is expected to result in larger changes in neuronal excitability. The EFMouse toolbox is publicly available at https://github.com/klabhub/EFMouse.
Collapse
Affiliation(s)
- Ruben Sanchez-Romero
- Center for Molecular and Behavioral Neuroscience, Rutgers University, Newark, NJ, 07102, USA
| | - Sibel Akyuz
- Center for Molecular and Behavioral Neuroscience, Rutgers University, Newark, NJ, 07102, USA
| | - Bart Krekelberg
- Center for Molecular and Behavioral Neuroscience, Rutgers University, Newark, NJ, 07102, USA
| |
Collapse
|
27
|
Griffin S, Khanna P, Choi H, Thiesen K, Novik L, Morecraft RJ, Ganguly K. Ensemble reactivations during brief rest drive fast learning of sequences. Nature 2025; 638:1034-1042. [PMID: 39814880 DOI: 10.1038/s41586-024-08414-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Accepted: 11/14/2024] [Indexed: 01/18/2025]
Abstract
During motor learning, breaks in practice are known to facilitate behavioural optimizations. Although this process has traditionally been studied over long breaks that last hours to days1-6, recent studies in humans have demonstrated that rapid performance gains during early motor sequence learning are most pronounced after very brief breaks lasting seconds to minutes7-10. However, the precise causal neural mechanisms that facilitate performance gains after brief breaks remain poorly understood. Here we recorded neural ensemble activity in the motor cortex of macaques while they performed a visuomotor sequence learning task interspersed with brief breaks. We found that task-related neural cofiring patterns were reactivated during brief breaks. The rate and content of reactivations predicted the magnitude and pattern of subsequent performance gains. Of note, we found that performance gains and reactivations were positively correlated with cortical ripples (80-120 Hz oscillations) but anti-correlated with β bursts (13-30 Hz oscillations), which ultimately dominated breaks after the fast learning phase plateaued. We then applied 20 Hz epidural alternating current stimulation (ACS) to motor cortex, which reduced reactivation rates in a phase-specific and dose-dependent manner. Notably, 20 Hz ACS also eliminated performance gains. Overall, our results indicate that the reactivations of task ensembles during brief breaks are causal drivers of subsequent performance gains. β bursts compete with this process, possibly to support stable performance.
Collapse
Affiliation(s)
- Sandon Griffin
- Neuroscience Graduate Program, University of California, San Francisco, San Francisco, CA, USA
- Medical Scientist Training Program, University of California, San Francisco, San Francisco, CA, USA
- Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
- California National Primate Research Center, University of California, Davis, Davis, CA, USA
| | - Preeya Khanna
- Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
- California National Primate Research Center, University of California, Davis, Davis, CA, USA
| | - Hoseok Choi
- Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
- California National Primate Research Center, University of California, Davis, Davis, CA, USA
| | - Katherina Thiesen
- California National Primate Research Center, University of California, Davis, Davis, CA, USA
| | - Lisa Novik
- California National Primate Research Center, University of California, Davis, Davis, CA, USA
| | - Robert J Morecraft
- Laboratory of Neurological Sciences, Division of Basic Biomedical Sciences, Sanford School of Medicine, The University of South Dakota, Vermillion, SD, USA
| | - Karunesh Ganguly
- Department of Neurology, University of California, San Francisco, San Francisco, CA, USA.
- California National Primate Research Center, University of California, Davis, Davis, CA, USA.
| |
Collapse
|
28
|
Farahani F, Vöröslakos M, Birnbaum AM, FallahRad M, Williams PTJA, Martin JH, Parra LC. Repeated tDCS at clinically-relevant field intensity can boost concurrent motor learning in rats. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.15.633248. [PMID: 39868267 PMCID: PMC11761702 DOI: 10.1101/2025.01.15.633248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
Electric fields used in clinical trials with transcranial direct current stimulation (tDCS) are small, with magnitudes that have yet to demonstrate measurable effects in preclinical animal models. We hypothesized that weak stimulation will nevertheless produce sizable effects, provided that it is applied concurrently with behavioral training, and repeated over multiple sessions. We tested this here in a rodent model of dexterous motor-skill learning. We developed a preparation that allows concurrent stimulation during the performance of a pellet-reaching task in freely behaving rats. The task was automated to minimize experimenter bias. We measured field magnitudes intracranially to calibrate the stimulation current. In this study, only male rats were used. Animals were trained for 20 min with concurrent epicranial tDCS over 10 daily sessions. Behavior was recorded with high-speed video to quantify reaching dynamics. We also measured motor-evoked potentials (MEPs) bilaterally with epidural microstimulation. The new electrode montage enabled stable stimulation over 10 sessions with a field intensity of 2V/m at the motor cortex. The number of successful reaches improved across days of training, and the rate of learning was higher in the anodal group as compared to sham-control animals (F(1)=7.12, p=0.008, N=24). MEPs were not systematically affected by tDCS. Posthoc analysis suggests that tDCS modulated motor learning only for right-pawed animals, improving success of reaching, but limiting stereotypy in these animals. Repeated and concurrent anodal tDCS can boost motor-skill learning at clinically-relevant field intensities. In this animal model the effect interacted with paw preference and was not associated with corticospinal excitability.
Collapse
Affiliation(s)
| | - Mihály Vöröslakos
- Neuroscience Institute, NYU Grossman School of Medicine, New York University
| | | | | | | | - John H Martin
- Molecular, Cellular and Biomedical Science, CUNY School of Medicine
| | - Lucas C Parra
- Biomedical Engineering Department, City College of New York
| |
Collapse
|
29
|
Missey F, Acerbo E, Dickey A, Trajlinek J, Studnicka O, Lubrano C, De Araujo E Silva M, Brady E, Vsiansky V, Szabo JP, Dolezalova I, Fabo D, Pail M, Gutekunst CA, Migliore R, Migliore M, Lagarde S, Carron R, Karimi F, Astorga R, Cassara A, Kuster N, Neufeld E, Bartolomei F, Pedersen NP, Gross R, Jirsa V, Drane D, Brazdil M, Williamson A. Non-invasive Temporal Interference Stimulation of the Hippocampus Suppresses Epileptic Biomarkers in Patients with Epilepsy: Biophysical Differences between Kilohertz and Amplitude Modulated Stimulation. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2025:2024.12.05.24303799. [PMID: 39711722 PMCID: PMC11661391 DOI: 10.1101/2024.12.05.24303799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2024]
Abstract
Medication refractory focal epilepsy creates a significant challenge, with approximately 30% of patients ineligible for surgery due to the involvement of eloquent cortex in the epileptogenic network. For such patients with limited surgical options, electrical neuromodulation represents a promising alternative therapy. In this study, we investigate the potential of non-invasive temporal interference (TI) electrical stimulation to reduce epileptic biomarkers in patients with epilepsy by comparing intracerebral recordings obtained before, during, and after TI stimulation, to recordings during low and high kHz frequency (HF) sham stimulation. Thirteen patients with symptoms of mesiotemporal epilepsy (MTLE) and implanted with stereoelectroencephalography (sEEG) depth electrodes received TI stimulation with an amplitude modulation (AM) frequency of 130Hz (df), where the AM was delivered with lower frequency kHz carriers (1kHz + 1.13kHz), or higher frequency carriers (9kHz + 9.13kHz), targeting the hippocampus, a common epileptic focus and consequently stimulation target in MTLE. Our results show that TI stimulation yields a statistically significant decrease in interictal epileptiform discharges (IEDs) and pathological high-frequency oscillations (HFOs) specifically fast ripples (FR), where the suppression is apparent in the hippocampal focus and propagation from the focus is reduced brain-wide. HF sham stimulation at 1kHz frequency also impacted the IED rate in the cortex, but without reaching the hippocampal focus. The HF sham effect diminished with increasing frequencies (2, 5, and 9kHz, respectively), specifically as a function of depth into the cortex. This depth dependence was not observed with the TI, independent of the employed carrier frequency (low or high kHz). Furthermore, a strong carry-over effect, i.e., suppression of epileptic biomarkers for a period of time after the end of stimulation, was observed for TI but not for kHz. Our findings underscore the possible application of TI in epilepsy, as an additional non-invasive brain stimulation tool, potentially offering opportunities to assess brain region response to electrical neuromodulation before committing to a deep brain stimulation (DBS) or responsive neurostimulation (RNS) implants. Our results further demonstrate distinct biophysical differences between kHz and focal AM stimulation.
Collapse
|
30
|
Zimmermann N, Koenig T, Riesen AS, Morishima Y. Enhancing prefrontal modulation by phase-locking intermittent theta burst stimulation to a concurrent transcranial alternating current stimulation. IMAGING NEUROSCIENCE (CAMBRIDGE, MASS.) 2025; 3:imag_a_00415. [PMID: 40433300 PMCID: PMC7617709 DOI: 10.1162/imag_a_00415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 05/29/2025]
Abstract
Theta burst stimulation (TBS) modulates cortical excitability by applying bursts of transcranial magnetic stimulation (TMS) in theta rhythms. Individual responses to TBS vary however greatly due to various factors, such as anatomical differences or the phase of the ongoing oscillatory activity in which TBS pulses are applied. To combat this variability, we exploit the ability of transcranial alternating current stimulation (tACS) to shape the state of cortical excitability in a phase-dependent manner. While cortical excitability is increased at crests of the tACS-induced current, applying the TBS triplet pulses at these crests has the potential to produce larger neuronal responses and thus increase the likelihood of LTP. In our randomized sham-controlled study, we focused on enhancing prefrontal cortex excitability by phase-locking intermittent TBS (iTBS) to the crests of an induced 5Hz tACS current. Twenty-seven healthy participants received two iTBS sessions, once paired with sham-tACS and once with active tACS in a cross-over design. We evaluated effects of our stimulation protocol on cortical excitability by comparing TMS-induced activity and resting-state Microstates in the EEG before and after the stimulation as well as between the two sessions. We found significant effect of iTBS on channel-wise, global and oscillatory TMS-induced activity, as well as changes in Microstates. The concurrent, phase-locked tACS-iTBS protocol notably decreased the N100 amplitude of the Global Mean Field Power. We also found that baseline TMS-induced oscillatory activity was a key predictor of changes in TMS-related oscillatory activity. In the case of TMS-related gamma oscillations, a significant interaction between our stimulation protocols and baseline activity was observed, indicating that the relationship between baseline and post-iTBS oscillations was strengthened by the concurrent phase-locked tACS-iTBS stimulation protocol. These findings highlight the potential of phase-locked tACS to enhance the effects of iTBS on prefrontal cortical excitability.
Collapse
Affiliation(s)
- Nadja Zimmermann
- Translational Research Center, University Hospital of Psychiatry, University of Bern, Bern, Switzerland
- University Hospital of Child and Adolescent Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland
- Graduate School of Health Sciences, University of Bern, Bern
| | - Thomas Koenig
- Translational Research Center, University Hospital of Psychiatry, University of Bern, Bern, Switzerland
| | - Andrea S. Riesen
- Translational Research Center, University Hospital of Psychiatry, University of Bern, Bern, Switzerland
| | - Yosuke Morishima
- Translational Research Center, University Hospital of Psychiatry, University of Bern, Bern, Switzerland
| |
Collapse
|
31
|
Lescrauwaet E, Sprengers M, Carrette E, Algoet C, Mertens A, Klooster D, Beumer S, Mestrom R, Raedt R, Boon P, Vonck K. Investigating the Working Mechanism of Transcranial Direct Current Stimulation. Neuromodulation 2025; 28:68-75. [PMID: 38878056 DOI: 10.1016/j.neurom.2024.05.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 05/14/2024] [Accepted: 05/15/2024] [Indexed: 01/06/2025]
Abstract
BACKGROUND Transcranial direct current stimulation (tDCS) is used to modulate neuronal activity, but the exact mechanism of action (MOA) is unclear. This study investigates tDCS-induced modulation of the corticospinal excitability and the underlying MOA. By anesthetizing the scalp before applying tDCS and by stimulating the cheeks, we investigated whether stimulation of peripheral and/or cranial nerves contributes to the effects of tDCS on corticospinal excitability. MATERIALS AND METHODS In a randomized cross-over study, four experimental conditions with anodal direct current stimulation were compared in 19 healthy volunteers: 1) tDCS over the motor cortex (tDCS-MI), 2) tDCS over the motor cortex with a locally applied topical anesthetic (TA) on the scalp (tDCS-MI + TA), 3) DCS over the cheek region (DCS-C), and 4) sham tDCS over the motor cortex(sham). tDCS was applied for 20 minutes at 1 mA. Motor evoked potentials (MEPs) were measured before tDCS and immediately, 15, 30, 45, and 60 minutes after tDCS. A questionnaire was used to assess the tolerability of tDCS. RESULTS A significant MEP amplitude increase compared with baseline was found 30 minutes after tDCS-MI, an effect still observed 60 minutes later; no time∗condition interaction effect was detected. In the other three conditions (tDCS-MI + TA, DCS-C, sham), no significant MEP modulation was found. The questionnaire indicated that side effects are significantly lower when the local anesthetic was applied before stimulation than in the other three conditions. CONCLUSIONS The significant MEP amplitude increase observed from 30 minutes on after tDCS-MI supports the modulatory effect of tDCS on corticospinal neurotransmission. This effect lasted one hour after stimulation. The absence of a significant modulation when a local anesthetic was applied suggests that effects of tDCS are not solely established through direct cortical stimulation but that stimulation of peripheral and/or cranial nerves also might contribute to tDCS-induced modulation.
Collapse
Affiliation(s)
- Emma Lescrauwaet
- 4Brain, Department of Neurology, Reference Center for Refractory Epilepsy, Ghent University Hospital, Ghent, Belgium.
| | - Mathieu Sprengers
- 4Brain, Department of Neurology, Reference Center for Refractory Epilepsy, Ghent University Hospital, Ghent, Belgium; Department of Electrical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Evelien Carrette
- 4Brain, Department of Neurology, Reference Center for Refractory Epilepsy, Ghent University Hospital, Ghent, Belgium; Department of Electrical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Chloé Algoet
- 4Brain, Department of Neurology, Reference Center for Refractory Epilepsy, Ghent University Hospital, Ghent, Belgium
| | - Ann Mertens
- 4Brain, Department of Neurology, Reference Center for Refractory Epilepsy, Ghent University Hospital, Ghent, Belgium
| | - Debby Klooster
- 4Brain, Department of Neurology, Reference Center for Refractory Epilepsy, Ghent University Hospital, Ghent, Belgium; Department of Electrical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands; Ghent Experimental Psychiatry Lab, Department of Psychiatry, Ghent University Hospital, Ghent, Belgium
| | - Steven Beumer
- Department of Electrical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Rob Mestrom
- Department of Electrical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Robrecht Raedt
- 4Brain, Department of Neurology, Reference Center for Refractory Epilepsy, Ghent University Hospital, Ghent, Belgium
| | - Paul Boon
- 4Brain, Department of Neurology, Reference Center for Refractory Epilepsy, Ghent University Hospital, Ghent, Belgium; Department of Electrical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Kristl Vonck
- 4Brain, Department of Neurology, Reference Center for Refractory Epilepsy, Ghent University Hospital, Ghent, Belgium
| |
Collapse
|
32
|
Liu Y, Zou R, Zhao L, Jin L, Hu X, Yin X. Simulation Study of Envelope Wave Electrical Nerve Stimulation Based on a Real Head Model. Neuroinformatics 2025; 23:15. [PMID: 39777605 DOI: 10.1007/s12021-024-09711-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/04/2024] [Indexed: 01/11/2025]
Abstract
In recent years, the modulation of brain neural activity by applied electromagnetic fields has become a hot spot in neuroscience research. Transcranial direct current stimulation (tDCS) and transcranial alternating current stimulation (tACS) are two common non-invasive neuromodulation techniques. However, conventional tACS has limited stimulation effects in the deeper parts of the brain. In this study, a method of low and medium frequency envelope wave neurostimulation is proposed, and its effectiveness and safety are evaluated by simulation and human experiment. First, we built a real head model from head MRI image data and used the finite element method to calculate the current distribution of the envelope wave in the brain. Then, a single-compartment neuron model was constructed in NEURON software to simulate the action potential generation of neurons under different frequencies of electrical stimulation. Finally, a human experiment was conducted to investigate the threshold of human perception of envelope wave electrical stimulation. The results show that envelope wave can both increase the depth of stimulation and induce neurons to generate effective action potentials. In envelope wave electrical stimulation, the optimal modulating wave frequency was 50 Hz, and the carrier frequency was 2 kHz-3 kHz. This method is expected to play an important role in the non-invasive treatment of neurological and psychiatric disorders.
Collapse
Affiliation(s)
- Yuhao Liu
- University of Shanghai for Science and Technology, Shanghai, 200000, China
| | - Renling Zou
- University of Shanghai for Science and Technology, Shanghai, 200000, China.
| | - Liang Zhao
- University of Shanghai for Science and Technology, Shanghai, 200000, China
| | - Linpeng Jin
- University of Shanghai for Science and Technology, Shanghai, 200000, China
| | - Xiufang Hu
- University of Shanghai for Science and Technology, Shanghai, 200000, China
| | - Xuezhi Yin
- Shanghai Berry Electronic Technology Co., Ltd., Shanghai, 200000, China
| |
Collapse
|
33
|
Arulchelvan E, Vanneste S. Transcutaneous electrical stimulation enhances episodic memory encoding via a noradrenaline-attention network, with associated neuroinflammatory changes. Brain Stimul 2025; 18:191-207. [PMID: 39827981 DOI: 10.1016/j.brs.2025.01.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 01/09/2025] [Accepted: 01/12/2025] [Indexed: 01/22/2025] Open
Abstract
BACKGROUND Attention plays a central role in learning and memory processes. Prior research has demonstrated how goal-directed attention influences successful performance on both attention and working memory tasks. However, an important question remains about whether long-term memory outcomes can be reliably enhanced by targeting attention processes. OBJECTIVE To test the hypothesis that 40 Hz Non-invasive Transcutaneous Electrical Stimulation of the Greater Occipital Nerve (NITESGON) would enhance long-term memory encoding by upregulating theta activity in the dorsal attention network. We also hypothesised that this would be in association with upregulated noradrenaline activity and downregulated cytokine activity. METHODS In two double-blinded experiments, learning and memory were tested via a Swahili-English word-association task completed on 2 visits (separated by 1 week). 60 individuals were randomized to assess 40 Hz NITESGON's effect compared to active-control (1 Hz) or sham conditions. Before and after stimulation, rs-EEG assessed theta activity in the dorsal attention network, and saliva measures were collected incl. salivary alpha amylase (sAA; a proxy for noradrenaline activity) and cytokines (IL-6, IL-1β and TNF-α). RESULTS Participants receiving 40 Hz NITESGON learned and remembered more words than control or sham groups. There were no significant differences in consolidation between the groups. 40 Hz NITESGON was associated with increased theta activity in the dorsal attention network, and this activation was associated with enhanced learning but not memory performance. The 40 Hz NITESGON group had significantly upregulated sAA post-stimulation, with this associated with learning and memory (supporting a LC-NA mechanism). Modulation of IL-1β and TNF-α were not frequency specific. However, modulation of IL-6 was specific to 40 Hz and was associated with memory outcomes. CONCLUSION 40 Hz NITESGON can activate a noradrenaline - dorsal attention network, to facilitate goal-directed attention during encoding stages of a long-term memory task, in association with neuroinflammatory changes.
Collapse
Affiliation(s)
- Elva Arulchelvan
- Lab for Clinical and Integrative Neuroscience, Trinity Institute for Neuroscience, School of Psychology, Trinity College Dublin, Ireland
| | - Sven Vanneste
- Lab for Clinical and Integrative Neuroscience, Trinity Institute for Neuroscience, School of Psychology, Trinity College Dublin, Ireland; Global Brain Health Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland.
| |
Collapse
|
34
|
Yoon MJ, Kim H, Yoo YJ, Im S, Kim TW, Dhaher YY, Kim D, Lim SH. In silico modeling of electric field modulation by transcranial direct current stimulation in stroke patients with skull burr holes: Implications for safe clinical application. Comput Biol Med 2025; 184:109366. [PMID: 39549527 DOI: 10.1016/j.compbiomed.2024.109366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 09/24/2024] [Accepted: 11/04/2024] [Indexed: 11/18/2024]
Abstract
BACKGROUND Transcranial direct current stimulation (tDCS) has emerged as a promising tool for stroke rehabilitation, supported by evidence demonstrating its beneficial effects on post-stroke recovery. However, patients with skull defects, such as burr holes, have been excluded from tDCS due to limited knowledge regarding the effect of skull defects on the electric field. OBJECTIVE We investigated the effect of burr holes on the electric field induced by tDCS and identified the electrode location that modulates the electric field. METHODS We generated mesh models of the heads of five patients with burr holes and five age-matched control patients who had never undergone brain surgery, based on magnetic resonance imaging. Then we conducted tDCS simulations, with the cathode fixed in one position and the anode in various positions. Regression analysis was employed to investigate the relationship between the electric field at the burr hole and the distance from the burr hole to the anode. RESULTS In patients with burr holes, the electric field intensity increased as the anode approached the burr hole, reaching a maximum electric field when the anode covered it, with this pattern remaining consistent across all patient models. Assuming the holes were filled with cerebrospinal fluid, the maximum electric field was 1.20 ± 0.20 V/m (mean ± standard deviation, SD). When the anode was positioned more than 60 mm away from the burr hole, the electric field at the burr hole remained low and constant, with an average value of 0.29 ± 0.04V/m (mean ± SD). In contrast, for all patients without burr holes, the electric field intensity stayed constant regardless of the anode's position, with a maximum amplitude of 0.36 ± 0.04 V/m (mean ± SD). Furthermore, when the burr hole was assumed to be filled with scar tissue, the mean peak electric field was 0.93 ± 0.16 V/m, indicating that the electric field strength varies depending on the conductivity of the tissue filling the burr hole. CONCLUSION Based on the simulations, the minimum recommended distance from the burr hole to the anode is 60 mm to prevent unintended stimulation of the brain cortex during tDCS. These findings will contribute to the development of safe and effective tDCS treatments for patients with burr holes.
Collapse
Affiliation(s)
- Mi-Jeong Yoon
- Department of Rehabilitation Medicine, St. Vincent's Hospital, College of Medicine, The Catholic University of Korea, Republic of Korea
| | - Hyungtaek Kim
- Research Institute, Neurophet Inc., Seoul, Republic of Korea; Department of Physical Medicine and Rehabilitation, University of Texas Southwestern Medical Center, Dallas, TX, United States; Department of Bioengineering, University of Texas at Dallas, Dallas, TX, United States
| | - Yeun Jie Yoo
- Department of Rehabilitation Medicine, St. Vincent's Hospital, College of Medicine, The Catholic University of Korea, Republic of Korea
| | - Sun Im
- Department of Rehabilitation Medicine, Bucheon St Mary's Hospital, College of Medicine, The Catholic University of Korea, Republic of Korea
| | - Tae-Woo Kim
- Department of Rehabilitation Medicine, National Traffic Injury Rehabilitation Hospital, Gyeongki-do, Republic of Korea
| | - Yasin Y Dhaher
- Department of Physical Medicine and Rehabilitation, University of Texas Southwestern Medical Center, Dallas, TX, United States; Department of Bioengineering, University of Texas at Dallas, Dallas, TX, United States
| | - Donghyeon Kim
- Research Institute, Neurophet Inc., Seoul, Republic of Korea.
| | - Seong Hoon Lim
- Department of Rehabilitation Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Republic of Korea; CMC Institute for Basic Medical Science, The Catholic Medical Center, The Catholic University of Korea, Republic of Korea.
| |
Collapse
|
35
|
Byczynski G, Farrelly R, Dempsey E, Scarlat IM, Vanneste S. Occipital nerve stimulation selectively modulates top-down inhibitory control. Brain Stimul 2025; 18:97-99. [PMID: 39778652 DOI: 10.1016/j.brs.2025.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 10/14/2024] [Accepted: 01/05/2025] [Indexed: 01/11/2025] Open
Affiliation(s)
- Gabriel Byczynski
- Lab for Clinical and Integrative Neuroscience, Trinity College Institute for Neuroscience, Trinity College Dublin, D02 PN40, Dublin, Ireland; School of Psychology, Trinity College Dublin, D02 PN40, Dublin, Ireland
| | - Roisin Farrelly
- School of Psychology, Trinity College Dublin, D02 PN40, Dublin, Ireland; School of Psychology, Queen's University Belfast, BT9 5BN, Belfast, United Kingdom
| | - Elias Dempsey
- School of Psychology, Trinity College Dublin, D02 PN40, Dublin, Ireland
| | | | - Sven Vanneste
- Lab for Clinical and Integrative Neuroscience, Trinity College Institute for Neuroscience, Trinity College Dublin, D02 PN40, Dublin, Ireland; School of Psychology, Trinity College Dublin, D02 PN40, Dublin, Ireland; Global Brain Health Institute, Trinity College Dublin, D02 PN40, Dublin, Ireland.
| |
Collapse
|
36
|
Vitello MM, Laureys S, Thibaut A, Gosseries O. Non-pharmacologic interventions in disorders of consciousness. HANDBOOK OF CLINICAL NEUROLOGY 2025; 207:197-216. [PMID: 39986722 DOI: 10.1016/b978-0-443-13408-1.00007-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/24/2025]
Abstract
Severely brain-injured patients with disorders of consciousness pose significant challenges in terms of management, particularly due to the limited therapeutic options available. Despite the potential for some patients to benefit from interventions even years after the injury, clinicians often lack clear and reliable treatment strategies to promote patient recovery. In response to this clinical need, the field of neuromodulation has emerged as a promising alternative to traditional pharmacologic therapies. Both invasive and noninvasive brain stimulation techniques offer diverse possibilities for restoring physiologic neural activity and enhancing functional network integrity in these complex neurological disorders. This chapter offers a comprehensive overview of current neuromodulation techniques, exploring their potential applications and analyzing the existing evidence for their efficacy. Specifically, we describe transcranial electrical stimulation, transcranial magnetic stimulation, deep brain stimulation, low-intensity focused ultrasound, vagal nerve stimulation (including transcutaneous methods), spinal cord stimulation, and median nerve stimulation. While certain approaches show promise for patients with disorders of consciousness, there remains a pressing need for large-scale interventional clinical trials that will play an essential role for elucidating the underlying mechanisms of recovery and for refining stimulation parameters. This, together with the development of tailored individual interventions will move the field forward and optimize therapeutic outcomes.
Collapse
Affiliation(s)
- Marie M Vitello
- Coma Science Group, GIGA-Consciousness, University of Liège, Liège, Belgium; Department of Neurology, Centre du Cerveau (2), University Hospital of Liège, Liège, Belgium
| | - Steven Laureys
- Coma Science Group, GIGA-Consciousness, University of Liège, Liège, Belgium; Department of Neurology, Centre du Cerveau (2), University Hospital of Liège, Liège, Belgium
| | - Aurore Thibaut
- Coma Science Group, GIGA-Consciousness, University of Liège, Liège, Belgium; Department of Neurology, Centre du Cerveau (2), University Hospital of Liège, Liège, Belgium
| | - Olivia Gosseries
- Coma Science Group, GIGA-Consciousness, University of Liège, Liège, Belgium; Department of Neurology, Centre du Cerveau (2), University Hospital of Liège, Liège, Belgium
| |
Collapse
|
37
|
Chan JJ, Cho Y, Lee JH. Transcranial Direct Current Stimulation for Global Cognition in Mild Cognitive Impairment. Chonnam Med J 2025; 61:1-8. [PMID: 39958266 PMCID: PMC11821984 DOI: 10.4068/cmj.2025.61.1.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 12/27/2024] [Accepted: 12/27/2024] [Indexed: 02/18/2025] Open
Abstract
Mild cognitive impairment (MCI) is a condition characterized by noticeable deficits in memory retrieval or other cognitive domains than the individuals with the same age but do not significantly interfere with daily functioning. It represents an intermediate stage between normal aging and dementia, and a crucial opportunity for intervention prior to extensive cognitive decline. Transcranial direct current stimulation (tDCS), a non-invasive neuromodulation technique, has shown promise in enhancing global cognition in MCI. Current evidence suggests that tDCS provides short-term cognitive benefits, particularly in memory and attention, with moderate effects observed in processing speed. However, its impact on executive function and language remains inconsistent, highlighting variability in individual responses and study methodologies. While long-term efficacy remains uncertain due to limited longitudinal research and short follow-up periods, safety concerns, especially with self-administered tDCS such as in home-based tDCS, underscore the need for proper training and device innovation. Despite this, tDCS is a promising, portable tool for cognitive enhancement in MCI, with potential to delay progression to dementia. Addressing challenges such as optimizing stimulation protocols, accounting for individual neuroanatomical variability, and establishing long-term effectiveness will be essential for its broader clinical adoption. Future research should focus on standardizing methodologies, incorporating biomarkers to predict treatment response, and conducting large-scale, longitudinal studies to refine its therapeutic application.
Collapse
Affiliation(s)
- Jenny Jeaeun Chan
- Department of Psychiatry, Schulich Medicine and Dentistry, Western University, London, ON, Canada
| | - Yeryeong Cho
- Department of Interdisciplinary Medical Science, Schulich Medicine and Dentistry, Western University, London, ON, Canada
| | - Jae-Hon Lee
- Department of Psychiatry, Schulich Medicine and Dentistry, Western University, London, ON, Canada
| |
Collapse
|
38
|
Sharif F, Harmer CJ, Klein-Flügge MC, Tan H. Novel NIBS in psychiatry: Unveiling TUS and TI for research and treatment. Brain Neurosci Adv 2025; 9:23982128251322241. [PMID: 40092509 PMCID: PMC11909681 DOI: 10.1177/23982128251322241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 02/03/2025] [Indexed: 03/19/2025] Open
Abstract
Mental disorders pose a significant global burden and constitute a major cause of disability worldwide. Despite strides in treatment, a substantial number of patients do not respond adequately, underscoring the urgency for innovative approaches. Traditional non-invasive brain stimulation techniques show promise, yet grapple with challenges regarding efficacy and specificity. Variations in mechanistic understanding and reliability among non-invasive brain stimulation methods are common, with limited spatial precision and physical constraints hindering the ability to target subcortical areas often implicated in the disease aetiology. Novel techniques such as transcranial ultrasonic stimulation and temporal interference stimulation have gained notable momentum in recent years, possibly addressing these shortcomings. Transcranial ultrasonic stimulation (TUS) offers exceptional spatial precision and deeper penetration compared with conventional electrical and magnetic stimulation techniques. Studies targeting a diverse array of brain regions have shown its potential to affect neuronal excitability, functional connectivity and symptoms of psychiatric disorders such as major depressive disorder. Nevertheless, challenges such as target planning and addressing acoustic interactions with the skull must be tackled for its widespread adoption in research and potentially clinical settings. Similar to transcranial ultrasonic stimulation, temporal interference (TI) stimulation offers the potential to target deeper subcortical areas compared with traditional non-invasive brain stimulation, albeit requiring a comparatively higher current for equivalent neural effects. Promising yet still sparse research highlights TI's potential to selectively modulate neuronal activity, showing potential for its utility in psychiatry. Overall, recent strides in non-invasive brain stimulation methods like transcranial ultrasonic stimulation and temporal interference stimulation not only open new research avenues but also hold potential as effective treatments in psychiatry. However, realising their full potential necessitates addressing practical challenges and optimising their application effectively.
Collapse
Affiliation(s)
- Faissal Sharif
- MRC Brain Network Dynamics Unit, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Catherine J Harmer
- Department of Psychiatry, University of Oxford, Warneford Hospital, Oxford, UK
| | - Miriam C. Klein-Flügge
- Department of Psychiatry, University of Oxford, Warneford Hospital, Oxford, UK
- Department of Experimental Psychology, University of Oxford, Oxford, UK
- Wellcome Centre for Integrative Neuroimaging (WIN), Centre for Functional MRI of the Brain (FMRIB), Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Huiling Tan
- MRC Brain Network Dynamics Unit, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| |
Collapse
|
39
|
Yao M, Hsieh JC, Tang KWK, Wang H. Hydrogels in wearable neural interfaces. MED-X 2024; 2:23. [PMID: 39659711 PMCID: PMC11625692 DOI: 10.1007/s44258-024-00040-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 09/21/2024] [Accepted: 10/06/2024] [Indexed: 12/12/2024]
Abstract
The integration of wearable neural interfaces (WNIs) with the human nervous system has marked a significant progression, enabling progress in medical treatments and technology integration. Hydrogels, distinguished by their high-water content, low interfacial impedance, conductivity, adhesion, and mechanical compliance, effectively address the rigidity and biocompatibility issues common in traditional materials. This review highlights their important parameters-biocompatibility, interfacial impedance, conductivity, and adhesiveness-that are integral to their function in WNIs. The applications of hydrogels in wearable neural recording and neurostimulation are discussed in detail. Finally, the opportunities and challenges faced by hydrogels for WNIs are summarized and prospected. This review aims to offer a thorough examination of hydrogel technology's present landscape and to encourage continued exploration and innovation. As developments progress, hydrogels are poised to revolutionize wearable neural interfaces, offering significant enhancements in healthcare and technological applications. Graphical Abstract
Collapse
Affiliation(s)
- Mengmeng Yao
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX 78712 USA
| | - Ju-Chun Hsieh
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX 78712 USA
| | - Kai Wing Kevin Tang
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX 78712 USA
| | - Huiliang Wang
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX 78712 USA
| |
Collapse
|
40
|
Wang Y, Zeng GQ, Wang M, Zhang M, Chang C, Liu Q, Wang K, Ma R, Wang Y, Zhang X. The safety and efficacy of applying a high-current temporal interference electrical stimulation in humans. Front Hum Neurosci 2024; 18:1484593. [PMID: 39677408 PMCID: PMC11638170 DOI: 10.3389/fnhum.2024.1484593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 11/11/2024] [Indexed: 12/17/2024] Open
Abstract
Background Temporal interference electrical stimulation (TI) is promise in targeting deep brain regions focally. However, limited electric field intensity challenges its efficacy. Objective This study aimed to introduce a high-current TI electrical stimulation protocol to enhance its intensity and evaluate its safety and efficacy when applied to the primary motor cortex (M1) in the human brain. Methods Safety assessments included a battery of biochemical and neuropsychological tests (NSE, MoCA, PPT, VAMS-R, and SAS measurements), 5-min resting-state electroencephalography (EEG) recordings before and after 30-min high-current TI electrical stimulation sessions (20 Hz, 70 Hz, sham). Adverse reactions were also documented post-stimulation. Efficacy evaluations involved two motor tasks, the simple reaction time (SRT) task and the one-increment task, to investigate the distinct contributions of beta (20 Hz) and gamma (70 Hz) oscillations to motor functions. Results Biochemical and neuropsychological tests revealed no significant differences between the groups. Additionally, no epileptic activities were detected in the EEG recordings. In the one-increment task, 20 Hz stimulation delayed participants' reaction time compared to the 70 Hz and sham groups. Conversely, in the SRT task, 70 Hz stimulation exhibited a tendency to enhance participants' performance relative to the sham group. Conclusion The proposed high-current TI electrical stimulation is both safe and effective for stimulating the human brain. Moreover, the distinct effects observed in motor tasks underscore the dissociative roles of beta and gamma oscillations in motor functions, offering valuable insights into the potential applications of high-current TI electrical stimulation in brain stimulation research.
Collapse
Affiliation(s)
- Yan Wang
- School of Mental Health, Bengbu Medical University, Bengbu, China
- Division of Life Science and Medicine, University of Science and Technology of China, Hefei, China
| | - Ginger Qinghong Zeng
- Application Technology Center of Physical Therapy to Brain Disorders, Institute of Advanced Technology, University of Science and Technology of China, Hefei, China
| | - Mengmeng Wang
- School of Mental Health, Bengbu Medical University, Bengbu, China
- Division of Life Science and Medicine, University of Science and Technology of China, Hefei, China
| | - Mingsong Zhang
- Division of Life Science and Medicine, University of Science and Technology of China, Hefei, China
- Application Technology Center of Physical Therapy to Brain Disorders, Institute of Advanced Technology, University of Science and Technology of China, Hefei, China
| | - Chuangchuang Chang
- Division of Life Science and Medicine, University of Science and Technology of China, Hefei, China
- Application Technology Center of Physical Therapy to Brain Disorders, Institute of Advanced Technology, University of Science and Technology of China, Hefei, China
| | - Qiongwei Liu
- Division of Life Science and Medicine, University of Science and Technology of China, Hefei, China
| | - Keqing Wang
- Division of Life Science and Medicine, University of Science and Technology of China, Hefei, China
| | - Ru Ma
- Division of Life Science and Medicine, University of Science and Technology of China, Hefei, China
| | - Ying Wang
- Division of Life Science and Medicine, University of Science and Technology of China, Hefei, China
- Anhui Provincial Stereotactic Neurosurgical Institute, Anhui Province Key Laboratory of Brain Function and Brain Disease Hefei, Hefei, China
| | - Xiaochu Zhang
- School of Mental Health, Bengbu Medical University, Bengbu, China
- Division of Life Science and Medicine, University of Science and Technology of China, Hefei, China
- Application Technology Center of Physical Therapy to Brain Disorders, Institute of Advanced Technology, University of Science and Technology of China, Hefei, China
- Department of Psychology, School of Humanities and Social Science, University of Science and Technology of China, Hefei, China
- Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei, China
| |
Collapse
|
41
|
Qi S, Yu J, Li L, Dong C, Ji Z, Cao L, Wei Z, Liang Z. Advances in non-invasive brain stimulation: enhancing sports performance function and insights into exercise science. Front Hum Neurosci 2024; 18:1477111. [PMID: 39677404 PMCID: PMC11638246 DOI: 10.3389/fnhum.2024.1477111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 11/06/2024] [Indexed: 12/17/2024] Open
Abstract
The cerebral cortex, as the pinnacle of human complexity, poses formidable challenges to contemporary neuroscience. Recent advancements in non-invasive brain stimulation have been pivotal in enhancing human locomotor functions, a burgeoning area of interest in exercise science. Techniques such as transcranial direct current stimulation, transcranial alternating current stimulation, transcranial random noise stimulation, and transcranial magnetic stimulation are widely recognized for their neuromodulator capabilities. Despite their broad applications, these methods are not without limitations, notably in spatial and temporal resolution and their inability to target deep brain structures effectively. The advent of innovative non-invasive brain stimulation modalities, including transcranial focused ultrasound stimulation and temporal interference stimulation technology, heralds a new era in neuromodulation. These approaches offer superior spatial and temporal precision, promising to elevate athletic performance, accelerate sport science research, and enhance recovery from sports-related injuries and neurological conditions. This comprehensive review delves into the principles, applications, and future prospects of non-invasive brain stimulation in the realm of exercise science. By elucidating the mechanisms of action and potential benefits, this study aims to arm researchers with the tools necessary to modulate targeted brain regions, thereby deepening our understanding of the intricate interplay between brain function and human behavior.
Collapse
Affiliation(s)
- Shuo Qi
- School of Sport and Health, Shandong Sport University, Jinan, China
| | - Jinglun Yu
- College of Sports and Health Sciences, Xi’an Physical Education University, Xi’an, China
| | - Li Li
- Physical Education and Arts College, Shandong Sport University, Jinan, China
| | - Chen Dong
- College of Sports Management, Shandong Sport University, Jinan, China
| | - Zhe Ji
- College of Physical Education, Anhui Normal University, Wuhu, China
| | - Lei Cao
- National Football Academy, Shandong Sport University, Jinan, China
| | - Zhen Wei
- The Second Clinical Medical School, Xuzhou Medical University, Xuzhou, China
| | - Zhiqiang Liang
- Faculty of Sports Science, Ningbo University, Ningbo, China
| |
Collapse
|
42
|
Duan Z, Zhang C. Transcranial direct current stimulation for Parkinson's disease: systematic review and meta-analysis of motor and cognitive effects. NPJ Parkinsons Dis 2024; 10:214. [PMID: 39505889 PMCID: PMC11542032 DOI: 10.1038/s41531-024-00821-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 10/19/2024] [Indexed: 11/08/2024] Open
Abstract
Transcranial direct current stimulation (tDCS) is a promising noninvasive intervention for Parkinson's disease (PD). However, studies of its motor and cognitive effect have produced mixed results. We conducted a systematic review including 38 studies and meta-analysis of 12 randomized sham-controlled trials with 263 PD patients. No significant differences were found between active and sham tDCS in motor function (UPDRS-III: SMD = -0.14, p = 0.74), gait (SMD = 0.10, p = 0.513), attention and working memory (SMD = 0.24, p = 0.13), executive function (SMD = 0.03, p = 0.854), and memory and learning (SMD: -0.07, p = 0.758). The prediction intervals indicated substantial heterogeneity among studies. Meta-regression showed small positive effects in younger PD patients with milder symptoms. These findings are preliminary but suggest tDCS may benefit some PD patients while being neutral or harmful to others.
Collapse
Affiliation(s)
- Zhuo Duan
- Clinical Neuroscience Center, Ruijin Hospital Luwan Branch, Shanghai Jiaotong University School of Medicine, Shanghai, China.
- Clinical Neuroscience Center, Department of Psychiatry & Mental Health, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- Laboratory of Stereotaxy and Interventional Neurosciences, Department of Stereotactic and Functional Neurosurgery, University Hospital Freiburg, Freiburg, Germany.
- Department of Stereotactic and Functional Neurosurgery, University Hospital Freiburg, Freiburg, Germany.
| | - Chencheng Zhang
- Clinical Neuroscience Center, Ruijin Hospital Luwan Branch, Shanghai Jiaotong University School of Medicine, Shanghai, China.
- Clinical Neuroscience Center, Department of Psychiatry & Mental Health, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
43
|
Fehring DJ, Yokoo S, Abe H, Buckley MJ, Miyamoto K, Jaberzadeh S, Yamamori T, Tanaka K, Rosa MGP, Mansouri FA. Direct current stimulation modulates prefrontal cell activity and behaviour without inducing seizure-like firing. Brain 2024; 147:3751-3763. [PMID: 39166526 PMCID: PMC11531852 DOI: 10.1093/brain/awae273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 07/16/2024] [Accepted: 07/26/2024] [Indexed: 08/23/2024] Open
Abstract
Transcranial direct current stimulation (tDCS) has garnered significant interest for its potential to enhance cognitive functions and as a therapeutic intervention in various cognitive disorders. However, the clinical application of tDCS has been hampered by significant variability in its cognitive outcomes. Furthermore, the widespread use of tDCS has raised concerns regarding its safety and efficacy, particularly in light of our limited understanding of its underlying neural mechanisms at the cellular level. We still do not know 'where', 'when' and 'how' tDCS modulates information encoding by neurons, in order to lead to the observed changes in cognitive functions. Without elucidating these fundamental unknowns, the root causes of its outcome variability and long-term safety remain elusive, challenging the effective application of tDCS in clinical settings. Addressing this gap, our study investigates the effects of tDCS, applied over the dorsolateral prefrontal cortex, on cognitive abilities and individual neuron activity in macaque monkeys performing cognitive tasks. Like humans performing a delayed match-to-sample task, monkeys exhibited practice-related slowing in their responses (within-session behavioural adaptation). Concurrently, there were practice-related changes in simultaneously recorded activity of prefrontal neurons (within-session neuronal adaptation). Anodal tDCS attenuated both these behavioural and neuronal adaptations when compared with sham stimulation. Furthermore, tDCS abolished the correlation between response time of monkeys and neuronal firing rate. At a single-cell level, we also found that following tDCS, neuronal firing rate was more likely to exhibit task-specific modulation than after sham stimulation. These tDCS-induced changes in both behaviour and neuronal activity persisted even after the end of tDCS stimulation. Importantly, multiple applications of tDCS did not alter burst-like firing rates of individual neurons when compared with sham stimulation. This suggests that tDCS modulates neural activity without enhancing susceptibility to epileptiform activity, confirming a potential for safe use in clinical settings. Our research contributes unprecedented insights into the 'where', 'when' and 'how' of tDCS effects on neuronal activity and cognitive functions by showing that modulation of the behaviour of monkeys by the tDCS of the prefrontal cortex is accompanied by alterations in prefrontal cortical cell activity ('where') during distinct trial phases ('when'). Importantly, tDCS led to task-specific and state-dependent alterations in prefrontal cell activities ('how'). Our findings suggest a significant shift from the view that the effects of tDCS are merely attributable to polarity-specific shifts in cortical excitability and instead propose a more complex mechanism of action for tDCS that encompasses various aspects of cortical neuronal activity without increasing burst-like epileptiform susceptibility.
Collapse
Affiliation(s)
- Daniel J Fehring
- Department of Physiology and Neuroscience Program, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
- RIKEN Center for Brain Science, RIKEN Institute, Wako-shi, 351-0198, Japan
| | - Seiichirou Yokoo
- RIKEN Center for Brain Science, RIKEN Institute, Wako-shi, 351-0198, Japan
| | - Hiroshi Abe
- RIKEN Center for Brain Science, RIKEN Institute, Wako-shi, 351-0198, Japan
| | - Mark J Buckley
- Department of Experimental Psychology, Oxford University, Oxford OX1 3UD, UK
| | - Kentaro Miyamoto
- RIKEN Center for Brain Science, RIKEN Institute, Wako-shi, 351-0198, Japan
| | - Shapour Jaberzadeh
- Department of Physiotherapy, Monash University, Clayton, VIC 3199, Australia
| | - Tetsuo Yamamori
- RIKEN Center for Brain Science, RIKEN Institute, Wako-shi, 351-0198, Japan
| | - Keiji Tanaka
- RIKEN Center for Brain Science, RIKEN Institute, Wako-shi, 351-0198, Japan
| | - Marcello G P Rosa
- Department of Physiology and Neuroscience Program, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| | - Farshad A Mansouri
- Department of Physiology and Neuroscience Program, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| |
Collapse
|
44
|
Hua Q, Wang L, He K, Sun J, Xu W, Zhang L, Tian Y, Wang K, Ji GJ. Repetitive Transcranial Magnetic Stimulation for Auditory Verbal Hallucinations in Schizophrenia: A Randomized Clinical Trial. JAMA Netw Open 2024; 7:e2444215. [PMID: 39527055 PMCID: PMC11555553 DOI: 10.1001/jamanetworkopen.2024.44215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 09/19/2024] [Indexed: 11/16/2024] Open
Abstract
IMPORTANCE Auditory verbal hallucinations (AVH) are a common symptom of schizophrenia, increasing the patient's risks of suicide and violence. Repetitive transcranial magnetic stimulation (rTMS) is a potential treatment for AVH. OBJECTIVE To investigate the effect of imaging-navigated rTMS on AVH in patients with schizophrenia. DESIGN, SETTING, AND PARTICIPANTS This 6-week, double-blind, sham-controlled, randomized clinical trial was performed at the Anhui Mental Health Center, Hefei, China, from September 1, 2016, to August 31, 2021. Participants included 66 patients with AVH and schizophrenia. Data were analyzed from May 1, 2022, to March 31, 2023. INTERVENTIONS Participants were randomly assigned 1:1 to either imaging-navigated active or sham rTMS over the left temporoparietal junction for 2 weeks. MAIN OUTCOMES AND MEASURES The primary outcome measured improvements in AVH from baseline to week 2 and week 6 using the Auditory Hallucination Rating Scale (AHRS) scores. In addition, the TMS-induced electric field strength was used to estimate improvements in AVH as a secondary outcome. RESULTS A total of 62 participants (33 women [53%]; mean [SD] age, 27.4 [9.2] years) completed the 2-week treatments. Of these, 32 were randomized to the active rTMS group (18 women [56%]; mean [SD] age, 26.9 [9.2] years) and 30 to the sham treatment group (15 women [50%]; mean [SD] age, 27.8 [9.4] years). In the intention-to-treat analyses, patients receiving active rTMS showed a significantly greater reduction in AHRS scores compared with those receiving sham treatment at week 2 (difference, 5.96 [95% CI, 3.42-8.50]; t = 4.61; P < .001; Cohen d, 1.17 [95% CI, 0.62-1.71]). These clinical effects were sustained at week 6. Additionally, a stronger TMS-induced electric field within a predefined AVH brain network was associated with greater reductions in AHRS scores (B = 3.12; t = 3.58; P = .002). No serious adverse event was observed. CONCLUSIONS AND RELEVANCE The findings of this randomized clinical trial suggest that imaging-navigated rTMS may effectively and safely alleviate AVH in patients with schizophrenia. Findings also suggest that the electric field strength in the individualized AVH network is a vital parameter for optimizing the efficacy of the rTMS protocol. TRIAL REGISTRATION ClinicalTrials.gov Identifier: NCT02863094.
Collapse
Affiliation(s)
- Qiang Hua
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Department of Psychology and Sleep Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
- School of Mental Health and Psychological Sciences, Anhui Medical University, Hefei, China
- Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, China
- Collaborative Innovation Centre of Neuropsychiatric Disorder and Mental Health, Hefei, China
| | - Lu Wang
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, China
- Collaborative Innovation Centre of Neuropsychiatric Disorder and Mental Health, Hefei, China
| | - Kongliang He
- Affiliated Psychological Hospital of Anhui Medical University, Hefei, China
| | - Jinmei Sun
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, China
- Collaborative Innovation Centre of Neuropsychiatric Disorder and Mental Health, Hefei, China
| | - Wenqiang Xu
- School of Mental Health and Psychological Sciences, Anhui Medical University, Hefei, China
| | - Li Zhang
- Affiliated Psychological Hospital of Anhui Medical University, Hefei, China
| | - Yanghua Tian
- Department of Psychology and Sleep Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
- School of Mental Health and Psychological Sciences, Anhui Medical University, Hefei, China
- Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, China
- Collaborative Innovation Centre of Neuropsychiatric Disorder and Mental Health, Hefei, China
| | - Kai Wang
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- School of Mental Health and Psychological Sciences, Anhui Medical University, Hefei, China
- Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, China
- Collaborative Innovation Centre of Neuropsychiatric Disorder and Mental Health, Hefei, China
- Institute of Artificial Intelligence, Hefei Comprehensive National Science Center, Hefei, China
- Anhui Institute of Translational Medicine, Hefei, China
| | - Gong-Jun Ji
- Department of Psychology and Sleep Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
- School of Mental Health and Psychological Sciences, Anhui Medical University, Hefei, China
- Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, China
- Collaborative Innovation Centre of Neuropsychiatric Disorder and Mental Health, Hefei, China
- Institute of Artificial Intelligence, Hefei Comprehensive National Science Center, Hefei, China
- Anhui Institute of Translational Medicine, Hefei, China
| |
Collapse
|
45
|
Luff CE, de Lecea L. Can Neuromodulation Improve Sleep and Psychiatric Symptoms? Curr Psychiatry Rep 2024; 26:650-658. [PMID: 39352645 DOI: 10.1007/s11920-024-01540-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2024]
Abstract
PURPOSE OF REVIEW In this review, we evaluate recent studies that employ neuromodulation, in the form of non-invasive brain stimulation, to improve sleep in both healthy participants, and patients with psychiatric disorders. We review studies using transcranial electrical stimulation, transcranial magnetic stimulation, and closed-loop auditory stimulation, and consider both subjective and objective measures of sleep improvement. RECENT FINDINGS Neuromodulation can alter neuronal activity underlying sleep. However, few studies utilizing neuromodulation report improvements in objective measures of sleep. Enhancements in subjective measures of sleep quality are replicable, however, many studies conducted in this field suffer from methodological limitations, and the placebo effect is robust. Currently, evidence that neuromodulation can effectively enhance sleep is lacking. For the field to advance, methodological issues must be resolved, and the full range of objective measures of sleep architecture, alongside subjective measures of sleep quality, must be reported. Additionally, validation of effective modulation of neuronal activity should be done with neuroimaging.
Collapse
Affiliation(s)
- Charlotte E Luff
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, USA
- Wu Tsai Neurosciences Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Luis de Lecea
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, USA.
- Wu Tsai Neurosciences Institute, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
46
|
Mata P, Calovi S, Benli KP, Iglesias L, Hernández MI, Martín A, Pérez-Samartín A, Ramos-Murguialday A, Domercq M, Ortego-Isasa I. Magnetic field in the extreme low frequency band protects neuronal and microglia cells from oxygen-glucose deprivation. Front Cell Neurosci 2024; 18:1455158. [PMID: 39553829 PMCID: PMC11563784 DOI: 10.3389/fncel.2024.1455158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 10/14/2024] [Indexed: 11/19/2024] Open
Abstract
Ischemic stroke consists of rapid neural death as a consequence of brain vessel obstruction, followed by damage to the neighboring tissue known as ischemic penumbra. The cerebral tissue in the core of the lesions becomes irreversibly damaged, however, the ischemic penumbra is potentially recoverable during the initial phases after the stroke. Therefore, there is real need for emerging therapeutic strategies to reduce ischemic damage and its spread to the penumbral region. For this reason, we tested the effect of Extreme Low Frequency Electromagnetic Stimulation (ELF-EMS) on in vitro primary neuronal and microglial cultures under oxygen-glucose deprivation (OGD) conditions. ELF-EMS under basal non-OGD conditions did not induce any effect in cell survival. However, ELF-EMS significantly reduced neuronal cell death in OGD conditions and reduced ischemic induced Ca2+ overload. Likewise, ELF-EMS modulated microglia activation and OGD-induced microglia cell death. Hence, this study suggests potential benefits in the application of ELF-EMS to limit ischemic irreversible damages under in vitro stroke conditions, encouraging in vivo preclinical validations of ELF-EMS as a potential therapeutic strategy for ischemic stroke.
Collapse
Affiliation(s)
- Paloma Mata
- Achucarro Basque Center for Neuroscience, Leioa, Spain
- Department of Neuroscience, University of the Basque Country UPV/EHU, Leioa, Spain
| | | | | | | | | | - Abraham Martín
- Achucarro Basque Center for Neuroscience, Leioa, Spain
- Ikerbasque Basque Foundation for Science, Bilbao, Spain
| | - Alberto Pérez-Samartín
- Achucarro Basque Center for Neuroscience, Leioa, Spain
- Department of Neuroscience, University of the Basque Country UPV/EHU, Leioa, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Leioa, Spain
| | - Ander Ramos-Murguialday
- TECNALIA, Basque Research and Technology Alliance (BRTA), San Sebastian, Spain
- Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen, Tübingen, Germany
- Department of Neurology and Stroke, University of Tubingen, Tubingen, Germany
- Athenea Neuroclinics, Donostia-San Sebastian, Spain
| | - María Domercq
- Achucarro Basque Center for Neuroscience, Leioa, Spain
- Department of Neuroscience, University of the Basque Country UPV/EHU, Leioa, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Leioa, Spain
| | - Iñaki Ortego-Isasa
- TECNALIA, Basque Research and Technology Alliance (BRTA), San Sebastian, Spain
- Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen, Tübingen, Germany
| |
Collapse
|
47
|
Zhu Z, Tang D, Qin L, Qian Z, Zhuang J, Liu Y. Syncing the brain's networks: dynamic functional connectivity shifts from temporal interference. Front Hum Neurosci 2024; 18:1453638. [PMID: 39534013 PMCID: PMC11554487 DOI: 10.3389/fnhum.2024.1453638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Accepted: 10/08/2024] [Indexed: 11/16/2024] Open
Abstract
Background Temporal interference (TI) stimulation, an innovative non-invasive brain stimulation approach, has the potential to activate neurons in deep brain regions. However, the dynamic mechanisms underlying its neuromodulatory effects are not fully understood. This study aims to investigate the effects of TI stimulation on dynamic functional connectivity (dFC) in the motor cortex. Methods 40 healthy adults underwent both TI and tDCS in a double-blind, randomized crossover design, with sessions separated by at least 48 h. The total stimulation intensity of TI is 4 mA, with each channel's intensity set at 2 mA and a 20 Hz frequency difference (2 kHz and 2.02 kHz). The tDCS stimulation intensity is 2 mA. Resting-state functional magnetic resonance imaging (rs-fMRI) data were collected before, during, and after stimulation. dFC was calculated using the left primary motor cortex (M1) as the region of interest (ROI) and analyzed using a sliding time-window method. A two-way repeated measures ANOVA (group × time) was conducted to evaluate the effects of TI and tDCS on changes in dFC. Results For CV of dFC, significant main effects of stimulation type (P = 0.004) and time (P < 0.001) were observed. TI showed lower CV of dFC than tDCS in the left postcentral gyrus (P < 0.001). TI-T2 displayed lower CV of dFC than TI-T1 in the left precentral gyrus (P < 0.001). For mean dFC, a significant main effect of time was found (P < 0.001). TI-T2 showed higher mean dFC than tDCS-T2 in the left postcentral gyrus (P = 0.018). Within-group comparisons revealed significant differences between time points in both TI and tDCS groups, primarily in the left precentral and postcentral gyri (all P < 0.001). Results were consistent across different window sizes. Conclusion 20 Hz TI stimulation altered dFC in the primary motor cortex, leading to a significant decreasing variability and increasing mean connectivity strength in dFC. This outcome indicates that the 20 Hz TI frequency interacted with the motor cortex's natural resonance.
Collapse
Affiliation(s)
- Zhiqiang Zhu
- School of Kinesiology, Shenzhen University, Shenzhen, China
| | - Dongsheng Tang
- School of Kinesiology, Shenzhen University, Shenzhen, China
| | - Lang Qin
- School of Kinesiology, Shenzhen University, Shenzhen, China
| | - Zhenyu Qian
- School of Kinesiology, Shanghai University of Sport, Shanghai, China
| | - Jie Zhuang
- School of Kinesiology, Shanghai University of Sport, Shanghai, China
| | - Yu Liu
- School of Kinesiology, Shanghai University of Sport, Shanghai, China
| |
Collapse
|
48
|
Majdi A, Asamoah B, Mc Laughlin M. Understanding novel neuromodulation pathways in tDCS: brain stem recordings in rats during trigeminal nerve direct current stimulation. Transl Psychiatry 2024; 14:456. [PMID: 39468008 PMCID: PMC11519445 DOI: 10.1038/s41398-024-03158-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 10/08/2024] [Accepted: 10/10/2024] [Indexed: 10/30/2024] Open
Abstract
tDCS is widely assumed to cause neuromodulation via the electric field in the cortex acting directly on cortical neurons. However, recent evidence suggests that tDCS may indirectly influence brain activity through cranial nerve pathways, notably the trigeminal nerve, but these neuromodulatory pathways remain unexplored. To investigate the first stages in this potential pathway we developed an animal model to study the effect of trigeminal nerve direct current stimulation (TN-DCS) on neuronal activity in the principal sensory nucleus (NVsnpr) and the mesencephalic nucleus of the trigeminal nerve (MeV). We conducted experiments on twenty-four male Sprague Dawley rats (n = 10 NVsnpr, n = 10 MeV during anodic stimulation, and n = 4 MeV during cathodic stimulation). DC stimulation, ranging from 0.5 to 3 mA, targeted the trigeminal nerve's marginal branch. Concurrently, single-unit electrophysiological recordings were obtained using a 32-channel silicon probe, encompassing three 1-min intervals: pre, during, and post-stimulation. Xylocaine trigeminal nerve blockage served as a control. TN-DCS increased neuronal spiking activity in both NVsnpr and MeV, returning to baseline during the post-stimulation phase. The 3 mA DC stimulation of the blocked trigeminal nerve failed to induce increased spiking activity in the trigeminal nuclei. These findings provide empirical support for trigeminal nuclei modulation via TN-DCS, suggesting the cranial nerve pathways could play a role in mediating the tDCS effects in humans.
Collapse
Affiliation(s)
- Alireza Majdi
- Research Group Experimental Oto-rhino-laryngology, Department of Neuroscience, Leuven Brain Institute, KU Leuven, Leuven, 3000, Belgium
- Leuven Brain Institute, KU Leuven, Leuven, 3000, Belgium
| | - Boateng Asamoah
- Research Group Experimental Oto-rhino-laryngology, Department of Neuroscience, Leuven Brain Institute, KU Leuven, Leuven, 3000, Belgium
- Leuven Brain Institute, KU Leuven, Leuven, 3000, Belgium
| | - Myles Mc Laughlin
- Research Group Experimental Oto-rhino-laryngology, Department of Neuroscience, Leuven Brain Institute, KU Leuven, Leuven, 3000, Belgium.
- Leuven Brain Institute, KU Leuven, Leuven, 3000, Belgium.
| |
Collapse
|
49
|
Giraud M, Javadi AH, Lenatti C, Allen J, Tamè L, Nava E. The role of the somatosensory system in the feeling of emotions: a neurostimulation study. Soc Cogn Affect Neurosci 2024; 19:nsae062. [PMID: 39275796 PMCID: PMC11488518 DOI: 10.1093/scan/nsae062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 06/27/2024] [Accepted: 09/12/2024] [Indexed: 09/16/2024] Open
Abstract
Emotional experiences deeply impact our bodily states, such as when we feel 'anger', our fists close and our face burns. Recent studies have shown that emotions can be mapped onto specific body areas, suggesting a possible role of the primary somatosensory system (S1) in emotion processing. To date, however, the causal role of S1 in emotion generation remains unclear. To address this question, we applied transcranial alternating current stimulation (tACS) on the S1 at different frequencies (beta, theta, and sham) while participants saw emotional stimuli with different degrees of pleasantness and levels of arousal. Results showed that modulation of S1 influenced subjective emotional ratings as a function of the frequency applied. While theta and beta-tACS made participants rate the emotional images as more pleasant (higher valence), only theta-tACS lowered the subjective arousal ratings (more calming). Skin conductance responses recorded throughout the experiment confirmed a different arousal for pleasant versus unpleasant stimuli. Our study revealed that S1 has a causal role in the feeling of emotions, adding new insight into the embodied nature of emotions. Importantly, we provided causal evidence that beta and theta frequencies contribute differently to the modulation of two dimensions of emotions-arousal and valence-corroborating the view of a dissociation between these two dimensions of emotions.
Collapse
Affiliation(s)
- Michelle Giraud
- Department of Psychology, University of Milano-Bicocca, Milano 20126, Italy
- School of Psychology, University of Kent, Canterbury CT2 7NZ, United Kingdom
- Psychology Department and NeuroMi, Milan Centre of Neuroscience, University of Milano-Bicocca, Milan 20126, Italy
| | - Amir-Homayoun Javadi
- School of Psychology, University of Kent, Canterbury CT2 7NZ, United Kingdom
- School of Rehabilitation, Tehran University of Medical Sciences, Tehran 1416634793, Iran
| | - Carmen Lenatti
- School of Psychology, University of Kent, Canterbury CT2 7NZ, United Kingdom
| | - John Allen
- School of Psychology, University of Kent, Canterbury CT2 7NZ, United Kingdom
| | - Luigi Tamè
- School of Psychology, University of Kent, Canterbury CT2 7NZ, United Kingdom
| | - Elena Nava
- Department of Psychology, University of Milano-Bicocca, Milano 20126, Italy
- Psychology Department and NeuroMi, Milan Centre of Neuroscience, University of Milano-Bicocca, Milan 20126, Italy
| |
Collapse
|
50
|
Karimi N, Amirfattahi R, Zeidaabadi Nezhad A. Neuromodulation effect of temporal interference stimulation based on network computational model. Front Hum Neurosci 2024; 18:1436205. [PMID: 39386280 PMCID: PMC11461302 DOI: 10.3389/fnhum.2024.1436205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 09/09/2024] [Indexed: 10/12/2024] Open
Abstract
Deep brain stimulation (DBS) has long been the conventional method for targeting deep brain structures, but noninvasive alternatives like transcranial Temporal Interference Stimulation (tTIS) are gaining traction. Research has shown that alternating current influences brain oscillations through neural modulation. Understanding how neurons respond to the stimulus envelope, particularly considering tTIS's high-frequency carrier, is vital for elucidating its mechanism of neuronal engagement. This study aims to explore the focal effects of tTIS across varying amplitudes and modulation depths in different brain regions. An excitatory-inhibitory network using the Izhikevich neuron model was employed to investigate responses to tTIS and compare them with transcranial Alternating Current Stimulation (tACS). We utilized a multi-scale model that integrates brain tissue modeling and network computational modeling to gain insights into the neuromodulatory effects of tTIS on the human brain. By analyzing the parametric space, we delved into phase, amplitude, and frequency entrainment to elucidate how tTIS modulates endogenous alpha oscillations. Our findings highlight a significant difference in current intensity requirements between tTIS and tACS, with tTIS requiring notably higher intensity. We observed distinct network entrainment patterns, primarily due to tTIS's high-frequency component, whereas tACS exhibited harmonic entrainment that tTIS lacked. Spatial resolution analysis of tTIS, conducted via computational modeling and brain field distribution at a 13 Hz stimulation frequency, revealed modulation in deep brain areas, with minimal effects on the surface. Notably, we observed increased power within intrinsic and stimulation bands beneath the electrodes, attributed to the high stimulus signal amplitude. Additionally, Phase Locking Value (PLV) showed slight increments in non-deep areas. Our analysis indicates focal stimulation using tTIS, prompting further investigation into the necessity of high amplitudes to significantly affect deep brain regions, which warrants validation through clinical experiments.
Collapse
Affiliation(s)
| | - Rassoul Amirfattahi
- Department of Electrical and Computer Engineering, Isfahan University of Technology, Isfahan, Iran
| | | |
Collapse
|