1
|
Xiahou Y, Wang B, Li H, Shen Z, Jiang Y, Li H, Kerman S, Wu F, Fu Y, Wang T, Cheng J, Chen C. On-Chip Array Fluorescent Sensor for High-Sensitivity Multi-Gas Detection. ACS Sens 2025; 10:3647-3657. [PMID: 40280872 DOI: 10.1021/acssensors.5c00460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/29/2025]
Abstract
Fluorescence array sensors provide an effective strategy to mitigate the cross-reactivity of single fluorescence materials by exploiting their high dimensionality and exceptional sensitivity. However, conventional fluorescent sensing arrays are often hindered by complex and bulky designs, resulting in low cost-effectiveness and severely restricting their potential for integration into compact sensing devices. Benefiting from its high integration advantage, photonic integration technology offers a promising solution for developing low-cost and miniaturized fluorescent gas sensor arrays. In this article, we present a novel fluorescence array sensor based on a silicon nitride photonic integration platform. This innovative device enables lab-on-chip functionality by integrating a microfluidic channel for efficient gas detection in a few square centimeters. The sensor demonstrates exceptional performance, accurately identifying six types of volatile organic compounds and achieving a remarkably low detection limit of 2.8 ppb for N-methylphenethylamine (MPEA). Notably, it exhibits high precision in detecting MPEA even within complex, high-concentration perfume mixtures. Moreover, this technology enables the expansion of the fluorescence array without increasing the sensor's volume, offering a practical solution for integrated fluorescence sensor array detection.
Collapse
Affiliation(s)
- Yaorong Xiahou
- School of Microelectronics, Shanghai University, Shangda Road 99, Shanghai 200444, China
- Shanghai Photonic View Technology Co. Ltd, Shanlian Road 377, Shanghai 200444, China
- Shanghai Industrial μTechnology Research Institute (SITRI), Chengbei Road 235, Shanghai 201800, China
| | - Bo Wang
- State Key Lab of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China
- Center of Materials Science and Optoelectronics Engineering, University of the Chinese Academy of Sciences, Yuquan Road 19, Beijing 100039, China
| | - He Li
- State Key Lab of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China
- Center of Materials Science and Optoelectronics Engineering, University of the Chinese Academy of Sciences, Yuquan Road 19, Beijing 100039, China
| | - Zhijie Shen
- Mixosense Co. Ltd, East Ningbo Road, Suzhou 215400, China
| | - Yejing Jiang
- Mixosense Co. Ltd, East Ningbo Road, Suzhou 215400, China
| | - Huizi Li
- State Key Lab of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China
- Center of Materials Science and Optoelectronics Engineering, University of the Chinese Academy of Sciences, Yuquan Road 19, Beijing 100039, China
| | - Sarp Kerman
- Shanghai Photonic View Technology Co. Ltd, Shanlian Road 377, Shanghai 200444, China
- Institute of Medical Chips, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shuangdan Road 559, Shanghai 201800, China
| | - Fan Wu
- Shanghai Photonic View Technology Co. Ltd, Shanlian Road 377, Shanghai 200444, China
- Institute of Medical Chips, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shuangdan Road 559, Shanghai 201800, China
| | - Yanyan Fu
- State Key Lab of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China
- Center of Materials Science and Optoelectronics Engineering, University of the Chinese Academy of Sciences, Yuquan Road 19, Beijing 100039, China
| | - Teng Wang
- Mixosense Co. Ltd, East Ningbo Road, Suzhou 215400, China
| | - Jiangong Cheng
- State Key Lab of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China
- Center of Materials Science and Optoelectronics Engineering, University of the Chinese Academy of Sciences, Yuquan Road 19, Beijing 100039, China
| | - Chang Chen
- School of Microelectronics, Shanghai University, Shangda Road 99, Shanghai 200444, China
- State Key Lab of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China
- Shanghai Photonic View Technology Co. Ltd, Shanlian Road 377, Shanghai 200444, China
- Institute of Medical Chips, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shuangdan Road 559, Shanghai 201800, China
| |
Collapse
|
2
|
Yang C, Yang H, Yao Z, Liu T. Recent advances in active chromophores for detecting gamma-hydroxybutyric acid (GHB)-related illicit drugs. Analyst 2025; 150:1972-1985. [PMID: 40208228 DOI: 10.1039/d5an00167f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2025]
Abstract
Gamma-hydroxybutyric acid (GHB) and its related illicit drugs are of particular forensic interest owing to their abuse as recreational drugs and implications in drug-facilitated sexual assault. The rapid and complete metabolism of GHB in the body results in a short evidence collection window for forensic experts, and challenges exist in simultaneously differentiating between exogenous addition in spiked drinking and low endogenous levels of GHB. Consequently, the development of real-time and on-site detection strategies for GHB plays vital roles in tackling drug-facilitated crimes. Recently, fluorescent and colorimetric strategies have emerged as promising approaches in this field, offering multiple merits of high sensitivity and specificity, ease of handling, and cumulative signaling effects. This minireview outlines the endogenous levels of GHB in the body and possible metabolism pathways, summarizes the recent advances in active chromophores, elucidates the corresponding sensing characteristics, and then exemplifies the developed sensing strips and detection kits based on the optimized chromophores mostly in the past five years. Additionally, the perspectives of the relevant studies are discussed in detail.
Collapse
Affiliation(s)
- Chun Yang
- National Anti-Drug Laboratory Shaanxi Regional Center (Anti-Drug Technology Center of Shaanxi Provincial Public Security Department), Xi'an 710115, P. R. China.
| | - Hongxian Yang
- Key Laboratory of Drug Monitoring and Control, Drug Intelligence and Forensic Center, Ministry of Public Security, Beijing 100193, P. R. China
| | - Zhen Yao
- National Anti-Drug Laboratory Shaanxi Regional Center (Anti-Drug Technology Center of Shaanxi Provincial Public Security Department), Xi'an 710115, P. R. China.
| | - Taihong Liu
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, P. R. China.
| |
Collapse
|
3
|
Wang J, Wen R, Kong J, Liu J, Liu Z, Fang Y. Miniaturized Separation-Sensing Tandem Enabled by Fluorescent Monoliths. Angew Chem Int Ed Engl 2025; 64:e202502020. [PMID: 40087143 DOI: 10.1002/anie.202502020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Revised: 03/09/2025] [Accepted: 03/12/2025] [Indexed: 03/16/2025]
Abstract
Discriminative sensing for mixture by either fluorescent sensor or other sensors remains a challenge. This issue is attributed to the absence of a separation unit prior to the sensor. Here, we report a new sensing medium, named porous fluorescent monolith, which can separate mixture and meanwhile be integrated into a sensor for discriminative detection. The fluorescent monoliths are prepared via polymerization of 4,4',4″,4‴-(ethene-1,1,2,2-tetrayl)tetrabenzaldehyde with diamines. Their photophysical property and hierarchical porosity are systematically studied. On this basis, we set up a separation-sensing platform and realize quantitative analysis for trace water in methanol, a sarin simulant, perfluoroalkyl compounds, and metal ions. The separation-sensing platform furthermore demonstrates baseline separation for benzene, toluene, ethylbenzene, and xylene, with limit of detections of 86, 54, 19, and 58 ng, respectively. To our knowledge, this is the first time that a fluorescent monolith is used to realize a separation-sensing tandem. We anticipate our findings will provide a promising strategy for producing portable devices with the on-site discriminative sensing ability for real samples.
Collapse
Affiliation(s)
- Jie Wang
- Institute of New Concept Sensors and Molecular Materials, Key Laboratory of Applied Surface and Colloid Chemistry (Ministry of Education), School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Ruijuan Wen
- Institute of New Concept Sensors and Molecular Materials, Key Laboratory of Applied Surface and Colloid Chemistry (Ministry of Education), School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Jinglin Kong
- State Key Laboratory of NBC Protection for Civilian, Beijing, 100049, China
| | - Jing Liu
- Institute of New Concept Sensors and Molecular Materials, Key Laboratory of Applied Surface and Colloid Chemistry (Ministry of Education), School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Zhongshan Liu
- Institute of New Concept Sensors and Molecular Materials, Key Laboratory of Applied Surface and Colloid Chemistry (Ministry of Education), School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Yu Fang
- Institute of New Concept Sensors and Molecular Materials, Key Laboratory of Applied Surface and Colloid Chemistry (Ministry of Education), School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| |
Collapse
|
4
|
Feng J, Chang H, Zhou X, Zhang S, Ding L, Liu T, Fang Y. Manipulating Constitutional Isomerism of Imine Linkages in Interfacially Confined Nanofilms toward Enhanced Fluorescence Sensing. ACS APPLIED MATERIALS & INTERFACES 2025. [PMID: 39981731 DOI: 10.1021/acsami.5c00028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/22/2025]
Abstract
Photoluminescence efficiencies of covalent organic frameworks (COFs) are significantly restricted by electron delocalization and charge transfer among the conjugated skeletons. Two nanofilms using tetraphenylethylene and benzo[c][1,2,5]thiadiazole as the building blocks were facilely prepared via an interfacially confined condensation strategy. The distinct dipole moment orientations of imine linkages are involved in the π-delocalization of conjugated donor-acceptor systems diversely. They also played critical roles in affecting the fluorescence turn-on sensing of the obtained nanofilms for gaseous trifluoroacetic acid (TFA). The joint donor-C═N-acceptor sequence in nanofilm #2 resulted in relatively stronger fluorescence originally than that of nanofilm #1, featuring the disturbed donor-N═C-acceptor sequence. While after blowing trace TFA, the latter nanofilm #1 possessed prominent fluorescence enhancement and obvious color visualization. Comparative transient absorption observations and theoretical calculations elucidated the effective manipulation of the intramolecular charge transfer (ICT) efficiencies among the imine-linked functional skeletons. With the help of a laminated fluorescent sensor, a compact sensing platform was further integrated using optimized nanofilm #1. It exhibited good selectivity, excellent reversibility (≥50 recycles), an extraordinary detection limit (∼0.1 ppt), and a rapid recovery process to gaseous TFA. Our findings provide valuable optimizations of π-linkages in COFs and reliable fluorescent film sensors for monitoring toxic and hazardous gases.
Collapse
Affiliation(s)
- Jiang Feng
- Institute of New Concept Sensors and Molecular Materials, Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, P. R. China
| | - Haixia Chang
- Institute of New Concept Sensors and Molecular Materials, Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, P. R. China
| | - Xingtong Zhou
- Institute of New Concept Sensors and Molecular Materials, Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, P. R. China
| | - Shouxin Zhang
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, P. R. China
| | - Liping Ding
- Institute of New Concept Sensors and Molecular Materials, Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, P. R. China
| | - Taihong Liu
- Institute of New Concept Sensors and Molecular Materials, Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, P. R. China
| | - Yu Fang
- Institute of New Concept Sensors and Molecular Materials, Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, P. R. China
| |
Collapse
|
5
|
Xu W, Zhen K, Bao W, Shi Z, Jiang X, Qi K, Xu W, Shen Z, Li C, Zhu Z, Liu H, Wang B, He Q, Li H, Cheng J, Ma X, Fu Y. A-D-A Molecular Design Strategy Enabling Ultrasensitive NIR Vapor Sensing. Anal Chem 2025; 97:818-827. [PMID: 39700418 DOI: 10.1021/acs.analchem.4c05394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2024]
Abstract
Thin-film fluorescent chemosensors, characterized by their tunable design, high selectivity, and exceptional sensitivity, hold significant promise for gas detection applications. However, the simultaneous realization of the 3S attributes (sensitivity, selectivity, and stability) remains a formidable challenge, particularly in the underexplored field of near-infrared (NIR) gas detection. In this work, we employ an acceptor-donor-acceptor (A-D-A) molecular design strategy to drive the development of an organic semiconductor fluorescent material with a progressive red shift in the emission wavelength. As a result, we synthesized C8-IDTT-IC, a NIR fluorescent thin film with a peak emission at 790 nm. In contrast to conventional visible fluorescent materials, this NIR material demonstrates excellent resistance to background light interference and optical damage, particularly in the detection of biogenic amines. Systematic evaluations reveal that the material achieves remarkable selectivity, with a detection limit as low as 116 ppb, a rapid response time of less than 30 s, and an optical damage rate of only 3% over 1800 s. The practical utility of this material is further exemplified by its integration into a hand-held detector, enabling real-time monitoring of spoilage in beef and fish samples, showcasing its potential for real-world applications.
Collapse
Affiliation(s)
- Wenxing Xu
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China
- College of Chemistry and Materials Science, Shanghai Normal University, Shanghai 200030, China
| | - Kangbo Zhen
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China
- College of Chemistry and Materials Science, Shanghai Normal University, Shanghai 200030, China
| | - Wancheng Bao
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
- 2020 X-Lab Chinese Academy of Sciences, Shanghai Institute of Microsystem and Information Technology, Shanghai 200050, China
| | - Zezong Shi
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiuyun Jiang
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
- 2020 X-Lab Chinese Academy of Sciences, Shanghai Institute of Microsystem and Information Technology, Shanghai 200050, China
| | - Kai Qi
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
- 2020 X-Lab Chinese Academy of Sciences, Shanghai Institute of Microsystem and Information Technology, Shanghai 200050, China
| | - Wei Xu
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhengqi Shen
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chunhui Li
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhaohui Zhu
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
- 2020 X-Lab Chinese Academy of Sciences, Shanghai Institute of Microsystem and Information Technology, Shanghai 200050, China
| | - Huan Liu
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bo Wang
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qingguo He
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Huizi Li
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiangong Cheng
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiang Ma
- College of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Yanyan Fu
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
6
|
Miao X, Wu C, Xia Y, Yu S, Li F, Zhang M. Ratiometric fluorescence probes for visible detection and accurate identification of MPEA vapor. Nat Commun 2024; 15:10641. [PMID: 39643618 PMCID: PMC11624257 DOI: 10.1038/s41467-024-55011-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 11/25/2024] [Indexed: 12/09/2024] Open
Abstract
Methamphetamine (MA), as one kind of overflowed synthetic illicit drugs, has posed severe threats to health and social security. However, the on-site and visible fluorescence detection to MA remains limited. Herein, through covalently coupling diphenylacridine (DPA) and dimethylacridine (DMA) with pyridine, two ratiometric fluorescence probes (PyDPA and PyDMA) are constructed, which present rapid response, bathochromic-shifts over 100 nm and visible fluorescence color changes from blue to cyan upon the exposure to methylphenethylamine (MPEA, a simulant of MA). And the similar responses are observed for MA in confiscated samples. Further, a smartphone-based quantitative detected system is established to provide the on-site trace detection of MPEA as ppb level. Specially, PyDPA or PyDMA can identify MPEA from its interferences according to the unique ratiometric response based on their dual-emission-enhancement. Here, we show two ratiometric fluorescence probes to MA and MPEA with high potential for on-site application.
Collapse
Affiliation(s)
- Xin Miao
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Chunxiao Wu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Yuanxing Xia
- Department of Fundamental Study of Public Security, Criminal Investigation Police University of China, Shenyang, 110854, P. R. China
| | - Shilong Yu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Feng Li
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Ming Zhang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China.
| |
Collapse
|
7
|
Zhao T, Yan Z, Liu T, Ding L, Fang Y. Tetraphenylethene-Containing Nanofilm via Interfacial Confinement Self-Assembly for Fluorescent Monitoring of SOCl 2 Leakage in a Li-SOCl 2 Battery Electrolyte. ACS APPLIED MATERIALS & INTERFACES 2024; 16:62944-62951. [PMID: 39496140 DOI: 10.1021/acsami.4c12888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2024]
Abstract
Lithium thionyl chloride (Li-SOCl2) batteries are widely used due to their high energy density and long shelf life. However, the corrosive nature of SOCl2 poses a safety hazard, necessitating effective leak detection methods. We report an approach for real-time fluorescent detection of SOCl2 leakage in Li-SOCl2 batteries using a tetraphenylethene-based nanofilm. The nanofilms were prepared through the interfacial confined self-assembly method and exhibit excellent flexibility, homogeneity, tunable size and thickness, and adaptability to various substrates, enabling easy integration into sensor devices. They possess high photochemical stability and a photoluminescence quantum yield exceeding 25%, demonstrating their potential as high-performance fluorescent sensing material. The nanofilms also exhibit high sensitivity, good reproducibility, and selectivity toward SOCl2 detection. Upon exposure to SOCl2 vapor, the nanofilm shows a red-shifted and fluorescence quenching response, attributed to the protonation of the acylhydrazone bond in the nanofilm by the hydrolysis product of SOCl2, which disrupts the electronic structure of the nanofilm and leads to a decrease in the fluorescence intensity and a shift in the emission wavelength. A detection limit of ∼1.31 ppt and excellent repeatability over 300 cycles are demonstrated, highlighting their high sensitivity and reliability. This work paves the way for a highly sensitive and reliable leak detection system for Li-SOCl2 batteries, enhancing their safety and reliability in various applications.
Collapse
Affiliation(s)
- Tianyu Zhao
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Institute of New Concept Sensors and Molecular Materials, Shaanxi Normal University, Xi'an, Shaanxi 710119, People's Republic of China
| | - Zhen Yan
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Institute of New Concept Sensors and Molecular Materials, Shaanxi Normal University, Xi'an, Shaanxi 710119, People's Republic of China
| | - Taihong Liu
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Institute of New Concept Sensors and Molecular Materials, Shaanxi Normal University, Xi'an, Shaanxi 710119, People's Republic of China
| | - Liping Ding
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Institute of New Concept Sensors and Molecular Materials, Shaanxi Normal University, Xi'an, Shaanxi 710119, People's Republic of China
| | - Yu Fang
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Institute of New Concept Sensors and Molecular Materials, Shaanxi Normal University, Xi'an, Shaanxi 710119, People's Republic of China
| |
Collapse
|
8
|
Rodriguez-Madrid R, Sinha S, Parejo L, Hernando J, Núñez R. Fluorescent molecular systems based on carborane-perylenediimide conjugates. Dalton Trans 2024; 53:17841-17851. [PMID: 39420813 DOI: 10.1039/d4dt02477j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
This study presents the successful synthesis of two perylenediimide (PDI)-based ortho-carborane (o-carborane) derivatives, PDI-CB1 and PDI-CB2, through the insertion of decaborane into alkyne-terminated PDIs (PDI1 and PDI2). The introduction of o-carborane groups did not alter the optical properties of the PDI units in solution compared to their carborane-free counterparts, maintaining excellent fluorescence quantum yields of around 100% in various solvents. This was achieved by using a methylene linker to minimize electronic interaction between PDI and o-carborane, and by incorporating bulky o-carborane groups at imide- position to enhance solubility and prevent π-π stacking-induced aggregation. Aggregation studies demonstrated that PDI-CB1 and PDI-CB2 have greater solubility than PDI1 and PDI2 in both nonpolar and aqueous solvents. Despite the steric hindrance imparted by the o-carborane units, the solid state emission of PDI-CB1 and PDI-CB2 was affected by aggregation-caused fluorescence quenching. However, solid PDI-CB1 preserved bright red excimer-type emission, which persisted in water-dispersible nanoparticles, indicating potential for application as a theranostic agent combining fluorescence bioimaging with anticancer boron neutron capture therapy (BNCT) due to its high boron content.
Collapse
Affiliation(s)
- Ruben Rodriguez-Madrid
- Institut de Ciència de Materials de Barcelona (ICMAB-CSIC), Campus UAB, 08193, Bellaterra, Barcelona, Spain.
- Departament de Química. Universitat Autònoma de Barcelona, E-08193 Bellaterra, Barcelona, Spain.
| | - Sohini Sinha
- Institut de Ciència de Materials de Barcelona (ICMAB-CSIC), Campus UAB, 08193, Bellaterra, Barcelona, Spain.
| | - Laura Parejo
- Departament de Química. Universitat Autònoma de Barcelona, E-08193 Bellaterra, Barcelona, Spain.
| | - Jordi Hernando
- Departament de Química. Universitat Autònoma de Barcelona, E-08193 Bellaterra, Barcelona, Spain.
| | - Rosario Núñez
- Institut de Ciència de Materials de Barcelona (ICMAB-CSIC), Campus UAB, 08193, Bellaterra, Barcelona, Spain.
| |
Collapse
|
9
|
Yao J, Yang C, Wen R, Liu T, Ding L, Yao Z, Fang Y. Integrated Sensing Platform Validated for the Efficient and On-Site Screening of Amine-Containing Illicit Drugs. ACS Sens 2024; 9:4608-4616. [PMID: 39116022 DOI: 10.1021/acssensors.4c00787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2024]
Abstract
Efficient and reliable technologies for the on-site detection of illicit drugs are important in drug-facilitated crime investigations. However, the development of such technologies is challenging. Based on the synthetic optimization, introducing a boron ester functional group to the two furanic indicators endows the stimulus-responsive properties synergistically. The ring-opening reaction of the indicators in the presence of amine-containing illicit drugs generated well-known donor-acceptor Stenhouse adducts, accompanied by strong color changes. A small-size and lightweight laminated sensor was integrated based on the outstanding ratiometric variations of the two active furanic indicators. A prototype platform was fabricated equipped with a circuit control, a mini pump, and a signal processing system. A user-friendly detection and efficient screening of amine-containing illicit drugs, including phenethylamines, amphetamines, cathinones, and tryptamines in the liquid states were conducted. The ratiometric response of the sensor was linear in the concentration range of 2.1-10.6 μg·mL-1 for methamphetamine·HCl and methcathinone ·HCl. The detection limits for the two illicit drugs at the sublevel (ng·mL-1) were found to be 8.4 and 9.0 ng·mL-1, respectively. Double-blind field tests and different illicit drugs were evaluated with good screening capability. Successful trials showed the potential applications of the developed prototype platform for efficient and on-site analytical determination.
Collapse
Affiliation(s)
- Jiashuang Yao
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, P. R. China
| | - Chun Yang
- National Anti-Drug Laboratory Shaanxi Regional Center (Anti-Drug Technology Center of Shaanxi Provincial Public Security Department), Xi'an 710115, P. R. China
| | - Ruijuan Wen
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, P. R. China
| | - Taihong Liu
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, P. R. China
| | - Liping Ding
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, P. R. China
| | - Zhen Yao
- National Anti-Drug Laboratory Shaanxi Regional Center (Anti-Drug Technology Center of Shaanxi Provincial Public Security Department), Xi'an 710115, P. R. China
| | - Yu Fang
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, P. R. China
| |
Collapse
|
10
|
Zhang G, Fan S, Hutchinson KL, Chu R, Burn PL, Gentle IR, Shaw PE. Interplay between the Glass Transition Temperature, Analyte Diffusion, and Fluorescence Quenching for Detection of Nitro-Group Containing Explosives Using Organic Semiconducting Films. J Am Chem Soc 2024; 146:22787-22796. [PMID: 39093837 DOI: 10.1021/jacs.4c08002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
Efficient detection of chemical analytes using fluorescence-based sensors necessitates an in-depth understanding of the physical interaction between the analyte molecules and the sensor films. This study explores the interplay between the thermal properties of a series of triphenylamine-centered fluorescent dendrimers with different glass transition temperatures (Tg) for detecting nitroaromatic explosives. When exposed to 4-nitrotoluene (pNT) vapors, biphasic diffusion kinetics were observed for all the dendrimers, corresponding to Super Case II kinetics, suggesting rapid film swelling during initial analyte uptake. The diffusion kinetics were further analyzed using a diffusion-relaxation model, where a strong Tg dependence was observed for both the initial concentration-driven diffusion phase and the slower film relaxation phase. Additionally, a difference in kinetics between analyte uptake and release was observed. The photoluminescence (PL) kinetics also showed a Tg dependence, with more efficient PL recovery observed for films composed of dendrimers that had a lower Tg. Rapid quenching of over 40% with little PL recovery was seen in the dendrimer with the highest Tg (107 °C), while a smaller quench with efficient PL recovery was observed in the dendrimer that had a Tg close to room temperature. The results highlight the critical role of the thermal properties of sensor films in achieving rapid and sensitive detection.
Collapse
Affiliation(s)
- Guanran Zhang
- Centre for Organic Photonics & Electronics, The School of Chemistry and Molecular Biosciences, The University of Queensland, Saint Lucia, Queensland 4072, Australia
| | - Shengqiang Fan
- Centre for Organic Photonics & Electronics, The School of Chemistry and Molecular Biosciences, The University of Queensland, Saint Lucia, Queensland 4072, Australia
| | - Kinitra L Hutchinson
- Centre for Organic Photonics & Electronics, The School of Chemistry and Molecular Biosciences, The University of Queensland, Saint Lucia, Queensland 4072, Australia
| | - Ronan Chu
- Centre for Organic Photonics & Electronics, The School of Chemistry and Molecular Biosciences, The University of Queensland, Saint Lucia, Queensland 4072, Australia
| | - Paul L Burn
- Centre for Organic Photonics & Electronics, The School of Chemistry and Molecular Biosciences, The University of Queensland, Saint Lucia, Queensland 4072, Australia
| | - Ian R Gentle
- Centre for Organic Photonics & Electronics, The School of Chemistry and Molecular Biosciences, The University of Queensland, Saint Lucia, Queensland 4072, Australia
| | - Paul E Shaw
- Centre for Organic Photonics & Electronics, The School of Chemistry and Molecular Biosciences, The University of Queensland, Saint Lucia, Queensland 4072, Australia
| |
Collapse
|
11
|
Pelixo R, Barroso M, Gallardo E, Rosado T. Determination of Arylcyclohexylamines in Biological Specimens: Sensors and Sample Pre-Treatment Approaches. MICROMACHINES 2024; 15:984. [PMID: 39203635 PMCID: PMC11356074 DOI: 10.3390/mi15080984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 07/24/2024] [Accepted: 07/29/2024] [Indexed: 09/03/2024]
Abstract
Arylcyclohexylamine (ACH) compounds represent a predominant faction within new psychoactive substances. Due to their powerful dissociative effects, they are used in recreational contexts but also in situations of drug-facilitated sexual assault, and therefore, they are a constant target of analysis by forensic experts. In recent years, their consumption has been notably high, especially the use of ketamine, presenting daily challenges for laboratories in the determination of this and other ACH analogues. This review comprises the recent strategies that forensic specialists use to identify and quantify ACH compounds in the laboratory with more traditional analytical techniques and technology, and on the point-of-care testing via sensor technology. The study focuses on analogues of phencyclidine (PCP), ketamine, and eticyclidine, highlighting the consistent need for higher sensitivity in the analysis of various samples collected from real cases and simulations of possible matrices. The review also emphasises the ongoing research to develop more sensitive, quicker, and more capable sensors.
Collapse
Affiliation(s)
- Rodrigo Pelixo
- Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior (CICS-UBI), 6200-506 Covilhã, Portugal;
- Laboratório de Fármaco-Toxicologia, UBIMedical, Universidade da Beira Interior, EM506, 6200-000 Covilhã, Portugal
| | - Mário Barroso
- AlphaBiolabs, 14 Webster Court, Carina Park, Warrington WA5 8WD, UK;
- Serviço de Química e Toxicologia Forenses, Instituto Nacional de Medicina Legal e Ciências Forenses-Delegação do Sul, 1169-201 Lisboa, Portugal
| | - Eugenia Gallardo
- Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior (CICS-UBI), 6200-506 Covilhã, Portugal;
- Laboratório de Fármaco-Toxicologia, UBIMedical, Universidade da Beira Interior, EM506, 6200-000 Covilhã, Portugal
- Centro Académico Clínico das Beiras (CACB)-Grupo de Problemas Relacionados com Toxicofilias, 6200-000 Covilhã, Portugal
| | - Tiago Rosado
- Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior (CICS-UBI), 6200-506 Covilhã, Portugal;
- Laboratório de Fármaco-Toxicologia, UBIMedical, Universidade da Beira Interior, EM506, 6200-000 Covilhã, Portugal
- Centro Académico Clínico das Beiras (CACB)-Grupo de Problemas Relacionados com Toxicofilias, 6200-000 Covilhã, Portugal
| |
Collapse
|
12
|
Huang R, Liu T, Peng H, Liu J, Liu X, Ding L, Fang Y. Molecular design and architectonics towards film-based fluorescent sensing. Chem Soc Rev 2024; 53:6960-6991. [PMID: 38836431 DOI: 10.1039/d4cs00347k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2024]
Abstract
The past few decades have witnessed encouraging progress in the development of high-performance film-based fluorescent sensors (FFSs) for detecting explosives, illicit drugs, chemical warfare agents (CWAs), and hazardous volatile organic chemicals (VOCs), among others. Several FFSs have transitioned from laboratory research to real-world applications, demonstrating their practical relevance. At the heart of FFS technology lies the sensing films, which play a crucial role in determining the analytes and the resulting signals. The selection of sensing fluorophores and the fabrication strategies employed in film construction are key factors that influence the fluorescence properties, active-layer structures, and overall sensing behaviors of these films. This review examines the progress and innovations in the research field of FFSs over the past two decades, focusing on advancements in fluorophore design and active-layer structural engineering. It underscores popular sensing fluorophore scaffolds and the dynamics of excited state processes. Additionally, it delves into six distinct categories of film fabrication technologies and strategies, providing insights into their advantages and limitations. This review further addresses important considerations such as photostability and substrate effects. Concluding with an overview of the field's challenges and prospects, it sheds light on the potential for further development in this burgeoning area.
Collapse
Affiliation(s)
- Rongrong Huang
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, West Chang'an Street, Xi'an, Shaanxi 710062, P. R. China.
- Fluorescence Research Group, Singapore University of Technology and Design, 8 Somapah Road, Singapore 487372, Singapore.
| | - Taihong Liu
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, West Chang'an Street, Xi'an, Shaanxi 710062, P. R. China.
| | - Haonan Peng
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, West Chang'an Street, Xi'an, Shaanxi 710062, P. R. China.
| | - Jing Liu
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, West Chang'an Street, Xi'an, Shaanxi 710062, P. R. China.
| | - Xiaogang Liu
- Fluorescence Research Group, Singapore University of Technology and Design, 8 Somapah Road, Singapore 487372, Singapore.
| | - Liping Ding
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, West Chang'an Street, Xi'an, Shaanxi 710062, P. R. China.
| | - Yu Fang
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, West Chang'an Street, Xi'an, Shaanxi 710062, P. R. China.
| |
Collapse
|
13
|
Gao L, Kou D, Lin R, Ma W, Zhang S. Visual Recognition of Volatile Organic Compounds by Photonic Nose Integrated with Multiple Metal-Organic Frameworks. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2308641. [PMID: 38282134 DOI: 10.1002/smll.202308641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 01/10/2024] [Indexed: 01/30/2024]
Abstract
The photonic nose inspired by the olfactory system is an integrated detection platform constructed by multiple sensing units as channels. However, in the detection of volatile organic compounds (VOCs), the sensing results that cannot be directly readable and the poor ability to distinguish analytes with similar chemical properties are the main challenges faced by this sensor. Here, 8 metal-organic frameworks (MOF)-based photonic crystals are used as the basic sensing units to construct a photonic nose detection platform. The microscopic adsorption of VOCs by MOFs enables the photonic crystals (PCs) to produce macroscopic structural color output, and further makes the photonic nose have specific color fingerprints for different VOCs, the response time of all PCs to VOCs can be within 1 s. Through the color fingerprint, the visual identification of VOCs produced by 5 common solvent vapors is realized, and 9 VOCs with similar chemical properties are further distinguished. In addition, the application potential of the photonic nose in the actual environment is verified by identifying different contents of benzene in the paint. It is envisaged that the MOF-based photonic nose has great reference value for the development of intelligent and multi-component synergistic functional gas sensors.
Collapse
Affiliation(s)
- Lei Gao
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, Dalian University of Technology, 2# Linggong Rd, Dalian, 116024, China
| | - Donghui Kou
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, Dalian University of Technology, 2# Linggong Rd, Dalian, 116024, China
| | - Ruicheng Lin
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, Dalian University of Technology, 2# Linggong Rd, Dalian, 116024, China
| | - Wei Ma
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, Dalian University of Technology, 2# Linggong Rd, Dalian, 116024, China
| | - Shufen Zhang
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, Dalian University of Technology, 2# Linggong Rd, Dalian, 116024, China
| |
Collapse
|
14
|
Ren W, Li J, Zu B, Lei D, Dou X. Design of Highly Efficient Electronic Energy Transfer in Functionalized Quantum Dots Driven Specifically by Ethylenediamine. JACS AU 2024; 4:545-556. [PMID: 38425925 PMCID: PMC10900220 DOI: 10.1021/jacsau.3c00667] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 12/20/2023] [Accepted: 12/26/2023] [Indexed: 03/02/2024]
Abstract
The exploration of emerging functionalized quantum dots (QDs) through modulating the effective interaction between the sensing element and target analyte is of great significance for high-performance trace sensing. Here, the chromone-based ligand grafted QDs (QDs-Chromone) were initiated to realize the electronic energy transfer (EET) driven specifically by ethylenediamine (EDA) in the absence of spectral overlap. The fluorescent and colorimetric dual-mode responses (from red to blue and from colorless to yellow, respectively) resulting from the expanded conjugated ligands reinforced the analytical selectivity, endowing an ultrasensitive and specific response to submicromolar-liquid of EDA. In addition, a QDs-Chromone-based sensing chip was constructed to achieve the ultrasensitive recognition of EDA vapor with a naked-eye observed response at a concentration as low as 10 ppm, as well as a robust anti-interfering ability in complicated scenarios monitoring. We expect the proposed EET strategy in shaping functionalized QDs for high-performance sensing will shine light on both rational probe design methodology and deep sensing mechanism exploration.
Collapse
Affiliation(s)
- Wenfei Ren
- Xinjiang
Key Laboratory of Trace Chemicals Sensing, Xinjiang Technical Institute
of Physics & Chemistry, Chinese Academy
of Sciences, Urumqi 830011, China
- Center
of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiguang Li
- Xinjiang
Key Laboratory of Trace Chemicals Sensing, Xinjiang Technical Institute
of Physics & Chemistry, Chinese Academy
of Sciences, Urumqi 830011, China
| | - Baiyi Zu
- Xinjiang
Key Laboratory of Trace Chemicals Sensing, Xinjiang Technical Institute
of Physics & Chemistry, Chinese Academy
of Sciences, Urumqi 830011, China
- Key
Laboratory of Improvised Explosive Chemicals for State Market Regulation, Urumqi 830011, China
| | - Da Lei
- Xinjiang
Key Laboratory of Trace Chemicals Sensing, Xinjiang Technical Institute
of Physics & Chemistry, Chinese Academy
of Sciences, Urumqi 830011, China
- Key
Laboratory of Improvised Explosive Chemicals for State Market Regulation, Urumqi 830011, China
| | - Xincun Dou
- Xinjiang
Key Laboratory of Trace Chemicals Sensing, Xinjiang Technical Institute
of Physics & Chemistry, Chinese Academy
of Sciences, Urumqi 830011, China
- Center
of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
- Key
Laboratory of Improvised Explosive Chemicals for State Market Regulation, Urumqi 830011, China
| |
Collapse
|
15
|
Zhao Y, Gan Y, Chen J, Zheng H, Chang Y, Lin C. Recent reports on the sensing strategy and the On-site detection of illegal drugs. RSC Adv 2024; 14:6917-6929. [PMID: 38410368 PMCID: PMC10895702 DOI: 10.1039/d3ra06931a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 12/13/2023] [Indexed: 02/28/2024] Open
Abstract
In this review, works on the on-site detection of illegal drugs in recent years are summarised and discussed, most of which were published within the past five years. The detection methods are categorised as colourimetric, fluorescence, Raman spectrometry, ion mobility spectrometry, electrochemistry, and mass spectrometry. Also, strategies that are possibly suitable for on-site detection and the actual instrumentation to be used in the field are listed.
Collapse
Affiliation(s)
- Yang Zhao
- Key Laboratory of Drug Monitoring and Control, Drug Intelligence and Forensic Center, Ministry of Public Security P.R.C. No. 18 Dongbeiwang West Road, Haidian District 100193 Beijing China
- Institute of Forensic Science of the Ministry of Public Security No. 17 Muxidi Nanli, West City District 100038 Beijing China
| | - Yumeng Gan
- Institute for Biomimetics and Soft Matter, Fujian Provincial Key Laboratory for Soft Functional Materials Research, College of Physical Science and Technology, Xiamen University 9 Zengcuoan West Road 361005 Xiamen China
- State Key Laboratory of Physical Chemistry of Solid Surface Xiamen China
| | - Jun Chen
- Key Laboratory of Drug Monitoring and Control, Drug Intelligence and Forensic Center, Ministry of Public Security P.R.C. No. 18 Dongbeiwang West Road, Haidian District 100193 Beijing China
| | - Hui Zheng
- Key Laboratory of Drug Monitoring and Control, Drug Intelligence and Forensic Center, Ministry of Public Security P.R.C. No. 18 Dongbeiwang West Road, Haidian District 100193 Beijing China
| | - Ying Chang
- Institute of Forensic Science of the Ministry of Public Security No. 17 Muxidi Nanli, West City District 100038 Beijing China
| | - Changxu Lin
- Institute for Biomimetics and Soft Matter, Fujian Provincial Key Laboratory for Soft Functional Materials Research, College of Physical Science and Technology, Xiamen University 9 Zengcuoan West Road 361005 Xiamen China
- State Key Laboratory of Physical Chemistry of Solid Surface Xiamen China
| |
Collapse
|
16
|
Liang J, Hu D, Xu W, Peng L, Liu K, Fang Y. Interfacially Confined Dynamic Reaction Resulted to Fluorescent Nanofilms Depicting High-Performance Ammonia Sensing. Anal Chem 2024; 96:2152-2157. [PMID: 38279912 DOI: 10.1021/acs.analchem.3c05032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2024]
Abstract
Sensing materials innovation plays a crucial role in the development of high-performance film-based fluorescent sensors (FFSs). In our current study, we present the innovative fabrication of four fluorescent nanofilms via interfacially confined dynamic reaction of a specially designed fluorescent building block, a new boron-coordinated compound (NI-CHO), with a chosen one, benzene-1,3,5-tricarbohydrazide (BTH). The nanofilms as prepared are robust, uniform, flexible, and thickness tunable, at least from 40 to 1500 nm. The fabricated FFSs based on Film 3, one of the four nanofilms, shows highly selective and fully reversible response to NH3 vapor with an experimental detection limit of <0.1 ppm and a response time of 0.2 s. The unprecedented high performance of the nanofilm is ascribed to the specific quenching of its fluorescence emission owing to formation of an excited-state complex between the sensing unit and the analyte molecule. Efficient mass transfer also contributes to the high performance owing to the porous adlayer structure of the nanofilm. This work provides an example to show how to develop a high-performance sensing film via controlling the film's structure, especially the thickness.
Collapse
Affiliation(s)
- Jingjing Liang
- Key Laboratory of Applied Surface and Colloid Chemistry (Ministry of Education), School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, Shaanxi 710119, P. R. China
| | - Dingfang Hu
- Key Laboratory of Applied Surface and Colloid Chemistry (Ministry of Education), School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, Shaanxi 710119, P. R. China
| | - Wenjun Xu
- Key Laboratory of Applied Surface and Colloid Chemistry (Ministry of Education), School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, Shaanxi 710119, P. R. China
| | - Lingya Peng
- Key Laboratory of Applied Surface and Colloid Chemistry (Ministry of Education), School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, Shaanxi 710119, P. R. China
| | - Ke Liu
- College of Chemistry and Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, P. R. China
| | - Yu Fang
- Key Laboratory of Applied Surface and Colloid Chemistry (Ministry of Education), School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, Shaanxi 710119, P. R. China
| |
Collapse
|
17
|
Peng H, Ding L, Fang Y. Recent Advances in Construction Strategies for Fluorescence Sensing Films. J Phys Chem Lett 2024; 15:849-862. [PMID: 38236759 DOI: 10.1021/acs.jpclett.3c03130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2024]
Abstract
A year ago, film-based fluorescent sensors (FFSs) were recognized in the "IUPAC Top Ten Emerging Technologies in Chemistry 2022" due to their extensive application in detecting hidden explosives, illicit drugs, and volatile organic compounds. These sensors offer high sensitivity, specificity, immunity to light scattering, and noninvasiveness. The core of FFSs is the construction of high-performance fluorescent sensing films, which are dependent on the processes of "energy transfer" and "mass transfer" in the active layer and involve complex interactions between sensing molecules and analytes. This Perspective focuses on the latest strategies in constructing these films, emphasizing the design of sensing molecules with various innovative features and structures that enhance the mass transfer efficiency. Additionally, it discusses the ongoing challenges and potential advancements in the field of FFSs.
Collapse
Affiliation(s)
- Haonan Peng
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, China
| | - Liping Ding
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, China
| | - Yu Fang
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, China
| |
Collapse
|
18
|
Liu Q, Huang R, Tang J, Zhang H, Liu M, Fang Y. A Nanofilm-Based Fluorescent Sensor toward Highly Efficient Detection of Ethephon. Anal Chem 2024. [PMID: 38302113 DOI: 10.1021/acs.analchem.3c04999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2024]
Abstract
Ethephon (ETH) is widely used to promote fruit ripening and improve fruit quality. However, improper use is harmful to human health and to the environmental safety. Therefore, development of the techniques for on-site and at real-time monitoring of ETH is of importance for its safe use. In this work, we developed a nanofilm-based fluorescence film sensor (FFS) and realized highly efficient detection of ETH in vapor phase, where the detection limit (DL) is <0.2 ppb, the response time is less than 10 s, and the interference is almost free. The unusual sensing performance of the sensor was ascribed to the specific binding of the nanofilm to ETH and to its great porosity, which enables efficient adlayer mass transfer, a requirement for high signal-to-noise ratio. Moreover, visualization-based qualitative sensing is also realized. The nanofilm, a key component of the sensor, was prepared at the humid air/DMSO interface. The building blocks used were a specially designed fluorescent o-carborane derivative (CB-2CHO) and a cross-linker BTN possessing three acylhydrazine groups. The nanofilm as prepared is flexible, uniform, thickness tunable, and photochemically super stable. We believe our effort not only addresses the challenging issue of on-site and at real-time detection of ETH but also provides another route for developing new FFSs via sensing film innovation.
Collapse
Affiliation(s)
- Qianqian Liu
- Key Laboratory of Applied Surface and Colloid Chemistry (Ministry of Education), School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi' an 710062, P. R. China
| | - Rongrong Huang
- Key Laboratory of Applied Surface and Colloid Chemistry (Ministry of Education), School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi' an 710062, P. R. China
| | - Jiaqi Tang
- Xi'An Rare Matel Materials Institute Co. Ltd., Xi' an 710016, P. R. China
| | - Helan Zhang
- Key Laboratory of Applied Surface and Colloid Chemistry (Ministry of Education), School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi' an 710062, P. R. China
| | - Mei Liu
- School of Food Science and Engineering, Shaanxi Normal University, Xi' an 710062, P. R. China
| | - Yu Fang
- Key Laboratory of Applied Surface and Colloid Chemistry (Ministry of Education), School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi' an 710062, P. R. China
| |
Collapse
|
19
|
Liu L, Li S, Luo W, Yao J, Liu T, Qin M, Huang Z, Ding L, Fang Y. Compact device prototype for turn-on fluorescence detection of sarin based on reactive 4,4-diaryloxy-BODIPY derivatives. SENSORS & DIAGNOSTICS 2024; 3:1651-1658. [DOI: 10.1039/d4sd00228h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Abstract
4,4-Diaryloxy-BODIPYs were presented for fluorescence turn-on detection of sarin in solution media. A compact tubular sensor and a sensing platform prototype were fabricated for in situ detection of real agents and simulants at the sub-mM level.
Collapse
Affiliation(s)
- Lu Liu
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, P. R. China
| | - Sheng Li
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, P. R. China
| | - Wendan Luo
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, P. R. China
| | - Jiashuang Yao
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, P. R. China
| | - Taihong Liu
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, P. R. China
| | - Molin Qin
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, P. R. China
| | - Zhiyan Huang
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, P. R. China
| | - Liping Ding
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, P. R. China
| | - Yu Fang
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, P. R. China
| |
Collapse
|
20
|
Chen M, Burn PL, Shaw PE. Utilizing Different Diffusion Mechanisms for Thin Film Fluorescence-Based Detection and Discrimination of Illicit Drug Vapors. ACS Sens 2023; 8:4607-4614. [PMID: 38051524 DOI: 10.1021/acssensors.3c01566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
Film-based fluorescence sensors have been demonstrated to be powerful tools for real-time detection of trace chemical vapors. While explosive vapor detection via fluorescence quenching has been widely explored, fluorescence-based real-time detection and identification of illicit drug vapors remains a challenge. Here, we report two perylene diimide-based sensing materials, P1 and P2, incorporating 2,2-dihexyloctanyl chains and 4-[tris(4-{tert-butyl}phenyl)methyl]phenyl moieties at the imide positions, respectively. Quartz crystal microbalance with in situ photoluminescence measurements showed that N-methylphenethylamine, a simulant of methamphetamine (MA), diffused into films of P1 and P2 via Fickian and case-II mechanisms, respectively. The difference in the analyte diffusion mechanism led to P2 showing significantly faster luminescence quenching but slower luminescence recovery compared to P1. Finally, the different diffusion mechanisms were used as the basis for developing a simple sensor array based on P1 and P2 that could selectively detect free-base illicit drugs (MA, cocaine, and tetrahydrocannabinol) from potential interferants (organic amines, alcohol, and cosmetics) within 40 s.
Collapse
Affiliation(s)
- Ming Chen
- Centre for Organic Photonics & Electronics, School of Chemistry and Molecular Biosciences, The University of Queensland, Queensland 4072, Australia
| | - Paul L Burn
- Centre for Organic Photonics & Electronics, School of Chemistry and Molecular Biosciences, The University of Queensland, Queensland 4072, Australia
| | - Paul E Shaw
- Centre for Organic Photonics & Electronics, School of Chemistry and Molecular Biosciences, The University of Queensland, Queensland 4072, Australia
| |
Collapse
|
21
|
Zhang J, Shi Z, Liu K, Shi Q, Yi L, Wang J, Peng L, Liu T, Ma M, Fang Y. Fast and Selective Luminescent Sensing by Langmuir-Schaeffer Films Based on Controlled Assembly of Perylene Bisimide Modified with A Cyclometalated Au III Complex. Angew Chem Int Ed Engl 2023; 62:e202314996. [PMID: 37965846 DOI: 10.1002/anie.202314996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 11/06/2023] [Accepted: 11/14/2023] [Indexed: 11/16/2023]
Abstract
Condensed films of functional luminophores dominated by the magnitude and dimensionality of the intermolecular interactions play important roles in sensing performance. However, controlling the molecular assembly and regulating photophysical properties remain challenging. In this study, a new luminophore, ortho-PBI-Au, was synthesized by anchoring a cyclometalated alkynyl-gold(III) unit at the ortho-position of perylene bisimide. An unprecedented T-type packing model driven by weak Au-π interaction and Au-H bonds was observed, laying foundation for striking properties of the luminophore. Controlled assembly of ortho-PBI-Au at the air-water interface, realized using the classical Langmuir-Schaeffer technique, afforded the obtained luminescent films with different packing structures. With an optimized film, sensitive, selective, and rapid detection of a hazardous new psychoactive substance, phenylethylamine (PEA), was achieved. The detection limit, response time, and recovery time were <4 ppb, <1 s, and <5 s, respectively, surpassing the performance of the PEA sensors known thus far. The relationship between the characters of films and the sensing performance was systematically examined by grey relational analysis (GRA). The present study suggests that designing novel molecular aggregation with definite adlayer structure is a crucial strategy to enhance the sensing performance, which could be favorable for the film-based fluorescent sensors.
Collapse
Affiliation(s)
- Jing Zhang
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, P. R. China
| | - Zhiwei Shi
- School of Computer Science, Shaanxi Normal University, Xi'an, 710019, P. R. China
| | - Ke Liu
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, P. R. China
| | - Qiyuan Shi
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, P. R. China
| | - Liang Yi
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, P. R. China
| | - Junjie Wang
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, P. R. China
| | - Lingya Peng
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, P. R. China
| | - Taihong Liu
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, P. R. China
| | - Miao Ma
- School of Computer Science, Shaanxi Normal University, Xi'an, 710019, P. R. China
| | - Yu Fang
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, P. R. China
| |
Collapse
|
22
|
Rosendo LM, Antunes M, Simão AY, Brinca AT, Catarro G, Pelixo R, Martinho J, Pires B, Soares S, Cascalheira JF, Passarinha L, Rosado T, Barroso M, Gallardo E. Sensors in the Detection of Abused Substances in Forensic Contexts: A Comprehensive Review. MICROMACHINES 2023; 14:2249. [PMID: 38138418 PMCID: PMC10745465 DOI: 10.3390/mi14122249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 12/10/2023] [Accepted: 12/13/2023] [Indexed: 12/24/2023]
Abstract
Forensic toxicology plays a pivotal role in elucidating the presence of drugs of abuse in both biological and solid samples, thereby aiding criminal investigations and public health initiatives. This review article explores the significance of sensor technologies in this field, focusing on diverse applications and their impact on the determination of drug abuse markers. This manuscript intends to review the transformative role of portable sensor technologies in detecting drugs of abuse in various samples. They offer precise, efficient, and real-time detection capabilities in both biological samples and solid substances. These sensors have become indispensable tools, with particular applications in various scenarios, including traffic stops, crime scenes, and workplace drug testing. The integration of portable sensor technologies in forensic toxicology is a remarkable advancement in the field. It has not only improved the speed and accuracy of drug abuse detection but has also extended the reach of forensic toxicology, making it more accessible and versatile. These advancements continue to shape forensic toxicology, ensuring swift, precise, and reliable results in criminal investigations and public health endeavours.
Collapse
Affiliation(s)
- Luana M. Rosendo
- Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior (CICS-UBI), 6200-506 Covilhã, Portugal; (L.M.R.); (M.A.); (A.Y.S.); (A.T.B.); (G.C.); (R.P.); (J.M.); (B.P.); (S.S.); (J.F.C.); (L.P.); (T.R.)
- Laboratório de Fármaco-Toxicologia, UBIMedical, Universidade da Beira Interior, EM506, 6200-000 Covilhã, Portugal
| | - Mónica Antunes
- Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior (CICS-UBI), 6200-506 Covilhã, Portugal; (L.M.R.); (M.A.); (A.Y.S.); (A.T.B.); (G.C.); (R.P.); (J.M.); (B.P.); (S.S.); (J.F.C.); (L.P.); (T.R.)
- Laboratório de Fármaco-Toxicologia, UBIMedical, Universidade da Beira Interior, EM506, 6200-000 Covilhã, Portugal
| | - Ana Y. Simão
- Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior (CICS-UBI), 6200-506 Covilhã, Portugal; (L.M.R.); (M.A.); (A.Y.S.); (A.T.B.); (G.C.); (R.P.); (J.M.); (B.P.); (S.S.); (J.F.C.); (L.P.); (T.R.)
- Laboratório de Fármaco-Toxicologia, UBIMedical, Universidade da Beira Interior, EM506, 6200-000 Covilhã, Portugal
| | - Ana Teresa Brinca
- Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior (CICS-UBI), 6200-506 Covilhã, Portugal; (L.M.R.); (M.A.); (A.Y.S.); (A.T.B.); (G.C.); (R.P.); (J.M.); (B.P.); (S.S.); (J.F.C.); (L.P.); (T.R.)
- Laboratório de Fármaco-Toxicologia, UBIMedical, Universidade da Beira Interior, EM506, 6200-000 Covilhã, Portugal
| | - Gonçalo Catarro
- Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior (CICS-UBI), 6200-506 Covilhã, Portugal; (L.M.R.); (M.A.); (A.Y.S.); (A.T.B.); (G.C.); (R.P.); (J.M.); (B.P.); (S.S.); (J.F.C.); (L.P.); (T.R.)
- Laboratório de Fármaco-Toxicologia, UBIMedical, Universidade da Beira Interior, EM506, 6200-000 Covilhã, Portugal
| | - Rodrigo Pelixo
- Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior (CICS-UBI), 6200-506 Covilhã, Portugal; (L.M.R.); (M.A.); (A.Y.S.); (A.T.B.); (G.C.); (R.P.); (J.M.); (B.P.); (S.S.); (J.F.C.); (L.P.); (T.R.)
- Laboratório de Fármaco-Toxicologia, UBIMedical, Universidade da Beira Interior, EM506, 6200-000 Covilhã, Portugal
| | - João Martinho
- Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior (CICS-UBI), 6200-506 Covilhã, Portugal; (L.M.R.); (M.A.); (A.Y.S.); (A.T.B.); (G.C.); (R.P.); (J.M.); (B.P.); (S.S.); (J.F.C.); (L.P.); (T.R.)
- Laboratório de Fármaco-Toxicologia, UBIMedical, Universidade da Beira Interior, EM506, 6200-000 Covilhã, Portugal
| | - Bruno Pires
- Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior (CICS-UBI), 6200-506 Covilhã, Portugal; (L.M.R.); (M.A.); (A.Y.S.); (A.T.B.); (G.C.); (R.P.); (J.M.); (B.P.); (S.S.); (J.F.C.); (L.P.); (T.R.)
- Laboratório de Fármaco-Toxicologia, UBIMedical, Universidade da Beira Interior, EM506, 6200-000 Covilhã, Portugal
| | - Sofia Soares
- Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior (CICS-UBI), 6200-506 Covilhã, Portugal; (L.M.R.); (M.A.); (A.Y.S.); (A.T.B.); (G.C.); (R.P.); (J.M.); (B.P.); (S.S.); (J.F.C.); (L.P.); (T.R.)
- Laboratório de Fármaco-Toxicologia, UBIMedical, Universidade da Beira Interior, EM506, 6200-000 Covilhã, Portugal
| | - José Francisco Cascalheira
- Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior (CICS-UBI), 6200-506 Covilhã, Portugal; (L.M.R.); (M.A.); (A.Y.S.); (A.T.B.); (G.C.); (R.P.); (J.M.); (B.P.); (S.S.); (J.F.C.); (L.P.); (T.R.)
- Departamento de Química, Universidade da Beira Interior, 6200-001 Covilhã, Portugal
| | - Luís Passarinha
- Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior (CICS-UBI), 6200-506 Covilhã, Portugal; (L.M.R.); (M.A.); (A.Y.S.); (A.T.B.); (G.C.); (R.P.); (J.M.); (B.P.); (S.S.); (J.F.C.); (L.P.); (T.R.)
- Laboratório de Fármaco-Toxicologia, UBIMedical, Universidade da Beira Interior, EM506, 6200-000 Covilhã, Portugal
- Associate Laboratory i4HB-Institute for Health and Bioeconomy, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2819-516 Caparica, Portugal
- UCIBIO-Applied Molecular Biosciences Unit, Chemistry Department, NOVA School of Science and Technology, 2829-516 Caparica, Portugal
| | - Tiago Rosado
- Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior (CICS-UBI), 6200-506 Covilhã, Portugal; (L.M.R.); (M.A.); (A.Y.S.); (A.T.B.); (G.C.); (R.P.); (J.M.); (B.P.); (S.S.); (J.F.C.); (L.P.); (T.R.)
- Laboratório de Fármaco-Toxicologia, UBIMedical, Universidade da Beira Interior, EM506, 6200-000 Covilhã, Portugal
- Centro Académico Clínico das Beiras (CACB)—Grupo de Problemas Relacionados com Toxicofilias, 6200-000 Covilhã, Portugal
| | - Mário Barroso
- Serviço de Química e Toxicologia Forenses, Instituto de Medicina Legal e Ciências Forenses—Delegação do Sul, 1169-201 Lisboa, Portugal
| | - Eugenia Gallardo
- Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior (CICS-UBI), 6200-506 Covilhã, Portugal; (L.M.R.); (M.A.); (A.Y.S.); (A.T.B.); (G.C.); (R.P.); (J.M.); (B.P.); (S.S.); (J.F.C.); (L.P.); (T.R.)
- Laboratório de Fármaco-Toxicologia, UBIMedical, Universidade da Beira Interior, EM506, 6200-000 Covilhã, Portugal
- Centro Académico Clínico das Beiras (CACB)—Grupo de Problemas Relacionados com Toxicofilias, 6200-000 Covilhã, Portugal
| |
Collapse
|
23
|
Chen M, Chu R, Kistemaker JCM, Burn PL, Gentle IR, Shaw PE. Perylene Diimide Based Fluorescent Sensors for Drug Simulant Detection: The Effect of Alkyl-Chain Branching on Film Morphology, Exciton Diffusion, Vapor Diffusion, and Sensing Response. ACS APPLIED MATERIALS & INTERFACES 2023; 15:56386-56396. [PMID: 37982219 DOI: 10.1021/acsami.3c10797] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2023]
Abstract
Luminescence-based sensing has been demonstrated to be a powerful method for rapid trace detection of chemical vapors (analytes). Analyte diffusion has been shown to be the critical factor for real-time luminescence-based detection of explosive analytes via photoinduced electron transfer in amorphous films of conjugated polymers and dendrimers. However, similar studies to determine the critical factors for sensing have not been performed on materials that employ photoinduced hole transfer (PHT) to detect low electron affinity analytes such as illicit drugs. Nor have such studies been performed on semicrystalline sensing films. We have developed a family of perylene diimide-based sensing materials capable of undergoing PHT with amine-group containing analytes. It was found that the choice of branched alkyl chain [1-hexylheptyl (PHH), 2-hexyloctyl (PHO), or 2,2-dihexyloctyl (PDHO)] attached to the nitrogen atoms of the imide moiety strongly affected the solution-processed film morphology. PHH and PHO were found to contain crystalline phases, whereas PDHO was essentially amorphous. The degree of crystallinity strongly influenced exciton diffusion, with PHH and PHO exhibiting exciton diffusion coefficients that were 20× and 10× greater than the value of the amorphous PDHO. The degree of film crystallinity was also found to be critical when the films were applied to detect N-methylphenethylamine (MPEA), a simulant of methamphetamine. While PHH had the largest exciton diffusion coefficient [(1.0 ± 0.2) × 10-2 cm2 s-1] and analyte uptake (12.3 ± 1.8 ng) it showed the smallest quenching efficiency (2.6% ng-1). In contrast, PHO, which sorbed the least analyte (6.1 ± 0.4 ng) of the three compounds, had the largest quenching efficiency (7.1% ng-1) due to its molecular packing and hence exciton diffusion coefficient [(4.5 ± 1.4) × 10-3 cm2 s-1] not being affected by sorption of the analyte. These results show that when applying fluorescent films in practical detection scenarios there is a potential trade-off between a high exciton diffusion constant and analyte diffusion for semicrystalline sensing materials and that a high exciton diffusion coefficient in an as-cast film does not necessarily translate into a more efficient fluorescent quenching. The results also show that sensing materials that form semicrystalline films, whose packing is not disrupted by analyte diffusion, provide a route for overcoming these effects and achieving high sensitivity.
Collapse
Affiliation(s)
- Ming Chen
- Centre for Organic Photonics & Electronics, School of Chemistry and Molecular Biosciences, The University of Queensland, Queensland 4072, Australia
| | - Ronan Chu
- Centre for Organic Photonics & Electronics, School of Chemistry and Molecular Biosciences, The University of Queensland, Queensland 4072, Australia
| | - Jos C M Kistemaker
- Centre for Organic Photonics & Electronics, School of Chemistry and Molecular Biosciences, The University of Queensland, Queensland 4072, Australia
| | - Paul L Burn
- Centre for Organic Photonics & Electronics, School of Chemistry and Molecular Biosciences, The University of Queensland, Queensland 4072, Australia
| | - Ian R Gentle
- Centre for Organic Photonics & Electronics, School of Chemistry and Molecular Biosciences, The University of Queensland, Queensland 4072, Australia
| | - Paul E Shaw
- Centre for Organic Photonics & Electronics, School of Chemistry and Molecular Biosciences, The University of Queensland, Queensland 4072, Australia
| |
Collapse
|
24
|
Shamsi E, Parvin P, Ahmadinouri F, Khazai S. Laser-induced fluorescence spectroscopy of plant-based drugs: Opium and hashish provoking at 405 nm. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 302:123055. [PMID: 37390713 DOI: 10.1016/j.saa.2023.123055] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 06/13/2023] [Accepted: 06/19/2023] [Indexed: 07/02/2023]
Abstract
Here, the fluorescence properties of some plant-based drug samples are characterized using a coherent excitation source at 405 nm. The laser-induced fluorescence (LIF) spectroscopy is examined to analyze opium and hashish. In order to improve traditional fluorescence methods for better analysis of optically dense materials, we have proposed five characteristic parameters based on solvent densitometry assay as the fingerprints of drugs of interest. The signal emissions are recorded in terms of various drug concentrations, such that the best fitting over experimental data determines the fluorescence extinction (α) and self-quenching (k) coefficients according to the modified Beer-Lambert formalism. The typical α value is determined to be 0.30 and 0.15 mL/(cm∙mg) for opium and hashish, respectively. Similarly, typical k is obtained 0.390 and 1.25 mL/(cm∙mg), respectively. Furthermore, the concentration at max fluorescence intensity (Cp) is determined for opium and hashish to be 1.8 and 1.3 mg/mL, respectively. Results reveal that opium and hashish benefit their own characteristic fluorescence parameters to discriminate those illicit substances promptly using the present method.
Collapse
Affiliation(s)
- Ehsan Shamsi
- Physics Department, Amirkabir University of Technology, P.O. Box 15875-4413, Tehran, Iran
| | - Parviz Parvin
- Physics Department, Amirkabir University of Technology, P.O. Box 15875-4413, Tehran, Iran.
| | - Fatemeh Ahmadinouri
- Physics Department, Amirkabir University of Technology, P.O. Box 15875-4413, Tehran, Iran
| | - Samaneh Khazai
- Physics Department, Amirkabir University of Technology, P.O. Box 15875-4413, Tehran, Iran
| |
Collapse
|
25
|
Chen M, Burn PL, Shaw PE. Luminescence-based detection and identification of illicit drugs. Phys Chem Chem Phys 2023; 25:13244-13259. [PMID: 37144605 DOI: 10.1039/d3cp00524k] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Luminescence-based sensing is capable of being used for the sensitive, rapid, and in some cases selective detection of chemicals. Furthermore, the method is amenable to incorporation into handheld low-power portable detectors that can be used in the field. Luminescence-based detectors are now commercially available for explosive detection with the technology built on a strong foundation of science. In contrast, there are fewer examples of luminescence-based detection of illicit drugs, despite the pervasive and global challenge of combating their manufacture, distribution and consumption and the need for handheld detection systems. This perspective describes the relatively nascent steps that have been reported in the use of luminescent materials for the detection of illicit drugs. Much of the published work has focused on detection of illicit drugs in solution with less work on vapour detection using thin luminescent sensing films. The latter are better suited for handheld sensing devices and detection in the field. Illicit drug detection has been achieved via different mechanisms, all of which change the luminescence of the sensing material. These include photoinduced hole transfer (PHT) leading to quenching of the luminescence, disruption of Förster energy transfer between different chromophores by a drug, and chemical reaction between the sensing material and a drug. The most promising of these is PHT, which can be used for rapid and reversible detection of illicit drugs in solution and film-based sensing of drugs in the vapour phase. However, there are still significant knowledge gaps, for example, how vapours of illicit drugs interact with the sensing films, and how to achieve selectivity for specific drugs.
Collapse
Affiliation(s)
- M Chen
- Centre for Organic Photonics & Electronics, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland 4072, Australia.
| | - P L Burn
- Centre for Organic Photonics & Electronics, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland 4072, Australia.
| | - P E Shaw
- Centre for Organic Photonics & Electronics, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland 4072, Australia.
| |
Collapse
|
26
|
Liu K, Zhang J, Shi Q, Ding L, Liu T, Fang Y. Precise Manipulation of Excited-State Intramolecular Proton Transfer via Incorporating Charge Transfer toward High-Performance Film-Based Fluorescence Sensing. J Am Chem Soc 2023; 145:7408-7415. [PMID: 36930832 DOI: 10.1021/jacs.2c13843] [Citation(s) in RCA: 49] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2023]
Abstract
Excited-state intramolecular proton transfer (ESIPT) has been widely employed for the design of a variety of functionality-led molecular systems. However, precise manipulation of the excited-state reaction is challenging. Herein, we report a new tactic for tuning ESIPT via incorporating an excited-state intramolecular charge transfer (ESICT) process. Specifically, three o-carborane derivatives, NaCBO, PaCBO, and PyCBO, were designed, where the 2-(2'-hydroxyphenyl)-benzothiazole is a typical ESIPT unit functioning as an electron acceptor, and the electron-donating units are naphthyl-(Na), phenanthrenyl-(Pa), and pyrenyl-(Py), respectively. The architectures of the molecules are featured with a face-to-face alignment of the two units. Spectroscopy and theoretical calculation studies revealed that the electron-donating capacity of the donors and solvent polarity continuously modulate the ESIPT/ESICT energetics and dynamics, resulting in distinct emissions. Moreover, the molecules depicted not only highly porous structures but also very different fluorescent colors in the solid state, enabling highly selective film-based fluorescence sensing of mustard gas simulant, 2-chloroethyl ethyl sulfide, with a detection limit of 50 ppb and a response time of 5 s. This work thus provides a reliable strategy for the creation of high-performance sensing fluorophores via ESIPT manipulation.
Collapse
Affiliation(s)
- Ke Liu
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Shaanxi, Xi'an 710062, China
| | - Jing Zhang
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Shaanxi, Xi'an 710062, China
| | - Qiyuan Shi
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Shaanxi, Xi'an 710062, China
| | - Liping Ding
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Shaanxi, Xi'an 710062, China
| | - Taihong Liu
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Shaanxi, Xi'an 710062, China
| | - Yu Fang
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Shaanxi, Xi'an 710062, China
| |
Collapse
|
27
|
Ding N, Liu T, Peng H, Liu J, Ding L, Fang Y. Film-based fluorescent sensors: from sensing materials to hardware structures. Sci Bull (Beijing) 2023; 68:546-548. [PMID: 36907673 DOI: 10.1016/j.scib.2023.03.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023]
Affiliation(s)
- Nannan Ding
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, China
| | - Taihong Liu
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, China
| | - Haonan Peng
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, China
| | - Jing Liu
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, China
| | - Liping Ding
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, China
| | - Yu Fang
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, China.
| |
Collapse
|
28
|
Sun F, Tan S, Cao HJ, Lu CS, Tu D, Poater J, Solà M, Yan H. Facile Construction of New Hybrid Conjugation via Boron Cage Extension. J Am Chem Soc 2023; 145:3577-3587. [PMID: 36744315 DOI: 10.1021/jacs.2c12526] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Aromatic polycyclic systems have been extensively utilized as structural subunits for the preparation of various functional molecules. Currently, aromatics-based polycyclic systems are predominantly generated from the extension of two-dimensional (2D) aromatic rings. In contrast, polycyclic compounds based on the extension of three-dimensional (3D) aromatics such as boron clusters are less studied. Here, we report three types of boron cluster-cored tricyclic molecular systems, which are constructed from a 2D aromatic ring, a 3D aromatic nido-carborane, and an alkyne. These new tricyclic compounds can be facilely accessed by Pd-catalyzed B-H activation and the subsequent cascade heteroannulation of carborane and pyridine with an alkyne in an isolated yield of up to 85% under mild conditions without any additives. Computational results indicate that the newly generated ring from the fusion of the 3D carborane, the 2D pyridyl ring, and an alkyne is non-aromatic. However, such fusion not only leads to a 1H chemical shift considerably downfield shifted owing to the strong diatropic ring current of the embedded carborane but also devotes to new/improved physicochemical properties including increased thermal stability, the emergence of a new absorption band, and a largely red-shifted emission band and enhanced emission efficiency. Besides, a number of bright, color-tunable solid emitters spanning over all visible light are obtained with absolute luminescence efficiency of up to 61%, in contrast to aggregation-caused emission quenching of, e.g., Rhodamine B containing a 2D-aromatics-fused structure. This work demonstrates that the new hybrid conjugated tricyclic systems might be promising structural scaffolds for the construction of functional molecules.
Collapse
Affiliation(s)
- Fangxiang Sun
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Shuaimin Tan
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Hou-Ji Cao
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Chang-Sheng Lu
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Deshuang Tu
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Jordi Poater
- Departament de Química Inorgànica i Orgànica & IQTCUB, Universitat de Barcelona, Martí i Franquès 1-11, Barcelona 08028, Spain.,ICREA, Pg. Lluís Companys 23, Barcelona 08010, Spain
| | - Miquel Solà
- Institut de Química Computacional i Catàlisi and Departament de Química, Universitat de Girona, C/ Maria Aurèlia Capmany, 69, Girona 17003, Catalonia, Spain
| | - Hong Yan
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| |
Collapse
|
29
|
Wang Z, Liu T, Peng H, Fang Y. Advances in Molecular Design and Photophysical Engineering of Perylene Bisimide-Containing Polyads and Multichromophores for Film-Based Fluorescent Sensors. J Phys Chem B 2023; 127:828-837. [PMID: 36692385 DOI: 10.1021/acs.jpcb.2c07815] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Film-based fluorescent sensors (FFSs) represent an important chemistry technology for meeting the urgent needs of on-site and real-time analysis, thereby enabling significant applications in environmental and health monitoring. As the core of FFSs, innovative design of sensing fluorophores and their intrinsic excited-state-related response nature endow FFSs with superior sensing performances in an endless expansion. In this Perspective, we specifically focus on perylene bisimide (PBI)-containing polyads and multichromophores with rigid configuration and notable photochemical stability for developing high-performance FFSs. These nonplanar structures mitigate aggregation and create abundant gaps for the sake of mass transfer and availability of the sensing units in the adlayer of the sensing films. We also comprehensively discuss how to adjust electronic coupling governing the excited-state events by appropriate functionalization strategies, thus providing a plethora of valuable insights for the exploration of the structure-property relationships in these orchestrated molecular systems. Throughout this Perspective, we also identify opportunities for FFSs in the future developments.
Collapse
Affiliation(s)
- Zhaolong Wang
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, P. R. China.,State Key Laboratory of Molecular Reaction Dynamics and Dynamics Research Center for Energy and Environmental Materials, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. China
| | - Taihong Liu
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, P. R. China
| | - Haonan Peng
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, P. R. China
| | - Yu Fang
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, P. R. China
| |
Collapse
|
30
|
Bhikharee D, Rhyman L, Ramasami P. Computational study of the interaction of the psychoactive amphetamine with 1,2-indanedione and 1,8-diazafluoren-9-one as fingerprinting reagents. RSC Adv 2023; 13:4077-4088. [PMID: 36756547 PMCID: PMC9890558 DOI: 10.1039/d2ra07044h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Accepted: 01/11/2023] [Indexed: 01/31/2023] Open
Abstract
In this study, we used computational methods to investigate the interaction of amphetamine (AMP) with 1,2-indanedione (IND) and 1,8-diazafluoren-9-one (DFO) so as to understand whether AMP can be detected in latent fingerprints using either of these reagents. The results show that the binding energies of AMP with IND and DFO were enhanced by the presence of amino acid from -9.29 to -12.35 kcal mol-1 and -7.98 to -10.65 kcal mol-1, respectively. The physical origins of these interactions could be better understood by symmetry-adapted perturbation theory. The excited state properties of the binding structures with IND demonstrate distinguishable absorption peaks in the UV-vis spectra but zero fluorescence. Furthermore, the UV-vis spectra of the possible reaction products between AMP and the reagents reveal absorption peaks in the visible spectrum. Therefore, we could predict that reaction of AMP with IND would be observable by a reddish colour while with DFO, a colour change to violet is expected. To conclude, the reagents IND and DFO may be used to detect AMP by UV-vis spectroscopy and if their reactions are allowed, the reagents may then act as a potentially rapid, affordable and easy colorimetric test for AMP in latent fingerprints without destruction of the fingerprint sample.
Collapse
Affiliation(s)
- Divya Bhikharee
- Computational Chemistry Group, Department of Chemistry, Faculty of Science, University of Mauritius Réduit 80837 Mauritius
| | - Lydia Rhyman
- Computational Chemistry Group, Department of Chemistry, Faculty of Science, University of Mauritius Réduit 80837 Mauritius
| | - Ponnadurai Ramasami
- Computational Chemistry Group, Department of Chemistry, Faculty of Science, University of Mauritius Réduit 80837 Mauritius
- Department of Chemistry, University of South Africa Private Bag X6 Florida 1710 South Africa
| |
Collapse
|
31
|
Sun X, Guo F, Ye Q, Zhou J, Han J, Guo R. Fluorescent Sensing of Glutathione and Related Bio-Applications. BIOSENSORS 2022; 13:16. [PMID: 36671851 PMCID: PMC9855688 DOI: 10.3390/bios13010016] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/13/2022] [Accepted: 12/21/2022] [Indexed: 06/17/2023]
Abstract
Glutathione (GSH), as the most abundant low-molecular-weight biological thiol, plays significant roles in vivo. Abnormal GSH levels have been demonstrated to be related to the dysfunction of specific physiological activities and certain kinds of diseases. Therefore, the sensing of GSH is emerging as a critical issue. Cancer, with typical high morbidity and mortality, remains one of the most serious diseases to threaten public health. As it is clear that much more concentrated GSH is present at tumor sites than at normal sites, the in vivo sensing of GSH offers an option for the early diagnosis of cancer. Moreover, by monitoring the amounts of GSH in specific microenvironments, effective diagnosis of ROS levels, neurological diseases, or even stroke has been developed as well. In this review, we focus on the fluorescent methodologies for GSH detection, since they can be conveniently applied in living systems. First, the fluorescent sensing methods are introduced. Then, the principles for fluorescent sensing of GSH are discussed. In addition, the GSH-sensing-related biological applications are reviewed. Finally, the future opportunities in in the areas of fluorescent GSH sensing-in particular, fluorescent GSH-sensing-prompted disease diagnosis-are addressed.
Collapse
|
32
|
Li J, Lei D, Ma Z, Zu B, Dou X. A General Twisted Intramolecular Charge Transfer Triggering Strategy by Protonation for Zero-Background Fluorescent Turn-On Sensing. J Phys Chem Lett 2022; 13:10871-10881. [PMID: 36394325 DOI: 10.1021/acs.jpclett.2c02847] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The exploration of organic fluorescent sensing materials and mechanisms is of great significance, especially for the deep understanding of twisted intramolecular charge transfer (TICT). Here, the electron-donating ability of a chemically protonated amino group and the corresponding excitation primarily ensure the occurrence of excited-state intramolecular proton transfer. Due to the hybridization of the amino group from sp3 to sp2, the steric hindrance effect and conjugative effect together boost the rotation efficiency of the TICT process and the complete elimination of the background fluorescent signal. Furthermore, a sharp turn-on fluorescent detection of trace nitrite particulate with a diameter of 0.44 μm was realized. In addition, this protonation-induced change in the amino group configuration was verified through around nine categories of compounds. We expect this modulation of the photochemical activity path of the TICT process would greatly facilitate the exploration of novel fluorescent sensing mechanisms.
Collapse
Affiliation(s)
- Jiguang Li
- Xinjiang Key Laboratory of Explosives Safety Science, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi 830011, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Da Lei
- Xinjiang Key Laboratory of Explosives Safety Science, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi 830011, China
| | - Zhiwei Ma
- Xinjiang Key Laboratory of Explosives Safety Science, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi 830011, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Baiyi Zu
- Xinjiang Key Laboratory of Explosives Safety Science, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi 830011, China
| | - Xincun Dou
- Xinjiang Key Laboratory of Explosives Safety Science, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi 830011, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
33
|
Zhao Z, Ge Y, Xu L, Sun X, Zuo J, Wang Z, Liu H, Jiang X, Wang D. Bio-inspired polymer array vapor sensor with dual signals of fluorescence intensity and wavelength shift. Front Bioeng Biotechnol 2022; 10:1058404. [DOI: 10.3389/fbioe.2022.1058404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 10/11/2022] [Indexed: 11/13/2022] Open
Abstract
Organic vapor sensors based on polymer owing to their tunable molecular structures and designable functions have attracted considerable research interest. However, detecting multiple organic vapors with high accuracy and a low detection limit is still challenging. Herein, inspired by the mammalian olfactory recognition system, organic vapor sensors based on one-dimensional microfilament array structures with a wide range of sensing gases are demonstrated. By introducing aggregation-induced emission (AIE) molecules, sensors possess dual-optical sensing mechanisms of variation in fluorescence intensity and wavelength. By virtue of the synergistic effects of dual signals, superb accuracy and incredibly low detection limit are achieved for identifying analytes. In particular, the polymer/AIE microfilament array can detect acetone vapor down to 0.03% of saturated vapor pressure. In the saturated vapor of acetone, the fluorescence intensity of the sensor arrays was reduced by 53.7%, while the fluorescence wavelength was red-shifted by 21 nm. Combined with the principal component analysis (PCA) algorithm, the polymer/AIE molecular sensor arrays accomplished the classification and identification of acetone, ethanol, methylene chloride, toluene, and benzene. This bioinspired approach with dual sensing signals may broaden practical applications to high-performance gas sensors for precise molecular detection.
Collapse
|
34
|
Chen Z, Liu J, Liu J, Bao P, He H, Xia H, Zhang W. Unraveling origin of chemoselectivity and regioselectivity of iridium‐catalyzed B(4)–H functionalization of
o
‐carborane by alkyne. J PHYS ORG CHEM 2022. [DOI: 10.1002/poc.4430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Zitong Chen
- Green Catalysis Center, College of Chemistry Zhengzhou University Zhengzhou China
| | - Jiying Liu
- Green Catalysis Center, College of Chemistry Zhengzhou University Zhengzhou China
| | - Jiabin Liu
- Green Catalysis Center, College of Chemistry Zhengzhou University Zhengzhou China
| | - Panpan Bao
- Green Catalysis Center, College of Chemistry Zhengzhou University Zhengzhou China
| | - Hailing He
- Green Catalysis Center, College of Chemistry Zhengzhou University Zhengzhou China
| | - Hui Xia
- Zhengzhou Institute of Multipurpose Utilization of Mineral Resources CAGS Zhengzhou China
| | - Wenjing Zhang
- Green Catalysis Center, College of Chemistry Zhengzhou University Zhengzhou China
| |
Collapse
|
35
|
Zhong L, Li J, Zu B, Zhu X, Lei D, Wang G, Hu X, Zhang T, Dou X. Highly Retentive, Anti-Interference, and Covert Individual Marking Taggant with Exceptional Skin Penetration. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2201497. [PMID: 35748174 PMCID: PMC9443463 DOI: 10.1002/advs.202201497] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 05/10/2022] [Indexed: 06/15/2023]
Abstract
The development of high-performance individual marking taggants is of great significance. However, the interaction between taggant and skin is not fully understood, and a standard for marking taggants has yet to be realized. To achieve a highly retentive, anti-interference, and covert individual marking fluorescent taggant, Mn2+ -doped NaYF4 :Yb/Er upconversion nanoparticles (UCNPs), are surface-functionalized with polyethyleneimine (PEI) to remarkably enhance the interaction between the amino groups and skin, and thus to facilitate the surface adhesion and chemical penetration of the taggant. Electrostatic interaction between PEI600 -UCNPs and skin as well as remarkable penetration inside the epidermis is responsible for excellent taggant retention capability, even while faced with robust washing, vigorous wiping, and rubbing for more than 100 cycles. Good anti-interference capability and reliable marking performance in real cases are ensured by an intrinsic upconversion characteristic with a distinct red luminescent emission under 980 nm excitation. The present methodology is expected to shed light on the design of high-performance individual marking taggants from the perspective of the underlying interaction between taggant and skin, and to help advance the use of fluorescent taggants for practical application, such as special character tracking.
Collapse
Affiliation(s)
- Lianggen Zhong
- Xinjiang Key laboratory of Explosives Safety ScienceXinjiang Technical Institute of Physics & ChemistryChinese Academy of SciencesUrumqi830011China
- Center of Materials Science and Optoelectronics EngineeringUniversity of Chinese Academy of SciencesBeijing100049China
| | - Jiguang Li
- Xinjiang Key laboratory of Explosives Safety ScienceXinjiang Technical Institute of Physics & ChemistryChinese Academy of SciencesUrumqi830011China
- Center of Materials Science and Optoelectronics EngineeringUniversity of Chinese Academy of SciencesBeijing100049China
| | - Baiyi Zu
- Xinjiang Key laboratory of Explosives Safety ScienceXinjiang Technical Institute of Physics & ChemistryChinese Academy of SciencesUrumqi830011China
| | - Xiaodan Zhu
- Xinjiang Key laboratory of Explosives Safety ScienceXinjiang Technical Institute of Physics & ChemistryChinese Academy of SciencesUrumqi830011China
- Center of Materials Science and Optoelectronics EngineeringUniversity of Chinese Academy of SciencesBeijing100049China
| | - Da Lei
- Xinjiang Key laboratory of Explosives Safety ScienceXinjiang Technical Institute of Physics & ChemistryChinese Academy of SciencesUrumqi830011China
| | - Guangfa Wang
- Xinjiang Key laboratory of Explosives Safety ScienceXinjiang Technical Institute of Physics & ChemistryChinese Academy of SciencesUrumqi830011China
| | - Xiaoyun Hu
- Xinjiang Key laboratory of Explosives Safety ScienceXinjiang Technical Institute of Physics & ChemistryChinese Academy of SciencesUrumqi830011China
- Center of Materials Science and Optoelectronics EngineeringUniversity of Chinese Academy of SciencesBeijing100049China
| | - Tianshi Zhang
- Xinjiang Key laboratory of Explosives Safety ScienceXinjiang Technical Institute of Physics & ChemistryChinese Academy of SciencesUrumqi830011China
- Center of Materials Science and Optoelectronics EngineeringUniversity of Chinese Academy of SciencesBeijing100049China
| | - Xincun Dou
- Xinjiang Key laboratory of Explosives Safety ScienceXinjiang Technical Institute of Physics & ChemistryChinese Academy of SciencesUrumqi830011China
- Center of Materials Science and Optoelectronics EngineeringUniversity of Chinese Academy of SciencesBeijing100049China
| |
Collapse
|
36
|
Wang Z, Gou X, Shi Q, Liu K, Chang X, Wang G, Xu W, Lin S, Liu T, Fang Y. Through‐Space Charge Transfer: A New Way to Develop a High‐Performance Fluorescence Sensing Film towards Opto‐Electronically Inert Alkanes. Angew Chem Int Ed Engl 2022; 61:e202207619. [DOI: 10.1002/anie.202207619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Indexed: 11/07/2022]
Affiliation(s)
- Zhaolong Wang
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education School of Chemistry and Chemical Engineering Shaanxi Normal University Xi'an 710119 P. R. China
| | - Xinyu Gou
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education School of Chemistry and Chemical Engineering Shaanxi Normal University Xi'an 710119 P. R. China
| | - Qiyuan Shi
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education School of Chemistry and Chemical Engineering Shaanxi Normal University Xi'an 710119 P. R. China
| | - Ke Liu
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education School of Chemistry and Chemical Engineering Shaanxi Normal University Xi'an 710119 P. R. China
| | - Xingmao Chang
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education School of Chemistry and Chemical Engineering Shaanxi Normal University Xi'an 710119 P. R. China
| | - Gang Wang
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education School of Chemistry and Chemical Engineering Shaanxi Normal University Xi'an 710119 P. R. China
| | - Wenjun Xu
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education School of Chemistry and Chemical Engineering Shaanxi Normal University Xi'an 710119 P. R. China
| | - Simin Lin
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education School of Chemistry and Chemical Engineering Shaanxi Normal University Xi'an 710119 P. R. China
| | - Taihong Liu
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education School of Chemistry and Chemical Engineering Shaanxi Normal University Xi'an 710119 P. R. China
| | - Yu Fang
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education School of Chemistry and Chemical Engineering Shaanxi Normal University Xi'an 710119 P. R. China
| |
Collapse
|
37
|
One Fluorophore‐Two Sensing Films: Hydrogen‐Bond Directed Formation of a Quadruple Perylene Bisimide Stack. Chemistry 2022; 28:e202201974. [DOI: 10.1002/chem.202201974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Indexed: 11/07/2022]
|
38
|
Ren W, Liu Y, Zu B, Li J, Lei D, Zhang T, Dou X. Ultrasensitive and rapid colorimetric detection of urotropin boosted by effective electrostatic probing and non-covalent sampling. JOURNAL OF HAZARDOUS MATERIALS 2022; 436:129263. [PMID: 35739781 DOI: 10.1016/j.jhazmat.2022.129263] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 05/18/2022] [Accepted: 05/28/2022] [Indexed: 06/15/2023]
Abstract
Leakage and contamination of hazardous chemical substances have been widely recognized as the critical issue in ensuring human health, maintaining environmental sustainability, and safeguarding public security. Urotropin as a crucial raw material in industrial holds a potential threat to aquatic/atmospheric environment with refractory degradation problem, hence, there remains a severe challenge to effectively and on-site monitor urotropin. Here, a general design with all-in-one strategy was presented, in which a highly integrated "pocket sensing chip" combining a sampling unit and a detecting unit together endows a rapid and ultrasensitive colorimetric detection without dead-zone towards urotropin. By loading fast blue B as sensing reagent in the detecting unit, a moderate and sensitive detection towards urotropin via electrostatic interaction was achieved with detection limits of 9 μM for liquid and 17.19 ng for particulates. Furthermore, an expandable sensing chip for the purpose of simultaneously screening on multi-target exhibited remarkable applicability for examining suspicious objects with all sorts of surface in real scenes, being unacted on environmental complexity. We expect this design would provide a universal strategy and the high referential value to propel the development of handy and portable sensing device to efficiently screen the environmental relevant critical substance on-site.
Collapse
Affiliation(s)
- Wenfei Ren
- Xinjiang Key Laboratory of Explosives Safety Science, Xinjiang Technical Institute of Physics & Chemistry, Chinese Academy of Sciences, Urumqi 830011, China; Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuan Liu
- Xinjiang Key Laboratory of Explosives Safety Science, Xinjiang Technical Institute of Physics & Chemistry, Chinese Academy of Sciences, Urumqi 830011, China
| | - Baiyi Zu
- Xinjiang Key Laboratory of Explosives Safety Science, Xinjiang Technical Institute of Physics & Chemistry, Chinese Academy of Sciences, Urumqi 830011, China.
| | - Jiguang Li
- Xinjiang Key Laboratory of Explosives Safety Science, Xinjiang Technical Institute of Physics & Chemistry, Chinese Academy of Sciences, Urumqi 830011, China; Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Da Lei
- Xinjiang Key Laboratory of Explosives Safety Science, Xinjiang Technical Institute of Physics & Chemistry, Chinese Academy of Sciences, Urumqi 830011, China
| | - Tianshi Zhang
- Xinjiang Key Laboratory of Explosives Safety Science, Xinjiang Technical Institute of Physics & Chemistry, Chinese Academy of Sciences, Urumqi 830011, China; Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xincun Dou
- Xinjiang Key Laboratory of Explosives Safety Science, Xinjiang Technical Institute of Physics & Chemistry, Chinese Academy of Sciences, Urumqi 830011, China; Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
39
|
Liu K, Qin M, Shi Q, Wang G, Zhang J, Ding N, Xi H, Liu T, Kong J, Fang Y. Fast and Selective Detection of Trace Chemical Warfare Agents Enabled by an ESIPT-Based Fluorescent Film Sensor. Anal Chem 2022; 94:11151-11158. [PMID: 35921590 DOI: 10.1021/acs.analchem.2c00862] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Reliable detection of airborne chemical warfare agents (CWAs) at the site and in real-time remains a challenge due to the rarity of miniaturized analytical tools. Herein, an o-carborane-functionalized benzothiazole derivative (PCBO) with excited-state intramolecular proton transfer (ESIPT) and AIE characteristics was synthesized. The PCBO-based film sensor showed a highly sensitive response to representative simulants of CWAs, and detection limits were found to be 1.0 mg·m-3 for triphosgene, 6.0 mg·m-3 for chloroethyl ethyl sulfide, and 0.2 mg·m-3 for diethyl chlorophosphite. Moreover, the sensor showed great reusability (>100 cycles) and unprecedented response speed (<0.5 s). The excellent sensing performance was ascribed to the microenvironmental sensitivity of the sensing fluorophore, the porous adlayer structure of the film, and the specific binding of the fluorophore to the analytes. Furthermore, discrimination and identification of the examined CWA simulants were realized via the introduction of another fluorophore (HCBO)-based film. Importantly, a portable fluorescent CWA detector was built with the sensor as the key component, and its applicability was demonstrated by the successful detection of a typical CWA sample (Sarin). The present study indicates that fluorescent film sensors could satisfy reliable onsite and real-time detection of harmful chemicals.
Collapse
Affiliation(s)
- Ke Liu
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, P. R. China
| | - Molin Qin
- State Key Laboratory of NBC Protection for Civilian, Beijing 100191, P. R. China
| | - Qiyuan Shi
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, P. R. China
| | - Gang Wang
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, P. R. China
| | - Jing Zhang
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, P. R. China
| | - Nannan Ding
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, P. R. China
| | - Hailing Xi
- State Key Laboratory of NBC Protection for Civilian, Beijing 100191, P. R. China
| | - Taihong Liu
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, P. R. China
| | - Jinglin Kong
- State Key Laboratory of NBC Protection for Civilian, Beijing 100191, P. R. China
| | - Yu Fang
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, P. R. China
| |
Collapse
|
40
|
Ke Y, Liu Y, Zu B, Lei D, Wang G, Li J, Ren W, Dou X. Electronic Tuning in Reaction-Based Fluorescent Sensing for Instantaneous and Ultrasensitive Visualization of Ethylenediamine. Angew Chem Int Ed Engl 2022; 61:e202203358. [PMID: 35363416 DOI: 10.1002/anie.202203358] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Indexed: 11/06/2022]
Abstract
Manipulation of a multi-physical quantity to steer a molecular photophysical property is of great significance in improving sensing performance. Here, an investigation on how a physical quantity rooted in the molecular structure induces an optical behavior change to facilitate ultrasensitive detection of ethylenediamine (EDA) is performed by varying a set of thiols. The model molecule consisting of a thiol with dual-carboxyl exhibits the strongest fluorescence, which is ascribed to the electron-donating ability and prompted larger orbital overlap and oscillator strength. The elevated fluorescence positively corelated to the increased EDA, endowing an ultrasensitive response to the nanomolar-liquid/ppm-vapor. A gas detector with superior performance fulfills a contactless and real-time management of EDA. We envisage this electron-tuning strategy-enabled fluorescence enhancement can offer in-depth insight in advancing molecule-customized design, further paving the way to widening applications.
Collapse
Affiliation(s)
- Yulei Ke
- Xinjiang Key laboratory of Explosives Safety Science, Xinjiang Technical Institute of Physics & Chemistry, Chinese Academy of Sciences, Urumqi, 830000, China.,Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yuan Liu
- Xinjiang Key laboratory of Explosives Safety Science, Xinjiang Technical Institute of Physics & Chemistry, Chinese Academy of Sciences, Urumqi, 830000, China
| | - Baiyi Zu
- Xinjiang Key laboratory of Explosives Safety Science, Xinjiang Technical Institute of Physics & Chemistry, Chinese Academy of Sciences, Urumqi, 830000, China
| | - Da Lei
- Xinjiang Key laboratory of Explosives Safety Science, Xinjiang Technical Institute of Physics & Chemistry, Chinese Academy of Sciences, Urumqi, 830000, China
| | - Guangfa Wang
- Xinjiang Key laboratory of Explosives Safety Science, Xinjiang Technical Institute of Physics & Chemistry, Chinese Academy of Sciences, Urumqi, 830000, China
| | - Jiguang Li
- Xinjiang Key laboratory of Explosives Safety Science, Xinjiang Technical Institute of Physics & Chemistry, Chinese Academy of Sciences, Urumqi, 830000, China.,Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wenfei Ren
- Xinjiang Key laboratory of Explosives Safety Science, Xinjiang Technical Institute of Physics & Chemistry, Chinese Academy of Sciences, Urumqi, 830000, China.,Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xincun Dou
- Xinjiang Key laboratory of Explosives Safety Science, Xinjiang Technical Institute of Physics & Chemistry, Chinese Academy of Sciences, Urumqi, 830000, China.,Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
41
|
Wang Z, Gou X, Shi Q, Liu K, Chang X, Wang G, Xu W, Lin S, Liu T, Fang Y. Through‐Space Charge Transfer: A New Way to Develop High‐Performance Fluorescence Sensing Film towards Opto‐Electronically Inert Alkanes. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202207619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Zhaolong Wang
- Shaanxi Normal University School of Chemistry and Chemical Engineering CHINA
| | - Xinyu Gou
- Shaanxi Normal University Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education CHINA
| | - Qiyuan Shi
- Shaanxi Normal University School of Chemistry and Chemical Engineering CHINA
| | - Ke Liu
- Shaanxi Normal University School of Chemistry and Chemical Engineering CHINA
| | - Xingmao Chang
- Shaanxi Normal University School of Chemistry and Chemical Engineering CHINA
| | - Gang Wang
- Shaanxi Normal University School of Chemistry and Chemical Engineering CHINA
| | - Wenjun Xu
- Shaanxi Normal University School of Chemistry and Chemical Engineering CHINA
| | - Simin Lin
- Shaanxi Normal University School of Chemistry and Chemical Engineering CHINA
| | - Taihong Liu
- Shaanxi Normal University School of Chemistry and Chemical Engineering CHINA
| | - Yu Fang
- Shaanxi Normal University School of Chemistry and Chemical Engineering 199 South Chang'an Road 710119 Xi'an CHINA
| |
Collapse
|
42
|
Yu X, Gong Y, Ji H, Cheng C, Lv C, Zhang Y, Zang L, Zhao J, Che Y. Rapid Assessment of Meat Freshness by the Differential Sensing of Organic Sulfides Emitted during Spoilage. ACS Sens 2022; 7:1395-1402. [PMID: 35420787 DOI: 10.1021/acssensors.2c00079] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
In this work, we report the fabrication of a two-member fluorescence sensor array that enables the assessment of three stages (fresh, slightly spoiled, and moderately or severely spoiled) of meat spoilage. The first member of the array, which has strong chalcogen bonding and sulfur-π interactions with organic sulfides, exhibits very high sensitivity, while the second member of the array, which has weak chalcogen bonding and sulfur-π interactions with organic sulfides, exhibits lower sensitivity. On the basis of the combined fluorescence responses of the two members, three stages of meat spoilage, including fresh, slightly spoiled, and moderately or severely spoiled, can be monitored. Notably, using the volatiles collected from 5 g of meat products over a short period of time (1 min), this two-member sensor array achieves sensitive responses to the organic sulfides emitted from the meats. The capacity of this method to rapidly assess meat freshness facilitates its practical application, as illustrated by the monitoring of the freshness of chicken and pork products in the real world.
Collapse
Affiliation(s)
- Xinting Yu
- Key Laboratory of Photochemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yanjun Gong
- Key Laboratory of Photochemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hongwei Ji
- Key Laboratory of Photochemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chuanqin Cheng
- Key Laboratory of Photochemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chunxiao Lv
- Key Laboratory of Photochemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yifan Zhang
- Key Laboratory of Photochemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ling Zang
- Department of Material Science and Engineering, University of Utah, Salt Lake City, Utah 84112, United States
| | - Jincai Zhao
- Key Laboratory of Photochemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yanke Che
- Key Laboratory of Photochemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
43
|
Sargazi S, Fatima I, Hassan Kiani M, Mohammadzadeh V, Arshad R, Bilal M, Rahdar A, Díez-Pascual AM, Behzadmehr R. Fluorescent-based nanosensors for selective detection of a wide range of biological macromolecules: A comprehensive review. Int J Biol Macromol 2022; 206:115-147. [PMID: 35231532 DOI: 10.1016/j.ijbiomac.2022.02.137] [Citation(s) in RCA: 96] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 02/01/2022] [Accepted: 02/23/2022] [Indexed: 12/11/2022]
Abstract
Thanks to their unique attributes, such as good sensitivity, selectivity, high surface-to-volume ratio, and versatile optical and electronic properties, fluorescent-based bioprobes have been used to create highly sensitive nanobiosensors to detect various biological and chemical agents. These sensors are superior to other analytical instrumentation techniques like gas chromatography, high-performance liquid chromatography, and capillary electrophoresis for being biodegradable, eco-friendly, and more economical, operational, and cost-effective. Moreover, several reports have also highlighted their application in the early detection of biomarkers associated with drug-induced organ damage such as liver, kidney, or lungs. In the present work, we comprehensively overviewed the electrochemical sensors that employ nanomaterials (nanoparticles/colloids or quantum dots, carbon dots, or nanoscaled metal-organic frameworks, etc.) to detect a variety of biological macromolecules based on fluorescent emission spectra. In addition, the most important mechanisms and methods to sense amino acids, protein, peptides, enzymes, carbohydrates, neurotransmitters, nucleic acids, vitamins, ions, metals, and electrolytes, blood gases, drugs (i.e., anti-inflammatory agents and antibiotics), toxins, alkaloids, antioxidants, cancer biomarkers, urinary metabolites (i.e., urea, uric acid, and creatinine), and pathogenic microorganisms were outlined and compared in terms of their selectivity and sensitivity. Altogether, the small dimensions and capability of these nanosensors for sensitive, label-free, real-time sensing of chemical, biological, and pharmaceutical agents could be used in array-based screening and in-vitro or in-vivo diagnostics. Although fluorescent nanoprobes are widely applied in determining biological macromolecules, unfortunately, they present many challenges and limitations. Efforts must be made to minimize such limitations in utilizing such nanobiosensors with an emphasis on their commercial developments. We believe that the current review can foster the wider incorporation of nanomedicine and will be of particular interest to researchers working on fluorescence technology, material chemistry, coordination polymers, and related research areas.
Collapse
Affiliation(s)
- Saman Sargazi
- Cellular and Molecular Research Center, Research Institute of Cellular and Molecular Sciences in Infectious Diseases, Zahedan University of Medical Sciences, 98167-43463 Zahedan, Iran
| | - Iqra Fatima
- Department of Pharmacy, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Maria Hassan Kiani
- Department of Pharmacy, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Vahideh Mohammadzadeh
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Science, Mashhad 1313199137, Iran
| | - Rabia Arshad
- Faculty of Pharmacy, University of Lahore, Lahore 45320, Pakistan
| | - Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian 223003, China
| | - Abbas Rahdar
- Department of Physics, University of Zabol, Zabol, P. O. Box. 98613-35856, Iran.
| | - Ana M Díez-Pascual
- Universidad de Alcalá, Facultad de Ciencias, Departamento de Química Analítica, Química Física e Ingeniería Química, Ctra. Madrid-Barcelona, Km. 33.6, 28805 Alcalá de Henares, Madrid, Spain.
| | - Razieh Behzadmehr
- Department of Radiology, Zabol University of Medical Sciences, Zabol, Iran
| |
Collapse
|
44
|
Ke Y, Liu Y, Zu B, Lei D, Wang G, Li J, Ren W, Dou X. Electronic Tuning in Reaction‐based Fluorescent Sensing for Instantaneous and Ultrasensitive Visualization of Ethylenediamine. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202203358] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Yulei Ke
- Xinjiang Technical Institute of Physics and Chemistry ESS CHINA
| | - Yuan Liu
- Xinjiang Technical Institute of Physics and Chemistry ESS CHINA
| | - Baiyi Zu
- Xinjiang Technical Institute of Physics and Chemistry ESS CHINA
| | - Da Lei
- Xinjiang Technical Institute of Physics and Chemistry ESS CHINA
| | - Guangfa Wang
- Xinjiang Technical Institute of Physics and Chemistry ESS CHINA
| | - Jiguang Li
- Xinjiang Technical Institute of Physics and Chemistry ESS CHINA
| | - Wenfei Ren
- Xinjiang Technical Institute of Physics and Chemistry ESS CHINA
| | - Xincun Dou
- Xinjiang Technical Institute of Physics and Chemistry ESS 40-1 South Beijing Road 830011 Urumqi CHINA
| |
Collapse
|
45
|
Lei H, Han H, Wang G, Mukherjee S, Bian H, Liu J, Zhao C, Fang Y. Self-Assembly of Amphiphilic BODIPY Derivatives on Micropatterned Ionic Liquid Surfaces for Fluorescent Films with Excellent Stability and Sensing Performance. ACS APPLIED MATERIALS & INTERFACES 2022; 14:13962-13969. [PMID: 35275635 DOI: 10.1021/acsami.2c01417] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Fluorescent films have been widely recognized as one of the most powerful tools for trace analyte detection. However, their use has been limited due to the poor photochemical stability of fluorophores at a gas-solid interface and inefficient film mass transfer. Herein, novel fluorescent films were developed through self-assembly of amphiphilic BODIPY derivatives on micropatterned ionic liquid surfaces. Unlike solid-state films, the obtained monolayer films exhibit excellent photochemical stability, similar to that of a solution. Moreover, the interfacial assembly of amphiphilic fluorophores can avoid gas diffusion inside the microdroplets, significantly improving the sensing performance. The 1/1-butyl-3-methylimidazolium tetrafluoroborate ([BMIM]BF4) monolayer exhibits high sensitivity, high selectivity, and a fast response to detect diethylchlorophosphate (DCP) vapor. The detection limit was 226 ppt, with a response time to DCP of 2.0 s. Importantly, the 1/[BMIM]BF4 monolayer can be reused for at least 50 cycles with no obvious signal fading. This study is expected to benefit the development of new strategies for designing fluorescence sensing films and lay a solid foundation for the fabrication of multifunctional sensing devices with excellent photochemical stability and sensing performance.
Collapse
Affiliation(s)
- Hairui Lei
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an 710062, People's Republic of China
| | - Huimin Han
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an 710062, People's Republic of China
| | - Gang Wang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an 710062, People's Republic of China
| | - Somnath Mukherjee
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an 710062, People's Republic of China
| | - Hongtao Bian
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an 710062, People's Republic of China
| | - Jing Liu
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an 710062, People's Republic of China
| | - Chuan Zhao
- School of Chemistry, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Yu Fang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an 710062, People's Republic of China
| |
Collapse
|
46
|
Dahiwadkar R, Kumar H, Kanvah S. Detection of Illicit GHB using AIE active fluorene containing α-Cyanostilbenes. J Photochem Photobiol A Chem 2022. [DOI: 10.1016/j.jphotochem.2022.113844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
47
|
Jiang Q, Wang Z, Wang G, Liu K, Xu W, Shang C, Gou X, Liu T, Fang Y. A Configurationally Tunable Perylene Bisimide Derivative‐based Fluorescent Film Sensor for the Reliable Detection of Volatile Basic Nitrogen towards Fish Freshness Evaluation. CHINESE J CHEM 2022. [DOI: 10.1002/cjoc.202100626] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Qingwei Jiang
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education School of Chemistry and Chemical Engineering Shaanxi Normal University, Xi'an Shaanxi 710119 China
- School of Materials Science and Engineering Shaanxi Normal University, Xi'an Shaanxi 710119 China
| | - Zhaolong Wang
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education School of Chemistry and Chemical Engineering Shaanxi Normal University, Xi'an Shaanxi 710119 China
| | - Gang Wang
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education School of Chemistry and Chemical Engineering Shaanxi Normal University, Xi'an Shaanxi 710119 China
| | - Ke Liu
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education School of Chemistry and Chemical Engineering Shaanxi Normal University, Xi'an Shaanxi 710119 China
| | - Wenjun Xu
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education School of Chemistry and Chemical Engineering Shaanxi Normal University, Xi'an Shaanxi 710119 China
| | - Congdi Shang
- School of Food Science and Engineering, Northwest A&F University Yangling Shaanxi 712100 China
| | - Xinyu Gou
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education School of Chemistry and Chemical Engineering Shaanxi Normal University, Xi'an Shaanxi 710119 China
- School of Materials Science and Engineering Shaanxi Normal University, Xi'an Shaanxi 710119 China
| | - Taihong Liu
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education School of Chemistry and Chemical Engineering Shaanxi Normal University, Xi'an Shaanxi 710119 China
| | - Yu Fang
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education School of Chemistry and Chemical Engineering Shaanxi Normal University, Xi'an Shaanxi 710119 China
| |
Collapse
|
48
|
Hu W, Wu W, Jian Y, Haick H, Zhang G, Qian Y, Yuan M, Yao M. Volatolomics in healthcare and its advanced detection technology. NANO RESEARCH 2022; 15:8185-8213. [PMID: 35789633 PMCID: PMC9243817 DOI: 10.1007/s12274-022-4459-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/18/2022] [Accepted: 04/20/2022] [Indexed: 05/21/2023]
Abstract
Various diseases increasingly challenge the health status and life quality of human beings. Volatolome emitted from patients has been considered as a potential family of markers, volatolomics, for diagnosis/screening. There are two fundamental issues of volatolomics in healthcare. On one hand, the solid relationship between the volatolome and specific diseases needs to be clarified and verified. On the other hand, effective methods should be explored for the precise detection of volatolome. Several comprehensive review articles had been published in this field. However, a timely and systematical summary and elaboration is still desired. In this review article, the research methodology of volatolomics in healthcare is critically considered and given out, at first. Then, the sets of volatolome according to specific diseases through different body sources and the analytical instruments for their identifications are systematically summarized. Thirdly, the advanced electronic nose and photonic nose technologies for volatile organic compounds (VOCs) detection are well introduced. The existed obstacles and future perspectives are deeply thought and discussed. This article could give a good guidance to researchers in this interdisciplinary field, not only understanding the cutting-edge detection technologies for doctors (medicinal background), but also making reference to clarify the choice of aimed VOCs during the sensor research for chemists, materials scientists, electronics engineers, etc.
Collapse
Affiliation(s)
- Wenwen Hu
- School of Aerospace Science and Technology, Xidian University, Xi’an, 730107 China
| | - Weiwei Wu
- Interdisciplinary Research Center of Smart Sensors, School of Advanced Materials and Nanotechnology, Xidian University, Xi’an, 730107 China
| | - Yingying Jian
- Interdisciplinary Research Center of Smart Sensors, School of Advanced Materials and Nanotechnology, Xidian University, Xi’an, 730107 China
| | - Hossam Haick
- Faculty of Chemical Engineering and Russell Berrie Nanotechnology Institute, Technion-Israel Institute of Technology, Haifa, 3200002 Israel
| | - Guangjian Zhang
- Department of Thoracic Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, 710061 China
| | - Yun Qian
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Clinical Research Center for Oral Diseases of Zhejiang Province Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, 310006 China
| | - Miaomiao Yuan
- The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518033 China
| | - Mingshui Yao
- State Key Laboratory of Multi-phase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 310006 China
- Institute for Integrated Cell-Material Sciences, Kyoto University Institute for Advanced Study, Kyoto University, Kyoto, 606-8501 Japan
| |
Collapse
|
49
|
Liu J, Fu D, Chen Z, Li T, Qu LB, Li SJ, Zhang W, Lan Y. Regioselectivity of Pd-catalyzed o-carborane arylation: a theoretical view. Org Chem Front 2022. [DOI: 10.1039/d2qo00046f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
B(3)-Arylation is unfavorable because the steric repulsion between the substituent group on C(2) and the metal moiety would lead to significant distortion of o-carborane and would result in a higher activation energy for reductive elimination.
Collapse
Affiliation(s)
- Jiying Liu
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Dongmin Fu
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Zitong Chen
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Tiantian Li
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Ling-Bo Qu
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Shi-Jun Li
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Wenjing Zhang
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Yu Lan
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, Henan 450001, China
- School of Chemistry and Chemical Engineering, and Chongqing Key Laboratory of Theoretical and Computational Chemistry, Chongqing University, Chongqing 400030, China
| |
Collapse
|
50
|
Ma Y, Wu X, Lv Y, Jin X, Shan H, Guo J. Manipulation of electronic and structural effects on the solid-state emission of multiple linked anthracenyl-o-carborane dyads. NEW J CHEM 2022. [DOI: 10.1039/d1nj04463j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A direct boost of emission efficiency is presented based on the strategy of linking multiple weak AIE-active anthracenyl-o-carborane dyads together for improving solid-state luminescence.
Collapse
Affiliation(s)
- Yongdong Ma
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, Key Laboratory of Advanced Functional Materials, Autonomous Region, Institute of Applied Chemistry, College of Chemistry, Xinjiang University, Urumqi, 830046, Xinjiang, P. R. China
| | - Xueyan Wu
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, Key Laboratory of Advanced Functional Materials, Autonomous Region, Institute of Applied Chemistry, College of Chemistry, Xinjiang University, Urumqi, 830046, Xinjiang, P. R. China
| | - Yan Lv
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, Key Laboratory of Advanced Functional Materials, Autonomous Region, Institute of Applied Chemistry, College of Chemistry, Xinjiang University, Urumqi, 830046, Xinjiang, P. R. China
| | - Xiaoping Jin
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, Key Laboratory of Advanced Functional Materials, Autonomous Region, Institute of Applied Chemistry, College of Chemistry, Xinjiang University, Urumqi, 830046, Xinjiang, P. R. China
| | - Huici Shan
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, Key Laboratory of Advanced Functional Materials, Autonomous Region, Institute of Applied Chemistry, College of Chemistry, Xinjiang University, Urumqi, 830046, Xinjiang, P. R. China
| | - Jixi Guo
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, Key Laboratory of Advanced Functional Materials, Autonomous Region, Institute of Applied Chemistry, College of Chemistry, Xinjiang University, Urumqi, 830046, Xinjiang, P. R. China
| |
Collapse
|