1
|
Cao H, Feng T, Ji K, Liu X, Xu J, Chen S, Zeng J, Li Q, Lv L, Zhang X, Wang X, Zhang B. Selecting the Right C18 Stationary Phase with Parallel Array Microfluidic Column Liquid Chromatography (palmLC). Anal Chem 2025. [PMID: 40353597 DOI: 10.1021/acs.analchem.5c01016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2025]
Abstract
Chromatographic separation plays an essential role in medicinal research, especially for complex natural products such as traditional Chinese medicine (TCM), where selecting a suitable stationary phase is of primary importance and requires significant effort. Existing stationary phase screening (SPS) methods often necessitate inflexible and expensive instrumentation or a prolonged screening period. Despite this, efforts are mostly focused on stationary phases with significantly different properties, while those with subtle differences, e.g., various C18 stationary phases, are often overlooked, which can result in remarkably different chromatographic layouts, especially in pursuing optimum selectivity of target active components in TCM analysis. Herein, we report an efficient, low-cost, and easy-to-prototype parallel array microfluidic column liquid chromatography (palmLC) platform for SPS based on batch-prepared capillary columns and a multichannel capillary microfluidic assembly. In comparison with a standard single-column system, the developed palmLC system maintained a nondegradable chromatographic performance in terms of efficiency (5110 vs 5150 plates) and resolution (2.77 vs 3.39), ensuring reliable screening results while achieving a 600% increase in screening efficiency. In the case studies of Panax notoginseng and Gastrodia elata, among the six C18 phases screened, the C18 phase with the best separation performance was successfully identified. Finally, in SPS for Polygala tenuifolia separation, along the chromatograms, different C18 phases presented individual optimum resolutions for certain medicinal components, indicating that the six-in-one-shot palmLC strategy can effectively provide a panoramic display of the medicinal material, suggesting it is a useful tool for high definition quality control and profiling in TCM analysis.
Collapse
Affiliation(s)
- Hanchen Cao
- Department of Chemistry and the MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, College of Chemistry and Chemical Engineering, State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, Xiamen University, Xiamen 361005, China
| | - Tianyue Feng
- Department of Chemistry and the MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, College of Chemistry and Chemical Engineering, State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, Xiamen University, Xiamen 361005, China
| | - Kaiming Ji
- Food and Drug Inspection Center of Tongling, Tongling 244061, China
| | - Xiaotong Liu
- Tieling Health Vocational College, Tieling 112600, China
| | - Jian Xu
- Chuzhou Inspection and Testing Institute, Chuzhou 239000, China
| | - Shiyi Chen
- Department of Chemistry and the MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, College of Chemistry and Chemical Engineering, State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, Xiamen University, Xiamen 361005, China
| | - Juxing Zeng
- Department of Chemistry and the MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, College of Chemistry and Chemical Engineering, State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, Xiamen University, Xiamen 361005, China
| | - Qiang Li
- Department of Chemistry and the MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, College of Chemistry and Chemical Engineering, State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, Xiamen University, Xiamen 361005, China
| | - Lin Lv
- Department of Chemistry and the MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, College of Chemistry and Chemical Engineering, State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, Xiamen University, Xiamen 361005, China
| | - Xin Zhang
- Anhui Wanyi Science and Technology Co. Ltd., Hefei 230088, China
| | | | - Bo Zhang
- Department of Chemistry and the MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, College of Chemistry and Chemical Engineering, State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, Xiamen University, Xiamen 361005, China
| |
Collapse
|
2
|
Li Y, Xue Q, Zhao X, Ma D. Total Syntheses of Diepoxy- ent-Kaurane Diterpenoids Enabled by a Bridgehead-Enone-Initiated Intramolecular Cycloaddition. J Am Chem Soc 2025; 147:1197-1206. [PMID: 39726142 DOI: 10.1021/jacs.4c15004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2024]
Abstract
Here, we report the enantioselective total syntheses of four diepoxy-ent-kaurane diterpenoids including (-)-Macrocalin B, (-)-Acetyl-macrocalin B, and (-)-Isoadenolin A and the revised structure of (-)-Phyllostacin I, which hinges on the strategic design of a regioselective and stereospecific trapping of a highly reactive [3.2.1]-bridgehead enone intermediate via a tethered intramolecular Diels-Alder reaction. Combined experimental and computational studies demonstrated that the novel bridgehead-enone-initiated intramolecular cycloaddition could proceed in a stepwise diradical mechanism. Although the key step partially led to unexpected [2 + 2]-cycloaddition outcomes, we ultimately implemented an unprecedented TiIII-catalyzed cyclobutane ring-opening-annulation radical cascade to reassemble a keystone pentacyclic core. Coupled with a sequence of organized oxidation-state manipulations and an efficient late-stage assembly of the C-7,20 hemiketal bridge, our strategy would streamline the synthetic design of diepoxy-ent-kaurane diterpenoids and pave the way for their modular syntheses as well as highlight the powerful utility of [3.2.1]-bridgehead enone intermediates in the construction of structural complexity.
Collapse
Affiliation(s)
- Yin Li
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, China
| | - Qilin Xue
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, China
| | - Xiangbo Zhao
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, China
| | - Dawei Ma
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, China
| |
Collapse
|
3
|
Yue G, Liu B. Recent Developments in the Syntheses of C-20-Oxygenated ent-Kaurane Diterpenoids. Chempluschem 2024; 89:e202300676. [PMID: 38414152 DOI: 10.1002/cplu.202300676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 02/05/2024] [Accepted: 02/27/2024] [Indexed: 02/29/2024]
Abstract
Ent-kaurane diterpenes are a large group of natural products, with more than 1,000 compounds since their discovery. Due to their excellent biological activities and complex polycyclic structures, these compounds have attracted organic synthesis chemists around the world to be devoted to achieve their total synthesis. At present, the isolated C-20-oxygenated ent-kaurane diterpenes are the most abundant of these natural products, reaching more than 350 in number. However, only total syntheses of 3,20-epoxy, 7,20-epoxy and 19,20-lactone ent-kaurane diterpenes have been reported. In this review, we elaborate the synthesis of these three types of C-20 oxygenated ent-kaurane natural products, discuss these synthetic strategies in detail, and provide good guidance and reference for the synthesis of other C-20 oxygenated compounds.
Collapse
Affiliation(s)
- Guizhou Yue
- College of Science, Sichuan Agricultural University, 46 Xinkang Rd., Ya'an, Sichuan, 625014, China
| | - Bo Liu
- College of Chemistry, Sichuan University, 29 Wangjiang Rd., Chengdu, Sichuan, 610064, China
| |
Collapse
|
4
|
Su F, Sun Y, Zhu W, Bai C, Zhang W, Luo Y, Yang B, Kuang H, Wang Q. A comprehensive review of research progress on the genus Arisaema: Botany, uses, phytochemistry, pharmacology, toxicity and pharmacokinetics. JOURNAL OF ETHNOPHARMACOLOGY 2022; 285:114798. [PMID: 34780984 DOI: 10.1016/j.jep.2021.114798] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 09/07/2021] [Accepted: 11/01/2021] [Indexed: 06/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The genus Arisaema belongs to the family Araceae, which includes Chinese herbal medicines with wide-ranging pharmacological functions, including those useful for the treatment of stubborn phlegm, cough, epilepsy, tetanus, snakebite, rheumatoid arthritis, and other ailments. AIM OF THE STUDY The current study aimed to comprehensively review the botany, uses, phytochemistry, pharmacology, toxicity, quality control and pharmacokinetics of plants in the genus Arisaema and to provide novel insights to develop future research in this field. MATERIALS AND METHODS Relevant information on the genus Arisaema was obtained from published scientific materials (including materials from PubMed, Elsevier, Web of Science, Google Scholar, Baidu Scholar, CNKI, and Wiley) and other literature sources (e.g., the Chinese Pharmacopoeia, 2020 edition; Chinese herbal books and PhD and MSc thesis). RESULTS The application information complied with this review and included processing techniques, traditional uses, clinical applications and classic prescriptions. Approximately 260 compounds, including flavonoids, alkaloids, saccharides, steroids, fatty acids, amino acids and volatile oils, have been separated and identified from the genus Arisaema. The isolated compounds exhibit wide-ranging pharmacological activities such as antitumor activity, analgesic and sedative activity, antioxidant activity and anti-inflammatory activity. The toxicity and irritant impacts, quality control, and pharmacokinetics are also discussed in this review. CONCLUSIONS Plants in the genus Arisaema are valuable resources with therapeutic potential for a broad spectrum of ailments. Based on the limited literature, this review comprehensively and systematically summarizes current knowledge regarding the genus Arisaema for the first time. However, there have been insufficient studies on the active ingredients and germplasm and insufficient in-depth mechanistic studies. Therefore, isolation and identification of additional effective components and through research on the germplasm, pharmacodynamic mechanisms, and toxicology should be conducted to assess effectiveness and safety and to ensure the quality of the related drugs.
Collapse
Affiliation(s)
- Fazhi Su
- Key Laboratory of Chinese Material Medica (Ministry of Education), Heilongjiang University of Chinese Medicine, 24 Heping Road, Xiangfang District, Harbin, 150040, China
| | - Yanping Sun
- Key Laboratory of Chinese Material Medica (Ministry of Education), Heilongjiang University of Chinese Medicine, 24 Heping Road, Xiangfang District, Harbin, 150040, China
| | - Wenbo Zhu
- Key Laboratory of Chinese Material Medica (Ministry of Education), Heilongjiang University of Chinese Medicine, 24 Heping Road, Xiangfang District, Harbin, 150040, China
| | - Chenxi Bai
- Key Laboratory of Chinese Material Medica (Ministry of Education), Heilongjiang University of Chinese Medicine, 24 Heping Road, Xiangfang District, Harbin, 150040, China
| | - Wensen Zhang
- Key Laboratory of Chinese Material Medica (Ministry of Education), Heilongjiang University of Chinese Medicine, 24 Heping Road, Xiangfang District, Harbin, 150040, China
| | - Yumeng Luo
- Key Laboratory of Chinese Material Medica (Ministry of Education), Heilongjiang University of Chinese Medicine, 24 Heping Road, Xiangfang District, Harbin, 150040, China
| | - Bingyou Yang
- Key Laboratory of Chinese Material Medica (Ministry of Education), Heilongjiang University of Chinese Medicine, 24 Heping Road, Xiangfang District, Harbin, 150040, China
| | - Haixue Kuang
- Key Laboratory of Chinese Material Medica (Ministry of Education), Heilongjiang University of Chinese Medicine, 24 Heping Road, Xiangfang District, Harbin, 150040, China.
| | - Qiuhong Wang
- Key Laboratory of Chinese Material Medica (Ministry of Education), Heilongjiang University of Chinese Medicine, 24 Heping Road, Xiangfang District, Harbin, 150040, China; School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, 232 Outer Ring Road, University Town, Guangzhou, 510006, China.
| |
Collapse
|
5
|
Ao J, Sun C, Chen B, Yu N, Liang G. Total Synthesis of Isorosthin L and Isoadenolin I. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202114489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Junli Ao
- State Key Laboratory of Elemento-organic Chemistry College of Chemistry Nankai University Tianjin 300071 China
- School of Physical Science and Technology ShanghaiTech University Shanghai 201210 China
| | - Chao Sun
- School of Physical Science and Technology ShanghaiTech University Shanghai 201210 China
| | - Bolin Chen
- State Key Laboratory of Elemento-organic Chemistry College of Chemistry Nankai University Tianjin 300071 China
| | - Na Yu
- School of Physical Science and Technology ShanghaiTech University Shanghai 201210 China
| | - Guangxin Liang
- School of Physical Science and Technology ShanghaiTech University Shanghai 201210 China
| |
Collapse
|
6
|
Ma W, Zhu L, Zhang M, Lee C. Asymmetric Synthesis of AB Rings in ent-Kaurene Carbon Framework. CHINESE J ORG CHEM 2022. [DOI: 10.6023/cjoc202108029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
7
|
Zhuo J, Zhu C, Wu J, Li Z, Li C. Reductive Radical Annulation Strategy toward Bicyclo[3.2.1]octanes: Synthesis of ent-Kaurane and Beyerane Diterpenoids. J Am Chem Soc 2021; 144:99-105. [PMID: 34958563 DOI: 10.1021/jacs.1c11623] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Here we report a general [3 + 2] radical annulation that allows the facile construction of bicyclo[3.2.1]octane motifs in ent-kaurane- and beyerane-type diterpenoids. This radical annulation is difficult to control but was realized by harnessing an unprecedented and counterintuitive effect of TEMPO. Eleven natural products with a wide array of oxidation states are easily prepared, demonstrating the powerful utility of this straightforward synthetic strategy.
Collapse
Affiliation(s)
- Junming Zhuo
- Graduate School of Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100730, China.,National Institute of Biological Sciences, Beijing 102206, China
| | - Chunlin Zhu
- Graduate School of Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100730, China.,National Institute of Biological Sciences, Beijing 102206, China
| | - Jinbao Wu
- National Institute of Biological Sciences, Beijing 102206, China
| | - Zijian Li
- National Institute of Biological Sciences, Beijing 102206, China
| | - Chao Li
- Graduate School of Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100730, China.,National Institute of Biological Sciences, Beijing 102206, China.,Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing 100084, China
| |
Collapse
|
8
|
Zhang Y, Li T, Hu Y, Chen J, He Y, Gao X, Zhang Y. Co-delivery of doxorubicin and curcumin via cRGD-peptide modified PEG-PLA self-assembly nanomicelles for lung cancer therapy. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2021.11.076] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
9
|
Ao J, Sun C, Chen B, Yu N, Liang G. Total Synthesis of Isorosthin L and Isoadenolin I. Angew Chem Int Ed Engl 2021; 61:e202114489. [PMID: 34773349 DOI: 10.1002/anie.202114489] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Indexed: 11/05/2022]
Abstract
Total syntheses of two Isodon diterpenes, isorosthin L and isoadenolin I, are reported. The synthetic strategy features a quick assembly of two simple building blocks through a diastereoselective intermolecular aldol reaction and a subsequent radical cyclization for efficient construction of a rather complex advanced intermediate bearing a quaternary stereocenter present in all Isodon diterpenes. Oxidative cleavage of the C-C bond in the cyclopentane enabled the conversion to a lactone moiety which is desired for the construction of the molecular skeleton through reductive coupling with an aldehyde carbonyl group.
Collapse
Affiliation(s)
- Junli Ao
- Nankai University, College of Chemistry, 300071, Tianjin, CHINA
| | - Chao Sun
- ShanghaiTech University, School of Physical Science and Technology, 201210, Shanghai, CHINA
| | - Bolin Chen
- Nankai University, College of Chemistry, 300071, CHINA
| | - Na Yu
- ShanghaiTech University, School of Physical Science and Technology, 201210, Shanghai, CHINA
| | - Guangxin Liang
- ShanghaiTech University, School of Physical Science and Technology, 94 Weijin Road, Nankai District, 300071, Tianjin, CHINA
| |
Collapse
|
10
|
Liu Z, Hu J, Ding H. Electrochemical ODI-[5+2] Cascade for the Syntheses of Diversely Functionalized Bicyclo[3.2.1]octane Frameworks. Org Lett 2021; 23:6745-6749. [PMID: 34402626 DOI: 10.1021/acs.orglett.1c02321] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
A metal- and hypervalent iodine reagent-free electrochemical oxidative dearomatization-induced [5+2] cycloaddition/pinacol rearrangement cascade reaction was described. The electrosynthetic method showed strong tolerance for vinylphenols, ethynylphenols, and allenylphenols, which thus enabled the rapid assembly of diversely functionalized bicyclo[3.2.1]octanes in 41-95% yields and up to >20:1 dr. This protocol could be scaled up to gram amounts and should find wide application in complex natural product synthesis.
Collapse
Affiliation(s)
- Zhaobo Liu
- Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| | - Jialei Hu
- Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| | - Hanfeng Ding
- Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
11
|
Wang Z, Hui C, Xie Y. Natural STAT3 inhibitors: A mini perspective. Bioorg Chem 2021; 115:105169. [PMID: 34333418 DOI: 10.1016/j.bioorg.2021.105169] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 07/03/2021] [Accepted: 07/09/2021] [Indexed: 12/22/2022]
Abstract
Signal transducer and activator of transcription 3 (STAT3) plays pivotal role in several cellular processes such as cell proliferation and survival and has been found to be aberrantly activated in many cancers. STAT3 is largely believed to be one of the key oncogenes and crucial therapeutic targets. Much research has suggested the leading mechanisms for regulating the STAT3 pathway and its role in promoting tumorigenesis. Therefore, intensive efforts have been devoted to develop potent STAT3 inhibitors and several of them are currently undergoing clinical trials. Nevertheless, many natural products were identified as STAT3 inhibitors but attract less attention compared to the small molecule counterpart. In this review, the development of natural STAT3 inhibitors with an emphasis on their biological profile and chemical synthesis are detailed. The current state of STAT3 inhibitors and the future directions and opportunities for STAT3 inhibitor are discussed.
Collapse
Affiliation(s)
- Zhuo Wang
- Southern University of Science and Technology, School of Medicine, Shenzhen 518055, People's Republic of China.
| | - Chunngai Hui
- Division of Life Science, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Yusheng Xie
- Department of Pharmacology, School of Basic Medical Sciences, Shandong University, Jinan 250012, China
| |
Collapse
|
12
|
Zhao X, Cacherat B, Hu Q, Ma D. Recent advances in the synthesis of ent-kaurane diterpenoids. Nat Prod Rep 2021; 39:119-138. [PMID: 34263890 DOI: 10.1039/d1np00028d] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Covering: 2015 to 2020The ent-kaurane diterpenoids are integral parts of tetracyclic natural products that are widely distributed in terrestrial plants. These compounds have been found to possess interesting bioactivities, ranging from antitumor, antifungal and antibacterial to anti-inflammatory activities. Structurally, the different tetracyclic moieties of ent-kauranes can be seen as the results of intramolecular cyclizations, oxidations, C-C bond cleavages, degradation, or rearrangements, starting from their parent skeleton. During the past decade, great efforts have been made to develop novel strategies for synthesizing these natural products. The purpose of this review is to describe the recent advances in the total synthesis of ent-kaurane diterpenoids covering the period from 2015 to date.
Collapse
Affiliation(s)
- Xiangbo Zhao
- State Key Laboratory of Bioorganic & Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China.
| | - Bastien Cacherat
- State Key Laboratory of Bioorganic & Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China.
| | - Qifei Hu
- State Key Laboratory of Bioorganic & Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China.
| | - Dawei Ma
- State Key Laboratory of Bioorganic & Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China.
| |
Collapse
|
13
|
Wang B, Liu Z, Tong Z, Gao B, Ding H. Asymmetric Total Syntheses of 8,9‐Seco‐
ent
‐kaurane Diterpenoids Enabled by an Electrochemical ODI‐[5+2] Cascade. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202104410] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Bingnan Wang
- Department of Chemistry Zhejiang University Hangzhou 310058 China
| | - Zhaobo Liu
- Department of Chemistry Zhejiang University Hangzhou 310058 China
| | - Zhenzhong Tong
- Department of Chemistry Zhejiang University Hangzhou 310058 China
| | - Beiling Gao
- Department of Chemistry Zhejiang University Hangzhou 310058 China
| | - Hanfeng Ding
- Department of Chemistry Zhejiang University Hangzhou 310058 China
- State Key Laboratory of Elemento-Organic Chemistry Nankai University Tianjin 300071 China
| |
Collapse
|
14
|
Wang B, Liu Z, Tong Z, Gao B, Ding H. Asymmetric Total Syntheses of 8,9-Seco-ent-kaurane Diterpenoids Enabled by an Electrochemical ODI-[5+2] Cascade. Angew Chem Int Ed Engl 2021; 60:14892-14896. [PMID: 33900670 DOI: 10.1002/anie.202104410] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Indexed: 12/11/2022]
Abstract
An electrochemical ODI-[5+2] cascade reaction was developed which enables the rapid assembly of diversely functionalized bicyclo[3.2.1]octadienones from sensitive ethynylphenols. By combining a directed retro-aldol/aldol process, a [2,3]-sigmatropic rearrangement, and an Al(O-iPr)3 -promoted reductive 1,3-transposition, the asymmetric total syntheses of five 8,9-seco-ent-kauranoids-(-)-shikoccin, (-)-O-methylshikoccin, (-)-epoxyshikoccin, (+)-O-methylepoxyshikoccin, and (+)-rabdo-hakusin-have been achieved in a concise and efficient manner.
Collapse
Affiliation(s)
- Bingnan Wang
- Department of Chemistry, Zhejiang University, Hangzhou, 310058, China
| | - Zhaobo Liu
- Department of Chemistry, Zhejiang University, Hangzhou, 310058, China
| | - Zhenzhong Tong
- Department of Chemistry, Zhejiang University, Hangzhou, 310058, China
| | - Beiling Gao
- Department of Chemistry, Zhejiang University, Hangzhou, 310058, China
| | - Hanfeng Ding
- Department of Chemistry, Zhejiang University, Hangzhou, 310058, China.,State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin, 300071, China
| |
Collapse
|
15
|
Yan B, Zhou M, Li J, Li X, He S, Zuo J, Sun H, Li A, Puno P. (−)‐Isoscopariusin A, a Naturally Occurring Immunosuppressive Meroditerpenoid: Structure Elucidation and Scalable Chemical Synthesis. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202100288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Bing‐Chao Yan
- State Key Laboratory of Phytochemistry and Plant Resources in West China Yunnan Key Laboratory of Natural Medicinal Chemistry Kunming Institute of Botany Chinese Academy of Sciences Kunming 650201 China
- State Key Laboratory of Bioorganic and Natural Products Chemistry Center for Excellence in Molecular Synthesis Shanghai Institute of Organic Chemistry University of Chinese Academy of Sciences Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
| | - Min Zhou
- State Key Laboratory of Phytochemistry and Plant Resources in West China Yunnan Key Laboratory of Natural Medicinal Chemistry Kunming Institute of Botany Chinese Academy of Sciences Kunming 650201 China
| | - Jian Li
- State Key Laboratory of Bioorganic and Natural Products Chemistry Center for Excellence in Molecular Synthesis Shanghai Institute of Organic Chemistry University of Chinese Academy of Sciences Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
| | - Xiao‐Nian Li
- State Key Laboratory of Phytochemistry and Plant Resources in West China Yunnan Key Laboratory of Natural Medicinal Chemistry Kunming Institute of Botany Chinese Academy of Sciences Kunming 650201 China
| | - Shi‐Jun He
- Laboratory of Immunopharmacology State Key Laboratory of Drug Research Shanghai Institute of Materia Medica Chinese Academy of Sciences Shanghai 201203 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Jian‐Ping Zuo
- Laboratory of Immunopharmacology State Key Laboratory of Drug Research Shanghai Institute of Materia Medica Chinese Academy of Sciences Shanghai 201203 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Han‐Dong Sun
- State Key Laboratory of Phytochemistry and Plant Resources in West China Yunnan Key Laboratory of Natural Medicinal Chemistry Kunming Institute of Botany Chinese Academy of Sciences Kunming 650201 China
| | - Ang Li
- State Key Laboratory of Bioorganic and Natural Products Chemistry Center for Excellence in Molecular Synthesis Shanghai Institute of Organic Chemistry University of Chinese Academy of Sciences Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
| | - Pema‐Tenzin Puno
- State Key Laboratory of Phytochemistry and Plant Resources in West China Yunnan Key Laboratory of Natural Medicinal Chemistry Kunming Institute of Botany Chinese Academy of Sciences Kunming 650201 China
| |
Collapse
|
16
|
Yan B, Zhou M, Li J, Li X, He S, Zuo J, Sun H, Li A, Puno P. (−)‐Isoscopariusin A, a Naturally Occurring Immunosuppressive Meroditerpenoid: Structure Elucidation and Scalable Chemical Synthesis. Angew Chem Int Ed Engl 2021; 60:12859-12867. [PMID: 33620745 DOI: 10.1002/anie.202100288] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 01/29/2021] [Indexed: 12/17/2022]
Affiliation(s)
- Bing‐Chao Yan
- State Key Laboratory of Phytochemistry and Plant Resources in West China Yunnan Key Laboratory of Natural Medicinal Chemistry Kunming Institute of Botany Chinese Academy of Sciences Kunming 650201 China
- State Key Laboratory of Bioorganic and Natural Products Chemistry Center for Excellence in Molecular Synthesis Shanghai Institute of Organic Chemistry University of Chinese Academy of Sciences Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
| | - Min Zhou
- State Key Laboratory of Phytochemistry and Plant Resources in West China Yunnan Key Laboratory of Natural Medicinal Chemistry Kunming Institute of Botany Chinese Academy of Sciences Kunming 650201 China
| | - Jian Li
- State Key Laboratory of Bioorganic and Natural Products Chemistry Center for Excellence in Molecular Synthesis Shanghai Institute of Organic Chemistry University of Chinese Academy of Sciences Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
| | - Xiao‐Nian Li
- State Key Laboratory of Phytochemistry and Plant Resources in West China Yunnan Key Laboratory of Natural Medicinal Chemistry Kunming Institute of Botany Chinese Academy of Sciences Kunming 650201 China
| | - Shi‐Jun He
- Laboratory of Immunopharmacology State Key Laboratory of Drug Research Shanghai Institute of Materia Medica Chinese Academy of Sciences Shanghai 201203 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Jian‐Ping Zuo
- Laboratory of Immunopharmacology State Key Laboratory of Drug Research Shanghai Institute of Materia Medica Chinese Academy of Sciences Shanghai 201203 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Han‐Dong Sun
- State Key Laboratory of Phytochemistry and Plant Resources in West China Yunnan Key Laboratory of Natural Medicinal Chemistry Kunming Institute of Botany Chinese Academy of Sciences Kunming 650201 China
| | - Ang Li
- State Key Laboratory of Bioorganic and Natural Products Chemistry Center for Excellence in Molecular Synthesis Shanghai Institute of Organic Chemistry University of Chinese Academy of Sciences Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
| | - Pema‐Tenzin Puno
- State Key Laboratory of Phytochemistry and Plant Resources in West China Yunnan Key Laboratory of Natural Medicinal Chemistry Kunming Institute of Botany Chinese Academy of Sciences Kunming 650201 China
| |
Collapse
|
17
|
Gao K, Hu J, Ding H. Tetracyclic Diterpenoid Synthesis Facilitated by ODI-Cascade Approaches to Bicyclo[3.2.1]octane Skeletons. Acc Chem Res 2021; 54:875-889. [PMID: 33508196 DOI: 10.1021/acs.accounts.0c00798] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Tetracyclic diterpenoids (C20) mainly refer to the plant terpenoids bearing biogenetically related carbon skeletons derived from copalyl diphosphates (ent-CPP and syn-CPP). This large family contains over 1600 known members that can be categorized into 11 major structural types. Among them, more than three-quarters share a bridged bicyclo[3.2.1]octane subunit, which is also an important branching point in biosynthesis en route to the other types of bicyclic scaffolds, such as bicyclo[2.2.2]-, bicyclo[3.3.0]-, and tricyclo[3.2.1.0]octanes. Combined with the significance of its stereochemical importance in biological activity, the assembly of the bicyclo[3.2.1]octane skeletons is critical to the success of the whole synthesis blueprint toward tetracyclic diterpenoids. Although a number of inspiring methodologies have been disclosed, general approaches by the incorporation of innovative cascade reactions permitting access to diverse structural types of tetracyclic diterpenoids remain limited and in urgent demand.Because of the long-standing interest in the synthesis of bridged diterpenoids, we have recently developed two complementary types of oxidative dearomatization induced (ODI) cascade approaches to the rapid and efficient construction of bicyclo[3.2.1]octane skeletons. In this Account, we summarize our original synthesis design, methodology development, and the application of these two strategies in tetracyclic diterpenoid synthesis during the past few years in our laboratory.First, we detail our preliminary investigation of the ODI-[5 + 2] cycloaddition/pinacol rearrangement cascade reaction, which showed a wide scope of vinylphenol substrates and led to cyclopentane and cyclohexane-fused bicyclo[3.2.1]octanes in good yields with excellent dr values. Next, we describe the utilization of this ODI-[5 + 2] cascade reaction which resulted in the asymmetric total syntheses of four highly oxygenated ent-kauranoids. The strategy concerning accurate stereochemical control in the ODI-[5 + 2] cycloaddition was then successfully transplanted to the total syntheses of three stemaranoids, thus providing a straightforward and diastereoselective route to C9-ethano-bridged tetracyclic diterpenoids. To access more complex diterpenoid rhodomollanol A, we exploited two additional biomimetic rearrangements, namely, the retro-Dieckmann fragmentation/vinylogous Dieckmann cyclization cascade and the photo-Nazarov cyclization/intramolecular cycloetherification cascade. Taken together with the ODI-[5 + 2] cascade, the asymmetric total synthesis of the target molecule was realized, which shed light on the biogenetic pathway of the unprecedented rhodomollane-type carbon framework. Finally, we describe an ODI-Diels-Alder/Beckwith-Dowd cascade approach as a valuable supplement to the ODI-[5 + 2] cascade for the fabrication of cycloheptane-fused bicyclo[3.2.1]octane skeletons. Its versatility was also demonstrated by the total syntheses of two challenging grayanane diterpenoids. In view of the high functional-group compatibility and scalability, we anticipate that the two novel cascade approaches will find further use in the field of complex natural product synthesis.
Collapse
Affiliation(s)
- Kai Gao
- Advanced Research Institute and Department of Chemistry, Taizhou University, Taizhou 318000, China
| | - Jialei Hu
- Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| | - Hanfeng Ding
- Advanced Research Institute and Department of Chemistry, Taizhou University, Taizhou 318000, China
- Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
18
|
Abstract
The field of total synthesis has reached a stage in which emphasis has been increasingly focused on synthetic efficiency rather than merely achieving the synthesis of a target molecule. The pursuit of synthetic efficiency, typically represented by step count and overall yield, is a rich source of inspiration and motivation for synthetic chemists to invent innovative strategies and methods. Among them, convergent strategy has been well recognized as an effective approach to improve efficiency. This strategy generally involves coupling of fragments with similar complexity to furnish the target molecule via subsequent cyclization or late-stage functionalization. Thus, methodologies that enable effective connection of fragments are critical to devising a convergent plan. In our laboratory, convergent strategy has served as a long-standing principle for pursuing efficient synthesis during the course of planning and implementing synthetic projects. In this Account, we summarize our endeavors in the convergent synthesis of natural products over the last ten years. We show how we identify reasonable bond disconnections and employ enabling synthetic methodologies to maximize convergency, leading to the efficient syntheses of over two-dozen highly complex molecules from eight disparate families.In detail, we categorize our work into three parts based on the diverse reaction types for fragment assembly. First, we demonstrate the application of a powerful single-electron reducing agent, SmI2, in a late-stage cyclization step, forging the polycyclic skeletons of structurally fascinating Galbulimima alkaloids and Leucosceptrum sesterterpenoids. Next, we showcase how three different types of cycloaddition reactions can simultaneously construct two challenging C-C bonds in a single step, providing concise entries to three distinct families, namely, spiroquinazoline alkaloids, gracilamine, and kaurane diterpenoids. In the third part, we describe convergent assembly of ent-kaurane diterpenoids, gelsedine-type alkaloids, and several drug molecules via employing some bifunctional synthons. To access highly oxidized ent-kaurane diterpenoids, we introduce the hallmark bicyclo[3.2.1]octane ring system at an early stage, and then execute coupling and cyclization by means of a Hoppe's homoaldol reaction and a Mukaiyama-Michael-type addition, respectively. Furthermore, we showcase how the orchestrated combination of an asymmetric Michael addition, a tandem oxidation-aldol reaction and a pinacol rearrangement can dramatically improve the efficiency in synthesizing gelsedine-type alkaloids, with nary a protecting group. Finally, to address the supply issue of several drugs, including anti-influenza drug zanamivir and antitumor agent Et-743, we exploit scalable and practical approaches to provide advantages over current routes in terms of cost, ease of execution, and efficiency.
Collapse
Affiliation(s)
- Yang Gao
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 354 Fenglin Lu, Shanghai 200032, China
| | - Dawei Ma
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 354 Fenglin Lu, Shanghai 200032, China
| |
Collapse
|
19
|
Liu W, Yue Z, Wang Z, Li H, Lei X. Syntheses of Skeletally Diverse Tetracyclic Isodon Diterpenoid Scaffolds Guided by Dienyne Radical Cyclization Logic. Org Lett 2020; 22:7991-7996. [PMID: 33021378 DOI: 10.1021/acs.orglett.0c02920] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
We report herein the diversity-oriented synthesis of various tetracyclic Isodon diterpenoid scaffolds guided by radical cyclization logic. Our substrate-based dienyne radical cyclization approach is distinctive from reagent-based rearrangement approaches that are generally applied in biosynthesis or previous synthetic studies. An unprecedented cyclization at C14 via 1,5-radical translocation/5-exo-trig cyclization is observed, which enriches our radical cyclization pattern. Furthermore, biological evaluations revealed that several new natural product-like compounds showed promising anticancer activities against various cancer cell lines.
Collapse
|
20
|
Morarescu O, Grinco M, Kulciţki V, Barba A, Garbuz O, Gudumac V, Gulea A, Ungur N. A straightforward synthesis of natural oxygenated ent-kaurenoic acid derivatives. SYNTHETIC COMMUN 2020. [DOI: 10.1080/00397911.2020.1821225] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Olga Morarescu
- Laboratory of Chemistry of Natural and Biologically Active Compounds, Institute of Chemistry MECR, Chişinău, Republic of Moldova
| | - Marina Grinco
- Laboratory of Chemistry of Natural and Biologically Active Compounds, Institute of Chemistry MECR, Chişinău, Republic of Moldova
| | - Veaceslav Kulciţki
- Laboratory of Chemistry of Natural and Biologically Active Compounds, Institute of Chemistry MECR, Chişinău, Republic of Moldova
| | - Alic Barba
- Laboratory of Chemistry of Natural and Biologically Active Compounds, Institute of Chemistry MECR, Chişinău, Republic of Moldova
| | - Olga Garbuz
- Department of Chemistry, Moldova State University MECR, Chişinău, Republic of Moldova
- Laboratory of Molecular Systematics and Phylogeny, Institute of Zoology MECR, Chişinău, Republic of Moldova
| | - Valentin Gudumac
- Laboratory of Biochemistry, Nicolae Testemitanu State University of Medicine and Pharmacy, Chişinău, Republic of Moldova
| | - Aurelian Gulea
- Department of Chemistry, Moldova State University MECR, Chişinău, Republic of Moldova
| | - Nicon Ungur
- Laboratory of Chemistry of Natural and Biologically Active Compounds, Institute of Chemistry MECR, Chişinău, Republic of Moldova
| |
Collapse
|
21
|
Xu Z, Zong Y, Qiao Y, Zhang J, Liu X, Zhu M, Xu Y, Zheng H, Fang L, Wang X, Lou H. Divergent Total Synthesis of Euphoranginol C, Euphoranginone D,
ent
‐Trachyloban‐3β‐ol,
ent
‐Trachyloban‐3‐one, Excoecarin E, and
ent
‐16α‐Hydroxy‐atisane‐3‐one. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202009128] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Ze‐Jun Xu
- Department of Natural Products Chemistry Key Lab of Chemical Biology (MOE) School of Pharmaceutical Sciences Shandong University No. 44 West Wenhua Road Jinan 250012 P. R. China
| | - Yan Zong
- Department of Natural Products Chemistry Key Lab of Chemical Biology (MOE) School of Pharmaceutical Sciences Shandong University No. 44 West Wenhua Road Jinan 250012 P. R. China
| | - Ya‐Nan Qiao
- Department of Natural Products Chemistry Key Lab of Chemical Biology (MOE) School of Pharmaceutical Sciences Shandong University No. 44 West Wenhua Road Jinan 250012 P. R. China
| | - Jiao‐Zhen Zhang
- Department of Natural Products Chemistry Key Lab of Chemical Biology (MOE) School of Pharmaceutical Sciences Shandong University No. 44 West Wenhua Road Jinan 250012 P. R. China
| | - Xuyuan Liu
- Department of Natural Products Chemistry Key Lab of Chemical Biology (MOE) School of Pharmaceutical Sciences Shandong University No. 44 West Wenhua Road Jinan 250012 P. R. China
| | - Ming‐Zhu Zhu
- Department of Natural Products Chemistry Key Lab of Chemical Biology (MOE) School of Pharmaceutical Sciences Shandong University No. 44 West Wenhua Road Jinan 250012 P. R. China
| | - Yuliang Xu
- Department of Natural Products Chemistry Key Lab of Chemical Biology (MOE) School of Pharmaceutical Sciences Shandong University No. 44 West Wenhua Road Jinan 250012 P. R. China
| | - Hongbo Zheng
- Department of Natural Products Chemistry Key Lab of Chemical Biology (MOE) School of Pharmaceutical Sciences Shandong University No. 44 West Wenhua Road Jinan 250012 P. R. China
| | - Liyuan Fang
- Department of Natural Products Chemistry Key Lab of Chemical Biology (MOE) School of Pharmaceutical Sciences Shandong University No. 44 West Wenhua Road Jinan 250012 P. R. China
| | - Xiao‐ning Wang
- Department of Natural Products Chemistry Key Lab of Chemical Biology (MOE) School of Pharmaceutical Sciences Shandong University No. 44 West Wenhua Road Jinan 250012 P. R. China
| | - Hong‐Xiang Lou
- Department of Natural Products Chemistry Key Lab of Chemical Biology (MOE) School of Pharmaceutical Sciences Shandong University No. 44 West Wenhua Road Jinan 250012 P. R. China
| |
Collapse
|
22
|
Xu Z, Zong Y, Qiao Y, Zhang J, Liu X, Zhu M, Xu Y, Zheng H, Fang L, Wang X, Lou H. Divergent Total Synthesis of Euphoranginol C, Euphoranginone D,
ent
‐Trachyloban‐3β‐ol,
ent
‐Trachyloban‐3‐one, Excoecarin E, and
ent
‐16α‐Hydroxy‐atisane‐3‐one. Angew Chem Int Ed Engl 2020; 59:19919-19923. [PMID: 32696611 DOI: 10.1002/anie.202009128] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Indexed: 02/06/2023]
Affiliation(s)
- Ze‐Jun Xu
- Department of Natural Products Chemistry Key Lab of Chemical Biology (MOE) School of Pharmaceutical Sciences Shandong University No. 44 West Wenhua Road Jinan 250012 P. R. China
| | - Yan Zong
- Department of Natural Products Chemistry Key Lab of Chemical Biology (MOE) School of Pharmaceutical Sciences Shandong University No. 44 West Wenhua Road Jinan 250012 P. R. China
| | - Ya‐Nan Qiao
- Department of Natural Products Chemistry Key Lab of Chemical Biology (MOE) School of Pharmaceutical Sciences Shandong University No. 44 West Wenhua Road Jinan 250012 P. R. China
| | - Jiao‐Zhen Zhang
- Department of Natural Products Chemistry Key Lab of Chemical Biology (MOE) School of Pharmaceutical Sciences Shandong University No. 44 West Wenhua Road Jinan 250012 P. R. China
| | - Xuyuan Liu
- Department of Natural Products Chemistry Key Lab of Chemical Biology (MOE) School of Pharmaceutical Sciences Shandong University No. 44 West Wenhua Road Jinan 250012 P. R. China
| | - Ming‐Zhu Zhu
- Department of Natural Products Chemistry Key Lab of Chemical Biology (MOE) School of Pharmaceutical Sciences Shandong University No. 44 West Wenhua Road Jinan 250012 P. R. China
| | - Yuliang Xu
- Department of Natural Products Chemistry Key Lab of Chemical Biology (MOE) School of Pharmaceutical Sciences Shandong University No. 44 West Wenhua Road Jinan 250012 P. R. China
| | - Hongbo Zheng
- Department of Natural Products Chemistry Key Lab of Chemical Biology (MOE) School of Pharmaceutical Sciences Shandong University No. 44 West Wenhua Road Jinan 250012 P. R. China
| | - Liyuan Fang
- Department of Natural Products Chemistry Key Lab of Chemical Biology (MOE) School of Pharmaceutical Sciences Shandong University No. 44 West Wenhua Road Jinan 250012 P. R. China
| | - Xiao‐ning Wang
- Department of Natural Products Chemistry Key Lab of Chemical Biology (MOE) School of Pharmaceutical Sciences Shandong University No. 44 West Wenhua Road Jinan 250012 P. R. China
| | - Hong‐Xiang Lou
- Department of Natural Products Chemistry Key Lab of Chemical Biology (MOE) School of Pharmaceutical Sciences Shandong University No. 44 West Wenhua Road Jinan 250012 P. R. China
| |
Collapse
|
23
|
Guo J, Li B, Ma W, Pitchakuntla M, Jia Y. Total Synthesis of (−)‐Glaucocalyxin A. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202005932] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Jiuzhou Guo
- State Key Laboratory of Natural and Biomimetic Drugs School of Pharmaceutical Sciences Peking University Xue Yuan Rd. 38 Beijing 100191 China
| | - Bo Li
- State Key Laboratory of Natural and Biomimetic Drugs School of Pharmaceutical Sciences Peking University Xue Yuan Rd. 38 Beijing 100191 China
| | - Weihao Ma
- State Key Laboratory of Natural and Biomimetic Drugs School of Pharmaceutical Sciences Peking University Xue Yuan Rd. 38 Beijing 100191 China
| | - Mallesham Pitchakuntla
- State Key Laboratory of Natural and Biomimetic Drugs School of Pharmaceutical Sciences Peking University Xue Yuan Rd. 38 Beijing 100191 China
| | - Yanxing Jia
- State Key Laboratory of Natural and Biomimetic Drugs School of Pharmaceutical Sciences Peking University Xue Yuan Rd. 38 Beijing 100191 China
| |
Collapse
|
24
|
Guo J, Li B, Ma W, Pitchakuntla M, Jia Y. Total Synthesis of (−)‐Glaucocalyxin A. Angew Chem Int Ed Engl 2020; 59:15195-15198. [DOI: 10.1002/anie.202005932] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 05/17/2020] [Indexed: 12/29/2022]
Affiliation(s)
- Jiuzhou Guo
- State Key Laboratory of Natural and Biomimetic Drugs School of Pharmaceutical Sciences Peking University Xue Yuan Rd. 38 Beijing 100191 China
| | - Bo Li
- State Key Laboratory of Natural and Biomimetic Drugs School of Pharmaceutical Sciences Peking University Xue Yuan Rd. 38 Beijing 100191 China
| | - Weihao Ma
- State Key Laboratory of Natural and Biomimetic Drugs School of Pharmaceutical Sciences Peking University Xue Yuan Rd. 38 Beijing 100191 China
| | - Mallesham Pitchakuntla
- State Key Laboratory of Natural and Biomimetic Drugs School of Pharmaceutical Sciences Peking University Xue Yuan Rd. 38 Beijing 100191 China
| | - Yanxing Jia
- State Key Laboratory of Natural and Biomimetic Drugs School of Pharmaceutical Sciences Peking University Xue Yuan Rd. 38 Beijing 100191 China
| |
Collapse
|
25
|
Bestard-Escalas J, Maimó-Barceló A, Lopez DH, Reigada R, Guardiola-Serrano F, Ramos-Vivas J, Hornemann T, Okazaki T, Barceló-Coblijn G. Common and Differential Traits of the Membrane Lipidome of Colon Cancer Cell Lines and their Secreted Vesicles: Impact on Studies Using Cell Lines. Cancers (Basel) 2020; 12:E1293. [PMID: 32443825 PMCID: PMC7281030 DOI: 10.3390/cancers12051293] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 05/17/2020] [Accepted: 05/18/2020] [Indexed: 12/21/2022] Open
Abstract
Colorectal cancer (CRC) is the fourth leading cause of cancer death in the world. Despite the screening programs, its incidence in the population below the 50s is increasing. Therefore, new stratification protocols based on multiparametric approaches are highly needed. In this scenario, the lipidome is emerging as a powerful tool to classify tumors, including CRC, wherein it has proven to be highly sensitive to cell malignization. Hence, the possibility to describe the lipidome at the level of lipid species has renewed the interest to investigate the role of specific lipid species in pathologic mechanisms, being commercial cell lines, a model still heavily used for this purpose. Herein, we characterize the membrane lipidome of five commercial colon cell lines and their extracellular vesicles (EVs). The results demonstrate that both cell and EVs lipidome was able to segregate cells according to their malignancy. Furthermore, all CRC lines shared a specific and strikingly homogenous impact on ether lipid species. Finally, this study also cautions about the need of being aware of the singularities of each cell line at the level of lipid species. Altogether, this study firmly lays the groundwork of using the lipidome as a solid source of tumor biomarkers.
Collapse
Affiliation(s)
- Joan Bestard-Escalas
- Lipids in Human Pathology, Health Research Institute of the Balearic Islands (IdISBa), Research Unit, University Hospital Son Espases, 07120 Palma, Spain; (J.B.-E.); (A.M.-B.); (D.H.L.); (R.R.)
| | - Albert Maimó-Barceló
- Lipids in Human Pathology, Health Research Institute of the Balearic Islands (IdISBa), Research Unit, University Hospital Son Espases, 07120 Palma, Spain; (J.B.-E.); (A.M.-B.); (D.H.L.); (R.R.)
| | - Daniel H. Lopez
- Lipids in Human Pathology, Health Research Institute of the Balearic Islands (IdISBa), Research Unit, University Hospital Son Espases, 07120 Palma, Spain; (J.B.-E.); (A.M.-B.); (D.H.L.); (R.R.)
| | - Rebeca Reigada
- Lipids in Human Pathology, Health Research Institute of the Balearic Islands (IdISBa), Research Unit, University Hospital Son Espases, 07120 Palma, Spain; (J.B.-E.); (A.M.-B.); (D.H.L.); (R.R.)
| | | | - José Ramos-Vivas
- Valdecilla Research Institute (IDIVAL ), 39011 Santander, Spain;
- Microbiology Unit, University Hospital Marqués de Valdecilla, 39008 Santander, Spain
- Spanish Network for Research in Infectious Diseases (REIPI), Institute of Health Carlos III (ISCIII), 28029 Madrid, Spain
| | - Thorsten Hornemann
- Institute of Clinical Chemistry, University Hospital Zurich, University of Zurich, 8091 Zurich, Switzerland;
| | - Toshiro Okazaki
- Department of Hematology/Immunity, Kanazawa Medical University, Uchinada-machi, Kahoku-gun, Ishikawa 920-0293, Japan;
| | - Gwendolyn Barceló-Coblijn
- Lipids in Human Pathology, Health Research Institute of the Balearic Islands (IdISBa), Research Unit, University Hospital Son Espases, 07120 Palma, Spain; (J.B.-E.); (A.M.-B.); (D.H.L.); (R.R.)
| |
Collapse
|
26
|
Wang J, Hong B, Hu D, Kadonaga Y, Tang R, Lei X. Protecting-Group-Free Syntheses of ent-Kaurane Diterpenoids: [3+2+1] Cycloaddition/Cycloalkenylation Approach. J Am Chem Soc 2020; 142:2238-2243. [DOI: 10.1021/jacs.9b13722] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Jin Wang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
- Department of Chemical Biology, Synthetic and Functional Biomolecules Center, Peking University, Beijing 100871, China
| | - Benke Hong
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
- Department of Chemical Biology, Synthetic and Functional Biomolecules Center, Peking University, Beijing 100871, China
| | - Dachao Hu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
- Department of Chemical Biology, Synthetic and Functional Biomolecules Center, Peking University, Beijing 100871, China
| | - Yuichiro Kadonaga
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
- Department of Chemical Biology, Synthetic and Functional Biomolecules Center, Peking University, Beijing 100871, China
| | - Ruyao Tang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
- Department of Chemical Biology, Synthetic and Functional Biomolecules Center, Peking University, Beijing 100871, China
| | - Xiaoguang Lei
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
- Department of Chemical Biology, Synthetic and Functional Biomolecules Center, Peking University, Beijing 100871, China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| |
Collapse
|
27
|
Kong L, Su F, Yu H, Jiang Z, Lu Y, Luo T. Total Synthesis of (−)-Oridonin: An Interrupted Nazarov Approach. J Am Chem Soc 2019; 141:20048-20052. [DOI: 10.1021/jacs.9b12034] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Lingran Kong
- Key Laboratory of Bioorganic Chemistry and Molecular Engineering, Ministry of Education and Beijing National Laboratory for Molecular Science, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Fan Su
- Key Laboratory of Bioorganic Chemistry and Molecular Engineering, Ministry of Education and Beijing National Laboratory for Molecular Science, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Hang Yu
- Key Laboratory of Bioorganic Chemistry and Molecular Engineering, Ministry of Education and Beijing National Laboratory for Molecular Science, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Zhe Jiang
- Key Laboratory of Bioorganic Chemistry and Molecular Engineering, Ministry of Education and Beijing National Laboratory for Molecular Science, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Yandong Lu
- Key Laboratory of Bioorganic Chemistry and Molecular Engineering, Ministry of Education and Beijing National Laboratory for Molecular Science, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Tuoping Luo
- Key Laboratory of Bioorganic Chemistry and Molecular Engineering, Ministry of Education and Beijing National Laboratory for Molecular Science, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| |
Collapse
|
28
|
Wang J, Ma D. 6‐Methylenebicyclo[3.2.1]oct‐1‐en‐3‐one: A Twisted Olefin as Diels–Alder Dienophile for Expedited Syntheses of Four Kaurane Diterpenoids. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201909349] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Junjie Wang
- State Key Laboratory of Bioorganic & Natural Products Chemistry Center for Excellence in Molecular Synthesis Shanghai Institute of Organic Chemistry University of Chinese Academy of Sciences Chinese Academy of Sciences 345 Lingling Lu Shanghai 200032 China
| | - Dawei Ma
- State Key Laboratory of Bioorganic & Natural Products Chemistry Center for Excellence in Molecular Synthesis Shanghai Institute of Organic Chemistry University of Chinese Academy of Sciences Chinese Academy of Sciences 345 Lingling Lu Shanghai 200032 China
| |
Collapse
|
29
|
Wang J, Ma D. 6‐Methylenebicyclo[3.2.1]oct‐1‐en‐3‐one: A Twisted Olefin as Diels–Alder Dienophile for Expedited Syntheses of Four Kaurane Diterpenoids. Angew Chem Int Ed Engl 2019; 58:15731-15735. [DOI: 10.1002/anie.201909349] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 08/20/2019] [Indexed: 12/21/2022]
Affiliation(s)
- Junjie Wang
- State Key Laboratory of Bioorganic & Natural Products Chemistry Center for Excellence in Molecular Synthesis Shanghai Institute of Organic Chemistry University of Chinese Academy of Sciences Chinese Academy of Sciences 345 Lingling Lu Shanghai 200032 China
| | - Dawei Ma
- State Key Laboratory of Bioorganic & Natural Products Chemistry Center for Excellence in Molecular Synthesis Shanghai Institute of Organic Chemistry University of Chinese Academy of Sciences Chinese Academy of Sciences 345 Lingling Lu Shanghai 200032 China
| |
Collapse
|
30
|
Chen YY, Yu XY, Chen L, Vaziri ND, Ma SC, Zhao YY. Redox signaling in aging kidney and opportunity for therapeutic intervention through natural products. Free Radic Biol Med 2019; 141:141-149. [PMID: 31199964 DOI: 10.1016/j.freeradbiomed.2019.06.012] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 06/04/2019] [Accepted: 06/10/2019] [Indexed: 02/06/2023]
Abstract
Kidney diseases are serious public problems with high morbidity and mortality in the general population and heavily retard renal function with aging regardless of the cause. Although myriad strategies have been assigned to prevent or harness disease progression, unfortunately, thus far, there is a paucity of effective therapies partly due to an insufficient knowledge of underlying pathological mechanisms, indicating deeper studies are urgently needed. Additionally, natural products are increasingly recognized as an alternative source for disease intervention owing to the potent safety and efficacy, which might be exploited for novel drug discovery. In this review, we primarily expatiate the new advances on mediators that might be amenable to targeting aging kidney and kidney diseases, including nicotinamide adenine dinucleotide phosphate oxidase (NOX), transforming growth factor-β (TGF-β), renin-angiotensin system (RAS), nuclear factor-erythroid 2 related factor 2 (Nrf2), peroxisome proliferator-activated γ receptor (PPARγ), advanced glycation endproducts (AGEs) as well as microRNAs and vitagenes. Of note, we conclude by highlighting some natural products which have the potential to facilitate the development of novel treatment for patients with myriad renal diseases.
Collapse
Affiliation(s)
- Yuan-Yuan Chen
- School of Pharmacy, Faculty of Life Science & Medicine, Northwest University, No. 229 Taibai North Road, Xi'an, Shaanxi, 710069, China
| | - Xiao-Yong Yu
- Department of Nephrology, Shaanxi Traditional Chinese Medicine Hospital, No. 2 Xihuamen, Xi'an, Shaanxi, 710003, China
| | - Lin Chen
- School of Pharmacy, Faculty of Life Science & Medicine, Northwest University, No. 229 Taibai North Road, Xi'an, Shaanxi, 710069, China
| | - Nosratola D Vaziri
- Division of Nephrology and Hypertension, School of Medicine, University of California Irvine, Irvine, CA, 92897, USA
| | - Shuang-Cheng Ma
- National Institutes for Food and Drug Control, State Food and Drug Administration, No. 2 Tiantan Xili, Beijing, 100050, China.
| | - Ying-Yong Zhao
- School of Pharmacy, Faculty of Life Science & Medicine, Northwest University, No. 229 Taibai North Road, Xi'an, Shaanxi, 710069, China.
| |
Collapse
|
31
|
Riaz A, Saleem B, Hussain G, Sarfraz I, Nageen B, Zara R, Manzoor M, Rasul A. Eriocalyxin B Biological Activity: A Review on Its Mechanism of Action. Nat Prod Commun 2019. [DOI: 10.1177/1934578x19868598] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Natural products, a rich source of bioactive chemical compounds, have served humans as a safer drug of choice since times. Eriocalyxin B, an ent-Kaurene diterpenoid, has been extracted from a traditional Chinese herb Isodon eriocalyx. Experimental data support the anticancer and anti-inflammatory activities of EriB. This natural entity exhibits anticancer effects against breast, pancreatic, leukemia, ovarian, lung, bladder, and colorectal cancer. EriB has capability to inhibit the proliferation of cancer cells by prompting apoptosis, arresting cell cycle, and modulating cell signaling pathways. The regulation of signaling pathways in cancerous cells by EriB involves the modulation of various apoptosis-related factors (Bak, Bax, caspases, XIAP, survivin, and Beclin-1), transcriptional factors (nuclear factor kappa B [NF-κB], STAT3, Janus-activated kinase 2, Notch, AP-1, and lκBα), enzymes (cyclooxygenase 2, matrix metalloproteinase 2 [MMP-2], MMP-9, and poly (ADP-ribose) polymerase), cytokines, and protein kinases (mitogen-activated protein kinase and ERK1/2). This review proposes that EriB supplies a novel opportunity for the cure of cancer but supplementary investigations along with preclinical trials are obligatory to effectively figure out its biological and pharmacological applications.
Collapse
Affiliation(s)
- Ammara Riaz
- Department of Zoology, Faculty of Life Sciences, Government College University Faisalabad, Pakistan
| | - Bisma Saleem
- Department of Zoology, Faculty of Life Sciences, Government College University Faisalabad, Pakistan
| | - Ghulam Hussain
- Department of Physiology, Faculty of Life Sciences, Government College University Faisalabad, Pakistan
| | - Iqra Sarfraz
- Department of Zoology, Faculty of Life Sciences, Government College University Faisalabad, Pakistan
| | - Bushra Nageen
- Department of Zoology, Faculty of Life Sciences, Government College University Faisalabad, Pakistan
| | - Rabia Zara
- Department of Zoology, Faculty of Life Sciences, Government College University Faisalabad, Pakistan
| | - Maleeha Manzoor
- Department of Zoology, Faculty of Life Sciences, Government College University Faisalabad, Pakistan
| | - Azhar Rasul
- Department of Zoology, Faculty of Life Sciences, Government College University Faisalabad, Pakistan
| |
Collapse
|
32
|
Wu J, Kadonaga Y, Hong B, Wang J, Lei X. Enantioselective Total Synthesis of (+)‐Jungermatrobrunin A. Angew Chem Int Ed Engl 2019; 58:10879-10883. [DOI: 10.1002/anie.201903682] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Indexed: 02/02/2023]
Affiliation(s)
- Jinbao Wu
- School of Pharmaceutical Science and TechnologyTianjin University Tianjin 300072 China
- Beijing National Laboratory for Molecular SciencesKey Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of EducationDepartment of Chemical BiologyCollege of Chemistry and Molecular EngineeringSynthetic and Functional Biomolecules Center and Peking-Tsinghua Center for Life SciencesPeking University Beijing 100871 China
| | - Yuichiro Kadonaga
- Beijing National Laboratory for Molecular SciencesKey Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of EducationDepartment of Chemical BiologyCollege of Chemistry and Molecular EngineeringSynthetic and Functional Biomolecules Center and Peking-Tsinghua Center for Life SciencesPeking University Beijing 100871 China
| | - Benke Hong
- Beijing National Laboratory for Molecular SciencesKey Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of EducationDepartment of Chemical BiologyCollege of Chemistry and Molecular EngineeringSynthetic and Functional Biomolecules Center and Peking-Tsinghua Center for Life SciencesPeking University Beijing 100871 China
| | - Jin Wang
- Beijing National Laboratory for Molecular SciencesKey Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of EducationDepartment of Chemical BiologyCollege of Chemistry and Molecular EngineeringSynthetic and Functional Biomolecules Center and Peking-Tsinghua Center for Life SciencesPeking University Beijing 100871 China
| | - Xiaoguang Lei
- Beijing National Laboratory for Molecular SciencesKey Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of EducationDepartment of Chemical BiologyCollege of Chemistry and Molecular EngineeringSynthetic and Functional Biomolecules Center and Peking-Tsinghua Center for Life SciencesPeking University Beijing 100871 China
| |
Collapse
|
33
|
Chen X, Tang WJ, Shi JB, Liu MM, Liu XH. Therapeutic strategies for targeting telomerase in cancer. Med Res Rev 2019; 40:532-585. [PMID: 31361345 DOI: 10.1002/med.21626] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 07/12/2019] [Accepted: 07/16/2019] [Indexed: 12/13/2022]
Abstract
Telomere and telomerase play important roles in abnormal cell proliferation, metastasis, stem cell maintenance, and immortalization in various cancers. Therefore, designing of drugs targeting telomerase and telomere is of great significance. Over the past two decades, considerable knowledge regarding telomere and telomerase has been accumulated, which provides theoretical support for the design of therapeutic strategies such as telomere elongation. Therefore, the development of telomere-based therapies such as nucleoside analogs, non-nucleoside small molecules, antisense technology, ribozymes, and dominant negative human telomerase reverse transcriptase are being prioritized for eradicating a majority of tumors. While the benefits of telomere-based therapies are obvious, there is a need to address the limitations of various therapeutic strategies to improve the possibility of clinical applications. In this study, current knowledge of telomere and telomerase is discussed, and therapeutic strategies based on recent research are reviewed.
Collapse
Affiliation(s)
- Xing Chen
- School of Pharmacy, Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Medical University, Hefei, People's Republic of China
| | - Wen-Jian Tang
- School of Pharmacy, Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Medical University, Hefei, People's Republic of China
| | - Jing Bo Shi
- School of Pharmacy, Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Medical University, Hefei, People's Republic of China
| | - Ming Ming Liu
- School of Pharmacy, Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Medical University, Hefei, People's Republic of China
| | - Xin-Hua Liu
- School of Pharmacy, Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Medical University, Hefei, People's Republic of China
| |
Collapse
|
34
|
Wu J, Kadonaga Y, Hong B, Wang J, Lei X. Enantioselective Total Synthesis of (+)‐Jungermatrobrunin A. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201903682] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Jinbao Wu
- School of Pharmaceutical Science and TechnologyTianjin University Tianjin 300072 China
- Beijing National Laboratory for Molecular SciencesKey Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of EducationDepartment of Chemical BiologyCollege of Chemistry and Molecular EngineeringSynthetic and Functional Biomolecules Center and Peking-Tsinghua Center for Life SciencesPeking University Beijing 100871 China
| | - Yuichiro Kadonaga
- Beijing National Laboratory for Molecular SciencesKey Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of EducationDepartment of Chemical BiologyCollege of Chemistry and Molecular EngineeringSynthetic and Functional Biomolecules Center and Peking-Tsinghua Center for Life SciencesPeking University Beijing 100871 China
| | - Benke Hong
- Beijing National Laboratory for Molecular SciencesKey Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of EducationDepartment of Chemical BiologyCollege of Chemistry and Molecular EngineeringSynthetic and Functional Biomolecules Center and Peking-Tsinghua Center for Life SciencesPeking University Beijing 100871 China
| | - Jin Wang
- Beijing National Laboratory for Molecular SciencesKey Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of EducationDepartment of Chemical BiologyCollege of Chemistry and Molecular EngineeringSynthetic and Functional Biomolecules Center and Peking-Tsinghua Center for Life SciencesPeking University Beijing 100871 China
| | - Xiaoguang Lei
- Beijing National Laboratory for Molecular SciencesKey Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of EducationDepartment of Chemical BiologyCollege of Chemistry and Molecular EngineeringSynthetic and Functional Biomolecules Center and Peking-Tsinghua Center for Life SciencesPeking University Beijing 100871 China
| |
Collapse
|
35
|
Yu K, Yang Z, Liu C, Wu S, Hong X, Zhao X, Ding H. Total Syntheses of Rhodomolleins XX and XXII: A Reductive Epoxide‐Opening/Beckwith–Dowd Approach. Angew Chem Int Ed Engl 2019; 58:8556-8560. [DOI: 10.1002/anie.201903349] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Indexed: 11/06/2022]
Affiliation(s)
- Kuan Yu
- Department of ChemistryZhejiang University Hangzhou 310058 China
| | - Zhen‐Ning Yang
- Department of ChemistryZhejiang University Hangzhou 310058 China
| | - Chun‐Hui Liu
- Department of ChemistryZhejiang University Hangzhou 310058 China
| | - Shao‐Qi Wu
- Department of ChemistryZhejiang University Hangzhou 310058 China
| | - Xin Hong
- Department of ChemistryZhejiang University Hangzhou 310058 China
| | - Xiao‐Li Zhao
- Shanghai Key Laboratory of Green Chemistry and Chemical ProcessesDepartment of ChemistryEast China Normal University Shanghai 200062 China
| | - Hanfeng Ding
- Department of ChemistryZhejiang University Hangzhou 310058 China
| |
Collapse
|
36
|
Zhang M, Lee MML, Ye W, Wong WY, Chan BD, Chen S, Zhu L, Tai WCS, Lee CS. Total Synthesis-Enabled Systematic Structure-Activity Relationship Study for Development of a Bioactive Alkyne-Tagged Derivative of Neolaxiflorin L. J Org Chem 2019; 84:7007-7016. [PMID: 31083909 DOI: 10.1021/acs.joc.9b00748] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Neolaxiflorin L (NL) is a low-abundant Isodon 7,20-epoxy- ent-kuarenoid and was found to be a promising anticancer drug candidate in our previous study. In order to study its structure-activity relationship (SAR), a diversity-oriented synthetic route toward two libraries of (±)-NL analogs, including analogs containing different functionalities in the same 7,20-epoxy- ent-kuarene skeleton and analogs with skeletal changes, has been developed. The results of this total synthesis-enabled SAR successfully led to a bioactive alkyne-tagged NL derivative, which could be a useful probe for proteomics studies.
Collapse
Affiliation(s)
- Mengxun Zhang
- Laboratory of Chemical Genomics , Peking University Shenzhen Graduate School , Xili, Shenzhen 518055 , China
| | - Magnolia Muk-Lan Lee
- Department of Applied Biology and Chemical Technology , Hong Kong Polytechnic University , Hung Hom , Hong Kong
| | - Weijian Ye
- Laboratory of Chemical Genomics , Peking University Shenzhen Graduate School , Xili, Shenzhen 518055 , China
| | - Wing-Yan Wong
- Department of Applied Biology and Chemical Technology , Hong Kong Polytechnic University , Hung Hom , Hong Kong
| | - Brandon Dow Chan
- Department of Applied Biology and Chemical Technology , Hong Kong Polytechnic University , Hung Hom , Hong Kong
| | - Sibao Chen
- State Key Laboratory of Chinese Medicine and Molecular Pharmacology (Incubation) , Shenzhen Research Institute of The Hong Kong Polytechnic University , Shenzhen 518057 , China
| | - Lizhi Zhu
- Laboratory of Chemical Genomics , Peking University Shenzhen Graduate School , Xili, Shenzhen 518055 , China.,Institute of Translational Medicine , Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Health Science Centre , Shenzhen 518035 , China
| | - William Chi-Shing Tai
- Department of Applied Biology and Chemical Technology , Hong Kong Polytechnic University , Hung Hom , Hong Kong.,State Key Laboratory of Chinese Medicine and Molecular Pharmacology (Incubation) , Shenzhen Research Institute of The Hong Kong Polytechnic University , Shenzhen 518057 , China
| | - Chi-Sing Lee
- Laboratory of Chemical Genomics , Peking University Shenzhen Graduate School , Xili, Shenzhen 518055 , China.,Department of Chemistry , Hong Kong Baptist University , Kowloon Tong , Hong Kong
| |
Collapse
|
37
|
Yu K, Yang Z, Liu C, Wu S, Hong X, Zhao X, Ding H. Total Syntheses of Rhodomolleins XX and XXII: A Reductive Epoxide‐Opening/Beckwith–Dowd Approach. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201903349] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Kuan Yu
- Department of ChemistryZhejiang University Hangzhou 310058 China
| | - Zhen‐Ning Yang
- Department of ChemistryZhejiang University Hangzhou 310058 China
| | - Chun‐Hui Liu
- Department of ChemistryZhejiang University Hangzhou 310058 China
| | - Shao‐Qi Wu
- Department of ChemistryZhejiang University Hangzhou 310058 China
| | - Xin Hong
- Department of ChemistryZhejiang University Hangzhou 310058 China
| | - Xiao‐Li Zhao
- Shanghai Key Laboratory of Green Chemistry and Chemical ProcessesDepartment of ChemistryEast China Normal University Shanghai 200062 China
| | - Hanfeng Ding
- Department of ChemistryZhejiang University Hangzhou 310058 China
| |
Collapse
|
38
|
Jie H, Liu L, Shuangying G, Xingqi W, Rongfeng H, Yong Z, Chunling T, Mengqiu X, Xiaoqin C. A Novel Phytantriol-Based In Situ Liquid Crystal Gel for Vaginal Delivery. AAPS PharmSciTech 2019; 20:185. [PMID: 31062112 DOI: 10.1208/s12249-019-1393-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2019] [Accepted: 04/16/2019] [Indexed: 01/02/2023] Open
Abstract
The purpose of this paper was to evaluate the potential of in situ liquid crystal (LC) gels based on phytantriol (PYT) for vaginal delivery. The PYT-based in situ liquid crystal gels (PILGs) were prepared by a vortex method using PYT, ethanol (ET), and water (in the ratio of 64:16:20, w/w). The internal structures of PILGs and cubic LC gels (formed by PILG phase conversion) were confirmed by crossed polarized light microscopy (PLM) and small-angle X-ray scattering (SAXS). And the rheological tests showed that PILGs had small viscosity and excellent fluidity. The viscosities of cubic LC gels were 4~5 orders of magnitude higher than PILGs. In vitro phase conversion experiment showed that PILGs required little vaginal fluid (64.56 μL/100 mg) and time (3.92 s) to transform to LC gels. Furthermore, cubic LC gels could reside in the vaginas for more than 12 h in vivo. The in vitro release revealed that sinomenine hydrochloride (SMH) could be sustained released from the cubic gels over a period of 144 h, which was prior to SMH solution and carbomer gels. An in vivo vaginal mucosa irritation study indicated that PILGs were nonirritant and might be suitable for various vaginal applications. In conclusion, PILGs might represent a potential vaginal delivery strategy to overcome the limitations of traditional treatments.
Collapse
|
39
|
Callebaut B, Hullaert J, Van Hecke K, Winne JM. An Intramolecular Cycloaddition Approach to the Kauranoid Family of Diterpene Metabolites. Org Lett 2019; 21:310-314. [PMID: 30571133 DOI: 10.1021/acs.orglett.8b03810] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Synthetic studies toward the ent-kauranoid family of diterpene natural products are reported. An intramolecular (4 + 3) cycloaddition allows the direct elaboration of diverse natural product frameworks, encompassing a challenging bicyclo[3.2.1]octane core. The established routes comprise only a few synthetic operations (3-5 steps), transforming a range of simple starting materials into the tetracyclic scaffolds that are commonly found in many ent-kaurene metabolites.
Collapse
Affiliation(s)
- Brenda Callebaut
- Department of Organic and Macromolecular Chemistry , Ghent University , Krijgslaan 281 S4 , 9000 Gent , Belgium
| | - Jan Hullaert
- Department of Organic and Macromolecular Chemistry , Ghent University , Krijgslaan 281 S4 , 9000 Gent , Belgium
| | - Kristof Van Hecke
- XStruct, Department of Chemistry , Ghent University , Krijgslaan 281 S3 , 9000 Ghent , Belgium
| | - Johan M Winne
- Department of Organic and Macromolecular Chemistry , Ghent University , Krijgslaan 281 S4 , 9000 Gent , Belgium
| |
Collapse
|
40
|
Griffipavixanthone induces apoptosis of human breast cancer MCF-7 cells in vitro. Breast Cancer 2018; 26:190-197. [PMID: 30259331 DOI: 10.1007/s12282-018-0912-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 09/20/2018] [Indexed: 01/05/2023]
Abstract
BACKGROUND Griffipavixanthone (GPX) is a compound extracted from Garcinia oblongifolia Champ. But, no research has yet been done about the effect of GPX on breast cancer. METHODS We evaluated the proliferation of human breast cancer cells by CCK-8 assay and apoptosis by Annexin V (AV)-FITC and PI double staining. We used transwell assay to indicate the invasion and migration of MCF-7. To explore the molecular mechanism of GPX, we detected the mRNA and protein expression using qRT-PCR and Western blot. RESULTS In this study, we evaluated if GPX could inhibit the proliferation of human breast cancer cell MCF-7 and T-47D with IC50 value of 9.64 ± 0.12 µM and 10.2 1 ± 0.38 µM at 48 h. And the IC50 value of MCF-10A is 32.11 ± 0.21 µM, which showed GPX had a tiny side effect for normal breast cells. Annexin V (AV)-FITC and PI double staining demonstrated firmly the apoptosis of MCF-7 resulting from GPX. Transwell assay indicated that GPX inhibited the invasion and migration of MCF-7. In addition, we found GPX cleaved caspase-8/9 and PARP, which play important roles in apoptotic pathway. Furthermore, through the Western blot assay, GPX increased the level of pro-apoptosis protein Bax and cytochrome C. On the contrary, GPX decreased the level of anti-apoptosis protein Bcl-2. Moreover, GPX increased the mRNA and protein expression level of p53 and its target genes, which indicated that GPX induced MCF-7 cell apoptosis by up-regulating p53 and Bax expression while suppressing Bcl-2 expression. CONCLUSION All the results showed that GPX induces MCF-7 cell apoptosis and could be considered as a potential drug for breast cancer.
Collapse
|