1
|
Zhang N, Liu H. Switch on and off: Phospho-events in light signaling pathways. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2025. [PMID: 40243236 DOI: 10.1111/jipb.13913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Accepted: 03/21/2025] [Indexed: 04/18/2025]
Abstract
Light is a fundamental environmental cue that dynamically orchestrates plant growth and development through spatiotemporally regulated molecular networks. Among these, phosphorylation, a key post-translational modification, plays a crucial role in controlling the function, stability, subcellular localization, and protein-protein interactions of light signaling components. This review systematically examines phosphorylation-dependent regulatory events within the Arabidopsis light signaling cascade, focusing on its regulatory mechanisms, downstream functional consequences, and crosstalk with other signaling pathways. We underscore the pivotal role of phosphorylation in light signaling transduction, elucidating how the phosphorylation-decoding framework transduces light information into growth and developmental plasticity to modulate plant-environment interactions.
Collapse
Affiliation(s)
- Nan Zhang
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518061, China
| | - Hongtao Liu
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518061, China
| |
Collapse
|
2
|
Nawkar GM, Legris M, Goyal A, Schmid-Siegert E, Fleury J, Mucciolo A, De Bellis D, Trevisan M, Schueler A, Fankhauser C. Air channels create a directional light signal to regulate hypocotyl phototropism. Science 2023; 382:935-940. [PMID: 37995216 DOI: 10.1126/science.adh9384] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 10/04/2023] [Indexed: 11/25/2023]
Abstract
In plants, light direction is perceived by the phototropin photoreceptors, which trigger directional growth responses known as phototropism. The formation of a phototropin activation gradient across a photosensitive organ initiates this response. However, the optical tissue properties that functionally contribute to phototropism remain unclear. In this work, we show that intercellular air channels limit light transmittance through various organs in several species. Air channels enhance light scattering in Arabidopsis hypocotyls, thereby steepening the light gradient. This is required for an efficient phototropic response in Arabidopsis and Brassica. We identified an embryonically expressed ABC transporter required for the presence of air channels in seedlings and a structure surrounding them. Our work provides insights into intercellular air space development or maintenance and identifies a mechanism of directional light sensing in plants.
Collapse
Affiliation(s)
- Ganesh M Nawkar
- Centre for Integrative Genomics, Faculty of Biology and Medicine, Génopode Building, University of Lausanne, 1015 Lausanne, Switzerland
| | - Martina Legris
- Centre for Integrative Genomics, Faculty of Biology and Medicine, Génopode Building, University of Lausanne, 1015 Lausanne, Switzerland
| | - Anupama Goyal
- Centre for Integrative Genomics, Faculty of Biology and Medicine, Génopode Building, University of Lausanne, 1015 Lausanne, Switzerland
| | - Emanuel Schmid-Siegert
- SIB, Swiss Institute for Bioinformatics, University of Lausanne, 1015 Lausanne, Switzerland
| | - Jérémy Fleury
- EPFL Renewable Energies Cluster ENAC, 1015 Lausanne, Switzerland
| | - Antonio Mucciolo
- Electron Microscopy Facility, EMF, Faculty of Biology and Medicine, Biophore Building, University of Lausanne, 1015 Lausanne, Switzerland
| | - Damien De Bellis
- Electron Microscopy Facility, EMF, Faculty of Biology and Medicine, Biophore Building, University of Lausanne, 1015 Lausanne, Switzerland
- Department of Plant Molecular Biology, Faculty of Biology and Medicine, Biophore Building University of Lausanne, 1015 Lausanne, Switzerland
| | - Martine Trevisan
- Centre for Integrative Genomics, Faculty of Biology and Medicine, Génopode Building, University of Lausanne, 1015 Lausanne, Switzerland
| | - Andreas Schueler
- EPFL Renewable Energies Cluster ENAC, 1015 Lausanne, Switzerland
| | - Christian Fankhauser
- Centre for Integrative Genomics, Faculty of Biology and Medicine, Génopode Building, University of Lausanne, 1015 Lausanne, Switzerland
| |
Collapse
|
3
|
Lv QY, Zhao QP, Zhu C, Ding M, Chu FY, Li XK, Cheng K, Zhao X. Hydrogen peroxide mediates high-intensity blue light-induced hypocotyl phototropism of cotton seedlings. STRESS BIOLOGY 2023; 3:27. [PMID: 37676397 PMCID: PMC10442013 DOI: 10.1007/s44154-023-00111-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 07/16/2023] [Indexed: 09/08/2023]
Abstract
Phototropism is a classic adaptive growth response that helps plants to enhance light capture for photosynthesis. It was shown that hydrogen peroxide (H2O2) participates in the regulation of blue light-induced hypocotyl phototropism; however, the underlying mechanism is unclear. In this study, we demonstrate that the unilateral high-intensity blue light (HBL) could induce asymmetric distribution of H2O2 in cotton hypocotyls. Disruption of the HBL-induced asymmetric distribution of H2O2 by applying either H2O2 itself evenly on the hypocotyls or H2O2 scavengers on the lit side of hypocotyls could efficiently inhibit hypocotyl phototropic growth. Consistently, application of H2O2 on the shaded and lit sides of the hypocotyls led to reduced and enhanced hypocotyl phototropism, respectively. Further, we show that H2O2 inhibits hypocotyl elongation of cotton seedlings, thus supporting the repressive role of H2O2 in HBL-induced hypocotyl phototropism. Moreover, our results show that H2O2 interferes with HBL-induced asymmetric distribution of auxin in the cotton hypocotyls. Taken together, our study uncovers that H2O2 changes the asymmetric accumulation of auxin and inhibits hypocotyl cell elongation, thus mediating HBL-induced hypocotyl phototropism.
Collapse
Affiliation(s)
- Qian-Yi Lv
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, School of Life Sciences, Henan University, Kaifeng, 475004, China
| | - Qing-Ping Zhao
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, School of Life Sciences, Henan University, Kaifeng, 475004, China
- College of Life Science and Agricultural Engineering, Nanyang Normal University, 1638 Wolong Road, Nanyang, 473061, Henan, China
| | - Chen Zhu
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, School of Life Sciences, Henan University, Kaifeng, 475004, China
| | - Meichen Ding
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, School of Life Sciences, Henan University, Kaifeng, 475004, China
| | - Fang-Yuan Chu
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, School of Life Sciences, Henan University, Kaifeng, 475004, China
| | - Xing-Kun Li
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, School of Life Sciences, Henan University, Kaifeng, 475004, China
| | - Kai Cheng
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, School of Life Sciences, Henan University, Kaifeng, 475004, China
| | - Xiang Zhao
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, School of Life Sciences, Henan University, Kaifeng, 475004, China.
| |
Collapse
|
4
|
Fiorucci AS, Michaud O, Schmid-Siegert E, Trevisan M, Allenbach Petrolati L, Çaka Ince Y, Fankhauser C. Shade suppresses wound-induced leaf repositioning through a mechanism involving PHYTOCHROME KINASE SUBSTRATE (PKS) genes. PLoS Genet 2022; 18:e1010213. [PMID: 35622862 PMCID: PMC9197076 DOI: 10.1371/journal.pgen.1010213] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 06/14/2022] [Accepted: 04/20/2022] [Indexed: 11/18/2022] Open
Abstract
Shaded plants challenged with herbivores or pathogens prioritize growth over defense. However, most experiments have focused on the effect of shading light cues on defense responses. To investigate the potential interaction between shade-avoidance and wounding-induced Jasmonate (JA)-mediated signaling on leaf growth and movement, we used repetitive mechanical wounding of leaf blades to mimic herbivore attacks. Phenotyping experiments with combined treatments on Arabidopsis thaliana rosettes revealed that shade strongly inhibits the wound effect on leaf elevation. By contrast, petiole length is reduced by wounding both in the sun and in the shade. Thus, the relationship between the shade and wounding/JA pathways varies depending on the physiological response, implying that leaf growth and movement can be uncoupled. Using RNA-sequencing, we identified genes with expression patterns matching the hyponastic response (opposite regulation by both stimuli, interaction between treatments with shade dominating the wound signal). Among them were genes from the PKS (Phytochrome Kinase Substrate) family, which was previously studied for its role in phototropism and leaf positioning. Interestingly, we observed reduced shade suppression of the wounding effect in pks2pks4 double mutants while a PKS4 overexpressing line showed constitutively elevated leaves and was less sensitive to wounding. Our results indicate a trait-specific interrelationship between shade and wounding cues on Arabidopsis leaf growth and positioning. Moreover, we identify PKS genes as integrators of external cues in the control of leaf hyponasty further emphasizing the role of these genes in aerial organ positioning. Plants face different types of stressful situations without the ability to relocate to favorable environments. For example, increasing plant density reduces access to sunlight as plants start to shade each other. Foliar shading represents a stress that many plants cope with by changing their morphology. This includes elongation of stem-like structures and repositioning of leaves to favor access to unfiltered sunlight. Plants also defend themselves against various pathogens including herbivores. Defense mechanisms include the production of deterrent chemical and morphological adaptations such as stunted growth and downwards leaf repositioning. Here we studied the morphological response of plants when simultaneously facing shade and herbivore stress. When facing both stresses petiole growth was intermediate between the shade-enhanced and wound-repressed response. In contrast, the shade cue overrides the wounding cue leading to a similar upwards leaf repositioning in the combined treatments or in the response to shade alone. Using gene expression analyses and genetics we identified two members of the Phytochrome Kinase Substrate family as playing a signal integration role when plants simultaneously faced both stresses. This contributes to our understanding of the mechanisms underlying plant morphological adaptations when facing multiple stresses.
Collapse
Affiliation(s)
- Anne-Sophie Fiorucci
- Faculty of Biology and Medicine, Centre for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
| | - Olivier Michaud
- Faculty of Biology and Medicine, Centre for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
| | | | - Martine Trevisan
- Faculty of Biology and Medicine, Centre for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
| | - Laure Allenbach Petrolati
- Faculty of Biology and Medicine, Centre for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
| | - Yetkin Çaka Ince
- Faculty of Biology and Medicine, Centre for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
| | - Christian Fankhauser
- Faculty of Biology and Medicine, Centre for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
- * E-mail:
| |
Collapse
|
5
|
Light-triggered and phosphorylation-dependent 14-3-3 association with NON-PHOTOTROPIC HYPOCOTYL 3 is required for hypocotyl phototropism. Nat Commun 2021; 12:6128. [PMID: 34675219 PMCID: PMC8531446 DOI: 10.1038/s41467-021-26332-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 09/28/2021] [Indexed: 11/09/2022] Open
Abstract
NON-PHOTOTROPIC HYPOCOTYL 3 (NPH3) is a key component of the auxin-dependent plant phototropic growth response. We report that NPH3 directly binds polyacidic phospholipids, required for plasma membrane association in darkness. We further demonstrate that blue light induces an immediate phosphorylation of a C-terminal 14-3-3 binding motif in NPH3. Subsequent association of 14-3-3 proteins is causal for the light-induced release of NPH3 from the membrane and accompanied by NPH3 dephosphorylation. In the cytosol, NPH3 dynamically transitions into membraneless condensate-like structures. The dephosphorylated state of the 14-3-3 binding site and NPH3 membrane recruitment are recoverable in darkness. NPH3 variants that constitutively localize either to the membrane or to condensates are non-functional, revealing a fundamental role of the 14-3-3 mediated dynamic change in NPH3 localization for auxin-dependent phototropism. This regulatory mechanism might be of general nature, given that several members of the NPH3-like family interact with 14-3-3 via a C-terminal motif. NPH3 is required for auxin-dependent plant phototropism. Here Reuter et al. show that NPH3 is a plasma membrane-bound phospholipid-binding protein and that in response to blue light, NPH3 is phosphorylated and associates with 14-3-3 proteins which leads to dissociation from the plasma membrane.
Collapse
|
6
|
Sullivan S, Waksman T, Paliogianni D, Henderson L, Lütkemeyer M, Suetsugu N, Christie JM. Regulation of plant phototropic growth by NPH3/RPT2-like substrate phosphorylation and 14-3-3 binding. Nat Commun 2021; 12:6129. [PMID: 34675214 PMCID: PMC8531357 DOI: 10.1038/s41467-021-26333-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 09/28/2021] [Indexed: 11/09/2022] Open
Abstract
Polarity underlies all directional growth responses in plants including growth towards the light (phototropism). The plasma-membrane associated protein, NON-PHOTOTROPIC HYPOCOTYL 3 (NPH3) is a key determinant of phototropic growth which is regulated by phototropin (phot) AGC kinases. Here we demonstrate that NPH3 is directly phosphorylated by phot1 within a conserved C-terminal consensus sequence (RxS) that is necessary to promote phototropism and petiole positioning in Arabidopsis. RxS phosphorylation also triggers 14-3-3 binding combined with changes in NPH3 phosphorylation and localisation status. Mutants of NPH3 that are unable to bind or constitutively bind 14-3-3 s show compromised functionality consistent with a model where phototropic curvature is established by signalling outputs arising from a gradient of NPH3 RxS phosphorylation across the stem. Our findings therefore establish that NPH3/RPT2-Like (NRL) proteins are phosphorylation targets for plant AGC kinases. Moreover, RxS phosphorylation is conserved in other members of the NRL family, suggesting a common mechanism of regulating plant growth to the prevailing light environment.
Collapse
Affiliation(s)
- Stuart Sullivan
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, Bower Building, University of Glasgow, Glasgow, G12 8QQ, UK.
| | - Thomas Waksman
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, Bower Building, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Dimitra Paliogianni
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, Bower Building, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Louise Henderson
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, Bower Building, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Melanie Lütkemeyer
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, Bower Building, University of Glasgow, Glasgow, G12 8QQ, UK.,RNA Biology and Molecular Physiology, Faculty of Biology, Bielefeld University, 33615, Bielefeld, Germany
| | - Noriyuki Suetsugu
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, Bower Building, University of Glasgow, Glasgow, G12 8QQ, UK.,Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, 153-8902, Japan
| | - John M Christie
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, Bower Building, University of Glasgow, Glasgow, G12 8QQ, UK.
| |
Collapse
|
7
|
Eggers R, Jammer A, Jha S, Kerschbaumer B, Lahham M, Strandback E, Toplak M, Wallner S, Winkler A, Macheroux P. The scope of flavin-dependent reactions and processes in the model plant Arabidopsis thaliana. PHYTOCHEMISTRY 2021; 189:112822. [PMID: 34118767 DOI: 10.1016/j.phytochem.2021.112822] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 05/23/2021] [Accepted: 05/24/2021] [Indexed: 06/12/2023]
Abstract
Flavin mononucleotide (FMN) and flavin adenine dinucleotide (FAD) are utilized as coenzymes in many biochemical reduction-oxidation reactions owing to the ability of the tricyclic isoalloxazine ring system to employ the oxidized, radical and reduced state. We have analyzed the genome of Arabidopsis thaliana to establish an inventory of genes encoding flavin-dependent enzymes (flavoenzymes) as a basis to explore the range of flavin-dependent biochemical reactions that occur in this model plant. Expectedly, flavoenzymes catalyze many pivotal reactions in primary catabolism, which are connected to the degradation of basic metabolites, such as fatty and amino acids as well as carbohydrates and purines. On the other hand, flavoenzymes play diverse roles in anabolic reactions most notably the biosynthesis of amino acids as well as the biosynthesis of pyrimidines and sterols. Importantly, the role of flavoenzymes goes much beyond these basic reactions and extends into pathways that are equally crucial for plant life, for example the production of natural products. In this context, we outline the participation of flavoenzymes in the biosynthesis and maintenance of cofactors, coenzymes and accessory plant pigments (e. g. carotenoids) as well as phytohormones. Moreover, several multigene families have emerged as important components of plant immunity, for example the family of berberine bridge enzyme-like enzymes, flavin-dependent monooxygenases and NADPH oxidases. Furthermore, the versatility of flavoenzymes is highlighted by their role in reactions leading to tRNA-modifications, chromatin regulation and cellular redox homeostasis. The favorable photochemical properties of the flavin chromophore are exploited by photoreceptors to govern crucial processes of plant adaptation and development. Finally, a sequence- and structure-based approach was undertaken to gain insight into the catalytic role of uncharacterized flavoenzymes indicating their involvement in unknown biochemical reactions and pathways in A. thaliana.
Collapse
Affiliation(s)
- Reinmar Eggers
- Institute of Biochemistry, Graz University of Technology, Petersgasse 12/2, 8010, Graz, Austria
| | - Alexandra Jammer
- Institute of Biochemistry, Graz University of Technology, Petersgasse 12/2, 8010, Graz, Austria
| | - Shalinee Jha
- Institute of Biochemistry, Graz University of Technology, Petersgasse 12/2, 8010, Graz, Austria
| | - Bianca Kerschbaumer
- Institute of Biochemistry, Graz University of Technology, Petersgasse 12/2, 8010, Graz, Austria
| | - Majd Lahham
- Institute of Biochemistry, Graz University of Technology, Petersgasse 12/2, 8010, Graz, Austria
| | - Emilia Strandback
- Institute of Biochemistry, Graz University of Technology, Petersgasse 12/2, 8010, Graz, Austria
| | - Marina Toplak
- Institute of Biochemistry, Graz University of Technology, Petersgasse 12/2, 8010, Graz, Austria
| | - Silvia Wallner
- Institute of Biochemistry, Graz University of Technology, Petersgasse 12/2, 8010, Graz, Austria
| | - Andreas Winkler
- Institute of Biochemistry, Graz University of Technology, Petersgasse 12/2, 8010, Graz, Austria
| | - Peter Macheroux
- Institute of Biochemistry, Graz University of Technology, Petersgasse 12/2, 8010, Graz, Austria.
| |
Collapse
|
8
|
Cui X, Zheng Y, Lu Y, Issakidis-Bourguet E, Zhou DX. Metabolic control of histone demethylase activity involved in plant response to high temperature. PLANT PHYSIOLOGY 2021; 185:1813-1828. [PMID: 33793949 PMCID: PMC8133595 DOI: 10.1093/plphys/kiab020] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 01/07/2021] [Indexed: 05/31/2023]
Abstract
Jumonji C (JmjC) domain proteins are histone lysine demethylases that require ferrous iron and alpha-ketoglutarate (or α-KG) as cofactors in the oxidative demethylation reaction. In plants, α-KG is produced by isocitrate dehydrogenases (ICDHs) in different metabolic pathways. It remains unclear whether fluctuation of α-KG levels affects JmjC demethylase activity and epigenetic regulation of plant gene expression. In this work, we studied the impact of loss of function of the cytosolic ICDH (cICDH) gene on the function of histone demethylases in Arabidopsis thaliana. Loss of cICDH resulted in increases of overall histone H3 lysine 4 trimethylation (H3K4me3) and enhanced mutation defects of the H3K4me3 demethylase gene JMJ14. Genetic analysis suggested that the cICDH mutation may affect the activity of other demethylases, including JMJ15 and JMJ18 that function redundantly with JMJ14 in the plant thermosensory response. Furthermore, we show that mutation of JMJ14 affected both the gene activation and repression programs of the plant thermosensory response and that JMJ14 and JMJ15 repressed a set of genes that are likely to play negative roles in the process. The results provide evidence that histone H3K4 demethylases are involved in the plant response to elevated ambient temperature.
Collapse
Affiliation(s)
- Xiaoyun Cui
- Institute of Plant Sciences Paris-Saclay (IPS2), CNRS, INRA, Université Paris-Saclay, Orsay 91405, France
| | - Yu Zheng
- Institute of Plant Sciences Paris-Saclay (IPS2), CNRS, INRA, Université Paris-Saclay, Orsay 91405, France
- Institute for Interdisciplinary Research, Jianghan University, Wuhan 430056, China
| | - Yue Lu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding and Key Laboratory of Plant Functional Genomics of the Ministry of Education, College of Agriculture, Yangzhou University, Yangzhou 225009, China
| | | | - Dao-Xiu Zhou
- Institute of Plant Sciences Paris-Saclay (IPS2), CNRS, INRA, Université Paris-Saclay, Orsay 91405, France
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
9
|
Spaninks K, van Lieshout J, van Ieperen W, Offringa R. Regulation of Early Plant Development by Red and Blue Light: A Comparative Analysis Between Arabidopsis thaliana and Solanum lycopersicum. FRONTIERS IN PLANT SCIENCE 2020; 11:599982. [PMID: 33424896 PMCID: PMC7785528 DOI: 10.3389/fpls.2020.599982] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 12/02/2020] [Indexed: 06/12/2023]
Abstract
In vertical farming, plants are grown in multi-layered growth chambers supplied with energy-efficient LEDs that produce less heat and can thus be placed in close proximity to the plants. The spectral quality control allowed by LED lighting potentially enables steering plant development toward desired phenotypes. However, this requires detailed knowledge on how light quality affects different developmental processes per plant species or even cultivar, and how well information from model plants translates to horticultural crops. Here we have grown the model dicot Arabidopsis thaliana (Arabidopsis) and the crop plant Solanum lycopersicum (tomato) under white or monochromatic red or blue LED conditions. In addition, seedlings were grown in vitro in either light-grown roots (LGR) or dark-grown roots (DGR) LED conditions. Our results present an overview of phenotypic traits that are sensitive to red or blue light, which may be used as a basis for application by tomato nurseries. Our comparative analysis showed that young tomato plants were remarkably indifferent to the LED conditions, with red and blue light effects on primary growth, but not on organ formation or flowering. In contrast, Arabidopsis appeared to be highly sensitive to light quality, as dramatic differences in shoot and root elongation, organ formation, and developmental phase transitions were observed between red, blue, and white LED conditions. Our results highlight once more that growth responses to environmental conditions can differ significantly between model and crop species. Understanding the molecular basis for this difference will be important for designing lighting systems tailored for specific crops.
Collapse
Affiliation(s)
- Kiki Spaninks
- Plant Developmental Genetics, Institute for Biology Leiden, Leiden University, Leiden, Netherlands
| | - Jelmer van Lieshout
- Plant Developmental Genetics, Institute for Biology Leiden, Leiden University, Leiden, Netherlands
| | - Wim van Ieperen
- Horticulture and Product Physiology Group, Wageningen University and Research, Wageningen, Netherlands
| | - Remko Offringa
- Plant Developmental Genetics, Institute for Biology Leiden, Leiden University, Leiden, Netherlands
| |
Collapse
|
10
|
Jenness MK, Tayengwa R, Murphy AS. An ATP-Binding Cassette Transporter, ABCB19, Regulates Leaf Position and Morphology during Phototropin1-Mediated Blue Light Responses. PLANT PHYSIOLOGY 2020; 184:1601-1612. [PMID: 32855213 PMCID: PMC7608178 DOI: 10.1104/pp.20.00223] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 08/18/2020] [Indexed: 05/25/2023]
Abstract
Blue light regulates multiple processes that optimize light capture and gas exchange in plants, including chloroplast movement, changes in stomatal conductance, and altered organ positioning. In Arabidopsis (Arabidopsis thaliana), these processes are primarily modulated by the blue light phototropin photoreceptors phot1 and phot2. Changes in leaf positioning and shape involve several signaling components that include NON-PHOTOTROPIC HYPOCOTYL3, PHYTOCHROME KINASE SUBSTRATE, ROOT PHOTOTROPISM2, and alterations in localized auxin streams. Direct phosphorylation of the auxin transporter ATP-BINDING CASSETTE subfamily B19 (ABCB19) by phot1 in phototropic seedlings suggests that phot1 may directly regulate ABCB19 to adjust auxin-dependent leaf responses. Here, abcb19 mutants were analyzed for fluence and blue light-dependent changes in leaf positioning and morphology. abcb19 displays upright petiole angles that remain unchanged in response to red and blue light. Similarly, abcb19 mutants develop irregularly wavy rosette leaves that are less sensitive to blue light-mediated leaf flattening. Visualization of auxin distribution, measurement of auxin transport in protoplasts, and direct quantification of free auxin levels suggest these irregularities are caused by misregulation of ABCB19-mediated auxin distribution in addition to light-dependent auxin biosynthesis.
Collapse
Affiliation(s)
- Mark K Jenness
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, Maryland 20740
| | - Reuben Tayengwa
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, Maryland 20740
| | - Angus S Murphy
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, Maryland 20740
| |
Collapse
|
11
|
Inoue S, Kaiserli E, Zhao X, Waksman T, Takemiya A, Okumura M, Takahashi H, Seki M, Shinozaki K, Endo Y, Sawasaki T, Kinoshita T, Zhang X, Christie JM, Shimazaki K. CIPK23 regulates blue light-dependent stomatal opening in Arabidopsis thaliana. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 104:679-692. [PMID: 32780529 PMCID: PMC7693358 DOI: 10.1111/tpj.14955] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Revised: 07/11/2020] [Accepted: 07/21/2020] [Indexed: 05/23/2023]
Abstract
Phototropins (phot1 and phot2) are plant blue light receptor kinases that function to mediate phototropism, chloroplast movement, leaf flattening, and stomatal opening in Arabidopsis. Considerable progress has been made in understanding the mechanisms associated with phototropin receptor activation by light. However, the identities of phototropin signaling components are less well understood by comparison. In this study, we specifically searched for protein kinases that interact with phototropins by using an in vitro screening method (AlphaScreen) to profile interactions against an Arabidopsis protein kinase library. We found that CBL-interacting protein kinase 23 (CIPK23) interacts with both phot1 and phot2. Although these interactions were verified by in vitro pull-down and in vivo bimolecular fluorescence complementation assays, CIPK23 was not phosphorylated by phot1, as least in vitro. Mutants lacking CIPK23 were found to exhibit impaired stomatal opening in response to blue light but no deficits in other phototropin-mediated responses. We further found that blue light activation of inward-rectifying K+ (K+ in ) channels was impaired in the guard cells of cipk23 mutants, whereas activation of the plasma membrane H+ -ATPase was not. The blue light activation of K+ in channels was also impaired in the mutant of BLUS1, which is one of the phototropin substrates in guard cells. We therefore conclude that CIPK23 promotes stomatal opening through activation of K+ in channels most likely in concert with BLUS1, but through a mechanism other than activation of the H+ -ATPase. The role of CIPK23 as a newly identified component of phototropin signaling in stomatal guard cells is discussed.
Collapse
Affiliation(s)
- Shin‐Ichiro Inoue
- Division of Biological ScienceGraduate School of ScienceNagoya UniversityFuro‐cho, Chikusa‐kuNagoya464‐8602Japan
| | - Eirini Kaiserli
- Institute of Molecular Cell and Systems BiologyCollege of Medical, Veterinary and Life SciencesUniversity of GlasgowGlasgowG12 8QQUK
| | - Xiang Zhao
- Institute of Plant Stress BiologyState Key Laboratory of Cotton BiologySchool of Life SciencesHenan UniversityKaifeng475004People’s Republic of China
| | - Thomas Waksman
- Institute of Molecular Cell and Systems BiologyCollege of Medical, Veterinary and Life SciencesUniversity of GlasgowGlasgowG12 8QQUK
| | - Atsushi Takemiya
- Department of BiologyFaculty of ScienceKyushu University744 MotookaFukuoka819‐0395Japan
- Present address:
Department of BiologyGraduate School of Sciences and Technology for InnovationYamaguchi UniversityYamaguchi753‐8512Japan
| | - Masaki Okumura
- Division of Biological ScienceGraduate School of ScienceNagoya UniversityFuro‐cho, Chikusa‐kuNagoya464‐8602Japan
- Present address:
Department of Plant and Microbial BiologyUniversity of Minnesota
| | | | - Motoaki Seki
- RIKEN Cluster for Pioneering Research2‐1 HirosawaWako351‐0198Japan
- RIKEN Center for Sustainable Resource Science1‐7‐22, Suehiro, Tsurumi‐kuYokohama230‐0045Japan
| | - Kazuo Shinozaki
- Gene Discovery Research GroupRIKEN Center for Sustainable Resource Science3‐1‐1 KoyadaiTsukuba305‐0074Japan
| | - Yaeta Endo
- Institute for the Promotion of Science and TechnologyEhime UniversityMatsuyama790‐8577Japan
| | | | - Toshinori Kinoshita
- Institute of Transformative Bio‐Molecules (WPI‐ITbM)Nagoya UniversityChikusaNagoya464‐8602Japan
| | - Xiao Zhang
- Institute of Plant Stress BiologyState Key Laboratory of Cotton BiologySchool of Life SciencesHenan UniversityKaifeng475004People’s Republic of China
| | - John M. Christie
- Institute of Molecular Cell and Systems BiologyCollege of Medical, Veterinary and Life SciencesUniversity of GlasgowGlasgowG12 8QQUK
| | - Ken‐Ichiro Shimazaki
- Department of BiologyFaculty of ScienceKyushu University744 MotookaFukuoka819‐0395Japan
| |
Collapse
|
12
|
Markel K. Response to comment on 'Lack of evidence for associative learning in pea plants'. eLife 2020; 9:e61689. [PMID: 32909944 PMCID: PMC7556859 DOI: 10.7554/elife.61689] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 09/03/2020] [Indexed: 01/01/2023] Open
Abstract
In 2016 Gagliano et al. reported evidence for associative learning in plants (Gagliano et al., 2016). A subsequent attempt to replicate this finding by the present author was not successful (Markel, 2020). Gagliano et al. attribute this lack of replication to differences in the experimental set-ups used in the original work and the replication attempt (Gagliano et al., 2020). Here, based on a comparison of the two set-ups, I argue that these differences are unable to explain the lack of replication in Markel, 2020.
Collapse
Affiliation(s)
- Kasey Markel
- Department of Plant Biology, University of California, DavisDavisUnited States
| |
Collapse
|
13
|
Boccaccini A, Legris M, Krahmer J, Allenbach-Petrolati L, Goyal A, Galvan-Ampudia C, Vernoux T, Karayekov E, Casal JJ, Fankhauser C. Low Blue Light Enhances Phototropism by Releasing Cryptochrome1-Mediated Inhibition of PIF4 Expression. PLANT PHYSIOLOGY 2020; 183:1780-1793. [PMID: 32554507 PMCID: PMC7401145 DOI: 10.1104/pp.20.00243] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 06/08/2020] [Indexed: 05/23/2023]
Abstract
Shade-avoiding plants, including Arabidopsis (Arabidopsis thaliana), display a number of growth responses, such as elongation of stem-like structures and repositioning of leaves, elicited by shade cues, including a reduction in the blue and red portions of the solar spectrum and a low-red to far-red ratio. Shade also promotes phototropism of de-etiolated seedlings through repression of phytochrome B, presumably to enhance capture of unfiltered sunlight. Here we show that both low blue light and a low-red to far-red light ratio are required to rapidly enhance phototropism in Arabidopsis seedlings. However, prolonged low blue light treatments are sufficient to promote phototropism through reduced cryptochrome1 (cry1) activation. The enhanced phototropic response of cry1 mutants in the lab and in response to natural canopies depends on PHYTOCHROME INTERACTING FACTORs (PIFs). In favorable light conditions, cry1 limits the expression of PIF4, while in low blue light, PIF4 expression increases, which contributes to phototropic enhancement. The analysis of quantitative DII-Venus, an auxin signaling reporter, indicates that low blue light leads to enhanced auxin signaling in the hypocotyl and, upon phototropic stimulation, a steeper auxin signaling gradient across the hypocotyl. We conclude that phototropic enhancement by canopy shade results from the combined activities of phytochrome B and cry1 that converge on PIF regulation.
Collapse
Affiliation(s)
- Alessandra Boccaccini
- Centre for Integrative Genomics, Faculty of Biology and Medicine, Génopode Building, University of Lausanne, CH-1015 Lausanne, Switzerland
| | - Martina Legris
- Centre for Integrative Genomics, Faculty of Biology and Medicine, Génopode Building, University of Lausanne, CH-1015 Lausanne, Switzerland
| | - Johanna Krahmer
- Centre for Integrative Genomics, Faculty of Biology and Medicine, Génopode Building, University of Lausanne, CH-1015 Lausanne, Switzerland
| | - Laure Allenbach-Petrolati
- Centre for Integrative Genomics, Faculty of Biology and Medicine, Génopode Building, University of Lausanne, CH-1015 Lausanne, Switzerland
| | - Anupama Goyal
- Centre for Integrative Genomics, Faculty of Biology and Medicine, Génopode Building, University of Lausanne, CH-1015 Lausanne, Switzerland
| | - Carlos Galvan-Ampudia
- Laboratoire de Reproduction et Développement des Plantes, Université Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRAE, 69364 Lyon, France
| | - Teva Vernoux
- Laboratoire de Reproduction et Développement des Plantes, Université Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRAE, 69364 Lyon, France
| | - Elizabeth Karayekov
- IFEVA, Facultad de Agronomia, Universidad de Buenos Aires and CONICET, Av. San Martin 4453, 1417 Buenos Aires, Argentina
| | - Jorge J Casal
- IFEVA, Facultad de Agronomia, Universidad de Buenos Aires and CONICET, Av. San Martin 4453, 1417 Buenos Aires, Argentina
- Fundacion Instituto Leloir, Instituto de Investigaciones Bioquimicas de Buenos Aires-CONICET, 1405 Buenos Aires, Argentina
| | - Christian Fankhauser
- Centre for Integrative Genomics, Faculty of Biology and Medicine, Génopode Building, University of Lausanne, CH-1015 Lausanne, Switzerland
| |
Collapse
|
14
|
Legris M, Boccaccini A. Stem phototropism toward blue and ultraviolet light. PHYSIOLOGIA PLANTARUM 2020; 169:357-368. [PMID: 32208516 DOI: 10.1111/ppl.13098] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 03/05/2020] [Accepted: 03/19/2020] [Indexed: 06/10/2023]
Abstract
Positive phototropism is the process through which plants orient their organs toward a directional light source. While the blue light receptors phototropins (phot) play a major role in phototropism toward blue (B) and ultraviolet (UV) radiation, recent research showed that the UVB light receptor UVR8 also triggers phototropism toward UVB. In addition, new details of the molecular mechanisms underlying the activity of these receptors and interaction with other environmental signals have emerged in the past years. In this review, we summarize the current knowledge about hypocotyledoneous and inflorescence stem growth reorientation toward B and UVB, with a focus on the molecular mechanisms.
Collapse
Affiliation(s)
- Martina Legris
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, CH-1015, Lausanne, Switzerland
| | - Alessandra Boccaccini
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, CH-1015, Lausanne, Switzerland
| |
Collapse
|
15
|
Liscum E, Nittler P, Koskie K. The continuing arc toward phototropic enlightenment. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:1652-1658. [PMID: 31907539 PMCID: PMC7242014 DOI: 10.1093/jxb/eraa005] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 01/05/2020] [Indexed: 05/20/2023]
Abstract
Phototropism represents a simple physiological mechanism-differential growth across the growing organ of a plant-to respond to gradients of light and maximize photosynthetic light capture (in aerial tissues) and water/nutrient acquisition (in roots). The phototropin blue light receptors, phot1 and phot2, have been identified as the essential sensors for phototropism. Additionally, several downstream signal/response components have been identified, including the phot-interacting proteins NON-PHOTOTROPIC HYPOCOTYL 3 (NPH3) and PHYTOCHROME SUBSTRATE 4 (PKS4). While the structural and photochemical properties of the phots are quite well understood, much less is known about how the phots signal through downstream regulators. Recent advances have, however, provided some intriguing clues. It appears that inactive receptor phot1 is found dispersed in a monomeric form at the plasma membrane in darkness. Upon light absorption dimerizes and clusters in sterol-rich microdomains where it is signal active. Additional studies showed that the phot-regulated phosphorylation status of both NPH3 and PKS4 is linked to phototropic responsiveness. While PKS4 can function as both a positive (in low light) and a negative (in high light) regulator of phototropism, NPH3 appears to function solely as a key positive regulator. Ultimately, it is the subcellular localization of NPH3 that appears crucial, an aspect regulated by its phosphorylation status. While phot1 activation promotes dephosphorylation of NPH3 and its movement from the plasma membrane to cytoplasmic foci, phot2 appears to modulate relocalization back to the plasma membrane. Together these findings are beginning to illuminate the complex biochemical and cellular events, involved in adaptively modifying phototropic responsiveness under a wide varying range of light conditions.
Collapse
Affiliation(s)
- Emmanuel Liscum
- C.S. Bond Life Sciences Center, University of Missouri, Columbia, MO, USA
- Division of Biological Sciences, University of Missouri, Columbia, MO, USA
- Correspondence:
| | - Patrick Nittler
- C.S. Bond Life Sciences Center, University of Missouri, Columbia, MO, USA
- Division of Biological Sciences, University of Missouri, Columbia, MO, USA
| | - Katelynn Koskie
- C.S. Bond Life Sciences Center, University of Missouri, Columbia, MO, USA
- Division of Biological Sciences, University of Missouri, Columbia, MO, USA
| |
Collapse
|
16
|
Fernández-Milmanda GL, Crocco CD, Reichelt M, Mazza CA, Köllner TG, Zhang T, Cargnel MD, Lichy MZ, Fiorucci AS, Fankhauser C, Koo AJ, Austin AT, Gershenzon J, Ballaré CL. A light-dependent molecular link between competition cues and defence responses in plants. NATURE PLANTS 2020; 6:223-230. [PMID: 32170284 DOI: 10.1038/s41477-020-0604-8] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 01/22/2020] [Indexed: 05/19/2023]
Abstract
Growth responses to competition1 and defence responses to the attack of consumer organisms2 are two classic examples of adaptive phenotypic plasticity in plants. However, the mechanistic and functional links between these responses are not well understood. Jasmonates, a family of lipid-derived signals, are potent growth inhibitors and central regulators of plant immunity to herbivores and pathogens3,4, with both roles being evolutionarily conserved from bryophytes5 to angiosperms6. When shade-intolerant plants perceive the proximity of competitors using the photoreceptor phytochrome B, they activate the shade-avoidance syndrome and downregulate jasmonate responses7. Despite the central implications of this light-mediated change in the growth/defence balance for plant adaptation and crop yield8,9, the mechanisms by which photoreceptors relay light cues to the jasmonate signalling pathway remain poorly understood10. Here, we identify a sulfotransferase (ST2a) that is strongly upregulated by plant proximity perceived by phytochrome B via the phytochrome B-phytochrome interacting factor signalling module. By catalysing the formation of a sulfated jasmonate derivative, ST2a acts to reduce the pool of precursors of active forms of jasmonates and represents a direct molecular link between photoreceptors and hormone signalling in plants. The metabolic step defined by this enzyme provides a molecular mechanism for prioritizing shade avoidance over defence under intense plant competition.
Collapse
Affiliation(s)
| | - Carlos D Crocco
- IFEVA, Consejo Nacional de Investigaciones Científicas y Técnicas-Universidad de Buenos Aires, Buenos Aires, Argentina
| | | | - Carlos A Mazza
- IFEVA, Consejo Nacional de Investigaciones Científicas y Técnicas-Universidad de Buenos Aires, Buenos Aires, Argentina
| | | | - Tong Zhang
- Department of Biochemistry, University of Missouri, Columbia, MO, USA
- College of Agriculture, South China Agricultural University, Guangdong, China
| | - Miriam D Cargnel
- IFEVA, Consejo Nacional de Investigaciones Científicas y Técnicas-Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Micaela Z Lichy
- IFEVA, Consejo Nacional de Investigaciones Científicas y Técnicas-Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Anne-Sophie Fiorucci
- Centre for Integrative Genomics, Faculty of Biology and Medicine, Génopode Building, University of Lausanne, Lausanne, Switzerland
| | - Christian Fankhauser
- Centre for Integrative Genomics, Faculty of Biology and Medicine, Génopode Building, University of Lausanne, Lausanne, Switzerland
| | - Abraham J Koo
- Department of Biochemistry, University of Missouri, Columbia, MO, USA
| | - Amy T Austin
- IFEVA, Consejo Nacional de Investigaciones Científicas y Técnicas-Universidad de Buenos Aires, Buenos Aires, Argentina
| | | | - Carlos L Ballaré
- IFEVA, Consejo Nacional de Investigaciones Científicas y Técnicas-Universidad de Buenos Aires, Buenos Aires, Argentina.
- IIBIO, Consejo Nacional de Investigaciones Científicas y Técnicas-Universidad Nacional de San Martín, Buenos Aires, Argentina.
| |
Collapse
|
17
|
Phillips AH, Kriwacki RW. Intrinsic protein disorder and protein modifications in the processing of biological signals. Curr Opin Struct Biol 2020; 60:1-6. [DOI: 10.1016/j.sbi.2019.09.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Accepted: 09/04/2019] [Indexed: 12/15/2022]
|
18
|
Sullivan S, Kharshiing E, Laird J, Sakai T, Christie JM. Deetiolation Enhances Phototropism by Modulating NON-PHOTOTROPIC HYPOCOTYL3 Phosphorylation Status. PLANT PHYSIOLOGY 2019; 180:1119-1131. [PMID: 30918082 PMCID: PMC6548275 DOI: 10.1104/pp.19.00206] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Accepted: 03/22/2019] [Indexed: 05/23/2023]
Abstract
Phototropin (phot) receptor kinases play important roles in promoting plant growth by controlling light-capturing processes, such as phototropism. Phototropism is mediated through the action of NON-PHOTOTROPIC HYPOCOTYL3 (NPH3), which is dephosphorylated following phot activation. However, the functional significance of this early signaling event remains unclear. Here, we show that the onset of phototropism in dark-grown (etiolated) seedlings of Arabidopsis (Arabidopsis thaliana) and tomato (Solanum lycopersicum) is enhanced by greening (deetiolation). Red and blue light were equally effective in promoting phototropism in Arabidopsis, consistent with our observations that deetiolation by phytochrome or cryptochrome was sufficient to enhance phototropism. Increased responsiveness did not result from an enhanced sensitivity to the phytohormone auxin, nor does it involve the phot-interacting protein, ROOT PHOTOTROPISM2. Instead, deetiolated seedlings showed attenuated levels of NPH3 dephosphorylation and diminished relocalization of NPH3 from the plasma membrane during phototropism. Likewise, etiolated seedlings that lack the PHYTOCHROME-INTERACTING FACTORS (PIFs) PIF1, PIF3, PIF4, and PIF5 displayed reduced NPH3 dephosphorylation and enhanced phototropism, consistent with their constitutive photomorphogenic phenotype in darkness. Phototropic enhancement could also be achieved in etiolated seedlings by lowering the light intensity to diminish NPH3 dephosphorylation. Thus, phototropism is enhanced following deetiolation through the modulation of a phosphorylation rheostat, which in turn sustains the activity of NPH3. We propose that this dynamic mode of regulation enables young seedlings to maximize their establishment under changing light conditions, depending on their photoautotrophic capacity.
Collapse
Affiliation(s)
- Stuart Sullivan
- Institute of Molecular, Cell, and Systems Biology, College of Medical, Veterinary, and Life Sciences, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| | - Eros Kharshiing
- Department of Botany, St. Edmund's College, Shillong 793003, Meghalaya, India
| | - Janet Laird
- Institute of Molecular, Cell, and Systems Biology, College of Medical, Veterinary, and Life Sciences, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| | - Tatsuya Sakai
- Institute of Science and Technology, Niigata University, Ikarashi, Nishiku, Niigata 950-2181, Japan
| | - John M Christie
- Institute of Molecular, Cell, and Systems Biology, College of Medical, Veterinary, and Life Sciences, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| |
Collapse
|