1
|
Liu S, Crawford J, Maltezos H, Sun Y, Tao R, Tao F. A glutamatergic brain neural circuit is critical for modulating trigeminal neuropathic pain. Pain 2025:00006396-990000000-00890. [PMID: 40310866 DOI: 10.1097/j.pain.0000000000003647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Accepted: 03/27/2025] [Indexed: 05/03/2025]
Abstract
ABSTRACT Trigeminal neuropathic pain is a predominant symptom in patients with trigeminal neuralgia. However, the underlying neural circuit mechanism is still elusive. In this study, we investigated the role of a brain neural circuit in the modulation of trigeminal neuropathic pain. We used "Targeted Recombination in Active Populations" to identify activated neurons in brain structures. Anterograde and retrograde viral tracing combined with immunofluorescence staining was used to validate the activated neurons-involved neuronal pathway. We performed optogenetic stimulation and behavioral observation to dissect the brain neural circuitry that underlies the modulation of trigeminal neuropathic pain. We further conducted dual-color fiber photometry to analyze dynamic neurotransmitter release and real-time neuronal activity while observing pain behaviors simultaneously. We observed that mouse neurons in the anterior paraventricular nucleus of thalamus were activated specifically by chronic constriction injury of the infraorbital nerve. We further observed that specifical excitation or silencing of the activated neurons bidirectionally modulated the nerve injury-caused trigeminal neuropathic pain in mice. More importantly, optogenetic activation of the brain neural circuit from anterior paraventricular nucleus of thalamus to anterior cingulate cortex exacerbated such pain and this effect was blocked by an N-methyl-d-aspartate receptor antagonist. Meanwhile, optogenetic activation of this neural circuit markedly increased glutamate release and enhanced neuronal activity in the anterior cingulate cortex. Our results suggest that the identified brain neural circuit could be targeted to develop a novel neuromodulation therapy for trigeminal neuropathic pain.
Collapse
Affiliation(s)
- Sufang Liu
- Department of Biomedical Sciences, Texas A&M University College of Dentistry, Dallas, TX, United States
| | - Joshua Crawford
- Department of Biomedical Sciences, Texas A&M University College of Dentistry, Dallas, TX, United States
| | - Hui Maltezos
- Department of Biomedical Sciences, Texas A&M University College of Dentistry, Dallas, TX, United States
| | - Yanjun Sun
- Department of Neurobiology, Stanford University School of Medicine, Stanford, CA, United States
| | - Ran Tao
- Department of Biomedical Sciences, Texas A&M University College of Dentistry, Dallas, TX, United States
| | - Feng Tao
- Department of Biomedical Sciences, Texas A&M University College of Dentistry, Dallas, TX, United States
| |
Collapse
|
2
|
Ito T, Yamamoto M, Liu L, Saqib KA, Furuyama T, Ono M. Segregated input to thalamic areas that project differently to core and shell auditory cortical fields. iScience 2025; 28:111721. [PMID: 39898033 PMCID: PMC11787697 DOI: 10.1016/j.isci.2024.111721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 10/15/2024] [Accepted: 12/30/2024] [Indexed: 02/04/2025] Open
Abstract
Perception of the environment is multimodal in nature, with sensory systems intricately interconnected. The ability to integrate multimodal sensations while preserving the distinct characteristics of each sensory modality is crucial, and the underlying mechanisms of the organization that facilitate this process require further elucidation. In the auditory system, although the concept of core and shell pathways is well established, the brain-wide input/output relationships of thalamic regions projecting to auditory-responsive cortical areas remain insufficiently studied, particularly in relation to non-auditory structures. In this study, we utilized functional imaging and viral tracing techniques to map the brain-wide connections of core and shell pathways. We identified three distinct shell pathways, in addition to a core pathway, each exhibiting unique associations with non-auditory structures involved in behavior, emotion, and other functions. This architecture suggests that these pathways contribute differentially to various aspects of multimodal sensory integration.
Collapse
Affiliation(s)
- Tetsufumi Ito
- Systems Function and Morphology Laboratory, Graduate School of Innovative Life Science, University of Toyama, Toyama 930-0194 Japan
| | - Mamiko Yamamoto
- Systems Function and Morphology Laboratory, Graduate School of Innovative Life Science, University of Toyama, Toyama 930-0194 Japan
| | - Li Liu
- Anatomy 2, School of Medicine, Kanazawa Medical University, Uchinada 920-0265 Japan
| | - Khaleeq Ahmad Saqib
- Systems Function and Morphology Laboratory, Graduate School of Innovative Life Science, University of Toyama, Toyama 930-0194 Japan
| | - Takafumi Furuyama
- Physiology 1, School of Medicine, Kanazawa Medical University, Uchinada 920-0265, Japan
| | - Munenori Ono
- Physiology 1, School of Medicine, Kanazawa Medical University, Uchinada 920-0265, Japan
| |
Collapse
|
3
|
Zucca S, La Rosa C, Fellin T, Peretto P, Bovetti S. Developmental encoding of natural sounds in the mouse auditory cortex. Cereb Cortex 2024; 34:bhae438. [PMID: 39503245 PMCID: PMC11538960 DOI: 10.1093/cercor/bhae438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 10/16/2024] [Accepted: 10/23/2024] [Indexed: 11/09/2024] Open
Abstract
Mice communicate through high-frequency ultrasonic vocalizations, which are crucial for social interactions such as courtship and aggression. Although ultrasonic vocalization representation has been found in adult brain areas along the auditory pathway, including the auditory cortex, no evidence is available on the neuronal representation of ultrasonic vocalizations early in life. Using in vivo two-photon calcium imaging, we analyzed auditory cortex layer 2/3 neuronal responses to USVs, pure tones (4 to 90 kHz), and high-frequency modulated sweeps from postnatal day 12 (P12) to P21. We found that ACx neurons are tuned to respond to ultrasonic vocalization syllables as early as P12 to P13, with an increasing number of responsive cells as the mouse age. By P14, while pure tone responses showed a frequency preference, no syllable preference was observed. Additionally, at P14, USVs, pure tones, and modulated sweeps activate clusters of largely nonoverlapping responsive neurons. Finally, we show that while cell correlation decreases with increasing processing of peripheral auditory stimuli, neurons responding to the same stimulus maintain highly correlated spontaneous activity after circuits have attained mature organization, forming neuronal subnetworks sharing similar functional properties.
Collapse
Affiliation(s)
- Stefano Zucca
- Department of Life Sciences and Systems Biology (DBIOS), University of Turin, via Accademia Albertina 13, 10123 Turin, Italy
- Neuroscience Institute Cavalieri Ottolenghi (NICO), University of Turin, Regione Gonzole 10, 10143 Orbassano, Italy
| | - Chiara La Rosa
- Department of Life Sciences and Systems Biology (DBIOS), University of Turin, via Accademia Albertina 13, 10123 Turin, Italy
- Neuroscience Institute Cavalieri Ottolenghi (NICO), University of Turin, Regione Gonzole 10, 10143 Orbassano, Italy
| | - Tommaso Fellin
- Optical Approaches to Brain Function Laboratory, Istituto Italiano di Tecnologia, via Morego 30, 16163 Genoa, Italy
| | - Paolo Peretto
- Department of Life Sciences and Systems Biology (DBIOS), University of Turin, via Accademia Albertina 13, 10123 Turin, Italy
- Neuroscience Institute Cavalieri Ottolenghi (NICO), University of Turin, Regione Gonzole 10, 10143 Orbassano, Italy
| | - Serena Bovetti
- Department of Life Sciences and Systems Biology (DBIOS), University of Turin, via Accademia Albertina 13, 10123 Turin, Italy
- Neuroscience Institute Cavalieri Ottolenghi (NICO), University of Turin, Regione Gonzole 10, 10143 Orbassano, Italy
| |
Collapse
|
4
|
Inada K. Neurobiological mechanisms underlying oxytocin-mediated parental behavior in rodents. Neurosci Res 2024; 207:1-12. [PMID: 38642676 DOI: 10.1016/j.neures.2024.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 03/29/2024] [Accepted: 04/07/2024] [Indexed: 04/22/2024]
Abstract
Parental behavior is essential for mammalian offspring to survive. Because of this significance, elucidating the neurobiological mechanisms that facilitate parental behavior has received strong interest. Decades of studies utilizing pharmacology and molecular biology have revealed that in addition to its facilitatory effects on parturition and lactation, oxytocin (OT) promotes the expression of parental behavior in rodents. Recent studies have also described the modulation of sensory processing by OT and the interaction of the OT system with other brain regions associated with parental behavior. However, the precise neurobiological mechanisms underlying the facilitation of caregiving behaviors by OT remain unclear. In this Review, I summarize the findings from rats and mice with a view toward integrating past and recent progress. I then review recent advances in the understanding of the molecular, cellular, and circuit mechanisms of OT-mediated parental behavior. Based on these observations, I propose a hypothetical model that would explain the mechanisms underlying OT-mediated parental behavior. Finally, I conclude by discussing some major remaining questions and propose potential future research directions.
Collapse
Affiliation(s)
- Kengo Inada
- RIKEN Center for Biosystems Dynamics Research, 2-2-3 Minatojima minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan.
| |
Collapse
|
5
|
Haimson B, Gilday OD, Lavi-Rudel A, Sagi H, Lottem E, Mizrahi A. Single neuron responses to perceptual difficulty in the mouse auditory cortex. SCIENCE ADVANCES 2024; 10:eadp9816. [PMID: 39141740 PMCID: PMC11323952 DOI: 10.1126/sciadv.adp9816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 07/09/2024] [Indexed: 08/16/2024]
Abstract
Perceptual learning leads to improvement in behavioral performance, yet how the brain supports challenging perceptual demands is unknown. We used two photon imaging in the mouse primary auditory cortex during behavior in a Go-NoGo task designed to test perceptual difficulty. Using general linear model analysis, we found a subset of neurons that increased their responses during high perceptual demands. Single neurons increased their responses to both Go and NoGo sounds when mice were engaged in the more difficult perceptual discrimination. This increased responsiveness contributes to enhanced cortical network discriminability for the learned sounds. Under passive listening conditions, the same neurons responded weaker to the more similar sound pairs of the difficult task, and the training protocol by itself induced specific suppression to the learned sounds. Our findings identify how neuronal activity in auditory cortex is modulated during high perceptual demands, which is a fundamental feature associated with perceptual improvement.
Collapse
Affiliation(s)
- Baruch Haimson
- The Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
- Department of Neurobiology, The Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Omri David Gilday
- The Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
- Department of Neurobiology, The Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Amichai Lavi-Rudel
- The Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | | | - Eran Lottem
- The Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Adi Mizrahi
- The Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
- Department of Neurobiology, The Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
6
|
Onishi T, Hirose K, Sakaba T. Molecular tools to capture active neural circuits. Front Neural Circuits 2024; 18:1449459. [PMID: 39100199 PMCID: PMC11294111 DOI: 10.3389/fncir.2024.1449459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Accepted: 07/08/2024] [Indexed: 08/06/2024] Open
Abstract
To understand how neurons and neural circuits function during behaviors, it is essential to record neuronal activity in the brain in vivo. Among the various technologies developed for recording neuronal activity, molecular tools that induce gene expression in an activity-dependent manner have attracted particular attention for their ability to clarify the causal relationships between neuronal activity and behavior. In this review, we summarize recently developed activity-dependent gene expression tools and their potential contributions to the study of neural circuits.
Collapse
Affiliation(s)
- Taichi Onishi
- Department of Pharmacology, Graduate School of Medicine, The University of Tokyo, Bunkyo City, Bunkyo, Japan
| | - Kenzo Hirose
- Department of Pharmacology, Graduate School of Medicine, The University of Tokyo, Bunkyo City, Bunkyo, Japan
| | - Takeshi Sakaba
- Graduate School of Brain Science, Doshisha University, Kyotanabe, Kyoto, Japan
| |
Collapse
|
7
|
Hou Y, Li Y, Yang D, Zhao Y, Feng T, Zheng W, Xian P, Liu X, Wu S, Wang Y. Involvement and regulation of the left anterior cingulate cortex in the ultrasonic communication deficits of autistic mice. Front Behav Neurosci 2024; 18:1387447. [PMID: 38813469 PMCID: PMC11133516 DOI: 10.3389/fnbeh.2024.1387447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Accepted: 03/21/2024] [Indexed: 05/31/2024] Open
Abstract
Introduction Autism spectrum disorder (ASD) is a group of diseases often characterized by poor sociability and challenges in social communication. The anterior cingulate cortex (ACC) is a core brain region for social function. Whether it contributes to the defects of social communication in ASD and whether it could be physiologically modulated to improve social communication have been poorly investigated. This study is aimed at addressing these questions. Methods Fragile X mental retardation 1 (FMR1) mutant and valproic acid (VPA)-induced ASD mice were used. Male-female social interaction was adopted to elicit ultrasonic vocalization (USV). Immunohistochemistry was used to evaluate USV-activated neurons. Optogenetic and precise target transcranial magnetic stimulation (TMS) were utilized to modulate anterior cingulate cortex (ACC) neuronal activity. Results In wild-type (WT) mice, USV elicited rapid expression of c-Fos in the excitatory neurons of the left but not the right ACC. Optogenetic inhibition of the left ACC neurons in WT mice effectively suppressed social-induced USV. In FMR1-/-- and VPA-induced ASD mice, significantly fewer c-Fos/CaMKII-positive neurons were observed in the left ACC following USV compared to the control. Optogenetic activation of the left ACC neurons in FMR1-/- or VPA-pretreated mice significantly increased social activity elicited by USV. Furthermore, precisely stimulating neuronal activity in the left ACC, but not the right ACC, by repeated TMS effectively rescued the USV emission in these ASD mice. Discussion The excitatory neurons in the left ACC are responsive to socially elicited USV. Their silence mediates the deficiency of social communication in FMR1-/- and VPA-induced ASD mice. Precisely modulating the left ACC neuronal activity by repeated TMS can promote the social communication in FMR1-/- and VPA-pretreated mice.
Collapse
Affiliation(s)
- Yilin Hou
- Department of Military Medical Psychology, Fourth Military Medical University, Xi’an, China
| | - Yuqian Li
- Department of Neurobiology and Institute of Neurosciences, School of Basic Medicine, Fourth Military Medical University, Xi’an, China
| | - Dingding Yang
- Department of Neurobiology and Institute of Neurosciences, School of Basic Medicine, Fourth Military Medical University, Xi’an, China
| | - Youyi Zhao
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Engineering Research, Center for Dental Materials and Advanced Manufacture, Department of Anesthesiology, School of Stomatology, Fourth Military Medical University, Xi’an, China
| | - Tingwei Feng
- Department of Military Medical Psychology, Fourth Military Medical University, Xi’an, China
| | - Wei’an Zheng
- Department of Neurobiology and Institute of Neurosciences, School of Basic Medicine, Fourth Military Medical University, Xi’an, China
| | - Panpan Xian
- Department of Neurobiology and Institute of Neurosciences, School of Basic Medicine, Fourth Military Medical University, Xi’an, China
| | - Xufeng Liu
- Department of Military Medical Psychology, Fourth Military Medical University, Xi’an, China
| | - Shengxi Wu
- Department of Neurobiology and Institute of Neurosciences, School of Basic Medicine, Fourth Military Medical University, Xi’an, China
| | - Yazhou Wang
- Department of Neurobiology and Institute of Neurosciences, School of Basic Medicine, Fourth Military Medical University, Xi’an, China
| |
Collapse
|
8
|
Agarwalla S, De A, Bandyopadhyay S. Predictive Mouse Ultrasonic Vocalization Sequences: Uncovering Behavioral Significance, Auditory Cortex Neuronal Preferences, and Social-Experience-Driven Plasticity. J Neurosci 2023; 43:6141-6163. [PMID: 37541836 PMCID: PMC10476644 DOI: 10.1523/jneurosci.2353-22.2023] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 07/29/2023] [Accepted: 07/31/2023] [Indexed: 08/06/2023] Open
Abstract
Mouse ultrasonic vocalizations (USVs) contain predictable sequential structures like bird songs and speech. Neural representation of USVs in the mouse primary auditory cortex (Au1) and its plasticity with experience has been largely studied with single-syllables or dyads, without using the predictability in USV sequences. Studies using playback of USV sequences have used randomly selected sequences from numerous possibilities. The current study uses mutual information to obtain context-specific natural sequences (NSeqs) of USV syllables capturing the observed predictability in male USVs in different contexts of social interaction with females. Behavioral and physiological significance of NSeqs over random sequences (RSeqs) lacking predictability were examined. Female mice, never having the social experience of being exposed to males, showed higher selectivity for NSeqs behaviorally and at cellular levels probed by expression of immediate early gene c-fos in Au1. The Au1 supragranular single units also showed higher selectivity to NSeqs over RSeqs. Social-experience-driven plasticity in encoding NSeqs and RSeqs in adult females was probed by examining neural selectivities to the same sequences before and after the above social experience. Single units showed enhanced selectivity for NSeqs over RSeqs after the social experience. Further, using two-photon Ca2+ imaging, we observed social experience-dependent changes in the selectivity of sequences of excitatory and somatostatin-positive inhibitory neurons but not parvalbumin-positive inhibitory neurons of Au1. Using optogenetics, somatostatin-positive neurons were identified as a possible mediator of the observed social-experience-driven plasticity. Our study uncovers the importance of predictive sequences and introduces mouse USVs as a promising model to study context-dependent speech like communications.SIGNIFICANCE STATEMENT Humans need to detect patterns in the sensory world. For instance, speech is meaningful sequences of acoustic tokens easily differentiated from random ordered tokens. The structure derives from the predictability of the tokens. Similarly, mouse vocalization sequences have predictability and undergo context-dependent modulation. Our work investigated whether mice differentiate such informative predictable sequences (NSeqs) of communicative significance from RSeqs at the behavioral, molecular, and neuronal levels. Following a social experience in which NSeqs occur as a crucial component, mouse auditory cortical neurons become more sensitive to differences between NSeqs and RSeqs, although preference for individual tokens is unchanged. Thus, speech-like communication and its dysfunction may be studied in circuit, cellular, and molecular levels in mice.
Collapse
Affiliation(s)
- Swapna Agarwalla
- Information Processing Laboratory, Department of Electronics and Electrical Communication Engineering, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Amiyangshu De
- Information Processing Laboratory, Department of Electronics and Electrical Communication Engineering, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
- Advanced Technology Development Centre, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Sharba Bandyopadhyay
- Information Processing Laboratory, Department of Electronics and Electrical Communication Engineering, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
- Advanced Technology Development Centre, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| |
Collapse
|
9
|
Sterling ML, Teunisse R, Englitz B. Rodent ultrasonic vocal interaction resolved with millimeter precision using hybrid beamforming. eLife 2023; 12:e86126. [PMID: 37493217 PMCID: PMC10522333 DOI: 10.7554/elife.86126] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 07/25/2023] [Indexed: 07/27/2023] Open
Abstract
Ultrasonic vocalizations (USVs) fulfill an important role in communication and navigation in many species. Because of their social and affective significance, rodent USVs are increasingly used as a behavioral measure in neurodevelopmental and neurolinguistic research. Reliably attributing USVs to their emitter during close interactions has emerged as a difficult, key challenge. If addressed, all subsequent analyses gain substantial confidence. We present a hybrid ultrasonic tracking system, Hybrid Vocalization Localizer (HyVL), that synergistically integrates a high-resolution acoustic camera with high-quality ultrasonic microphones. HyVL is the first to achieve millimeter precision (~3.4-4.8 mm, 91% assigned) in localizing USVs, ~3× better than other systems, approaching the physical limits (mouse snout ~10 mm). We analyze mouse courtship interactions and demonstrate that males and females vocalize in starkly different relative spatial positions, and that the fraction of female vocalizations has likely been overestimated previously due to imprecise localization. Further, we find that when two male mice interact with one female, one of the males takes a dominant role in the interaction both in terms of the vocalization rate and the location relative to the female. HyVL substantially improves the precision with which social communication between rodents can be studied. It is also affordable, open-source, easy to set up, can be integrated with existing setups, and reduces the required number of experiments and animals.
Collapse
Affiliation(s)
- Max L Sterling
- Computational Neuroscience Lab, Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen, Nijmegen, Netherlands
- Visual Neuroscience Lab, Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen, Nijmegen, Netherlands
- Department of Human Genetics, Radboudumc, Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen, Nijmegen, Netherlands
| | - Ruben Teunisse
- Computational Neuroscience Lab, Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen, Nijmegen, Netherlands
| | - Bernhard Englitz
- Computational Neuroscience Lab, Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen, Nijmegen, Netherlands
| |
Collapse
|
10
|
Wadle SL, Schmitt TTX, Engel J, Kurt S, Hirtz JJ. Altered population activity and local tuning heterogeneity in auditory cortex of Cacna2d3-deficient mice. Biol Chem 2023; 404:607-617. [PMID: 36342370 DOI: 10.1515/hsz-2022-0269] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 10/24/2022] [Indexed: 11/09/2022]
Abstract
The α2δ3 auxiliary subunit of voltage-activated calcium channels is required for normal synaptic transmission and precise temporal processing of sounds in the auditory brainstem. In mice its loss additionally leads to an inability to distinguish amplitude-modulated tones. Furthermore, loss of function of α2δ3 has been associated with autism spectrum disorder in humans. To investigate possible alterations of network activity in the higher-order auditory system in α2δ3 knockout mice, we analyzed neuronal activity patterns and topography of frequency tuning within networks of the auditory cortex (AC) using two-photon Ca2+ imaging. Compared to wild-type mice we found distinct subfield-specific alterations in the primary auditory cortex, expressed in overall lower correlations between the network activity patterns in response to different sounds as well as lower reliability of these patterns upon repetitions of the same sound. Higher AC subfields did not display these alterations but showed a higher amount of well-tuned neurons along with lower local heterogeneity of the neurons' frequency tuning. Our results provide new insight into AC network activity alterations in an autism spectrum disorder-associated mouse model.
Collapse
Affiliation(s)
- Simon L Wadle
- Physiology of Neuronal Networks, Department of Biology, University of Kaiserslautern, Erwin-Schrödinger-Straße 13, D-67663 Kaiserslautern, Germany
| | - Tatjana T X Schmitt
- Physiology of Neuronal Networks, Department of Biology, University of Kaiserslautern, Erwin-Schrödinger-Straße 13, D-67663 Kaiserslautern, Germany
| | - Jutta Engel
- Department of Biophysics, Saarland University, School of Medicine, Center for Integrative Physiology and Molecular Medicine (CIPMM), D-66421 Homburg, Germany
| | - Simone Kurt
- Department of Biophysics, Saarland University, School of Medicine, Center for Integrative Physiology and Molecular Medicine (CIPMM), D-66421 Homburg, Germany
| | - Jan J Hirtz
- Physiology of Neuronal Networks, Department of Biology, University of Kaiserslautern, Erwin-Schrödinger-Straße 13, D-67663 Kaiserslautern, Germany
| |
Collapse
|
11
|
Haimson B, Mizrahi A. Plasticity in auditory cortex during parenthood. Hear Res 2023; 431:108738. [PMID: 36931020 DOI: 10.1016/j.heares.2023.108738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 02/09/2023] [Accepted: 03/06/2023] [Indexed: 03/11/2023]
Abstract
Most animals display robust parental behaviors that support the survival and well-being of their offspring. The manifestation of parental behaviors is accompanied by physiological and hormonal changes, which affect both the body and the brain for better care giving. Rodents exhibit a behavior called pup retrieval - a stereotyped sequence of perception and action - used to identify and retrieve their newborn pups back to the nest. Pup retrieval consists of a significant auditory component, which depends on plasticity in the auditory cortex (ACx). We review the evidence of neural changes taking place in the ACx of rodents during the transition to parenthood. We discuss how the plastic changes both in and out of the ACx support the encoding of pup vocalizations. Key players in the mechanism of this plasticity are hormones and experience, both of which have a clear dynamic signature during the transition to parenthood. Mothers, co caring females, and fathers have been used as models to understand parental plasticity at disparate levels of organization. Yet, common principles of cortical plasticity and the biological mechanisms underlying its involvement in parental behavior are just beginning to be unpacked.
Collapse
Affiliation(s)
- Baruch Haimson
- The Edmond and Lily Safra Center for Brain Sciences, and 2Department of Neurobiology, The Hebrew University of Jerusalem, Jerusalem 91904, Israel.
| | - Adi Mizrahi
- The Edmond and Lily Safra Center for Brain Sciences, and 2Department of Neurobiology, The Hebrew University of Jerusalem, Jerusalem 91904, Israel.
| |
Collapse
|
12
|
Shani-Narkiss H, Beniaguev D, Segev I, Mizrahi A. Stability and flexibility of odor representations in the mouse olfactory bulb. Front Neural Circuits 2023; 17:1157259. [PMID: 37151358 PMCID: PMC10157098 DOI: 10.3389/fncir.2023.1157259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 03/27/2023] [Indexed: 05/09/2023] Open
Abstract
Dynamic changes in sensory representations have been basic tenants of studies in neural coding and plasticity. In olfaction, relatively little is known about the dynamic range of changes in odor representations under different brain states and over time. Here, we used time-lapse in vivo two-photon calcium imaging to describe changes in odor representation by mitral cells, the output neurons of the mouse olfactory bulb. Using anesthetics as a gross manipulation to switch between different brain states (wakefulness and under anesthesia), we found that odor representations by mitral cells undergo significant re-shaping across states but not over time within state. Odor representations were well balanced across the population in the awake state yet highly diverse under anesthesia. To evaluate differences in odor representation across states, we used linear classifiers to decode odor identity in one state based on training data from the other state. Decoding across states resulted in nearly chance-level accuracy. In contrast, repeating the same procedure for data recorded within the same state but in different time points, showed that time had a rather minor impact on odor representations. Relative to the differences across states, odor representations remained stable over months. Thus, single mitral cells can change dynamically across states but maintain robust representations across months. These findings have implications for sensory coding and plasticity in the mammalian brain.
Collapse
Affiliation(s)
- Haran Shani-Narkiss
- The Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - David Beniaguev
- The Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Idan Segev
- The Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
- Department of Neurobiology, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Adi Mizrahi
- The Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
- Department of Neurobiology, The Hebrew University of Jerusalem, Jerusalem, Israel
- *Correspondence: Adi Mizrahi,
| |
Collapse
|
13
|
Lenschow C, Mendes ARP, Lima SQ. Hearing, touching, and multisensory integration during mate choice. Front Neural Circuits 2022; 16:943888. [PMID: 36247731 PMCID: PMC9559228 DOI: 10.3389/fncir.2022.943888] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Accepted: 06/28/2022] [Indexed: 12/27/2022] Open
Abstract
Mate choice is a potent generator of diversity and a fundamental pillar for sexual selection and evolution. Mate choice is a multistage affair, where complex sensory information and elaborate actions are used to identify, scrutinize, and evaluate potential mating partners. While widely accepted that communication during mate assessment relies on multimodal cues, most studies investigating the mechanisms controlling this fundamental behavior have restricted their focus to the dominant sensory modality used by the species under examination, such as vision in humans and smell in rodents. However, despite their undeniable importance for the initial recognition, attraction, and approach towards a potential mate, other modalities gain relevance as the interaction progresses, amongst which are touch and audition. In this review, we will: (1) focus on recent findings of how touch and audition can contribute to the evaluation and choice of mating partners, and (2) outline our current knowledge regarding the neuronal circuits processing touch and audition (amongst others) in the context of mate choice and ask (3) how these neural circuits are connected to areas that have been studied in the light of multisensory integration.
Collapse
Affiliation(s)
- Constanze Lenschow
- Champalimaud Foundation, Champalimaud Research, Neuroscience Program, Lisbon, Portugal
| | - Ana Rita P Mendes
- Champalimaud Foundation, Champalimaud Research, Neuroscience Program, Lisbon, Portugal
| | - Susana Q Lima
- Champalimaud Foundation, Champalimaud Research, Neuroscience Program, Lisbon, Portugal
| |
Collapse
|
14
|
Naik AA, Brodovskaya A, Subedi S, Akram A, Kapur J. Extrahippocampal seizure and memory circuits overlap. eNeuro 2022; 9:ENEURO.0179-22.2022. [PMID: 35853724 PMCID: PMC9319425 DOI: 10.1523/eneuro.0179-22.2022] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 06/08/2022] [Accepted: 06/24/2022] [Indexed: 11/21/2022] Open
Abstract
Seizures cause retrograde amnesia. We have previously demonstrated that seizures erode recently formed memories through shared ensembles and mechanisms in the CA1 region of the hippocampus. Here, we tested whether seizure circuits overlap spatial memory circuits outside of the CA. Spatial memory is consolidated by the hippocampal-cortical coupling that are connected via multiple pathways. We tested whether a seizure invades structures involved in memory consolidation by using the activity reporter TRAP2 mice. T-maze alternation learning activated neurons in the dentate gyrus, mediodorsal thalamus, retrosplenial cortex, and medial prefrontal cortex. This spatial memory relies on the plasticity of the AMPA receptor GluA1 subunit. GluA1 knockout/TRAP2 mice did not learn to alternate, and structures interposed between the hippocampus and the cortex were not active. A seizure prevented the recall of alternation memory and activated memory-labeled structures. There was a widespread overlap between learning-activated ensembles and seizure-activated neurons, which likely contributes to retrograde amnesia.Significance StatementWe propose that seizures cause retrograde amnesia by engaging the circuits that participate in memory consolidation.
Collapse
Affiliation(s)
- Aijaz Ahmad Naik
- Department of Neurology, University of Virginia, Charlottesville, VA 22903
| | | | - Smriti Subedi
- College of Arts and Sciences, University of Virginia, Charlottesville, VA 22903
| | - Amman Akram
- College of Arts and Sciences, University of Virginia, Charlottesville, VA 22903
| | - Jaideep Kapur
- Department of Neurology, University of Virginia, Charlottesville, VA 22903
- UVA Brain Institute, University of Virginia, Charlottesville, VA 22903
- Department of Neuroscience, University of Virginia, Charlottesville, VA 22903
| |
Collapse
|
15
|
Yarden TS, Mizrahi A, Nelken I. Context-Dependent Inhibitory Control of Stimulus-Specific Adaptation. J Neurosci 2022; 42:4629-4651. [PMID: 35477904 PMCID: PMC9186800 DOI: 10.1523/jneurosci.0988-21.2022] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 02/04/2022] [Accepted: 03/26/2022] [Indexed: 11/21/2022] Open
Abstract
Stimulus-specific adaptation (SSA) is the reduction in responses to frequent stimuli (standards) that does not generalize to rare stimuli (deviants). We investigated the contribution of inhibition in auditory cortex to SSA using two-photon targeted cell-attached recordings and optogenetic manipulations in male mice. We characterized the responses of parvalbumin (PV)-, somatostatin (SST)-, and vasoactive intestinal polypeptide (VIP)-expressing interneurons of layer 2/3, and of serotonin receptor 5HT3a-expressing interneurons of layer 1. All populations showed early-onset SSA. Unexpectedly, the PV, SST, and VIP populations exhibited a substantial late component of evoked activity, often stronger for standard than for deviant stimuli. Optogenetic suppression of PV neurons facilitated pyramidal neuron responses substantially more (approximately ×10) for deviants than for standards. VIP suppression decreased responses of putative PV neurons, specifically for standard but not for deviant stimuli. Thus, the inhibitory network does not generate cortical SSA, but powerfully controls its expression by differentially affecting the responses to deviants and to standards.SIGNIFICANCE STATEMENT Stimulus-specific adaptation (SSA) reflects the growing complexity of auditory processing along the ascending auditory system. In the presence of SSA, neuronal responses depend not only on the stimulus itself but also on the history of stimulation. Strong SSA in the fast, ascending auditory pathway first occurs in cortex. Here we studied the role of the cortical inhibitory network in shaping SSA, showing that while cortical inhibition does not generate SSA, it powerfully controls its expression. We deduce that the cortical network contributes in crucial ways to the properties of SSA.
Collapse
Affiliation(s)
- Tohar S Yarden
- Department of Neurobiology, the Alexander Silberman Institute of Life Sciences and the Edmond and Lily Safra Center for Brain Sciences, Hebrew University, Jerusalem 91904, Israel
| | - Adi Mizrahi
- Department of Neurobiology, the Alexander Silberman Institute of Life Sciences and the Edmond and Lily Safra Center for Brain Sciences, Hebrew University, Jerusalem 91904, Israel
| | - Israel Nelken
- Department of Neurobiology, the Alexander Silberman Institute of Life Sciences and the Edmond and Lily Safra Center for Brain Sciences, Hebrew University, Jerusalem 91904, Israel
| |
Collapse
|
16
|
Mayer HS, Rosinger ZJ, Kruithof VB, Mishra S, BlackOwl AL, Stolzenberg DS. Effects of maternal experience on pup-induced activation of maternal neural circuits in virgin mice. Horm Behav 2022; 141:105129. [PMID: 35168026 PMCID: PMC10866554 DOI: 10.1016/j.yhbeh.2022.105129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 12/21/2021] [Accepted: 02/02/2022] [Indexed: 11/24/2022]
Abstract
Maternal experience can promote a long-lasting increase in maternal motivation. This maintenance of caregiving behaviors, rather than avoidant or agnostic responses towards young, is advantageous for the survival of subsequent offspring. We have previously reported that maternal motivation is associated with differential immediate early gene expression in central motivation circuits and aversion circuits. Here we ask how these circuits come to differentially respond to infant cues. We used Targeted Recombination in Active Populations (TRAP) to identify cells that respond to pups in maternally hesitant TRAP2;Ai14 virgin female mice. Following an initial 60 min exposure to foster pups, virgin TRAP2;Ai14 mice were injected with 4-hydroxytamoxifen to induce recombination in c-Fos expressing cells and subsequent permanent expression of a red fluorescent reporter. We then examined whether the same cells that encode pup cues are reactivated during maternal memory retrieval two weeks later using c-Fos immunohistochemistry. Whereas initial pup exposure induced c-Fos activation exclusively in the medial preoptic area (MPOA), following repeated experience, c-Fos expression was significantly higher than baseline in multiple regions of maternal and central aversion circuits (e.g., ventral bed nucleus of the stria terminalis, nucleus accumbens, basolateral amygdala, prefrontal cortex, medial amygdala, and ventromedial nucleus of the hypothalamus). Further, cells in many of these sites were significantly reactivated during maternal memory retrieval. These data suggest that cells across both maternal motivation and central aversion circuits are stably responsive to pups and thus may form the cellular representation of maternal memory.
Collapse
Affiliation(s)
- Heather S Mayer
- Department of Psychology, University of California, Davis, One Shields Ave., Davis, CA 95616, United States of America
| | - Zachary J Rosinger
- Department of Psychology, University of California, Davis, One Shields Ave., Davis, CA 95616, United States of America
| | - Vivian B Kruithof
- Department of Psychology, University of California, Davis, One Shields Ave., Davis, CA 95616, United States of America
| | - Shambhavi Mishra
- Department of Psychology, University of California, Davis, One Shields Ave., Davis, CA 95616, United States of America
| | - Anthony L BlackOwl
- Department of Psychology, University of California, Davis, One Shields Ave., Davis, CA 95616, United States of America
| | - Danielle S Stolzenberg
- Department of Psychology, University of California, Davis, One Shields Ave., Davis, CA 95616, United States of America.
| |
Collapse
|
17
|
Lee J, Urban-Ciecko J, Park E, Zhu M, Myal SE, Margolis DJ, Barth AL. FosGFP expression does not capture a sensory learning-related engram in superficial layers of mouse barrel cortex. Proc Natl Acad Sci U S A 2021; 118:e2112212118. [PMID: 34930843 PMCID: PMC8719899 DOI: 10.1073/pnas.2112212118] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/07/2021] [Indexed: 11/18/2022] Open
Abstract
Immediate-early gene (IEG) expression has been used to identify small neural ensembles linked to a particular experience, based on the principle that a selective subset of activated neurons will encode specific memories or behavioral responses. The majority of these studies have focused on "engrams" in higher-order brain areas where more abstract or convergent sensory information is represented, such as the hippocampus, prefrontal cortex, or amygdala. In primary sensory cortex, IEG expression can label neurons that are responsive to specific sensory stimuli, but experience-dependent shaping of neural ensembles marked by IEG expression has not been demonstrated. Here, we use a fosGFP transgenic mouse to longitudinally monitor in vivo expression of the activity-dependent gene c-fos in superficial layers (L2/3) of primary somatosensory cortex (S1) during a whisker-dependent learning task. We find that sensory association training does not detectably alter fosGFP expression in L2/3 neurons. Although training broadly enhances thalamocortical synaptic strength in pyramidal neurons, we find that synapses onto fosGFP+ neurons are not selectively increased by training; rather, synaptic strengthening is concentrated in fosGFP- neurons. Taken together, these data indicate that expression of the IEG reporter fosGFP does not facilitate identification of a learning-specific engram in L2/3 in barrel cortex during whisker-dependent sensory association learning.
Collapse
Affiliation(s)
- Jiseok Lee
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA 15213
| | - Joanna Urban-Ciecko
- Nencki Institute of Experimental Biology of the Polish Academy of Sciences, 02-093 Warsaw, Poland
| | - Eunsol Park
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA 15213
| | - Mo Zhu
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA 15213
| | - Stephanie E Myal
- University of Pittsburgh School of Medicine, Pittsburgh, PA 15213
| | - David J Margolis
- Department of Cell Biology and Neuroscience, Rutgers, The State University of New Jersey, Piscataway, NJ 08854
| | - Alison L Barth
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA 15213;
| |
Collapse
|
18
|
Liu X, Li H, Wang Y, Lei T, Wang J, Spillmann L, Andolina IM, Wang W. From Receptive to Perceptive Fields: Size-Dependent Asymmetries in Both Negative Afterimages and Subcortical On and Off Post-Stimulus Responses. J Neurosci 2021; 41:7813-7830. [PMID: 34326144 PMCID: PMC8445057 DOI: 10.1523/jneurosci.0300-21.2021] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 07/11/2021] [Accepted: 07/13/2021] [Indexed: 11/21/2022] Open
Abstract
Negative afterimages are perceptual phenomena that occur after physical stimuli disappear from sight. Their origin is linked to transient post-stimulus responses of visual neurons. The receptive fields (RFs) of these subcortical ON- and OFF-center neurons exhibit antagonistic interactions between central and surrounding visual space, resulting in selectivity for stimulus polarity and size. These two features are closely intertwined, yet their relationship to negative afterimage perception remains unknown. Here we tested whether size differentially affects the perception of bright and dark negative afterimages in humans of both sexes, and how this correlates with neural mechanisms in subcortical ON and OFF cells. Psychophysically, we found a size-dependent asymmetry whereby dark disks produce stronger and longer-lasting negative afterimages than bright disks of equal contrast at sizes >0.8°. Neurophysiological recordings from retinal and relay cells in female cat dorsal lateral geniculate nucleus showed that subcortical ON cells exhibited stronger sustained post-stimulus responses to dark disks, than OFF cells to bright disks, at sizes >1°. These sizes agree with the emergence of center-surround antagonism, revealing stronger suppression to opposite-polarity stimuli for OFF versus ON cells, particularly in dorsal lateral geniculate nucleus. Using a network-based retino-geniculate model, we confirmed stronger antagonism and temporal transience for OFF-cell post-stimulus rebound responses. A V1 population model demonstrated that both strength and duration asymmetries can be propagated to downstream cortical areas. Our results demonstrate how size-dependent antagonism impacts both the neuronal post-stimulus response and the resulting afterimage percepts, thereby supporting the idea of perceptual RFs reflecting the underlying neuronal RF organization of single cells.SIGNIFICANCE STATEMENT Visual illusions occur when sensory inputs and perceptual outcomes do not match, and provide a valuable tool to understand transformations from neural to perceptual responses. A classic example are negative afterimages that remain visible after a stimulus is removed from view. Such perceptions are linked to responses in early visual neurons, yet the details remain poorly understood. Combining human psychophysics, neurophysiological recordings in cats and retino-thalamo-cortical computational modeling, our study reveals how stimulus size and the receptive-field structure of subcortical ON and OFF cells contributes to the parallel asymmetries between neural and perceptual responses to bright versus dark afterimages. Thus, this work provides a deeper link from the underlying neural mechanisms to the resultant perceptual outcomes.
Collapse
Affiliation(s)
- Xu Liu
- Institute of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, Chinese Academy of Sciences, Shanghai, 200031, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hui Li
- Institute of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Ye Wang
- State Key Laboratory of Media Convergence and Communication, Neuroscience and Intelligent Media Institute, Communication University of China, Beijing, 100024, China
| | - Tianhao Lei
- Institute of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Jijun Wang
- Shanghai Mental Health Center, Shanghai Jiaotong University School of Medicine, Shanghai Key Laboratory of Psychotic Disorders, Shanghai, 200030, China
| | - Lothar Spillmann
- Department of Neurology, University of Freiburg, Freiburg, 79085, Germany
| | - Ian Max Andolina
- Institute of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, Chinese Academy of Sciences, Shanghai, 200031, China
- Shanghai Center for Brain and Brain-inspired Intelligence Technology, Shanghai, 200031, China
| | - Wei Wang
- Institute of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, Chinese Academy of Sciences, Shanghai, 200031, China
- Shanghai Center for Brain and Brain-inspired Intelligence Technology, Shanghai, 200031, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
19
|
Yatziv SL, Yudco O, Vaso K, Mizrahi A, Devor M. Anesthesia in mice activates discrete populations of neurons throughout the brain. J Neurosci Res 2021; 99:3284-3305. [PMID: 34510528 DOI: 10.1002/jnr.24950] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 06/03/2021] [Accepted: 08/07/2021] [Indexed: 12/16/2022]
Abstract
The brain undergoes rapid, dramatic, and reversible transitioning between states of wakefulness and unconsciousness during natural sleep and in pathological conditions such as hypoxia, hypotension, and concussion. Transitioning can also be induced pharmacologically using general anesthetic agents. The effect is selective. Mobility, sensory perception, memory formation, and awareness are lost while numerous housekeeping functions persist. How is selective transitioning accomplished? Classically a handful of brainstem and diencephalic "arousal nuclei" have been implicated in driving brain-state transitions on the grounds that their net activity systematically varies with brain state. Here we used transgenic targeted recombination in active populations mice to label neurons active during wakefulness with one reporter and neurons active during pentobarbital-induced general anesthesia with a second, contrasting reporter. We found 'wake-on' and 'anesthesia-on' neurons in widely distributed regions-of-interest, but rarely encountered neurons labeled with both reporters. Nearly all labeled neurons were either wake-on or anesthesia-on. Thus, anesthesia-on neurons are not unique to the few nuclei discovered to date whose activity appears to increase during anesthesia. Rather neuronal populations selectively active during anesthesia are located throughout the brain where they likely play a causative role in transitioning between wakefulness and anesthesia. The widespread neuronal suppression reported in prior comparisons of the awake and anesthetized brain in animal models and noninvasive imaging in humans reflects only net differences. It misses the ubiquitous presence of neurons whose activity increases during anesthesia. The balance in recruitment of anesthesia-on versus wake-on neuronal populations throughout the brain may be a key driver of regional and global vigilance states. [Correction added on September 22, 2021, after first online publication: Due to a typesetting error, the abstract text was cut off. This has been corrected now.].
Collapse
Affiliation(s)
- Shai-Lee Yatziv
- Department of Cell and Developmental Biology, Silberman Institute of Life Sciences, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Or Yudco
- Department of Cell and Developmental Biology, Silberman Institute of Life Sciences, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Kristina Vaso
- Department of Cell and Developmental Biology, Silberman Institute of Life Sciences, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Adi Mizrahi
- Department of Neurobiology, Silberman Institute of Life Sciences, Hebrew University of Jerusalem, Jerusalem, Israel.,The Edmond and Lily Safra Center for Brain Sciences, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Marshall Devor
- Department of Cell and Developmental Biology, Silberman Institute of Life Sciences, Hebrew University of Jerusalem, Jerusalem, Israel.,Center for Research on Pain, Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
20
|
Sparse Coding in Temporal Association Cortex Improves Complex Sound Discriminability. J Neurosci 2021; 41:7048-7064. [PMID: 34244361 DOI: 10.1523/jneurosci.3167-20.2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 06/05/2021] [Accepted: 06/18/2021] [Indexed: 11/21/2022] Open
Abstract
The mouse auditory cortex is comprised of several auditory fields spanning the dorsoventral axis of the temporal lobe. The ventral most auditory field is the temporal association cortex (TeA), which remains largely unstudied. Using Neuropixels probes, we simultaneously recorded from primary auditory cortex (AUDp), secondary auditory cortex (AUDv), and TeA, characterizing neuronal responses to pure tones and frequency modulated (FM) sweeps in awake head-restrained female mice. As compared with AUDp and AUDv, single-unit (SU) responses to pure tones in TeA were sparser, delayed, and prolonged. Responses to FMs were also sparser. Population analysis showed that the sparser responses in TeA render it less sensitive to pure tones, yet more sensitive to FMs. When characterizing responses to pure tones under anesthesia, the distinct signature of TeA was changed considerably as compared with that in awake mice, implying that responses in TeA are strongly modulated by non-feedforward connections. Together, these findings provide a basic electrophysiological description of TeA as an integral part of sound processing along the cortical hierarchy.SIGNIFICANCE STATEMENT This is the first comprehensive characterization of the auditory responses in the awake mouse auditory temporal association cortex (TeA). The study provides the foundations for further investigation of TeA and its involvement in auditory learning, plasticity, auditory driven behaviors etc. The study was conducted using state of the art data collection tools, allowing for simultaneous recording from multiple cortical regions and numerous neurons.
Collapse
|
21
|
Stevenson P, Casenhiser DM, Lau BY, Krishnan K. Systematic analysis of goal-related movement sequences during maternal behaviour in a female mouse model for Rett syndrome. Eur J Neurosci 2021; 54:4528-4549. [PMID: 34043854 PMCID: PMC8450021 DOI: 10.1111/ejn.15327] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Revised: 05/17/2021] [Accepted: 05/23/2021] [Indexed: 11/28/2022]
Abstract
Rodent dams seek and gather scattered pups back to the nest (pup retrieval), an essential aspect of maternal care. Systematic analysis of the dynamic sequences of goal-related movements that comprise the entire behavioural sequence, which would be ultimately essential for understanding the underlying neurobiology, is not well-characterized. Here, we present such analysis across 3 days in alloparental female mice (Surrogates or Sur) of two genotypes; Mecp2Heterozygotes (Het), a female mouse model for Rett syndrome and their wild type (WT) siblings. We analysed CBA/CaJ and C57BL/6J WT surrogates for within-strain comparisons. Frame-by-frame analysis over different phases was performed manually using DataVyu software. We previously showed that surrogate Het are inefficient at pup retrieval, by end-point analysis such as latency index and errors. Here, the sequence of searching, pup-approach and successful retrieval streamlines over days for WT, while Het exhibits variations in this pattern. Goal-related movements between Het and WT are similar in other phases, suggesting context-driven atypical patterns in Het during the pup retrieval phase. We identified proximal pup approach and pup grooming as atypical tactile interactions between pups and Het. Day-by-day analysis showed dynamic changes in goal-related movements in individual animals across genotypes and strains. Overall, our approach (1) highlights natural variation in individual mice on different days, (2) establishes a "gold-standard" manually curated dataset to help build behavioural repertoires using machine learning approaches, and (3) suggests atypical tactile sensory processing and possible regression in a female mouse model for Rett syndrome.
Collapse
Affiliation(s)
- Parker Stevenson
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996
| | - Devin M. Casenhiser
- Audiology and Speech Pathology Department, University of Tennessee Health Sciences Center, Knoxville, TN 37996
| | - Billy Y.B. Lau
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996
| | - Keerthi Krishnan
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996
| |
Collapse
|
22
|
|
23
|
Royer J, Huetz C, Occelli F, Cancela JM, Edeline JM. Enhanced Discriminative Abilities of Auditory Cortex Neurons for Pup Calls Despite Reduced Evoked Responses in C57BL/6 Mother Mice. Neuroscience 2020; 453:1-16. [PMID: 33253823 DOI: 10.1016/j.neuroscience.2020.11.031] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 11/03/2020] [Accepted: 11/18/2020] [Indexed: 11/30/2022]
Abstract
A fundamental task for the auditory system is to process communication sounds according to their behavioral significance. In many mammalian species, pup calls became more significant for mothers than other conspecific and heterospecific communication sounds. To study the cortical consequences of motherhood on the processing of communication sounds, we recorded neuronal responses in the primary auditory cortex of virgin and mother C57BL/6 mice which had similar ABR thresholds. In mothers, the evoked firing rate in response to pure tones was decreased and the frequency receptive fields were narrower. The responses to pup and adult calls were also reduced but the amount of mutual information (MI) per spike about the pup call's identity was increased in mother mice. The response latency to pup and adult calls was significantly shorter in mothers. Despite similarly decreased responses to guinea pig whistles, the response latency, and the MI per spike did not differ between virgins and mothers for these heterospecific vocalizations. Noise correlations between cortical recordings were decreased in mothers, suggesting that the firing rate of distant neurons was more independent from each other. Together, these results indicate that in the most commonly used mouse strain for behavioral studies, the discrimination of pup calls by auditory cortex neurons is more efficient during motherhood.
Collapse
Affiliation(s)
- Juliette Royer
- Université Paris-Saclay, CNRS UMR 9197, Institut des neurosciences Paris-Saclay, 91190 Gif-sur-Yvette, France; Institut des neurosciences Paris-Saclay, CNRS, 91190 Gif-sur-Yvette, France
| | - Chloé Huetz
- Université Paris-Saclay, CNRS UMR 9197, Institut des neurosciences Paris-Saclay, 91190 Gif-sur-Yvette, France; Institut des neurosciences Paris-Saclay, CNRS, 91190 Gif-sur-Yvette, France
| | - Florian Occelli
- Université Paris-Saclay, CNRS UMR 9197, Institut des neurosciences Paris-Saclay, 91190 Gif-sur-Yvette, France; Institut des neurosciences Paris-Saclay, CNRS, 91190 Gif-sur-Yvette, France
| | - José-Manuel Cancela
- Université Paris-Saclay, CNRS UMR 9197, Institut des neurosciences Paris-Saclay, 91190 Gif-sur-Yvette, France; Institut des neurosciences Paris-Saclay, CNRS, 91190 Gif-sur-Yvette, France
| | - Jean-Marc Edeline
- Université Paris-Saclay, CNRS UMR 9197, Institut des neurosciences Paris-Saclay, 91190 Gif-sur-Yvette, France; Institut des neurosciences Paris-Saclay, CNRS, 91190 Gif-sur-Yvette, France.
| |
Collapse
|
24
|
Shani-Narkiss H, Vinograd A, Landau ID, Tasaka G, Yayon N, Terletsky S, Groysman M, Maor I, Sompolinsky H, Mizrahi A. Young adult-born neurons improve odor coding by mitral cells. Nat Commun 2020; 11:5867. [PMID: 33203831 PMCID: PMC7673122 DOI: 10.1038/s41467-020-19472-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Accepted: 09/28/2020] [Indexed: 12/11/2022] Open
Abstract
New neurons are continuously generated in the adult brain through a process called adult neurogenesis. This form of plasticity has been correlated with numerous behavioral and cognitive phenomena, but it remains unclear if and how adult-born neurons (abNs) contribute to mature neural circuits. We established a highly specific and efficient experimental system to target abNs for causal manipulations. Using this system with chemogenetics and imaging, we found that abNs effectively sharpen mitral cells (MCs) tuning and improve their power to discriminate among odors. The effects on MCs responses peaked when abNs were young and decreased as they matured. To explain the mechanism of our observations, we simulated the olfactory bulb circuit by modelling the incorporation of abNs into the circuit. We show that higher excitability and broad input connectivity, two well-characterized features of young neurons, underlie their unique ability to boost circuit computation.
Collapse
Affiliation(s)
- H Shani-Narkiss
- The Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - A Vinograd
- The Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
- Department of Neurobiology, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - I D Landau
- The Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - G Tasaka
- The Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - N Yayon
- The Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - S Terletsky
- Department of Neurobiology, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - M Groysman
- The Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - I Maor
- The Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - H Sompolinsky
- The Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
- Racah Institute of Physics, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - A Mizrahi
- The Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel.
- Department of Neurobiology, The Hebrew University of Jerusalem, Jerusalem, Israel.
| |
Collapse
|
25
|
Pham BN, Luo J, Anand H, Kola O, Salcedo P, Nguyen C, Gaunt S, Zhong H, Garfinkel A, Tillakaratne N, Edgerton VR. Redundancy and multifunctionality among spinal locomotor networks. J Neurophysiol 2020; 124:1469-1479. [PMID: 32966757 PMCID: PMC8356786 DOI: 10.1152/jn.00338.2020] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 08/26/2020] [Accepted: 09/13/2020] [Indexed: 02/08/2023] Open
Abstract
c-Fos is used to identify system-wide neural activation with cellular resolution in vivo. However, c-Fos can only capture neural activation of one event. Targeted recombination in active populations (TRAP) allows the capture of two different c-Fos activation patterns in the same animal. So far, TRAP has only been used to examine brain circuits. This study uses TRAP to investigate spinal circuit activation during resting and stepping, giving novel insights of network activation during these events. The level of colabeled (c-Fos+ and TRAP+) neurons observed after performing two bouts of stepping suggests that there is a probabilistic-like phenomenon that can recruit many combinations of neural populations (synapses) when repetitively generating many step cycles. Between two 30-min bouts of stepping, each consisting of thousands of steps, only ∼20% of the neurons activated from the first bout of stepping were also activated by the second bout. We also show colabeling of interneurons that have been active during stepping and resting. The use of the FosTRAP methodology in the spinal cord provides a new tool to compare the engagement of different populations of spinal interneurons in vivo under different motor tasks or under different conditions.NEW & NOTEWORTHY The results are consistent with there being an extensive amount of redundancy among spinal locomotor circuits. Using the newly developed FosTRAP mouse model, only ∼20% of neurons that were active (labeled by Fos-linked tdTomato expression) during a first bout of 30-min stepping were also labeled for c-Fos during a second bout of stepping. This finding suggests variability of neural networks that enables selection of many combinations of neurons (synapses) when generating each step cycle.
Collapse
Affiliation(s)
- Bau N. Pham
- Department of Bioengineering, University of California, Los Angeles, California
| | - Jiangyuan Luo
- Department of Neuroscience, University of California, Los Angeles, California
| | - Harnadar Anand
- Institute for Society and Genetics, University of California, Los Angeles, California
| | - Olivia Kola
- Department of Neuroscience, University of California, Los Angeles, California
| | - Pia Salcedo
- Department of Psychobiology, University of California, Los Angeles, California
| | - Connie Nguyen
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, California
| | - Sarah Gaunt
- Department of Molecular Cellular and Developmental Biology, University of California, Los Angeles, California
| | - Hui Zhong
- Department of Integrative Biology and Physiology, University of California, Los Angeles, California
| | - Alan Garfinkel
- Department of Integrative Biology and Physiology, University of California, Los Angeles, California
| | - Niranjala Tillakaratne
- Department of Integrative Biology and Physiology, University of California, Los Angeles, California
- Brain Research Institute, University of California, Los Angeles, California
| | - V. Reggie Edgerton
- Department of Integrative Biology and Physiology, University of California, Los Angeles, California
- Brain Research Institute, University of California, Los Angeles, California
- Department of Neurobiology, University of California, Los Angeles, California
- Department of Neurosurgery, University of California, Los Angeles, California
- Institut Guttmann, Hospital de Neurorehabilitació, Universitat Autònoma de Barcelona, Badalona, Spain
- Centre for Neuroscience and Regenerative Medicine, Faculty of Science, University of Technology Sydney, Ultimo, Australia
| |
Collapse
|
26
|
Dunlap AG, Besosa C, Pascual LM, Chong KK, Walum H, Kacsoh DB, Tankeu BB, Lu K, Liu RC. Becoming a better parent: Mice learn sounds that improve a stereotyped maternal behavior. Horm Behav 2020; 124:104779. [PMID: 32502487 PMCID: PMC7487030 DOI: 10.1016/j.yhbeh.2020.104779] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 04/22/2020] [Accepted: 05/18/2020] [Indexed: 11/30/2022]
Abstract
While mothering is often instinctive and stereotyped in species-specific ways, evolution can favor genetically "open" behavior programs that allow experience to shape infant care. Among experience-dependent maternal behavioral mechanisms, sensory learning about infants has been hard to separate from motivational changes arising from sensitization with infants. We developed a paradigm in which sensory learning of an infant-associated cue improves a stereotypical maternal behavior in female mice. Mice instinctively employed a spatial memory-based strategy when engaged repetitively in a pup search and retrieval task. However, by playing a sound from a T-maze arm to signal where a pup will be delivered for retrieval, mice learned within 7 days and retained for at least 2 weeks the ability to use this specific cue to guide a more efficient search strategy. The motivation to retrieve pups also increased with learning on average, but their correlation did not explain performance at the trial level. Bilaterally silencing auditory cortical activity significantly impaired the utilization of new strategy without changing the motivation to retrieve pups. Finally, motherhood as compared to infant-care experience alone accelerated how quickly the new sensory-based strategy was acquired, suggesting a role for the maternal hormonal state. By rigorously establishing that newly formed sensory associations can improve the performance of a natural maternal behavior, this work facilitates future studies into the neurochemical and circuit mechanisms that mediate novel sensory learning in the maternal context, as well as more learning-based mechanisms of parental behavior in rodents.
Collapse
Affiliation(s)
- Alexander G Dunlap
- Bioengineering Interdisciplinary Graduate Program, Georgia Institute of Technology, Atlanta, GA, USA; Department of Biology, Emory University, Atlanta, GA, USA
| | | | - Leila M Pascual
- Neuroscience Graduate Program, Emory University, Atlanta, GA, USA
| | - Kelly K Chong
- Department of Biology, Emory University, Atlanta, GA, USA; Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Hasse Walum
- Yerkes National Primate Research Center, Emory University, Atlanta, GA, USA
| | | | - Brenda B Tankeu
- Department of Natural Sciences, Bowie State University, Bowie, MD, USA; Emory College Summer Undergraduate Research Experience Program, Atlanta, GA, USA
| | - Kai Lu
- Department of Biology, Emory University, Atlanta, GA, USA
| | - Robert C Liu
- Department of Biology, Emory University, Atlanta, GA, USA; Silvio O. Conte Center for Oxytocin and Social Cognition and Center for Translational Social Neuroscience, Atlanta, GA, USA.
| |
Collapse
|
27
|
Tasaka GI, Feigin L, Maor I, Groysman M, DeNardo LA, Schiavo JK, Froemke RC, Luo L, Mizrahi A. The Temporal Association Cortex Plays a Key Role in Auditory-Driven Maternal Plasticity. Neuron 2020; 107:566-579.e7. [PMID: 32473095 DOI: 10.1016/j.neuron.2020.05.004] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 01/29/2020] [Accepted: 05/01/2020] [Indexed: 11/24/2022]
Abstract
Mother-infant bonding develops rapidly following parturition and is accompanied by changes in sensory perception and behavior. Here, we study how ultrasonic vocalizations (USVs) are represented in the brain of mothers. Using a mouse line that allows temporally controlled genetic access to active neurons, we find that the temporal association cortex (TeA) in mothers exhibits robust USV responses. Rabies tracing from USV-responsive neurons reveals extensive subcortical and cortical inputs into TeA. A particularly dominant cortical source of inputs is the primary auditory cortex (A1), suggesting strong A1-to-TeA connectivity. Chemogenetic silencing of USV-responsive neurons in TeA impairs auditory-driven maternal preference in a pup-retrieval assay. Furthermore, dense extracellular recordings from awake mice reveal changes of both single-neuron and population responses to USVs in TeA, improving discriminability of pup calls in mothers compared with naive females. These data indicate that TeA plays a key role in encoding and perceiving pup cries during motherhood.
Collapse
Affiliation(s)
- Gen-Ichi Tasaka
- Department of Neurobiology, The Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Libi Feigin
- Department of Neurobiology, The Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Ido Maor
- Department of Neurobiology, The Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Maya Groysman
- Department of Neurobiology, The Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Laura A DeNardo
- Department of Biology, Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| | - Jennifer K Schiavo
- Skirball Institute for Biomolecular Medicine, Neuroscience Institute, and Department of Otolaryngology, New York University School of Medicine, New York, NY 10016, USA
| | - Robert C Froemke
- Skirball Institute for Biomolecular Medicine, Neuroscience Institute, and Department of Otolaryngology, New York University School of Medicine, New York, NY 10016, USA
| | - Liqun Luo
- Department of Biology, Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| | - Adi Mizrahi
- Department of Neurobiology, The Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem 91904, Israel.
| |
Collapse
|
28
|
Cheyne JE, Montgomery JM. The cellular and molecular basis of in vivo synaptic plasticity in rodents. Am J Physiol Cell Physiol 2020; 318:C1264-C1283. [PMID: 32320288 DOI: 10.1152/ajpcell.00416.2019] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Plasticity within the neuronal networks of the brain underlies the ability to learn and retain new information. The initial discovery of synaptic plasticity occurred by measuring synaptic strength in vivo, applying external stimulation and observing an increase in synaptic strength termed long-term potentiation (LTP). Many of the molecular pathways involved in LTP and other forms of synaptic plasticity were subsequently uncovered in vitro. Over the last few decades, technological advances in recording and imaging in live animals have seen many of these molecular mechanisms confirmed in vivo, including structural changes both pre- and postsynaptically, changes in synaptic strength, and changes in neuronal excitability. A well-studied aspect of neuronal plasticity is the capacity of the brain to adapt to its environment, gained by comparing the brains of deprived and experienced animals in vivo, and in direct response to sensory stimuli. Multiple in vivo studies have also strongly linked plastic changes to memory by interfering with the expression of plasticity and by manipulating memory engrams. Plasticity in vivo also occurs in the absence of any form of external stimulation, i.e., during spontaneous network activity occurring with brain development. However, there is still much to learn about how plasticity is induced during natural learning and how this is altered in neurological disorders.
Collapse
Affiliation(s)
- Juliette E Cheyne
- Department of Physiology and Centre for Brain Research, University of Auckland, Auckland, New Zealand
| | - Johanna M Montgomery
- Department of Physiology and Centre for Brain Research, University of Auckland, Auckland, New Zealand
| |
Collapse
|
29
|
Maor I, Shwartz-Ziv R, Feigin L, Elyada Y, Sompolinsky H, Mizrahi A. Neural Correlates of Learning Pure Tones or Natural Sounds in the Auditory Cortex. Front Neural Circuits 2020; 13:82. [PMID: 32047424 PMCID: PMC6997498 DOI: 10.3389/fncir.2019.00082] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 12/17/2019] [Indexed: 11/17/2022] Open
Abstract
Associative learning of pure tones is known to cause tonotopic map expansion in the auditory cortex (ACx), but the function this plasticity sub-serves is unclear. We developed an automated training platform called the “Educage,” which was used to train mice on a go/no-go auditory discrimination task to their perceptual limits, for difficult discriminations among pure tones or natural sounds. Spiking responses of excitatory and inhibitory parvalbumin (PV+) L2/3 neurons in mouse ACx revealed learning-induced overrepresentation of the learned frequencies, as expected from previous literature. The coordinated plasticity of excitatory and inhibitory neurons supports a role for PV+ neurons in homeostatic maintenance of excitation–inhibition balance within the circuit. Using a novel computational model to study auditory tuning curves, we show that overrepresentation of the learned tones does not necessarily improve discrimination performance of the network to these tones. In a separate set of experiments, we trained mice to discriminate among natural sounds. Perceptual learning of natural sounds induced “sparsening” and decorrelation of the neural response, consequently improving discrimination of these complex sounds. This signature of plasticity in A1 highlights its role in coding natural sounds.
Collapse
Affiliation(s)
- Ido Maor
- Department of Neurobiology, Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel.,The Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Ravid Shwartz-Ziv
- The Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Libi Feigin
- The Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Yishai Elyada
- The Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Haim Sompolinsky
- The Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel.,The Racah Institute of Physics, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Adi Mizrahi
- Department of Neurobiology, Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel.,The Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
30
|
Lee H, Yamazaki R, Wang D, Arthaud S, Fort P, DeNardo LA, Luppi P. Targeted recombination in active populations as a new mouse genetic model to study sleep‐active neuronal populations: Demonstration that Lhx6+ neurons in the ventral zona incerta are activated during paradoxical sleep hypersomnia. J Sleep Res 2020; 29:e12976. [DOI: 10.1111/jsr.12976] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Revised: 12/09/2019] [Accepted: 12/10/2019] [Indexed: 12/16/2022]
Affiliation(s)
- Hyun‐Sook Lee
- Centre de Recherche en Neurosciences de Lyon (CRNL) Université Claude Bernard Lyon 1 CNRS UMR5292 INSERM U1028 Bron France
- Department of Anatomy School of Medicine Konkuk University Seoul Korea
- Research Institute of Medical Science School of Medicine Konkuk University Seoul Korea
| | - Risa Yamazaki
- Centre de Recherche en Neurosciences de Lyon (CRNL) Université Claude Bernard Lyon 1 CNRS UMR5292 INSERM U1028 Bron France
| | - Dianru Wang
- Centre de Recherche en Neurosciences de Lyon (CRNL) Université Claude Bernard Lyon 1 CNRS UMR5292 INSERM U1028 Bron France
| | - Sébastien Arthaud
- Centre de Recherche en Neurosciences de Lyon (CRNL) Université Claude Bernard Lyon 1 CNRS UMR5292 INSERM U1028 Bron France
| | - Patrice Fort
- Centre de Recherche en Neurosciences de Lyon (CRNL) Université Claude Bernard Lyon 1 CNRS UMR5292 INSERM U1028 Bron France
| | - Laura A. DeNardo
- Department of Physiology University of California LA Los Angeles CA USA
| | - Pierre‐Hervé Luppi
- Centre de Recherche en Neurosciences de Lyon (CRNL) Université Claude Bernard Lyon 1 CNRS UMR5292 INSERM U1028 Bron France
| |
Collapse
|
31
|
Rogers-Carter MM, Christianson JP. An insular view of the social decision-making network. Neurosci Biobehav Rev 2019; 103:119-132. [PMID: 31194999 PMCID: PMC6699879 DOI: 10.1016/j.neubiorev.2019.06.005] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 05/24/2019] [Accepted: 06/08/2019] [Indexed: 12/11/2022]
Abstract
Social animals must detect, evaluate and respond to the emotional states of other individuals in their group. A constellation of gestures, vocalizations, and chemosignals enable animals to convey affect and arousal to others in nuanced, multisensory ways. Observers integrate social information with environmental and internal factors to select behavioral responses to others via a process call social decision-making. The Social Decision Making Network (SDMN) is a system of brain structures and neurochemicals that are conserved across species (mammals, reptiles, amphibians, birds) that are the proximal mediators of most social behaviors. However, how sensory information reaches the SDMN to shape behavioral responses during a social encounter is not well known. Here we review the empirical data that demonstrate the necessity of sensory systems in detecting social stimuli, as well as the anatomical connectivity of sensory systems with each node of the SDMN. We conclude that the insular cortex is positioned to link integrated social sensory cues to this network to produce flexible and appropriate behavioral responses to socioemotional cues.
Collapse
Affiliation(s)
- Morgan M Rogers-Carter
- Department of Psychology, McGuinn Rm 300, Boston College, 140 Commonwealth Ave, Chestnut Hill, MA, 02467, USA.
| | - John P Christianson
- Department of Psychology, McGuinn Rm 300, Boston College, 140 Commonwealth Ave, Chestnut Hill, MA, 02467, USA.
| |
Collapse
|
32
|
Ran C, Chen X. Probing the coding logic of thermosensation using spinal cord calcium imaging. Exp Neurol 2019; 318:42-49. [PMID: 31014574 PMCID: PMC6993943 DOI: 10.1016/j.expneurol.2019.04.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 03/25/2019] [Accepted: 04/19/2019] [Indexed: 12/20/2022]
Abstract
The spinal cord dorsal horn is the first relay station of the neural network for processing somatosensory information. High-throughput optical recording methods facilitate the study of sensory coding in the cortex but have not been successfully applied to study spinal cord circuitry until recently. Here, we review the development of an in vivo two-photon spinal calcium imaging preparation and biological findings from the first systematic characterization of the spinal response to cutaneous thermal stimuli, focusing on the difference between the coding of heat and cold, and the contribution of different peripheral inputs to thermosensory response in the spinal cord. Here we also report that knockout of TRPV1 channel impairs sensation of warmth, and somatostatin- and calbindin2-expressing neurons in the spinal dorsal horn preferentially respond to heat. Future work combining this technology with genetic tools and animal models of chronic pain will further elucidate the role of each neuronal type in the spinal thermosensory coding and their plasticity under pathological condition.
Collapse
Affiliation(s)
- Chen Ran
- Department of Biology, Stanford University, Stanford, CA 94305, USA.
| | - Xiaoke Chen
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
33
|
Luo L, Callaway EM, Svoboda K. Genetic Dissection of Neural Circuits: A Decade of Progress. Neuron 2019; 98:256-281. [PMID: 29673479 DOI: 10.1016/j.neuron.2018.03.040] [Citation(s) in RCA: 246] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 03/16/2018] [Accepted: 03/21/2018] [Indexed: 01/24/2023]
Abstract
Tremendous progress has been made since Neuron published our Primer on genetic dissection of neural circuits 10 years ago. Since then, cell-type-specific anatomical, neurophysiological, and perturbation studies have been carried out in a multitude of invertebrate and vertebrate organisms, linking neurons and circuits to behavioral functions. New methods allow systematic classification of cell types and provide genetic access to diverse neuronal types for studies of connectivity and neural coding during behavior. Here we evaluate key advances over the past decade and discuss future directions.
Collapse
Affiliation(s)
- Liqun Luo
- Department of Biology, Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| | - Edward M Callaway
- Systems Neurobiology Laboratory, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA.
| | - Karel Svoboda
- Howard Hughes Medical Institute, Janelia Research Campus, Ashburn, VA 20147, USA
| |
Collapse
|
34
|
Tanaka DH, Li S, Mukae S, Tanabe T. Genetic Access to Gustatory Disgust-Associated Neurons in the Interstitial Nucleus of the Posterior Limb of the Anterior Commissure in Male Mice. Neuroscience 2019; 413:45-63. [PMID: 31229633 DOI: 10.1016/j.neuroscience.2019.06.021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 06/12/2019] [Accepted: 06/14/2019] [Indexed: 12/18/2022]
Abstract
Orofacial and somatic disgust reactions are observed in rats following intraoral infusion of not only bitter quinine (innate disgust) but also sweet saccharin previously paired with illness (learned disgust). It remains unclear, however, whether these innate and learned disgust reactions share a common neural basis and which brain regions, if any, host it. In addition, there is no established method to genetically access neurons whose firing is associated with disgust (disgust-associated neurons). Here, we examined the expression of cFos and Arc, two markers of neuronal activity, in the interstitial nucleus of the posterior limb of the anterior commissure (IPAC) of male mice that showed innate disgust and mice that showed learned disgust. Furthermore, we used a targeted recombination in active populations (TRAP) method to genetically label the disgust-associated neurons in the IPAC with YFP. We found a significant increase of both cFos-positive neurons and Arc-positive neurons in the IPAC of mice that showed innate disgust and mice that showed learned disgust. In addition, TRAP following quinine infusion (Quinine-TRAP) resulted in significantly more YFP-positive neurons in the IPAC, compared to TRAP following water infusion. A significant number of the YFP-positive neurons following Quinine-TRAP were co-labeled with Arc following the second quinine infusion, confirming that Quinine-TRAP preferentially labeled quinine-activated neurons in the IPAC. Our results suggest that the IPAC activity is associated with both innate and learned disgust and that disgust-associated neurons in the IPAC are genetically accessible by TRAP.
Collapse
Affiliation(s)
- Daisuke H Tanaka
- Department of Pharmacology and Neurobiology, Graduate School of Medicine, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8519, Japan
| | - Shusheng Li
- Department of Pharmacology and Neurobiology, Graduate School of Medicine, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8519, Japan
| | - Shiori Mukae
- Department of Pharmacology and Neurobiology, Graduate School of Medicine, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8519, Japan
| | - Tsutomu Tanabe
- Department of Pharmacology and Neurobiology, Graduate School of Medicine, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8519, Japan.
| |
Collapse
|
35
|
Valtcheva S, Froemke RC. Neuromodulation of maternal circuits by oxytocin. Cell Tissue Res 2019; 375:57-68. [PMID: 30062614 PMCID: PMC6336509 DOI: 10.1007/s00441-018-2883-1] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Accepted: 07/03/2018] [Indexed: 12/31/2022]
Abstract
Motherhood in mammals involves tremendous changes throughout the body and central nervous system, which support attention and nurturing of infants. Maternal care consists of complex behaviors, such as nursing and protection of the offspring, requiring new mothers to become highly sensitive to infant needs. Long-lasting neural plasticity in various regions of the cerebral cortex may enable the perception and recognition of infant cues, important for appropriate caregiving responses. Recent findings have demonstrated that the neuropeptide oxytocin is involved in a number of physiological processes, including parturition and lactation and dynamically shaping neuronal responses to infant stimuli as well. Here, we review experience-dependent changes within the cortex occurring throughout motherhood, focusing on plasticity of the somatosensory and auditory cortex. We outline the role of oxytocin in gating cortical plasticity and discuss potential mechanisms regulating oxytocin release in response to different sensory stimuli.
Collapse
Affiliation(s)
- Silvana Valtcheva
- Skirball Institute for Biomolecular Medicine, New York University School of Medicine, 540 First Avenue, New York, NY, 10016, USA
- Neuroscience Institute, New York University School of Medicine, 540 First Avenue, New York, NY, 10016, USA
- Department of Otolaryngology, New York University School of Medicine, 540 First Avenue, New York, NY, 10016, USA
- Department of Neuroscience and Physiology, New York University School of Medicine, 540 First Avenue, New York, NY, 10016, USA
| | - Robert C Froemke
- Skirball Institute for Biomolecular Medicine, New York University School of Medicine, 540 First Avenue, New York, NY, 10016, USA.
- Neuroscience Institute, New York University School of Medicine, 540 First Avenue, New York, NY, 10016, USA.
- Department of Otolaryngology, New York University School of Medicine, 540 First Avenue, New York, NY, 10016, USA.
- Department of Neuroscience and Physiology, New York University School of Medicine, 540 First Avenue, New York, NY, 10016, USA.
- Howard Hughes Medical Institute Faculty Scholar, New York University School of Medicine, 540 First Avenue, New York, NY, 10016, USA.
| |
Collapse
|