1
|
Xiang L, Chen J, Zhu Z, Song Z, Bao Z, Zhu X, Jin F, Wang K, Xu S, Zou Y, Li H, Wang Z, Song C, Yue A, Partridge J, Guo Q, Mondaini R, Wang H, Scalettar RT. Enhanced quantum state transfer by circumventing quantum chaotic behavior. Nat Commun 2024; 15:4918. [PMID: 38858357 PMCID: PMC11164980 DOI: 10.1038/s41467-024-48791-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 05/10/2024] [Indexed: 06/12/2024] Open
Abstract
The ability to realize high-fidelity quantum communication is one of the many facets required to build generic quantum computing devices. In addition to quantum processing, sensing, and storage, transferring the resulting quantum states demands a careful design that finds no parallel in classical communication. Existing experimental demonstrations of quantum information transfer in solid-state quantum systems are largely confined to small chains with few qubits, often relying upon non-generic schemes. Here, by using a superconducting quantum circuit featuring thirty-six tunable qubits, accompanied by general optimization procedures deeply rooted in overcoming quantum chaotic behavior, we demonstrate a scalable protocol for transferring few-particle quantum states in a two-dimensional quantum network. These include single-qubit excitation, two-qubit entangled states, and two excitations for which many-body effects are present. Our approach, combined with the quantum circuit's versatility, paves the way to short-distance quantum communication for connecting distributed quantum processors or registers, even if hampered by inherent imperfections in actual quantum devices.
Collapse
Affiliation(s)
- Liang Xiang
- Zhejiang Key Laboratory of Micro-nano Quantum Chips and Quantum Control, School of Physics, Zhejiang University, Hangzhou, 310027, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 311215, China
| | - Jiachen Chen
- Zhejiang Key Laboratory of Micro-nano Quantum Chips and Quantum Control, School of Physics, Zhejiang University, Hangzhou, 310027, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 311215, China
| | - Zitian Zhu
- Zhejiang Key Laboratory of Micro-nano Quantum Chips and Quantum Control, School of Physics, Zhejiang University, Hangzhou, 310027, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 311215, China
| | - Zixuan Song
- Zhejiang Key Laboratory of Micro-nano Quantum Chips and Quantum Control, School of Physics, Zhejiang University, Hangzhou, 310027, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 311215, China
| | - Zehang Bao
- Zhejiang Key Laboratory of Micro-nano Quantum Chips and Quantum Control, School of Physics, Zhejiang University, Hangzhou, 310027, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 311215, China
| | - Xuhao Zhu
- Zhejiang Key Laboratory of Micro-nano Quantum Chips and Quantum Control, School of Physics, Zhejiang University, Hangzhou, 310027, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 311215, China
| | - Feitong Jin
- Zhejiang Key Laboratory of Micro-nano Quantum Chips and Quantum Control, School of Physics, Zhejiang University, Hangzhou, 310027, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 311215, China
| | - Ke Wang
- Zhejiang Key Laboratory of Micro-nano Quantum Chips and Quantum Control, School of Physics, Zhejiang University, Hangzhou, 310027, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 311215, China
| | - Shibo Xu
- Zhejiang Key Laboratory of Micro-nano Quantum Chips and Quantum Control, School of Physics, Zhejiang University, Hangzhou, 310027, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 311215, China
| | - Yiren Zou
- Zhejiang Key Laboratory of Micro-nano Quantum Chips and Quantum Control, School of Physics, Zhejiang University, Hangzhou, 310027, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 311215, China
| | - Hekang Li
- Zhejiang Key Laboratory of Micro-nano Quantum Chips and Quantum Control, School of Physics, Zhejiang University, Hangzhou, 310027, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 311215, China
| | - Zhen Wang
- Zhejiang Key Laboratory of Micro-nano Quantum Chips and Quantum Control, School of Physics, Zhejiang University, Hangzhou, 310027, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 311215, China
| | - Chao Song
- Zhejiang Key Laboratory of Micro-nano Quantum Chips and Quantum Control, School of Physics, Zhejiang University, Hangzhou, 310027, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 311215, China
| | - Alexander Yue
- Department of Physics and Astronomy, University of California, Davis, CA, 95616, USA
| | - Justine Partridge
- Department of Physics and Astronomy, University of California, Davis, CA, 95616, USA
| | - Qiujiang Guo
- Zhejiang Key Laboratory of Micro-nano Quantum Chips and Quantum Control, School of Physics, Zhejiang University, Hangzhou, 310027, China.
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 311215, China.
| | - Rubem Mondaini
- Beijing Computational Science Research Center, Beijing, 100193, China.
- Department of Physics, University of Houston, Houston, TX, 77004, USA.
- Texas Center for Superconductivity, University of Houston, Houston, TX, 77204, USA.
| | - H Wang
- Zhejiang Key Laboratory of Micro-nano Quantum Chips and Quantum Control, School of Physics, Zhejiang University, Hangzhou, 310027, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 311215, China
| | - Richard T Scalettar
- Department of Physics and Astronomy, University of California, Davis, CA, 95616, USA.
| |
Collapse
|
2
|
Kanaar DW, Güngördü U, Kestner JP. Non-adiabatic quantum control of quantum dot arrays with fixed exchange using Cartan decomposition. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2022; 380:20210275. [PMID: 36335944 DOI: 10.1098/rsta.2021.0275] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 09/13/2022] [Indexed: 06/16/2023]
Abstract
In semiconductor spin qubits which typically interact through short-range exchange coupling, shuttling of spin is a practical way to generate quantum operations between distant qubits. Although the exchange is often tunable through voltages applied to gate electrodes, its minimal value can be significantly large, which hinders the applicability of existing shuttling protocols to such devices, requiring a different approach. In this work, we extend our previous results for double- and triple-dot systems, and describe a method for implementing spin state transfer in long chains of singly occupied quantum dots in a non-adiabatic manner. We make use of Cartan decomposition to break down the interacting problem into simpler problems in a systematic way, and use dynamical invariants to design smooth non-adiabatic pulses that can be implemented in devices with modest control bandwidth. Finally, we discuss the extensibility of our results to directed shuttling of spin states on two-dimensional lattices of quantum dots with fixed coupling. This article is part of the theme issue 'Shortcuts to adiabaticity: theoretical, experimental and interdisciplinary perspectives'.
Collapse
Affiliation(s)
- David W Kanaar
- Department of Physics, University of Maryland Baltimore County, Baltimore, MD 21250, USA
| | - Utkan Güngördü
- Laboratory for Physical Sciences, College Park, MD 20740, USA
- Department of Physics, University of Maryland, College Park, MD 20742, USA
| | - J P Kestner
- Department of Physics, University of Maryland Baltimore County, Baltimore, MD 21250, USA
| |
Collapse
|
3
|
Circuit quantum electrodynamics with dressed states of a superconducting artificial atom. Sci Rep 2022; 12:22308. [PMID: 36566268 PMCID: PMC9789979 DOI: 10.1038/s41598-022-26828-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 12/20/2022] [Indexed: 12/25/2022] Open
Abstract
A dynamical control of the coupling strengths between dressed states and probe photon states is demonstrated with a transmon-like artificial atom coupled to two closely spaced resonant modes. When the atom is driven with one mode, the atom state and driving photon states form the so-called dressed states. Dressed states with sideband index up to 3 were prepared and probed via the strong coupling to the other resonant mode. Spectroscopy reveals that the coupling strengths are "dressed" and can be modulated by the power and sideband index of the driving. The transmission of the probe tone is modulated by the driving microwave amplitude with a Bessel behavior, displaying multi-photon process associated with the inter-atomic level transitions.
Collapse
|
4
|
Muniandy SV, Ishak NI, Yi CW. Entropy fluctuation and correlation transfer in tunable discrete-time quantum walk with fractional Gaussian noise. Phys Rev E 2022; 106:024113. [PMID: 36109886 DOI: 10.1103/physreve.106.024113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 07/26/2022] [Indexed: 06/15/2023]
Abstract
We study the time correlation in the von Neumann entropy fluctuation of the tunable discrete-time quantum walk in one dimension, induced by the coin disorder arising from the temporal fractional Gaussian noise (fGn). The fGn is characterized by the Hurst exponent H, which provides three different correlation scenarios, namely antipersistent (0<H<0.5), memoryless (H=0.5), and persistent (0.5<H<1). We show the correlation of fGn is transferred to the coin's degree of entanglement and eventually transpires in the time correlation of the von Neumann entropy fluctuation. This study hints at the potential of using noise correlation as a resource to sustain information backflow via the interaction of quantum system with the noisy environment.
Collapse
Affiliation(s)
- S V Muniandy
- Center for Theoretical and Computational Physics, Department of Physics, Faculty of Science, University of Malaya, Kuala Lumpur 50603, Malaysia
| | - Nur Izzati Ishak
- Center for Theoretical and Computational Physics, Department of Physics, Faculty of Science, University of Malaya, Kuala Lumpur 50603, Malaysia
| | - Chong Wu Yi
- Photonics Research Centre, University of Malaya, Kuala Lumpur 50603, Malaysia
| |
Collapse
|
5
|
Yoneda J, Huang W, Feng M, Yang CH, Chan KW, Tanttu T, Gilbert W, Leon RCC, Hudson FE, Itoh KM, Morello A, Bartlett SD, Laucht A, Saraiva A, Dzurak AS. Coherent spin qubit transport in silicon. Nat Commun 2021; 12:4114. [PMID: 34226564 PMCID: PMC8257656 DOI: 10.1038/s41467-021-24371-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 05/23/2021] [Indexed: 11/09/2022] Open
Abstract
A fault-tolerant quantum processor may be configured using stationary qubits interacting only with their nearest neighbours, but at the cost of significant overheads in physical qubits per logical qubit. Such overheads could be reduced by coherently transporting qubits across the chip, allowing connectivity beyond immediate neighbours. Here we demonstrate high-fidelity coherent transport of an electron spin qubit between quantum dots in isotopically-enriched silicon. We observe qubit precession in the inter-site tunnelling regime and assess the impact of qubit transport using Ramsey interferometry and quantum state tomography techniques. We report a polarization transfer fidelity of 99.97% and an average coherent transfer fidelity of 99.4%. Our results provide key elements for high-fidelity, on-chip quantum information distribution, as long envisaged, reinforcing the scaling prospects of silicon-based spin qubits.
Collapse
Affiliation(s)
- J Yoneda
- School of Electrical Engineering and Telecommunications, The University of New South Wales, Sydney, NSW, Australia. .,Tokyo Tech Academy for Super Smart Society, Tokyo Institute of Technology, Tokyo, Japan.
| | - W Huang
- School of Electrical Engineering and Telecommunications, The University of New South Wales, Sydney, NSW, Australia.,Solid State Physics Laboratory, ETH Zurich, Zurich, Switzerland
| | - M Feng
- School of Electrical Engineering and Telecommunications, The University of New South Wales, Sydney, NSW, Australia
| | - C H Yang
- School of Electrical Engineering and Telecommunications, The University of New South Wales, Sydney, NSW, Australia
| | - K W Chan
- School of Electrical Engineering and Telecommunications, The University of New South Wales, Sydney, NSW, Australia
| | - T Tanttu
- School of Electrical Engineering and Telecommunications, The University of New South Wales, Sydney, NSW, Australia
| | - W Gilbert
- School of Electrical Engineering and Telecommunications, The University of New South Wales, Sydney, NSW, Australia
| | - R C C Leon
- School of Electrical Engineering and Telecommunications, The University of New South Wales, Sydney, NSW, Australia
| | - F E Hudson
- School of Electrical Engineering and Telecommunications, The University of New South Wales, Sydney, NSW, Australia
| | - K M Itoh
- School of Fundamental Science and Technology, Keio University, Yokohama, Japan
| | - A Morello
- School of Electrical Engineering and Telecommunications, The University of New South Wales, Sydney, NSW, Australia
| | - S D Bartlett
- Centre for Engineered Quantum Systems, School of Physics, University of Sydney, Sydney, NSW, Australia
| | - A Laucht
- School of Electrical Engineering and Telecommunications, The University of New South Wales, Sydney, NSW, Australia
| | - A Saraiva
- School of Electrical Engineering and Telecommunications, The University of New South Wales, Sydney, NSW, Australia
| | - A S Dzurak
- School of Electrical Engineering and Telecommunications, The University of New South Wales, Sydney, NSW, Australia.
| |
Collapse
|
6
|
Thomsen K. Timelessness Strictly inside the Quantum Realm. ENTROPY (BASEL, SWITZERLAND) 2021; 23:772. [PMID: 34207444 PMCID: PMC8235759 DOI: 10.3390/e23060772] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 05/28/2021] [Accepted: 06/15/2021] [Indexed: 11/17/2022]
Abstract
Time is one of the undisputed foundations of our life in the real world. Here it is argued that inside small isolated quantum systems, time does not pass as we are used to, and it is primarily in this sense that quantum objects enjoy only limited reality. Quantum systems, which we know, are embedded in the everyday classical world. Their preparation as well as their measurement-phases leave durable records and traces in the entropy of the environment. The Landauer Principle then gives a quantitative threshold for irreversibility. With double slit experiments and tunneling as paradigmatic examples, it is proposed that a label of timelessness offers clues for rendering a Copenhagen-type interpretation of quantum physics more "realistic" and acceptable by providing a coarse but viable link from the fundamental quantum realm to the classical world which humans directly experience.
Collapse
Affiliation(s)
- Knud Thomsen
- Paul Scherrer Institute (PSI), 5232 Villigen, Switzerland
| |
Collapse
|
7
|
Zhang T, Liu H, Gao F, Xu G, Wang K, Zhang X, Cao G, Wang T, Zhang J, Hu X, Li HO, Guo GP. Anisotropic g-Factor and Spin-Orbit Field in a Germanium Hut Wire Double Quantum Dot. NANO LETTERS 2021; 21:3835-3842. [PMID: 33914549 DOI: 10.1021/acs.nanolett.1c00263] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Holes in nanowires have drawn significant attention in recent years because of the strong spin-orbit interaction, which plays an important role in constructing Majorana zero modes and manipulating spin-orbit qubits. Here, from the strongly anisotropic leakage current in the spin blockade regime for a double dot, we extract the full g-tensor and find that the spin-orbit field is in plane with an azimuthal angle of 59° to the axis of the nanowire. The direction of the spin-orbit field indicates a strong spin-orbit interaction along the nanowire, which may have originated from the interface inversion asymmetry in Ge hut wires. We also demonstrate two different spin relaxation mechanisms for the holes in the Ge hut wire double dot: spin-flip co-tunneling to the leads, and spin-orbit interaction within the double dot. These results help establish feasibility of a Ge-based quantum processor.
Collapse
Affiliation(s)
- Ting Zhang
- CAS Key Laboratory of Quantum Information, University of Science and Technology of China, Hefei, Anhui 230026, China
- CAS Center for Excellence and Synergetic Innovation Center in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - He Liu
- CAS Key Laboratory of Quantum Information, University of Science and Technology of China, Hefei, Anhui 230026, China
- CAS Center for Excellence and Synergetic Innovation Center in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Fei Gao
- Institute of Physics and CAS Center for Excellence in Topological Quantum Computation, Chinese Academy of Sciences, Beijing 100190, China
| | - Gang Xu
- CAS Key Laboratory of Quantum Information, University of Science and Technology of China, Hefei, Anhui 230026, China
- CAS Center for Excellence and Synergetic Innovation Center in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Ke Wang
- CAS Key Laboratory of Quantum Information, University of Science and Technology of China, Hefei, Anhui 230026, China
- CAS Center for Excellence and Synergetic Innovation Center in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Xin Zhang
- CAS Key Laboratory of Quantum Information, University of Science and Technology of China, Hefei, Anhui 230026, China
- CAS Center for Excellence and Synergetic Innovation Center in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Gang Cao
- CAS Key Laboratory of Quantum Information, University of Science and Technology of China, Hefei, Anhui 230026, China
- CAS Center for Excellence and Synergetic Innovation Center in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Ting Wang
- Institute of Physics and CAS Center for Excellence in Topological Quantum Computation, Chinese Academy of Sciences, Beijing 100190, China
| | - Jianjun Zhang
- Institute of Physics and CAS Center for Excellence in Topological Quantum Computation, Chinese Academy of Sciences, Beijing 100190, China
| | - Xuedong Hu
- Department of Physics, University at Buffalo, SUNY, Buffalo, New York 14260, United States
| | - Hai-Ou Li
- CAS Key Laboratory of Quantum Information, University of Science and Technology of China, Hefei, Anhui 230026, China
- CAS Center for Excellence and Synergetic Innovation Center in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Guo-Ping Guo
- CAS Key Laboratory of Quantum Information, University of Science and Technology of China, Hefei, Anhui 230026, China
- CAS Center for Excellence and Synergetic Innovation Center in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
- Origin Quantum Computing Company Limited, Hefei, Anhui 230026, China
| |
Collapse
|
8
|
Kandel YP, Qiao H, Fallahi S, Gardner GC, Manfra MJ, Nichol JM. Adiabatic quantum state transfer in a semiconductor quantum-dot spin chain. Nat Commun 2021; 12:2156. [PMID: 33846333 PMCID: PMC8042124 DOI: 10.1038/s41467-021-22416-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 03/11/2021] [Indexed: 02/01/2023] Open
Abstract
Semiconductor quantum-dot spin qubits are a promising platform for quantum computation, because they are scalable and possess long coherence times. In order to realize this full potential, however, high-fidelity information transfer mechanisms are required for quantum error correction and efficient algorithms. Here, we present evidence of adiabatic quantum-state transfer in a chain of semiconductor quantum-dot electron spins. By adiabatically modifying exchange couplings, we transfer single- and two-spin states between distant electrons in less than 127 ns. We also show that this method can be cascaded for spin-state transfer in long spin chains. Based on simulations, we estimate that the probability to correctly transfer single-spin eigenstates and two-spin singlet states can exceed 0.95 for the experimental parameters studied here. In the future, state and process tomography will be required to verify the transfer of arbitrary single qubit states with a fidelity exceeding the classical bound. Adiabatic quantum-state transfer is robust to noise and pulse-timing errors. This method will be useful for initialization, state distribution, and readout in large spin-qubit arrays for gate-based quantum computing. It also opens up the possibility of universal adiabatic quantum computing in semiconductor quantum-dot spin qubits.
Collapse
Affiliation(s)
- Yadav P. Kandel
- grid.16416.340000 0004 1936 9174Department of Physics and Astronomy, University of Rochester, Rochester, NY USA
| | - Haifeng Qiao
- grid.16416.340000 0004 1936 9174Department of Physics and Astronomy, University of Rochester, Rochester, NY USA
| | - Saeed Fallahi
- grid.169077.e0000 0004 1937 2197Department of Physics and Astronomy, Purdue University, West Lafayette, IN USA ,grid.169077.e0000 0004 1937 2197Birck Nanotechnology Center, Purdue University, West Lafayette, IN USA
| | - Geoffrey C. Gardner
- grid.169077.e0000 0004 1937 2197Birck Nanotechnology Center, Purdue University, West Lafayette, IN USA ,grid.169077.e0000 0004 1937 2197School of Materials Engineering, Purdue University, West Lafayette, IN USA
| | - Michael J. Manfra
- grid.169077.e0000 0004 1937 2197Department of Physics and Astronomy, Purdue University, West Lafayette, IN USA ,grid.169077.e0000 0004 1937 2197Birck Nanotechnology Center, Purdue University, West Lafayette, IN USA ,grid.169077.e0000 0004 1937 2197School of Materials Engineering, Purdue University, West Lafayette, IN USA ,grid.169077.e0000 0004 1937 2197School of Electrical and Computer Engineering, Purdue University, West Lafayette, IN USA
| | - John M. Nichol
- grid.16416.340000 0004 1936 9174Department of Physics and Astronomy, University of Rochester, Rochester, NY USA
| |
Collapse
|
9
|
Abstract
Among the different platforms for quantum information processing, individual electron spins in semiconductor quantum dots stand out for their long coherence times and potential for scalable fabrication. The past years have witnessed substantial progress in the capabilities of spin qubits. However, coupling between distant electron spins, which is required for quantum error correction, presents a challenge, and this goal remains the focus of intense research. Quantum teleportation is a canonical method to transmit qubit states, but it has not been implemented in quantum-dot spin qubits. Here, we present evidence for quantum teleportation of electron spin qubits in semiconductor quantum dots. Although we have not performed quantum state tomography to definitively assess the teleportation fidelity, our data are consistent with conditional teleportation of spin eigenstates, entanglement swapping, and gate teleportation. Such evidence for all-matter spin-state teleportation underscores the capabilities of exchange-coupled spin qubits for quantum-information transfer. Despite recent demonstrations of coherent spin-state transfer in arrays of spin qubits via exchange interaction, all-matter spin-state teleportation is still out of reach. Here the authors provide evidence for conditional teleportation of quantum-dot spin states, entanglement swapping, and gate teleportation.
Collapse
|
10
|
Zhao R, Tanttu T, Tan KY, Hensen B, Chan KW, Hwang JCC, Leon RCC, Yang CH, Gilbert W, Hudson FE, Itoh KM, Kiselev AA, Ladd TD, Morello A, Laucht A, Dzurak AS. Single-spin qubits in isotopically enriched silicon at low magnetic field. Nat Commun 2019; 10:5500. [PMID: 31796728 PMCID: PMC6890755 DOI: 10.1038/s41467-019-13416-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Accepted: 11/06/2019] [Indexed: 11/09/2022] Open
Abstract
Single-electron spin qubits employ magnetic fields on the order of 1 Tesla or above to enable quantum state readout via spin-dependent-tunnelling. This requires demanding microwave engineering for coherent spin resonance control, which limits the prospects for large scale multi-qubit systems. Alternatively, singlet-triplet readout enables high-fidelity spin-state measurements in much lower magnetic fields, without the need for reservoirs. Here, we demonstrate low-field operation of metal-oxide-silicon quantum dot qubits by combining coherent single-spin control with high-fidelity, single-shot, Pauli-spin-blockade-based ST readout. We discover that the qubits decohere faster at low magnetic fields with [Formula: see text] μs and [Formula: see text] μs at 150 mT. Their coherence is limited by spin flips of residual 29Si nuclei in the isotopically enriched 28Si host material, which occur more frequently at lower fields. Our finding indicates that new trade-offs will be required to ensure the frequency stabilization of spin qubits, and highlights the importance of isotopic enrichment of device substrates for the realization of a scalable silicon-based quantum processor.
Collapse
Affiliation(s)
- R Zhao
- Centre for Quantum Computation and Communication Technology, School of Electrical Engineering and Telecommunications, University of New South Wales, Sydney, NSW, 2052, Australia.
- National Institute of Standards and Technology, 325 Broadway, Boulder, CO, 80305, USA.
| | - T Tanttu
- Centre for Quantum Computation and Communication Technology, School of Electrical Engineering and Telecommunications, University of New South Wales, Sydney, NSW, 2052, Australia
| | - K Y Tan
- QCD Labs, QTF Centre of Excellence, Department of Applied Physics, Aalto University, 00076, Aalto, Finland
- IQM Finland Oy, Vaisalantie 6 C, 02130, Espoo, Finland
| | - B Hensen
- Centre for Quantum Computation and Communication Technology, School of Electrical Engineering and Telecommunications, University of New South Wales, Sydney, NSW, 2052, Australia
| | - K W Chan
- Centre for Quantum Computation and Communication Technology, School of Electrical Engineering and Telecommunications, University of New South Wales, Sydney, NSW, 2052, Australia
| | - J C C Hwang
- Centre for Quantum Computation and Communication Technology, School of Electrical Engineering and Telecommunications, University of New South Wales, Sydney, NSW, 2052, Australia
- Research and Prototype Foundry, The University of Sydney, Sydney, NSW, 2006, Australia
| | - R C C Leon
- Centre for Quantum Computation and Communication Technology, School of Electrical Engineering and Telecommunications, University of New South Wales, Sydney, NSW, 2052, Australia
| | - C H Yang
- Centre for Quantum Computation and Communication Technology, School of Electrical Engineering and Telecommunications, University of New South Wales, Sydney, NSW, 2052, Australia
| | - W Gilbert
- Centre for Quantum Computation and Communication Technology, School of Electrical Engineering and Telecommunications, University of New South Wales, Sydney, NSW, 2052, Australia
| | - F E Hudson
- Centre for Quantum Computation and Communication Technology, School of Electrical Engineering and Telecommunications, University of New South Wales, Sydney, NSW, 2052, Australia
| | - K M Itoh
- School of Fundamental Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, 223-8522, Japan
| | - A A Kiselev
- HRL Laboratories, LLC, 3011 Malibu Canyon Road, Malibu, CA, 90265, USA
| | - T D Ladd
- HRL Laboratories, LLC, 3011 Malibu Canyon Road, Malibu, CA, 90265, USA
| | - A Morello
- Centre for Quantum Computation and Communication Technology, School of Electrical Engineering and Telecommunications, University of New South Wales, Sydney, NSW, 2052, Australia
| | - A Laucht
- Centre for Quantum Computation and Communication Technology, School of Electrical Engineering and Telecommunications, University of New South Wales, Sydney, NSW, 2052, Australia
| | - A S Dzurak
- Centre for Quantum Computation and Communication Technology, School of Electrical Engineering and Telecommunications, University of New South Wales, Sydney, NSW, 2052, Australia.
| |
Collapse
|
11
|
Coherent spin-state transfer via Heisenberg exchange. Nature 2019; 573:553-557. [PMID: 31554982 DOI: 10.1038/s41586-019-1566-8] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 07/11/2019] [Indexed: 11/09/2022]
Abstract
Quantum information science has the potential to revolutionize modern technology by providing resource-efficient approaches to computing1, communication2 and sensing3. Although the physical qubits in a realistic quantum device will inevitably suffer errors, quantum error correction creates a path to fault-tolerant quantum information processing4. Quantum error correction, however, requires that individual qubits can interact with many other qubits in the processor. Engineering such high connectivity can pose a challenge for platforms such as electron spin qubits5, which naturally favour linear arrays. Here we present an experimental demonstration of the transmission of electron spin states via the Heisenberg exchange interaction in an array of spin qubits. Heisenberg exchange coupling-a direct manifestation of the Pauli exclusion principle, which prevents any two electrons with the same spin state from occupying the same orbital-tends to swap the spin states of neighbouring electrons. By precisely controlling the wavefunction overlap between electrons in a semiconductor quadruple quantum dot array, we generate a series of coherent SWAP operations to transfer both single-spin and entangled states back and forth in the array without moving any electrons. Because the process is scalable to large numbers of qubits, state transfer through Heisenberg exchange will be useful for multi-qubit gates and error correction in spin-based quantum computers.
Collapse
|
12
|
Abstract
One of the central problems in quantum theory is to characterize, detect, and quantify quantumness in terms of classical strategies. Dephasing processes, caused by non-dissipative information exchange between quantum systems and environments, provides a natural platform for this purpose, as they control the quantum-to-classical transition. Recently, it has been shown that dephasing dynamics itself can exhibit (non)classical traits, depending on the nature of the system-environment correlations and the related (im)possibility to simulate these dynamics with Hamiltonian ensembles–the classical strategy. Here we establish the framework of detecting and quantifying the nonclassicality for pure dephasing dynamics. The uniqueness of the canonical representation of Hamiltonian ensembles is shown, and a constructive method to determine the latter is presented. We illustrate our method for qubit, qutrit, and qubit-pair pure dephasing and describe how to implement our approach with quantum process tomography experiments. Our work is readily applicable to present-day quantum experiments. The presence of processes that cannot be simulated classically in open quantum system dynamics is acknowledged, but an exact quantifier for this non-classical character is still missing. Here, the authors provide a quantitative measure of non-classicality for purely dephasing evolutions.
Collapse
|
13
|
Zhang X, Li HO, Cao G, Xiao M, Guo GC, Guo GP. Semiconductor quantum computation. Natl Sci Rev 2019; 6:32-54. [PMID: 34691830 PMCID: PMC8291422 DOI: 10.1093/nsr/nwy153] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 11/05/2018] [Accepted: 12/18/2018] [Indexed: 11/12/2022] Open
Abstract
Semiconductors, a significant type of material in the information era, are becoming more and more powerful in the field of quantum information. In recent decades, semiconductor quantum computation was investigated thoroughly across the world and developed with a dramatically fast speed. The research varied from initialization, control and readout of qubits, to the architecture of fault-tolerant quantum computing. Here, we first introduce the basic ideas for quantum computing, and then discuss the developments of single- and two-qubit gate control in semiconductors. Up to now, the qubit initialization, control and readout can be realized with relatively high fidelity and a programmable two-qubit quantum processor has even been demonstrated. However, to further improve the qubit quality and scale it up, there are still some challenges to resolve such as the improvement of the readout method, material development and scalable designs. We discuss these issues and introduce the forefronts of progress. Finally, considering the positive trend of the research on semiconductor quantum devices and recent theoretical work on the applications of quantum computation, we anticipate that semiconductor quantum computation may develop fast and will have a huge impact on our lives in the near future.
Collapse
Affiliation(s)
- Xin Zhang
- Key Laboratory of Quantum Information, CAS, University of Science and Technology of China, Hefei 230026, China
- Synergetic Innovation Center of Quantum Information & Quantum Physics, University of Science and Technology of China, Hefei 230026, China
| | - Hai-Ou Li
- Key Laboratory of Quantum Information, CAS, University of Science and Technology of China, Hefei 230026, China
- Synergetic Innovation Center of Quantum Information & Quantum Physics, University of Science and Technology of China, Hefei 230026, China
| | - Gang Cao
- Key Laboratory of Quantum Information, CAS, University of Science and Technology of China, Hefei 230026, China
- Synergetic Innovation Center of Quantum Information & Quantum Physics, University of Science and Technology of China, Hefei 230026, China
| | - Ming Xiao
- Key Laboratory of Quantum Information, CAS, University of Science and Technology of China, Hefei 230026, China
- Synergetic Innovation Center of Quantum Information & Quantum Physics, University of Science and Technology of China, Hefei 230026, China
| | - Guang-Can Guo
- Key Laboratory of Quantum Information, CAS, University of Science and Technology of China, Hefei 230026, China
- Synergetic Innovation Center of Quantum Information & Quantum Physics, University of Science and Technology of China, Hefei 230026, China
| | - Guo-Ping Guo
- Key Laboratory of Quantum Information, CAS, University of Science and Technology of China, Hefei 230026, China
- Synergetic Innovation Center of Quantum Information & Quantum Physics, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
14
|
Noiri A, Nakajima T, Yoneda J, Delbecq MR, Stano P, Otsuka T, Takeda K, Amaha S, Allison G, Kawasaki K, Kojima Y, Ludwig A, Wieck AD, Loss D, Tarucha S. A fast quantum interface between different spin qubit encodings. Nat Commun 2018; 9:5066. [PMID: 30498231 PMCID: PMC6265340 DOI: 10.1038/s41467-018-07522-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Accepted: 11/08/2018] [Indexed: 11/24/2022] Open
Abstract
Single-spin qubits in semiconductor quantum dots hold promise for universal quantum computation with demonstrations of a high single-qubit gate fidelity above 99.9% and two-qubit gates in conjunction with a long coherence time. However, initialization and readout of a qubit is orders of magnitude slower than control, which is detrimental for implementing measurement-based protocols such as error-correcting codes. In contrast, a singlet-triplet qubit, encoded in a two-spin subspace, has the virtue of fast readout with high fidelity. Here, we present a hybrid system which benefits from the different advantages of these two distinct spin-qubit implementations. A quantum interface between the two codes is realized by electrically tunable inter-qubit exchange coupling. We demonstrate a controlled-phase gate that acts within 5.5 ns, much faster than the measured dephasing time of 211 ns. The presented hybrid architecture will be useful to settle remaining key problems with building scalable spin-based quantum computers. The race to produce a quantum computer has driven the development of many different qubit designs with different benefits and drawbacks. Noiri et al. demonstrate a hybrid device with two coupled semiconductor spin qubits of different designs, which should allow each qubit’s advantages to be exploited.
Collapse
Affiliation(s)
- A Noiri
- RIKEN, Center for Emergent Matter Science (CEMS), Wako-shi, Saitama, 351-0198, Japan.
| | - T Nakajima
- RIKEN, Center for Emergent Matter Science (CEMS), Wako-shi, Saitama, 351-0198, Japan
| | - J Yoneda
- RIKEN, Center for Emergent Matter Science (CEMS), Wako-shi, Saitama, 351-0198, Japan
| | - M R Delbecq
- RIKEN, Center for Emergent Matter Science (CEMS), Wako-shi, Saitama, 351-0198, Japan.,Laboratoire Pierre Aigrain, Ecole Normale Supérieure-PSL Research University, CNRS, Université Pierre et Marie Curie-Sorbonne Universités, Université Paris Diderot-Sorbonne Paris Cité, 24 rue Lhomond, 75231, Paris Cedex 05, France
| | - P Stano
- RIKEN, Center for Emergent Matter Science (CEMS), Wako-shi, Saitama, 351-0198, Japan
| | - T Otsuka
- RIKEN, Center for Emergent Matter Science (CEMS), Wako-shi, Saitama, 351-0198, Japan.,Research Institute of Electrical Communication, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, 980-8577, Japan.,JST, PRESTO, 4-1-8 Honcho, Kawaguchi, Saitama, 332-0012, Japan
| | - K Takeda
- RIKEN, Center for Emergent Matter Science (CEMS), Wako-shi, Saitama, 351-0198, Japan
| | - S Amaha
- RIKEN, Center for Emergent Matter Science (CEMS), Wako-shi, Saitama, 351-0198, Japan
| | - G Allison
- RIKEN, Center for Emergent Matter Science (CEMS), Wako-shi, Saitama, 351-0198, Japan
| | - K Kawasaki
- Department of Applied Physics, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Y Kojima
- Department of Applied Physics, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - A Ludwig
- Lehrstuhl für Angewandte Festkörperphysik, Ruhr-Universität Bochum, D-44780, Bochum, Germany
| | - A D Wieck
- Lehrstuhl für Angewandte Festkörperphysik, Ruhr-Universität Bochum, D-44780, Bochum, Germany
| | - D Loss
- RIKEN, Center for Emergent Matter Science (CEMS), Wako-shi, Saitama, 351-0198, Japan.,Department of Physics, University of Basel, Klingelbergstrasse 82, 4056, Basel, Switzerland
| | - S Tarucha
- RIKEN, Center for Emergent Matter Science (CEMS), Wako-shi, Saitama, 351-0198, Japan. .,Department of Applied Physics, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan.
| |
Collapse
|