1
|
Thakore P, Delany AM. miRNA-based regulation in growth plate cartilage: mechanisms, targets, and therapeutic potential. Front Endocrinol (Lausanne) 2025; 16:1530374. [PMID: 40225327 PMCID: PMC11985438 DOI: 10.3389/fendo.2025.1530374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Accepted: 03/10/2025] [Indexed: 04/15/2025] Open
Abstract
MicroRNAs (miRNAs) are critical regulators of the skeleton. In the growth plate, these small non-coding RNAs modulate gene networks that drive key stages of chondrogenesis, including proliferation, differentiation, extracellular matrix synthesis and hypertrophy. These processes are orchestrated through the interaction of pivotal pathways including parathyroid hormone-related protein (PTHrP), Indian hedgehog (IHH), and bone morphogenetic protein (BMP) signaling. This review highlights the miRNA-mRNA target networks essential for chondrocyte differentiation. Many miRNAs are differentially expressed in resting, proliferating and hypertrophic cartilage zones. Moreover, differential enrichment of specific miRNAs in matrix vesicles is also observed, providing means for chondrocytes to influence the function and differentiation of their neighbors by via matrix vesicle protein and RNA cargo. Notably, miR-1 and miR-140 emerge as critical modulators of chondrocyte proliferation and hypertrophy by regulating multiple signaling pathways, many of them downstream from their mutual target Hdac4. Demonstration that a human gain-of-function mutation in miR-140 causes skeletal dysplasia underscores the clinical relevance of understanding miRNA-mediated regulation. Further, miRNAs such as miR-26b have emerged as markers for skeletal disorders such as idiopathic short stature, showcasing the translational relevance of miRNAs in skeletal health. This review also highlights some miRNA-based therapeutic strategies, including innovative delivery systems that could target chondrocytes via cartilage affinity peptides, and potential applications related to treatment of physeal bony bridge formation in growing children. By synthesizing current research, this review offers a nuanced understanding of miRNA functions in growth plate biology and their broader implications for skeletal health. It underscores the translational potential of miRNA-based therapies in addressing skeletal disorders and aims to inspire further investigations in this rapidly evolving field.
Collapse
|
2
|
Hussey G, Royster M, Vaidy N, Culkin M, Saha MS. The Osgin Gene Family: Underexplored Yet Essential Mediators of Oxidative Stress. Biomolecules 2025; 15:409. [PMID: 40149945 PMCID: PMC11940746 DOI: 10.3390/biom15030409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2025] [Revised: 02/27/2025] [Accepted: 03/05/2025] [Indexed: 03/29/2025] Open
Abstract
The Osgin gene family consists of two members, Osgin1 and Osgin2, involved in the cellular oxidative stress response. While many members of this essential cellular pathway have been extensively characterized, the Osgin gene family, despite its broad phylogenetic distribution, has received far less attention. Here, we review published articles and open-source databases to synthesize the current research on the evolutionary history, structure, biochemical and physiological functions, expression patterns, and role in disease of the Osgin gene family. Although Osgin displays broad spatiotemporal expression during development and adulthood, there is ambiguity regarding the cellular functions of the OSGIN proteins. A recent study identified OSGIN-1 as a flavin-dependent monooxygenase, but the biochemical role of OSGIN-2 has not yet been defined. Moreover, while the Osgin genes are implicated as mediators of cell proliferation, apoptosis, and autophagy, these functions have not been connected to the enzymatic classification of OSGIN. Misregulation of Osgin expression has long been associated with various disease states, yet recent analyses highlight the mechanistic role of OSGIN in pathogenesis and disease progression, underscoring the therapeutic potential of targeting OSGIN. In light of these findings, we suggest further avenues of research to advance our understanding of this essential, yet underexplored, gene family.
Collapse
Affiliation(s)
| | | | | | | | - Margaret S. Saha
- Biology Department, William & Mary, Williamsburg, VA 23185, USA; (G.H.); (M.R.); (N.V.); (M.C.)
| |
Collapse
|
3
|
Nishio Y, Kato K, Oishi H, Takahashi Y, Saitoh S. MYCN in human development and diseases. Front Oncol 2024; 14:1417607. [PMID: 38884091 PMCID: PMC11176553 DOI: 10.3389/fonc.2024.1417607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 05/15/2024] [Indexed: 06/18/2024] Open
Abstract
Somatic mutations in MYCN have been identified across various tumors, playing pivotal roles in tumorigenesis, tumor progression, and unfavorable prognoses. Despite its established notoriety as an oncogenic driver, there is a growing interest in exploring the involvement of MYCN in human development. While MYCN variants have traditionally been associated with Feingold syndrome type 1, recent discoveries highlight gain-of-function variants, specifically p.(Thr58Met) and p.(Pro60Leu), as the cause for megalencephaly-polydactyly syndrome. The elucidation of cellular and murine analytical data from both loss-of-function (Feingold syndrome model) and gain-of-function models (megalencephaly-polydactyly syndrome model) is significantly contributing to a comprehensive understanding of the physiological role of MYCN in human development and pathogenesis. This review discusses the MYCN's functional implications for human development by reviewing the clinical characteristics of these distinct syndromes, Feingold syndrome, and megalencephaly-polydactyly syndrome, providing valuable insights into the understanding of pathophysiological backgrounds of other syndromes associated with the MYCN pathway and the overall comprehension of MYCN's role in human development.
Collapse
Affiliation(s)
- Yosuke Nishio
- Department of Pediatrics and Neonatology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
- Department of Pediatrics, Nagoya University Graduate School of Medicine, Nagoya, Japan
- Department of Genetics, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Japan
| | - Kohji Kato
- Department of Pediatrics and Neonatology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
- Department of Pediatrics, Nagoya University Graduate School of Medicine, Nagoya, Japan
- Department of Genetics, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Japan
| | - Hisashi Oishi
- Department of Comparative and Experimental Medicine, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Yoshiyuki Takahashi
- Department of Pediatrics, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Shinji Saitoh
- Department of Pediatrics and Neonatology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| |
Collapse
|
4
|
Kudoh H, Yonei‐Tamura S, Abe G, Iwakiri J, Uesaka M, Makino T, Tamura K. Genomic screening of fish-specific genes in gnathostomes and their functions in fin development. Dev Growth Differ 2024; 66:235-247. [PMID: 38439516 PMCID: PMC11457510 DOI: 10.1111/dgd.12918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/18/2024] [Accepted: 02/01/2024] [Indexed: 03/06/2024]
Abstract
In this study, we comprehensively searched for fish-specific genes in gnathostomes that contribute to development of the fin, a fish-specific trait. Many previous reports suggested that animal group-specific genes are often important for group-specific traits. Clarifying the roles of fish-specific genes in fin development of gnathostomes, for example, can help elucidate the mechanisms underlying the formation of this trait. We first identified 91 fish-specific genes in gnathostomes by comparing the gene repertoire in 16 fish and 35 tetrapod species. RNA-seq analysis narrowed down the 91 candidates to 33 genes that were expressed in the developing pectoral fin. We analyzed the functions of approximately half of the candidate genes by loss-of-function analysis in zebrafish. We found that some of the fish-specific and fin development-related genes, including fgf24 and and1/and2, play roles in fin development. In particular, the newly identified fish-specific gene qkia is expressed in the developing fin muscle and contributes to muscle morphogenesis in the pectoral fin as well as body trunk. These results indicate that the strategy of identifying animal group-specific genes is functional and useful. The methods applied here could be used in future studies to identify trait-associated genes in other animal groups.
Collapse
Affiliation(s)
- Hidehiro Kudoh
- Department of Ecological Developmental Adaptability Life SciencesGraduate School of Life Sciences, Tohoku UniversitySendaiJapan
| | - Sayuri Yonei‐Tamura
- Department of Ecological Developmental Adaptability Life SciencesGraduate School of Life Sciences, Tohoku UniversitySendaiJapan
| | - Gembu Abe
- Department of Ecological Developmental Adaptability Life SciencesGraduate School of Life Sciences, Tohoku UniversitySendaiJapan
- Division of Developmental Biology, Department of Functional MorphologySchool of Life Science, Faculty of Medicine, Tottori UniversityYonagoJapan
| | - Junichi Iwakiri
- Department of Computational Biology and Medical SciencesGraduate School of Frontier Sciences, The University of TokyoChibaJapan
| | - Masahiro Uesaka
- Department of Ecological Developmental Adaptability Life SciencesGraduate School of Life Sciences, Tohoku UniversitySendaiJapan
| | - Takashi Makino
- Department of Molecular and Chemical Life SciencesGraduate School of Life Sciences, Tohoku UniversitySendaiJapan
| | - Koji Tamura
- Department of Ecological Developmental Adaptability Life SciencesGraduate School of Life Sciences, Tohoku UniversitySendaiJapan
| |
Collapse
|
5
|
Sun B, Meng XH, Li YM, Lin H, Xiao ZD. MicroRNA-18a prevents senescence of mesenchymal stem cells by targeting CTDSPL. Aging (Albany NY) 2024; 16:4904-4919. [PMID: 38460957 PMCID: PMC10968691 DOI: 10.18632/aging.205642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 12/26/2023] [Indexed: 03/11/2024]
Abstract
Stem cell therapy requires massive-scale homogeneous stem cells under strict qualification control. However, Prolonged ex vivo expansion impairs the biological functions and results in senescence of mesenchymal stem cells (MSCs). We investigated the function of CTDSPL in the premature senescence process of MSCs and clarified that miR-18a-5p played a prominent role in preventing senescence of long-term cultured MSCs and promoting the self-renewal ability of MSCs. Over-expression of CTDSPL resulted in an enlarged morphology, up-regulation of p16 and accumulation of SA-β-gal of MSCs. The reduced phosphorylated RB suggested cell cycle arrest of MSCs. All these results implied that CTDSPL induced premature senescence of MSCs. We further demonstrated that miR-18a-5p was a putative regulator of CTDSPL by luciferase reporter assay. Inhibition of miR-18a-5p promoted the expression of CTDSPL and induced premature senescence of MSCs. Continuous overexpression of miR-18a-5p improved self-renewal of MSCs by reducing ROS level, increased expression of Oct4 and Nanog, and promoted growth rate and differentiation capability. We reported for the first time that the dynamic interaction of miR-18a-5p and CTDSPL is crucial for stem cell senescence.
Collapse
Affiliation(s)
- Bo Sun
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Xian-Hui Meng
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Yu-Min Li
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Hao Lin
- Department of Clinical Science and Research, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, China
| | - Zhong-Dang Xiao
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| |
Collapse
|
6
|
Nishio Y, Kato K, Tran Mau-Them F, Futagawa H, Quélin C, Masuda S, Vitobello A, Otsuji S, Shawki HH, Oishi H, Thauvin-Robinet C, Takenouchi T, Kosaki K, Takahashi Y, Saitoh S. Gain-of-function MYCN causes a megalencephaly-polydactyly syndrome manifesting mirror phenotypes of Feingold syndrome. HGG ADVANCES 2023; 4:100238. [PMID: 37710961 PMCID: PMC10550848 DOI: 10.1016/j.xhgg.2023.100238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 09/08/2023] [Accepted: 09/08/2023] [Indexed: 09/16/2023] Open
Abstract
MYCN, a member of the MYC proto-oncogene family, regulates cell growth and proliferation. Somatic mutations of MYCN are identified in various tumors, and germline loss-of-function variants are responsible for Feingold syndrome, characterized by microcephaly. In contrast, one megalencephalic patient with a gain-of-function variant in MYCN, p.Thr58Met, has been reported, and additional patients and pathophysiological analysis are required to establish the disease entity. Herein, we report two unrelated megalencephalic patients with polydactyly harboring MYCN variants of p.Pro60Leu and Thr58Met, along with the analysis of gain-of-function and loss-of-function Mycn mouse models. Functional analyses for MYCN-Pro60Leu and MYCN-Thr58Met revealed decreased phosphorylation at Thr58, which reduced protein degradation mediated by FBXW7 ubiquitin ligase. The gain-of-function mouse model recapitulated the human phenotypes of megalencephaly and polydactyly, while brain analyses revealed excess proliferation of intermediate neural precursors during neurogenesis, which we determined to be the pathomechanism underlying megalencephaly. Interestingly, the kidney and female reproductive tract exhibited overt morphological anomalies, possibly as a result of excess proliferation during organogenesis. In conclusion, we confirm an MYCN gain-of-function-induced megalencephaly-polydactyly syndrome, which shows a mirror phenotype of Feingold syndrome, and reveal that MYCN plays a crucial proliferative role, not only in the context of tumorigenesis, but also organogenesis.
Collapse
Affiliation(s)
- Yosuke Nishio
- Department of Pediatrics and Neonatology, Nagoya City University Graduate School of Medical Sciences, Nagoya 467-8601, Japan; Department of Pediatrics, Nagoya University Graduate School of Medicine, Nagoya 466-8560, Japan; Department of Genetics, Research Institute of Environmental Medicine, Nagoya University, Nagoya 464-8601, Japan
| | - Kohji Kato
- Department of Pediatrics and Neonatology, Nagoya City University Graduate School of Medical Sciences, Nagoya 467-8601, Japan; Department of Pediatrics, Nagoya University Graduate School of Medicine, Nagoya 466-8560, Japan; Department of Genetics, Research Institute of Environmental Medicine, Nagoya University, Nagoya 464-8601, Japan.
| | - Frederic Tran Mau-Them
- Unité Fonctionnelle 6254 d'Innovation en Diagnostique Génomique des Maladies Rares, Pôle de Biologie, CHU Dijon Bourgogne, 21070 Dijon, France; INSERM UMR1231 GAD, 21000 Dijon, France
| | - Hiroshi Futagawa
- Department of Clinical Genetics, Tokyo Metropolitan Children's Medical Center, Tokyo 183-8561, Japan
| | - Chloé Quélin
- Service de Génétique Clinique, CLAD Ouest, CHU Rennes, Hôpital Sud, 35200 Rennes, France
| | - Saori Masuda
- Department of Hematology and Oncology, Tokyo Metropolitan Children's Medical Center, Tokyo 183-8561, Japan
| | - Antonio Vitobello
- Unité Fonctionnelle 6254 d'Innovation en Diagnostique Génomique des Maladies Rares, Pôle de Biologie, CHU Dijon Bourgogne, 21070 Dijon, France; INSERM UMR1231 GAD, 21000 Dijon, France
| | - Shiomi Otsuji
- Department of Pediatrics and Neonatology, Nagoya City University Graduate School of Medical Sciences, Nagoya 467-8601, Japan
| | - Hossam H Shawki
- Department of Comparative and Experimental Medicine, Nagoya City University Graduate School of Medical Sciences and Medical School, Nagoya 467-8601, Japan
| | - Hisashi Oishi
- Department of Comparative and Experimental Medicine, Nagoya City University Graduate School of Medical Sciences and Medical School, Nagoya 467-8601, Japan
| | - Christel Thauvin-Robinet
- Unité Fonctionnelle 6254 d'Innovation en Diagnostique Génomique des Maladies Rares, Pôle de Biologie, CHU Dijon Bourgogne, 21070 Dijon, France; INSERM UMR1231 GAD, 21000 Dijon, France; Centre de Référence Maladies Rares "Anomalies du développement et syndromes malformatifs", Centre de Génétique, FHU TRANSLAD et Institut GIMI, CHU Dijon Bourgogne, 21070 Dijon, France
| | - Toshiki Takenouchi
- Department of Pediatrics, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Kenjiro Kosaki
- Center for Medical Genetics, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Yoshiyuki Takahashi
- Department of Pediatrics, Nagoya University Graduate School of Medicine, Nagoya 466-8560, Japan
| | - Shinji Saitoh
- Department of Pediatrics and Neonatology, Nagoya City University Graduate School of Medical Sciences, Nagoya 467-8601, Japan.
| |
Collapse
|
7
|
Tokunaga M, Imamura T. Emerging concepts involving inhibitory and activating RNA functionalization towards the understanding of microcephaly phenotypes and brain diseases in humans. Front Cell Dev Biol 2023; 11:1168072. [PMID: 37408531 PMCID: PMC10318543 DOI: 10.3389/fcell.2023.1168072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 06/12/2023] [Indexed: 07/07/2023] Open
Abstract
Microcephaly is characterized as a small head circumference, and is often accompanied by developmental disorders. Several candidate risk genes for this disease have been described, and mutations in non-coding regions are occasionally found in patients with microcephaly. Various non-coding RNAs (ncRNAs), such as microRNAs (miRNAs), SINEUPs, telomerase RNA component (TERC), and promoter-associated lncRNAs (pancRNAs) are now being characterized. These ncRNAs regulate gene expression, enzyme activity, telomere length, and chromatin structure through RNA binding proteins (RBPs)-RNA interaction. Elucidating the potential roles of ncRNA-protein coordination in microcephaly pathogenesis might contribute to its prevention or recovery. Here, we introduce several syndromes whose clinical features include microcephaly. In particular, we focus on syndromes for which ncRNAs or genes that interact with ncRNAs may play roles. We discuss the possibility that the huge ncRNA field will provide possible new therapeutic approaches for microcephaly and also reveal clues about the factors enabling the evolutionary acquisition of the human-specific "large brain."
Collapse
|
8
|
Li YF, Cheng T, Zhang YJ, Fu XX, Mo J, Zhao GQ, Xue MG, Zhuo DH, Xing YY, Huang Y, Sun XZ, Wang D, Liu X, Dong Y, Zhu XS, He F, Ma J, Chen D, Jin X, Xu PF. Mycn regulates intestinal development through ribosomal biogenesis in a zebrafish model of Feingold syndrome 1. PLoS Biol 2022; 20:e3001856. [PMID: 36318514 PMCID: PMC9624419 DOI: 10.1371/journal.pbio.3001856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 09/27/2022] [Indexed: 11/05/2022] Open
Abstract
Feingold syndrome type 1, caused by loss-of-function of MYCN, is characterized by varied phenotypes including esophageal and duodenal atresia. However, no adequate model exists for studying the syndrome's pathological or molecular mechanisms, nor is there a treatment strategy. Here, we developed a zebrafish Feingold syndrome type 1 model with nonfunctional mycn, which had severe intestinal atresia. Single-cell RNA-seq identified a subcluster of intestinal cells that were highly sensitive to Mycn, and impaired cell proliferation decreased the overall number of intestinal cells in the mycn mutant fish. Bulk RNA-seq and metabolomic analysis showed that expression of ribosomal genes was down-regulated and that amino acid metabolism was abnormal. Northern blot and ribosomal profiling analysis showed abnormal rRNA processing and decreases in free 40S, 60S, and 80S ribosome particles, which led to impaired translation in the mutant. Besides, both Ribo-seq and western blot analysis showed that mTOR pathway was impaired in mycn mutant, and blocking mTOR pathway by rapamycin treatment can mimic the intestinal defect, and both L-leucine and Rheb, which can elevate translation via activating TOR pathway, could rescue the intestinal phenotype of mycn mutant. In summary, by this zebrafish Feingold syndrome type 1 model, we found that disturbance of ribosomal biogenesis and blockage of protein synthesis during development are primary causes of the intestinal defect in Feingold syndrome type 1. Importantly, our work suggests that leucine supplementation may be a feasible and easy treatment option for this disease.
Collapse
Affiliation(s)
- Yun-Fei Li
- Institute of Genetics and Department of Human Genetics, Zhejiang University School of Medicine, Hangzhou, China
| | - Tao Cheng
- Institute of Genetics and Department of Human Genetics, Zhejiang University School of Medicine, Hangzhou, China
- Women’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Ying-Jie Zhang
- Institute of Genetics and Department of Human Genetics, Zhejiang University School of Medicine, Hangzhou, China
| | - Xin-Xin Fu
- Institute of Genetics and Department of Human Genetics, Zhejiang University School of Medicine, Hangzhou, China
| | - Jing Mo
- Department of Immunology, Guizhou Medical University, Guiyang, China
| | - Guo-Qin Zhao
- Department of Immunology, Guizhou Medical University, Guiyang, China
| | - Mao-Guang Xue
- Institute of Genetics and Department of Human Genetics, Zhejiang University School of Medicine, Hangzhou, China
| | - Ding-Hao Zhuo
- Institute of Genetics and Department of Human Genetics, Zhejiang University School of Medicine, Hangzhou, China
- Women’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yan-Yi Xing
- Institute of Genetics and Department of Human Genetics, Zhejiang University School of Medicine, Hangzhou, China
- Women’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Ying Huang
- Institute of Genetics and Department of Human Genetics, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiao-Zhi Sun
- Institute of Genetics and Department of Human Genetics, Zhejiang University School of Medicine, Hangzhou, China
| | - Dan Wang
- Institute of Genetics and Department of Human Genetics, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiang Liu
- Institute of Genetics and Department of Human Genetics, Zhejiang University School of Medicine, Hangzhou, China
| | - Yang Dong
- Institute of Genetics and Department of Human Genetics, Zhejiang University School of Medicine, Hangzhou, China
- Women’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiao-Sheng Zhu
- Institute of Genetics and Department of Human Genetics, Zhejiang University School of Medicine, Hangzhou, China
| | - Feng He
- Institute of Genetics and Department of Human Genetics, Zhejiang University School of Medicine, Hangzhou, China
- Women’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jun Ma
- Institute of Genetics and Department of Human Genetics, Zhejiang University School of Medicine, Hangzhou, China
- Women’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Dong Chen
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Xi Jin
- Department of Gastroenterology, The First Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Peng-Fei Xu
- Institute of Genetics and Department of Human Genetics, Zhejiang University School of Medicine, Hangzhou, China
- Women’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
9
|
Zhao C, Xie R, Qian Q, Yan J, Wang H, Wang X. Triclosan induced zebrafish immunotoxicity by targeting miR-19a and its gene socs3b to activate IL-6/STAT3 signaling pathway. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 815:152916. [PMID: 34998771 DOI: 10.1016/j.scitotenv.2022.152916] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 12/31/2021] [Accepted: 01/01/2022] [Indexed: 06/14/2023]
Abstract
As a broad-spectrum antibacterial agent, triclosan (TCS) has been confirmed to possess potential immunotoxicity to organisms, but the underlying mechanisms remains unclear. Herein, with the aid of transgenic zebrafish strains Tg (coro1A: EGFP) and Tg (rag2: DsRed), we intuitively observed acute TCS exposure caused the drastic differentiation, abnormal development and distribution of innate immune cells, as well as barriers to formation of adaptive immune T cells. These abnormalities implied occurrence of the cytokine storm, which was further evidenced by expression changes of immune-related genes, and functional biomarkers. Based on transcriptome deep sequencing, target gene prediction and dual luciferase validation, the highly conservative and up-regulated miR-19a was chosen as the research target. Under TCS exposure, miR-19a up-regulation triggered down-regulation of its target gene socs3b, and simultaneously activated the downstream IL-6/STAT3 signaling pathway. Artificial over-expression and knock-down of miR-19a was realized by microinjecting agomir and antagomir, respectively, in 1-2-cell embryos. The miR-19a up-regulation inhibited socs3b expression to activate IL-6/STAT3 pathway, and yielded abnormal changes in the functional cytokine biomarkers, along with the sharp activation of immune responses. These findings disclose the molecular mechanisms regarding TCS-induced immunotoxicity, and offer important theoretical guidance for healthy safety evaluation and disease early warning from TCS pollution.
Collapse
Affiliation(s)
- Chenxi Zhao
- National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China; College of Public Health and Management, Wenzhou Medical University, Wenzhou 325035, China
| | - Ruihui Xie
- Food & Drug Inspection and Testing Center of Puyang City, Puyang 457000, China
| | - Qiuhui Qian
- National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Jin Yan
- National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Huili Wang
- National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China.
| | - Xuedong Wang
- College of Public Health and Management, Wenzhou Medical University, Wenzhou 325035, China.
| |
Collapse
|
10
|
IPF-Fibroblast Erk1/2 Activity Is Independent from microRNA Cluster 17-92 but Can Be Inhibited by Treprostinil through DUSP1. Cells 2021; 10:cells10112836. [PMID: 34831059 PMCID: PMC8616195 DOI: 10.3390/cells10112836] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 10/19/2021] [Accepted: 10/20/2021] [Indexed: 01/25/2023] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a progressive terminal lung disease, and therapies aim to block fibrosis. Fibroblast proliferation is controlled by C/EBP-β, microRNA cluster 17-92 (miR17-92), and Erk1/2 mitogen-activated protein kinase. This study assessed the role of miR17-92 in IPF-fibroblast proliferation and its modification by treprostinil. Fibroblasts were isolated from eight IPF patients, five interstitial lung fibrosis patients, and seven control lungs. Fibroblasts were stimulated with TGF-β1 over 24 h. The miR17-92 expression was analyzed by RT-qPCR, and protein expression by Western blotting. TGF-β1 upregulated C/EBP-β in all fibroblasts, which was reduced by treprostinil in control-fibroblasts, but not in IPF-fibroblasts. Compared to controls, the guide strands miR-19a-3p, miR-19b-3p, miR-20a-5p, and miR-92a-3p, as well as the passenger strands miR-17-3p, miR-18-3p, miR-19a-1-5p, and miR-92a-5p were significantly increased in IPF-fibroblasts. In controls, TGF-β1 and treprostinil significantly reduced specific miR17-92 members. IPF-fibroblast proliferation was inhibited by treprostinil through increased expression of the Erk1/2 inhibitor DUSP1. These data suggest that proliferation control via miR17-92 and C/EBP-β is disrupted in IPF-fibroblasts. Therefore, the inhibition of early stages of signaling cascades or specific mitogen receptors might be less effective. However, the increased proliferation is sensitive to Erk1/2 inhibition by treprostinil-induced DUSP1.
Collapse
|
11
|
Xie J, Lu L, Yu X. [Research progress of cellular senescence in the pathogenesis of osteoarthritis]. ZHONGGUO XIU FU CHONG JIAN WAI KE ZA ZHI = ZHONGGUO XIUFU CHONGJIAN WAIKE ZAZHI = CHINESE JOURNAL OF REPARATIVE AND RECONSTRUCTIVE SURGERY 2021; 35:519-526. [PMID: 33855840 DOI: 10.7507/1002-1892.202011065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Objective To review the pathological effects of cellular senescence in the occurrence and development of osteoarthritis (OA) and potential therapeutic targets. Methods The role of chondrocyte senescence, synovial cell senescence, mesenchymal stem cells senescence in OA, and the biological mechanism and progress of chondrocyte senescence were summarized by consulting relevant domestic and abroad literature. Results The existing evidence has basically made clear that chondrocyte senescence, mesenchymal stem cells senescence, and cartilage repair abnormalities, and the occurrence and development of OA have a certain causal relationship, and the role of the senescence of synovial cells, especially synovial macrophages in OA is still unclear. Transcription factors and epigenetics are the main mechanisms that regulate the upstream pathways of cellular senescence. Signal communication between cells can promote the appearance of senescent phenotypes in healthy cells. Targeted elimination of senescent cells and promotion of mesenchymal stem cells rejuvenation can effectively delay the progress of OA. Conclusion Cellular senescence is an important biological phenomenon and potential therapeutic target in the occurrence and development of OA. In-depth study of its biological mechanism is helpful to the early prevention and treatment of OA.
Collapse
Affiliation(s)
- Jinwei Xie
- Department of Orthopaedics, West China Hospital, Sichuan University, Chengdu Sichuan, 610041, P.R.China.,Laboratory of Endocrinology and Metabolism, West China Hospital, Sichuan University, Chengdu Sichuan, 610041, P.R.China.,National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu Sichuan, 610041, P.R.China
| | - Lingyun Lu
- Laboratory of Endocrinology and Metabolism, West China Hospital, Sichuan University, Chengdu Sichuan, 610041, P.R.China.,Department of Integrated Traditional Chinese and Western Medicine, West China Hospital, Sichuan University, Chengdu Sichuan, 610041, P.R.China
| | - Xijie Yu
- Laboratory of Endocrinology and Metabolism, West China Hospital, Sichuan University, Chengdu Sichuan, 610041, P.R.China.,Department of Endocrinology and Metabolism, West China Hospital, Sichuan University, Chengdu Sichuan, 610041, P.R.China
| |
Collapse
|
12
|
Zhuang C, Liu Y, Fu S, Yuan C, Luo J, Huang X, Yang W, Xie W, Zhuang C. Silencing of lncRNA MIR497HG via CRISPR/Cas13d Induces Bladder Cancer Progression Through Promoting the Crosstalk Between Hippo/Yap and TGF-β/Smad Signaling. Front Mol Biosci 2020; 7:616768. [PMID: 33363213 PMCID: PMC7755977 DOI: 10.3389/fmolb.2020.616768] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 11/05/2020] [Indexed: 12/17/2022] Open
Abstract
A subset of long non-coding RNAs (lncRNAs), categorized as miRNA-host gene lncRNAs (lnc-miRHGs), is processed to produce miRNAs and involved in cancer progression. This work aimed to investigate the influences and the molecular mechanisms of lnc-miRHGs MIR497HG in bladder cancer (BCa). The miR-497 and miR-195 were derived from MIR497HG. We identified that lnc-miRHG MIR497HG and two harbored miRNAs, miR-497 and miR-195, were downregulated in BCa by analyzing The Cancer Genome Atlas and our dataset. Silencing of MIR497HG by CRISPR/Cas13d in BCa cell line 5637 promoted cell growth, migration, and invasion in vitro. Conversely, overexpression of MIR497HG suppressed cell progression in BCa cell line T24. MiR-497/miR-195 mimics rescued significantly the oncogenic roles of knockdown of MIR497HG by CRISPR/Cas13d in BCa. Mechanistically, miR-497 and miR-195 co-ordinately suppressed multiple key components in Hippo/Yap and transforming growth factor β signaling and particularly attenuated the interaction between Yap and Smad3. In addition, E2F4 was proven to be critical for silencing MIR497HG transcription in BCa cells. In short, we propose for the first time to reveal the function and mechanisms of MIR497HG in BCa. Blocking the pathological process may be a potential strategy for the treatment of BCa.
Collapse
Affiliation(s)
- Changshui Zhuang
- Department of Urology, Union Shenzhen Hospital, Huazhong University of Science and Technology, Shenzhen, China
| | - Ying Liu
- Shenzhen People's Hospital, The First Affiliated Hospital of Southern University of Science and Technology, The Second Clinical Medical College of Jinan University, Shenzhen, China
| | - Shengqiang Fu
- Department of Urology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Chaobo Yuan
- Emergency Department, Union Shenzhen Hospital, Huazhong University of Science and Technology, Shenzhen, China
| | - Jingwen Luo
- Department of Thoracic Surgery, Union Shenzhen Hospital, Huazhong University of Science and Technology, Shenzhen, China
| | - Xueting Huang
- Shenzhen Yantian District People's Hospital, Shenzhen, China
| | - Weifeng Yang
- Department of Urology, Union Shenzhen Hospital, Huazhong University of Science and Technology, Shenzhen, China
| | - Wuwei Xie
- Department of Urology, Peking University Shenzhen Hospital, Shenzhen, China
| | - Chengle Zhuang
- Department of Urology, Peking University Shenzhen Hospital, Shenzhen, China
| |
Collapse
|
13
|
Shvedova M, Kobayashi T. MicroRNAs in cartilage development and dysplasia. Bone 2020; 140:115564. [PMID: 32745689 PMCID: PMC7502492 DOI: 10.1016/j.bone.2020.115564] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 07/24/2020] [Accepted: 07/28/2020] [Indexed: 12/13/2022]
Abstract
Small regulatory microRNAs (miRNAs) post-transcriptionally suppress gene expression. MiRNAs expressed in skeletal progenitor cells and chondrocytes regulate diverse aspects of cellular function and thus skeletal development. In this review, we discuss the role of miRNAs in skeletal development, particularly focusing on those whose physiological roles were revealed in vivo. Deregulation of miRNAs is found in multiple acquired diseases such as cancer; however congenital diseases caused by mutations in miRNA genes are very rare. Among those are mutations in miR-140 and miR-17~92 miRNAs which cause skeletal dysplasias. We also discuss pathological mechanisms underlining these skeletal dysplasias.
Collapse
Affiliation(s)
- Maria Shvedova
- Endocrine Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Tatsuya Kobayashi
- Endocrine Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
14
|
Siavrienė E, Preikšaitienė E, Maldžienė Ž, Mikštienė V, Rančelis T, Ambrozaitytė L, Gueneau L, Reymond A, Kučinskas V. A de novo 13q31.3 microduplication encompassing the miR-17 ~ 92 cluster results in features mirroring those associated with Feingold syndrome 2. Gene 2020; 753:144816. [PMID: 32473250 DOI: 10.1016/j.gene.2020.144816] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 01/24/2020] [Accepted: 05/25/2020] [Indexed: 01/07/2023]
Abstract
Hemizygosity of the MIR17HG gene encoding the miR-17 ~ 92 cluster is associated with Feingold syndrome 2 characterized by intellectual disability, skeletal abnormalities, short stature, and microcephaly. Here, we report on a female with a de novo 13q31.3 microduplication encompassing MIR17HG but excluding GPC5. She presented developmental delay, skeletal and digital abnormalities, and features such as tall stature and macrocephaly mirroring those of Feingold syndrome 2 patients. The limited extent of the proband's rearrangement to the miR cluster and the corresponding normal expression level of the neighboring GPC5 in her cells, together with previously described data on affected individuals of two families carrying overlapping duplications of the miR-17 ~ 92 cluster that comprise part of GPC5, who likewise presented macrocephaly, developmental delay, as well as skeletal, digital and stature abnormalities, allow to define a new syndrome due to independent microduplication of the miR-17 ~ 92 cluster.
Collapse
Affiliation(s)
- Evelina Siavrienė
- Department of Human and Medical Genetics, Institute of Biomedical Sciences, Faculty of Medicine, Vilnius University, Vilnius, Lithuania; Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland.
| | - Eglė Preikšaitienė
- Department of Human and Medical Genetics, Institute of Biomedical Sciences, Faculty of Medicine, Vilnius University, Vilnius, Lithuania
| | - Živilė Maldžienė
- Department of Human and Medical Genetics, Institute of Biomedical Sciences, Faculty of Medicine, Vilnius University, Vilnius, Lithuania
| | - Violeta Mikštienė
- Department of Human and Medical Genetics, Institute of Biomedical Sciences, Faculty of Medicine, Vilnius University, Vilnius, Lithuania
| | - Tautvydas Rančelis
- Department of Human and Medical Genetics, Institute of Biomedical Sciences, Faculty of Medicine, Vilnius University, Vilnius, Lithuania
| | - Laima Ambrozaitytė
- Department of Human and Medical Genetics, Institute of Biomedical Sciences, Faculty of Medicine, Vilnius University, Vilnius, Lithuania
| | - Lucie Gueneau
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
| | - Alexandre Reymond
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
| | - Vaidutis Kučinskas
- Department of Human and Medical Genetics, Institute of Biomedical Sciences, Faculty of Medicine, Vilnius University, Vilnius, Lithuania
| |
Collapse
|
15
|
Lecaudey LA, Sturmbauer C, Singh P, Ahi EP. Molecular mechanisms underlying nuchal hump formation in dolphin cichlid, Cyrtocara moorii. Sci Rep 2019; 9:20296. [PMID: 31889116 PMCID: PMC6937230 DOI: 10.1038/s41598-019-56771-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Accepted: 12/12/2019] [Indexed: 12/15/2022] Open
Abstract
East African cichlid fishes represent a model to tackle adaptive changes and their connection to rapid speciation and ecological distinction. In comparison to bony craniofacial tissues, adaptive morphogenesis of soft tissues has been rarely addressed, particularly at the molecular level. The nuchal hump in cichlids fishes is one such soft-tissue and exaggerated trait that is hypothesized to play an innovative role in the adaptive radiation of cichlids fishes. It has also evolved in parallel across lakes in East Africa and Central America. Using gene expression profiling, we identified and validated a set of genes involved in nuchal hump formation in the Lake Malawi dolphin cichlid, Cyrtocara moorii. In particular, we found genes differentially expressed in the nuchal hump, which are involved in controlling cell proliferation (btg3, fosl1a and pdgfrb), cell growth (dlk1), craniofacial morphogenesis (dlx5a, mycn and tcf12), as well as regulators of growth-related signals (dpt, pappa and socs2). This is the first study to identify the set of genes associated with nuchal hump formation in cichlids. Given that the hump is a trait that evolved repeatedly in several African and American cichlid lineages, it would be interesting to see if the molecular pathways and genes triggering hump formation follow a common genetic track or if the trait evolved in parallel, with distinct mechanisms, in other cichlid adaptive radiations and even in other teleost fishes.
Collapse
Affiliation(s)
- Laurène Alicia Lecaudey
- Institute of Biology, University of Graz, Universitätsplatz 2, A-8010, Graz, Austria
- Department of Natural History, NTNU University Museum, Norwegian University of Science and Technology, NO-7491, Trondheim, Norway
| | - Christian Sturmbauer
- Institute of Biology, University of Graz, Universitätsplatz 2, A-8010, Graz, Austria
| | - Pooja Singh
- Institute of Biology, University of Graz, Universitätsplatz 2, A-8010, Graz, Austria
- Institute of Biological Sciences, University of Calgary, 2500 University Dr NW, Calgary, AB, T2N 1N4, Canada
| | - Ehsan Pashay Ahi
- Institute of Biology, University of Graz, Universitätsplatz 2, A-8010, Graz, Austria.
- Department of Comparative Physiology, Uppsala University, Norbyvägen 18A, SE-75 236, Uppsala, Sweden.
| |
Collapse
|
16
|
Xu J, Meng Q, Li X, Yang H, Xu J, Gao N, Sun H, Wu S, Familiari G, Relucenti M, Zhu H, Wu J, Chen R. Long Noncoding RNA MIR17HG Promotes Colorectal Cancer Progression via miR-17-5p. Cancer Res 2019; 79:4882-4895. [PMID: 31409641 DOI: 10.1158/0008-5472.can-18-3880] [Citation(s) in RCA: 141] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 04/10/2019] [Accepted: 08/05/2019] [Indexed: 12/24/2022]
Abstract
Immune dysregulation plays a vital role in colorectal cancer initiation and progression. Long noncoding RNAs (lncRNA) exhibit multiple functions including regulation of gene expression. Here, we identified an immune-related lncRNA, MIR17HG, whose expression was gradually upregulated in adjacent, adenoma, and colorectal cancer tissue. MIR17HG promoted tumorigenesis and metastasis in colorectal cancer cells both in vitro and in vivo. Mechanistically, MIR17HG increased the expression of NF-κB/RELA by competitively sponging the microRNA miR-375. In addition, RELA transcriptionally activated MIR17HG in a positive feedback loop by directly binding to its promoter region. Moreover, miR-17-5p, one of the transcribed miRNAs from MIR17HG, reduced the expression of the tumor suppressor B-cell linker (BLNK), resulting in increased migration and invasion of colorectal cancer cells. MIR17HG also upregulated PD-L1, indicating its potential role in immunotherapy. Overall, these findings demonstrate that MIR17HG plays an oncogenic role in colorectal cancer and may serve as a promising therapeutic target. SIGNIFICANCE: These findings provide mechanistic insight into the role of the lncRNA MIR17HG and its miRNA members in regulating colorectal cancer carcinogenesis and progression.
Collapse
Affiliation(s)
- Jie Xu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China
| | - Qingtao Meng
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China
| | - Xiaobo Li
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China
| | - Hongbao Yang
- Center for New Drug Safety Evaluation and Research, China Pharmaceutical University, Nanjing, China
| | - Jin Xu
- Department of Maternal, Child and Adolescent Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Na Gao
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China
| | - Hao Sun
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China
| | - Shenshen Wu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China
| | - Giuseppe Familiari
- Department of Anatomical, Histological, Forensic Medicine and Orthopedic Science, Sapienza University of Rome, Roma, Italia
| | - Michela Relucenti
- Department of Anatomical, Histological, Forensic Medicine and Orthopedic Science, Sapienza University of Rome, Roma, Italia
| | - Haitao Zhu
- Colorectal Cancer Center, Department of General Surgery, Jiangsu Cancer Hospital, Cancer Research Institute, Cancer Hospital of Nanjing Medical University, Nanjing, China
| | - Jiong Wu
- School of Life Sciences, Jiangsu Normal University, Xuzhou, China
| | - Rui Chen
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China.
- Institute for Chemical Carcinogenesis, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
17
|
Muriello M, Kim AY, Schatz KS, Beck N, Gunay-Aygun M, Hoover-Fong JE. Growth hormone deficiency, aortic dilation, and neurocognitive issues in Feingold syndrome 2. Am J Med Genet A 2019; 179:410-416. [PMID: 30672094 PMCID: PMC7038632 DOI: 10.1002/ajmg.a.61037] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 12/12/2018] [Accepted: 12/17/2018] [Indexed: 11/07/2022]
Abstract
We report three patients with Feingold 2 syndrome with the novel features of growth hormone deficiency associated with adenohypophyseal compression, aortic dilation, phalangeal joint contractures, memory, and sleep problems in addition to the typical features of microcephaly, brachymesophalangy, toe syndactyly, short stature, and cardiac anomalies. Microdeletions of chromosome 13q that include the MIR17HG gene were found in all three. One of the patients was treated successfully with growth hormone. In addition to expanding the phenotype of Feingold 2 syndrome, we suggest management of patients with Feingold 2 syndrome include echocardiography at the time of diagnosis in all patients and consideration of evaluation for growth hormone deficiency in patients with short stature.
Collapse
Affiliation(s)
- Michael Muriello
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University, Baltimore, Maryland
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Alexander Y. Kim
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University, Baltimore, Maryland
| | | | - Natalie Beck
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University, Baltimore, Maryland
- Greenberg Center for Skeletal Dysplasia, Johns Hopkins University, Baltimore, Maryland
| | - Meral Gunay-Aygun
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University, Baltimore, Maryland
| | - Julie E. Hoover-Fong
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University, Baltimore, Maryland
- Greenberg Center for Skeletal Dysplasia, Johns Hopkins University, Baltimore, Maryland
| |
Collapse
|
18
|
|