1
|
Tran MP, Chakraborty T, Poppleton E, Monari L, Illig M, Giessler F, Göpfrich K. Genetic encoding and expression of RNA origami cytoskeletons in synthetic cells. NATURE NANOTECHNOLOGY 2025; 20:664-671. [PMID: 40097648 PMCID: PMC12095062 DOI: 10.1038/s41565-025-01879-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Accepted: 01/31/2025] [Indexed: 03/19/2025]
Abstract
Bottom-up synthetic biology seeks to engineer a cell from molecular building blocks. Using DNA nanotechnology, building blocks, such as cytoskeletons, have been reverse-engineered. However, DNA nanostructures rely on chemical synthesis and thermal annealing, and therefore synthetic cells cannot produce them from their constituents such as nucleotides. Here we introduce RNA origami cytoskeleton mimics as alternative nucleic acid-based molecular hardware for synthetic cells, which we express directly inside giant unilamellar lipid vesicles (GUVs) containing a DNA template and a polymerase, chemically fuelled by feeding nucleotides from the outside. We designed RNA origami tiles that fold upon transcription and self-assemble into micrometre-long, three-dimensional RNA origami nanotubes under isothermal conditions. We observe that sequence mutations on the DNA template lead to RNA origami nanotubes and closed-ring phenotypes. Molecular dynamics simulations show that these phenotypic transitions are governed by alterations in the stability of RNA secondary structures. In addition, we achieve cortex formation with aptamer-functionalized RNA nanotubes and show that nanotube polymerization leads to membrane deformation. Altogether, our data suggest that the expression of RNA origami-based hardware will help to explore active, evolvable and RNA-based synthetic cells.
Collapse
Affiliation(s)
- Mai P Tran
- Biophysical Engineering Group, Heidelberg University, Center for Molecular Biology of Heidelberg University (ZMBH), Heidelberg, Germany
- Biophysical Engineering Group, Max Planck Institute for Medical Research, Heidelberg, Germany
| | - Taniya Chakraborty
- Biophysical Engineering Group, Heidelberg University, Center for Molecular Biology of Heidelberg University (ZMBH), Heidelberg, Germany
- Biophysical Engineering Group, Max Planck Institute for Medical Research, Heidelberg, Germany
| | - Erik Poppleton
- Biophysical Engineering Group, Heidelberg University, Center for Molecular Biology of Heidelberg University (ZMBH), Heidelberg, Germany
- Biophysical Engineering Group, Max Planck Institute for Medical Research, Heidelberg, Germany
- Biomolecular Mechanics Group, Max Planck Institute for Polymer Research, Mainz, Germany
| | - Luca Monari
- Biophysical Engineering Group, Heidelberg University, Center for Molecular Biology of Heidelberg University (ZMBH), Heidelberg, Germany
- Biophysical Engineering Group, Max Planck Institute for Medical Research, Heidelberg, Germany
| | - Maja Illig
- Biophysical Engineering Group, Heidelberg University, Center for Molecular Biology of Heidelberg University (ZMBH), Heidelberg, Germany
- Biophysical Engineering Group, Max Planck Institute for Medical Research, Heidelberg, Germany
| | - Franziska Giessler
- Biophysical Engineering Group, Heidelberg University, Center for Molecular Biology of Heidelberg University (ZMBH), Heidelberg, Germany
- Biophysical Engineering Group, Max Planck Institute for Medical Research, Heidelberg, Germany
| | - Kerstin Göpfrich
- Biophysical Engineering Group, Heidelberg University, Center for Molecular Biology of Heidelberg University (ZMBH), Heidelberg, Germany.
- Biophysical Engineering Group, Max Planck Institute for Medical Research, Heidelberg, Germany.
| |
Collapse
|
2
|
Kaur J, Jain R, Roychowdhury S, Roy R, Chattopadhyay K, Roy I. Influence of Magnesium Ions and Crowding Agents on Structure and Stability of RNA Aptamers. Biochemistry 2025; 64:1233-1243. [PMID: 39791862 DOI: 10.1021/acs.biochem.4c00468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
Abstract
Aptamers bind to their targets with exceptional affinity and specificity. However, their intracellular application is hampered by the lack of knowledge about the effect of the cellular milieu on the RNA structure/stability. In this study, cellular crowding was mimicked using polyethylene glycol (PEG), and the crucial role of Mg2+ ions in stabilizing the structure of an RNA aptamer was investigated. Increasing the concentration of Mg2+ or PEG increased the thermal stability of the aptamer. The crowding effect lowered the requirement of the Mg2+ ion to form the binding-competent conformer of the aptamer. This suggests that crowding and other factors may compensate for a lower concentration of Mg2+ for proper folding of aptamers inside cells. Selective 2'-hydroxyl acylation and primer extension (SHAPE) probing permitted residue-level analysis of the aptamer. Mg2+ and/or PEG were shown to be involved in increasing the rigidity or flexibility of different regions of the aptamer. Fluorescence correlation spectroscopy showed a significantly low hydrodynamic radius (RH) in the presence of molecular crowders and Mg2+ ions. We believe that the decreased water activity due to crowding may be responsible for reduced RH. Our results show that in a crowded environment, the RNA aptamer was exposed to conformers that were not available to it in simple buffer solutions or solely in the presence of lower concentrations of Mg2+.
Collapse
Affiliation(s)
- Jaskirat Kaur
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Sector 67, S.A.S. Nagar 160062, Punjab, India
| | - Rajeev Jain
- Structural Biology and Bioinformatics Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Kolkata 700 032, India
- Academy of Scientific and Innovative Research (AcSIR), CSIR-Human Resource Development Centre, (CSIR-HRDC) Campus, Postal Staff College Area, Sector 19, Kamla Nehru Nagar, Ghaziabad 201002, Uttar Pradesh, India
| | - Sumangal Roychowdhury
- Structural Biology and Bioinformatics Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Kolkata 700 032, India
| | - Rajanya Roy
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Sector 67, S.A.S. Nagar 160062, Punjab, India
| | - Krishnananda Chattopadhyay
- Structural Biology and Bioinformatics Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Kolkata 700 032, India
- Academy of Scientific and Innovative Research (AcSIR), CSIR-Human Resource Development Centre, (CSIR-HRDC) Campus, Postal Staff College Area, Sector 19, Kamla Nehru Nagar, Ghaziabad 201002, Uttar Pradesh, India
| | - Ipsita Roy
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Sector 67, S.A.S. Nagar 160062, Punjab, India
| |
Collapse
|
3
|
Drachuk I, Ramani N, Harbaugh S, Mirkin CA, Chávez JL. Implantable Fluorogenic DNA Biosensor for Stress Detection. ACS APPLIED MATERIALS & INTERFACES 2025; 17:130-139. [PMID: 39417681 DOI: 10.1021/acsami.4c08940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Implantable sensors that can monitor analytes related to cognitive and physiological status have gained significant focus in recent years. We have developed an implantable biosensor to detect dehydroepiandrosterone sulfate (DHEA-S), a biomarker related to stress. The biosensor strategy was based on the principle of forced intercalation (FIT) aptamers designed to detect subtle intramolecular changes during aptamer-target binding events. By incorporating a steroid-specific fluorogenic aptamer into a hydrogel, the sensitivity and biostability of the FIT biosensor fiber were improved, which were essential for designing implantable sensors to monitor biomarker levels in the living body. The polyethylenimine-based hydrogel chosen for this study produced an optically transparent cross-linked network with optimal microstructure, physicochemical, and mechanical properties, making it suitable for optical biosensors. The in vitro studies showed that the biosensor fiber was successfully activated in human serum and skin analogue, providing a linear response to physiological concentrations of the steroid. We believe that this type of implantable platform can be effective in monitoring more complex biomarkers associated with physiological or psychological health.
Collapse
Affiliation(s)
- Irina Drachuk
- 711th Human Performance Wing, Human Effectiveness Directorate, AFRL, 2510 Fifth Street, Wright-Patterson AFB, Ohio 45433, United States
- UES, a BlueHalo Company, 4401 Dayton-Xenia Rd., Dayton, Ohio 45432, United States
| | - Namrata Ramani
- Department of Materials Science and Engineering and International Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Svetlana Harbaugh
- 711th Human Performance Wing, Human Effectiveness Directorate, AFRL, 2510 Fifth Street, Wright-Patterson AFB, Ohio 45433, United States
| | - Chad A Mirkin
- Department of Chemistry and International Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Jorge L Chávez
- 711th Human Performance Wing, Human Effectiveness Directorate, AFRL, 2510 Fifth Street, Wright-Patterson AFB, Ohio 45433, United States
| |
Collapse
|
4
|
Yim W, Jin Z, Chang YC, Brambila C, Creyer MN, Ling C, He T, Li Y, Retout M, Penny WF, Zhou J, Jokerst JV. Polyphenol-stabilized coacervates for enzyme-triggered drug delivery. Nat Commun 2024; 15:7295. [PMID: 39181884 PMCID: PMC11344779 DOI: 10.1038/s41467-024-51218-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Accepted: 08/01/2024] [Indexed: 08/27/2024] Open
Abstract
Stability issues in membrane-free coacervates have been addressed with coating strategies, but these approaches often compromise the permeability of the coacervate. Here we report a facile approach to maintain both stability and permeability using tannic acid and then demonstrate the value of this approach in enzyme-triggered drug release. First, we develop size-tunable coacervates via self-assembly of heparin glycosaminoglycan with tyrosine and arginine-based peptides. A thrombin-recognition site within the peptide building block results in heparin release upon thrombin proteolysis. Notably, polyphenols are integrated within the nano-coacervates to improve stability in biofluids. Phenolic crosslinking at the liquid-liquid interface enables nano-coacervates to maintain exceptional structural integrity across various environments. We discover a pivotal polyphenol threshold for preserving enzymatic activity alongside enhanced stability. The disassembly rate of the nano-coacervates increases as a function of thrombin activity, thus preventing a coagulation cascade. This polyphenol-based approach not only improves stability but also opens the way for applications in biomedicine, protease sensing, and bio-responsive drug delivery.
Collapse
Affiliation(s)
- Wonjun Yim
- Materials Science and Engineering Program, University of California San Diego, La Jolla, CA, USA
| | - Zhicheng Jin
- Aiiso Yufeng Li Family Department of Chemical and NanoEngineering, University of California San Diego, La Jolla, CA, USA
| | - Yu-Ci Chang
- Materials Science and Engineering Program, University of California San Diego, La Jolla, CA, USA
| | - Carlos Brambila
- Aiiso Yufeng Li Family Department of Chemical and NanoEngineering, University of California San Diego, La Jolla, CA, USA
| | - Matthew N Creyer
- Aiiso Yufeng Li Family Department of Chemical and NanoEngineering, University of California San Diego, La Jolla, CA, USA
| | - Chuxuan Ling
- Aiiso Yufeng Li Family Department of Chemical and NanoEngineering, University of California San Diego, La Jolla, CA, USA
| | - Tengyu He
- Materials Science and Engineering Program, University of California San Diego, La Jolla, CA, USA
| | - Yi Li
- Aiiso Yufeng Li Family Department of Chemical and NanoEngineering, University of California San Diego, La Jolla, CA, USA
| | - Maurice Retout
- Aiiso Yufeng Li Family Department of Chemical and NanoEngineering, University of California San Diego, La Jolla, CA, USA
| | - William F Penny
- Division of Cardiology, VA San Diego Healthcare System, University of California San Diego, La Jolla, CA, USA
| | - Jiajing Zhou
- Aiiso Yufeng Li Family Department of Chemical and NanoEngineering, University of California San Diego, La Jolla, CA, USA
| | - Jesse V Jokerst
- Materials Science and Engineering Program, University of California San Diego, La Jolla, CA, USA.
- Aiiso Yufeng Li Family Department of Chemical and NanoEngineering, University of California San Diego, La Jolla, CA, USA.
- Department of Radiology, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
5
|
Saha R, Choi JA, Chen IA. Protocell Effects on RNA Folding, Function, and Evolution. Acc Chem Res 2024; 57:2058-2066. [PMID: 39005057 PMCID: PMC11308369 DOI: 10.1021/acs.accounts.4c00174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 06/03/2024] [Accepted: 07/03/2024] [Indexed: 07/16/2024]
Abstract
Creating a living system from nonliving matter is a great challenge in chemistry and biophysics. The early history of life can provide inspiration from the idea of the prebiotic "RNA World" established by ribozymes, in which all genetic and catalytic activities were executed by RNA. Such a system could be much simpler than the interdependent central dogma characterizing life today. At the same time, cooperative systems require a mechanism such as cellular compartmentalization in order to survive and evolve. Minimal cells might therefore consist of simple vesicles enclosing a prebiotic RNA metabolism. The internal volume of a vesicle is a distinctive environment due to its closed boundary, which alters diffusion and available volume for macromolecules and changes effective molecular concentrations, among other considerations. These physical effects are mechanistically distinct from chemical interactions, such as electrostatic repulsion, that might also occur between the membrane boundary and encapsulated contents. Both indirect and direct interactions between the membrane and RNA can give rise to nonintuitive, "emergent" behaviors in the model protocell system. We have been examining how encapsulation inside membrane vesicles would affect the folding and activity of entrapped RNA. Using biophysical techniques such as FRET, we characterized ribozyme folding and activity inside vesicles. Encapsulation inside model protocells generally promoted RNA folding, consistent with an excluded volume effect, independently of chemical interactions. This energetic stabilization translated into increased ribozyme activity in two different systems that were studied (hairpin ribozyme and self-aminoacylating RNAs). A particularly intriguing finding was that encapsulation could rescue the activity of mutant ribozymes, suggesting that encapsulation could affect not only folding and activity but also evolution. To study this further, we developed a high-throughput sequencing assay to measure the aminoacylation kinetics of many thousands of ribozyme variants in parallel. The results revealed an unexpected tendency for encapsulation to improve the better ribozyme variants more than worse variants. During evolution, this effect would create a tilted playing field, so to speak, that would give additional fitness gains to already-high-activity variants. According to Fisher's Fundamental Theorem of Natural Selection, the increased variance in fitness should manifest as faster evolutionary adaptation. This prediction was borne out experimentally during in vitro evolution, where we observed that the initially diverse ribozyme population converged more quickly to the most active sequences when they were encapsulated inside vesicles. The studies in this Account have expanded our understanding of emergent protocell behavior, by showing how simply entrapping an RNA inside a vesicle, which could occur spontaneously during vesicle formation, might profoundly affect the evolutionary landscape of the RNA. Because of the exponential dynamics of replication and selection, even small changes to activity and function could lead to major evolutionary consequences. By closely studying the details of minimal yet surprisingly complex protocells, we might one day trace a pathway from encapsulated RNA to a living system.
Collapse
Affiliation(s)
- Ranajay Saha
- Department of Chemical and Biomolecular
Engineering, Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, California 90095-1592, United States
| | - Jongseok A. Choi
- Department of Chemical and Biomolecular
Engineering, Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, California 90095-1592, United States
| | - Irene A. Chen
- Department of Chemical and Biomolecular
Engineering, Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, California 90095-1592, United States
| |
Collapse
|
6
|
Saha R, Vázquez-Salazar A, Nandy A, Chen IA. Fitness Landscapes and Evolution of Catalytic RNA. Annu Rev Biophys 2024; 53:109-125. [PMID: 39013026 DOI: 10.1146/annurev-biophys-030822-025038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2024]
Abstract
The relationship between genotype and phenotype, or the fitness landscape, is the foundation of genetic engineering and evolution. However, mapping fitness landscapes poses a major technical challenge due to the amount of quantifiable data that is required. Catalytic RNA is a special topic in the study of fitness landscapes due to its relatively small sequence space combined with its importance in synthetic biology. The combination of in vitro selection and high-throughput sequencing has recently provided empirical maps of both complete and local RNA fitness landscapes, but the astronomical size of sequence space limits purely experimental investigations. Next steps are likely to involve data-driven interpolation and extrapolation over sequence space using various machine learning techniques. We discuss recent progress in understanding RNA fitness landscapes, particularly with respect to protocells and machine representations of RNA. The confluence of technical advances may significantly impact synthetic biology in the near future.
Collapse
Affiliation(s)
- Ranajay Saha
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, California, USA; ,
| | - Alberto Vázquez-Salazar
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, California, USA; ,
| | - Aditya Nandy
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, California, USA; ,
- Department of Chemistry, The University of Chicago, Chicago, Illinois, USA
- The James Franck Institute, The University of Chicago, Chicago, Illinois, USA
| | - Irene A Chen
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, California, USA; ,
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California, USA
| |
Collapse
|
7
|
Ji R, Wang L, Shang Y, Du S, Xiao Y, Dong W, Cui L, Gao R, Ren K. RNA Condensate as a Versatile Platform for Improving Fluorogenic RNA Aptamer Properties and Cell Imaging. J Am Chem Soc 2024; 146:4402-4411. [PMID: 38329936 DOI: 10.1021/jacs.3c09162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2024]
Abstract
Fluorogenic RNA aptamers are valuable tools for cell imaging, but they still suffer from shortcomings such as easy degradation, limited photostability, and low fluorescence enhancement. Molecular crowding conditions enable the stabilization of the structure, promotion of folding, and improvement of activity of functional RNA. Based on artificial RNA condensates, here we present a versatile platform to improve fluorogenic RNA aptamer properties and develop sensors for target analyte imaging in living cells. Using the CUG repeat as a general tag to drive phase separation, various fluorogenic aptamer-based RNA condensates (FLARE) were prepared. We show that the molecular crowding of FLARE can improve the enzymatic resistance, thermostability, photostability, and binding affinity of fluorogenic RNA aptamers. Moreover, the FLARE systems can be modularly engineered into sensors (FLARES), which demonstrate enhanced brightness and sensitivity compared to free sensors dispersed in homogeneous solution. This scalable design principle provides new insights into RNA aptamer property regulation and cellular imaging.
Collapse
Affiliation(s)
- Ruoyang Ji
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, P.R. China
| | - Long Wang
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, P.R. China
| | - Yuzhe Shang
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, P.R. China
| | - Songyuan Du
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, P.R. China
| | - Yang Xiao
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, P.R. China
| | - Wei Dong
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, P.R. China
| | - Lin Cui
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, P.R. China
| | - Ruru Gao
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, P.R. China
| | - Kewei Ren
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, P.R. China
| |
Collapse
|
8
|
Saha R, Kao WL, Malady B, Heng X, Chen IA. Effect of montmorillonite K10 clay on RNA structure and function. Biophys J 2024; 123:451-463. [PMID: 37924206 PMCID: PMC10912936 DOI: 10.1016/j.bpj.2023.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 09/29/2023] [Accepted: 11/01/2023] [Indexed: 11/06/2023] Open
Abstract
One of the earliest living systems was likely based on RNA ("the RNA world"). Mineral surfaces have been postulated to be an important environment for the prebiotic chemistry of RNA. In addition to adsorbing RNA and thus potentially reducing the chance of parasitic takeover through limited diffusion, minerals have been shown to promote a range of processes related to the emergence of life, including RNA polymerization, peptide bond formation, and self-assembly of vesicles. In addition, self-cleaving ribozymes have been shown to retain activity when adsorbed to the clay mineral montmorillonite. However, simulation studies suggest that adsorption to minerals is likely to interfere with RNA folding and, thus, function. To further evaluate the plausibility of a mineral-adsorbed RNA world, here we studied the effect of the synthetic clay montmorillonite K10 on the malachite green RNA aptamer, including binding of the clay to malachite green and RNA, as well as on the formation of secondary structures in model RNA and DNA oligonucleotides. We evaluated the fluorescence of the aptamer complex, adsorption to the mineral, melting curves, Förster resonance energy transfer interactions, and 1H-NMR signals to study the folding and functionality of these nucleic acids. Our results indicate that while some base pairings are unperturbed, the overall folding and binding of the malachite green aptamer are substantially disrupted by montmorillonite. These findings suggest that minerals would constrain the structures, and possibly the functions, available to an adsorbed RNA world.
Collapse
Affiliation(s)
- Ranajay Saha
- Department of Chemical and Biomolecular Engineering, Department of Chemistry and Biochemistry, University of California, Los Angeles, California; Department of Chemistry and Biochemistry, University of California, Santa Barbara, California
| | - Wei-Ling Kao
- Department of Biochemistry, University of Missouri, Columbia, Missouri
| | - Brandon Malady
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, California
| | - Xiao Heng
- Department of Biochemistry, University of Missouri, Columbia, Missouri
| | - Irene A Chen
- Department of Chemical and Biomolecular Engineering, Department of Chemistry and Biochemistry, University of California, Los Angeles, California; Department of Chemistry and Biochemistry, University of California, Santa Barbara, California.
| |
Collapse
|
9
|
Mu W, Jia L, Zhou M, Wu J, Lin Y, Mann S, Qiao Y. Superstructural ordering in self-sorting coacervate-based protocell networks. Nat Chem 2024; 16:158-167. [PMID: 37932411 DOI: 10.1038/s41557-023-01356-1] [Citation(s) in RCA: 32] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 09/27/2023] [Indexed: 11/08/2023]
Abstract
Bottom-up assembly of higher-order cytomimetic systems capable of coordinated physical behaviours, collective chemical signalling and spatially integrated processing is a key challenge in the study of artificial multicellularity. Here we develop an interactive binary population of coacervate microdroplets that spontaneously self-sort into chain-like protocell networks with an alternating sequence of structurally and compositionally dissimilar microdomains with hemispherical contact points. The protocell superstructures exhibit macromolecular self-sorting, spatially localized enzyme/ribozyme biocatalysis and interdroplet molecular translocation. They are capable of topographical reconfiguration using chemical or light-mediated stimuli and can be used as a micro-extraction system for macroscale biomolecular sorting. Our methodology opens a pathway towards the self-assembly of multicomponent protocell networks based on selective processes of coacervate droplet-droplet adhesion and fusion, and provides a step towards the spontaneous orchestration of protocell models into artificial tissues and colonies with ordered architectures and collective functions.
Collapse
Affiliation(s)
- Wenjing Mu
- Beijing National Laboratory for Molecular Sciences (BNLMS), Laboratory of Polymer Physics and Chemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Liyan Jia
- Beijing National Laboratory for Molecular Sciences (BNLMS), Laboratory of Polymer Physics and Chemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Musen Zhou
- Department of Chemical and Environmental Engineering, University of California, Riverside, CA, USA
| | - Jianzhong Wu
- Department of Chemical and Environmental Engineering, University of California, Riverside, CA, USA
| | - Yiyang Lin
- State Key Laboratory of Chemical Resource Engineering, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, China.
| | - Stephen Mann
- Centre for Protolife Research and Centre for Organized Matter Chemistry, School of Chemistry, University of Bristol, Bristol, UK.
- Max Planck-Bristol Centre for Minimal Biology, School of Chemistry, University of Bristol, Bristol, UK.
- School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, P. R. China.
| | - Yan Qiao
- Beijing National Laboratory for Molecular Sciences (BNLMS), Laboratory of Polymer Physics and Chemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China.
- University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
10
|
Kang B, Park SV, Oh SS. Ionic liquid-caged nucleic acids enable active folding-based molecular recognition with hydrolysis resistance. Nucleic Acids Res 2024; 52:73-86. [PMID: 37994697 PMCID: PMC10783497 DOI: 10.1093/nar/gkad1093] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 11/07/2023] [Indexed: 11/24/2023] Open
Abstract
Beyond storage and transmission of genetic information in cellular life, nucleic acids can perform diverse interesting functions, including specific target recognition and biochemical reaction acceleration; the versatile biopolymers, however, are acutely vulnerable to hydrolysis-driven degradation. Here, we demonstrate that the cage effect of choline dihydrogen phosphate permits active folding of nucleic acids like water, but prevents their phosphodiester hydrolysis unlike water. The choline-based ionic liquid not only serves as a universal inhibitor of nucleases, exceptionally extending half-lives of nucleic acids up to 6 500 000 times, but highly useful tasks of nucleic acids (e.g. mRNA detection of molecular beacons, ligand recognition of aptamers, and transesterification reaction of ribozymes) can be also conducted with well-conserved affinities and specificities. As liberated from the function loss and degradation risk, the presence of undesired and unknown nucleases does not undermine desired molecular functions of nucleic acids without hydrolysis artifacts even in nuclease cocktails and human saliva.
Collapse
Affiliation(s)
- Byunghwa Kang
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk 37673, South Korea
| | - Soyeon V Park
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk 37673, South Korea
| | - Seung Soo Oh
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk 37673, South Korea
- Institute for Convergence Research and Education in Advanced Technology (I-CREATE), Yonsei University, Incheon 21983, South Korea
| |
Collapse
|
11
|
Toparlak Ö, Sebastianelli L, Egas Ortuno V, Karki M, Xing Y, Szostak JW, Krishnamurthy R, Mansy SS. Cyclophospholipids Enable a Protocellular Life Cycle. ACS NANO 2023; 17:23772-23783. [PMID: 38038709 PMCID: PMC10722605 DOI: 10.1021/acsnano.3c07706] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 11/21/2023] [Accepted: 11/22/2023] [Indexed: 12/02/2023]
Abstract
There is currently no plausible path for the emergence of a self-replicating protocell, because prevalent formulations of model protocells are built with fatty acid vesicles that cannot withstand the concentrations of Mg2+ needed for the function and replication of nucleic acids. Although prebiotic chelates increase the survivability of fatty acid vesicles, the resulting model protocells are incapable of growth and division. Here, we show that protocells made of mixtures of cyclophospholipids and fatty acids can grow and divide in the presence of Mg2+-citrate. Importantly, these protocells retain encapsulated nucleic acids during growth and division, can acquire nucleotides from their surroundings, and are compatible with the nonenzymatic extension of an RNA oligonucleotide, chemistry needed for the replication of a primitive genome. Our work shows that prebiotically plausible mixtures of lipids form protocells that are active under the conditions necessary for the emergence of Darwinian evolution.
Collapse
Affiliation(s)
- Ö.
Duhan Toparlak
- Department
of Cellular, Computational and Integrative Biology, University of Trento, Via Sommarive 9, 38123 Povo, Trentino, Italy
| | - Lorenzo Sebastianelli
- Department
of Chemistry, University of Alberta, 11227 Saskatchewan Drive, Edmonton Alberta T6G 2G2, Canada
| | - Veronica Egas Ortuno
- Department
of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Megha Karki
- Department
of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Yanfeng Xing
- Department
of Biochemistry and Molecular Biology, University
of Chicago, Chicago, Illinois 60637, United States
| | - Jack W. Szostak
- Howard
Hughes Medical Institute, Department of Chemistry, University of Chicago, Chicago, Illinois 60637, United States
| | - Ramanarayanan Krishnamurthy
- Department
of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Sheref S. Mansy
- Department
of Cellular, Computational and Integrative Biology, University of Trento, Via Sommarive 9, 38123 Povo, Trentino, Italy
- Department
of Chemistry, University of Alberta, 11227 Saskatchewan Drive, Edmonton Alberta T6G 2G2, Canada
| |
Collapse
|
12
|
Li H, Yan Y, Chen J, Shi K, Song C, Ji Y, Jia L, Li J, Qiao Y, Lin Y. Artificial receptor-mediated phototransduction toward protocellular subcompartmentalization and signaling-encoded logic gates. SCIENCE ADVANCES 2023; 9:eade5853. [PMID: 36857444 PMCID: PMC9977178 DOI: 10.1126/sciadv.ade5853] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 01/27/2023] [Indexed: 06/18/2023]
Abstract
Engineering artificial cellular systems capable of perceiving and transmitting external signals across membranes to activate downstream targets and coordinate protocellular responses is key to build cell-cell communications and protolife. Here, we report a synthetic photoreceptor-mediated signaling pathway with the integration of light harvesting, photo-to-chemical energy conversion, signal transmission, and amplification in synthetic cells, which ultimately resulted in protocell subcompartmentalization. Key to our design is a ruthenium-bipyridine complex that acts as a membrane-anchored photoreceptor to convert visible light into chemical information and transduce signals across the lipid membrane via flip-flop motion. By coupling receptor-mediated phototransduction with biological recognition and enzymatic cascade reactions, we further develop protocell signaling-encoded Boolean logic gates. Our results illustrate a minimal cell model to mimic the photoreceptor cells that can transduce the energy of light into intracellular responses and pave the way to modular control over the flow of information for complex metabolic and signaling pathways.
Collapse
Affiliation(s)
- He Li
- State Key Laboratory of Chemical Resource Engineering, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yue Yan
- State Key Laboratory of Chemical Resource Engineering, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China
| | - Jing Chen
- State Key Laboratory of Chemical Resource Engineering, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China
| | - Ke Shi
- State Key Laboratory of Chemical Resource Engineering, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China
| | - Chuwen Song
- State Key Laboratory of Chemical Resource Engineering, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yanglimin Ji
- Beijing National Laboratory for Molecular Sciences (BNLMS), Laboratory of Polymer Physics and Chemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Liyan Jia
- Beijing National Laboratory for Molecular Sciences (BNLMS), Laboratory of Polymer Physics and Chemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jianming Li
- Research Center of New Energy, Research Institute of Petroleum Exploration and Development (RIPED), PetroChina, Beijing 100083, China
| | - Yan Qiao
- Beijing National Laboratory for Molecular Sciences (BNLMS), Laboratory of Polymer Physics and Chemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yiyang Lin
- State Key Laboratory of Chemical Resource Engineering, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
13
|
Schürz M, Danmayr J, Jaritsch M, Klinglmayr E, Benirschke HM, Matea C, Zimmerebner P, Rauter J, Wolf M, Gomes FG, Kratochvil Z, Heger Z, Miller A, Heuser T, Stanojlovic V, Kiefer J, Plank T, Johnson L, Himly M, Blöchl C, Huber CG, Hintersteiner M, Meisner‐Kober N. EVAnalyzer: High content imaging for rigorous characterisation of single extracellular vesicles using standard laboratory equipment and a new open-source ImageJ/Fiji plugin. J Extracell Vesicles 2022; 11:e12282. [PMID: 36437554 PMCID: PMC9702573 DOI: 10.1002/jev2.12282] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 11/03/2022] [Accepted: 11/07/2022] [Indexed: 11/30/2022] Open
Abstract
Extracellular vesicle (EV) research increasingly demands for quantitative characterisation at the single vesicle level to address heterogeneity and complexity of EV subpopulations. Emerging, commercialised technologies for single EV analysis based on, for example, imaging flow cytometry or imaging after capture on chips generally require dedicated instrumentation and proprietary software not readily accessible to every lab. This limits their implementation for routine EV characterisation in the rapidly growing EV field. We and others have shown that single vesicles can be detected as light diffraction limited fluorescent spots using standard confocal and widefield fluorescence microscopes. Advancing this simple strategy into a process for routine EV quantitation, we developed 'EVAnalyzer', an ImageJ/Fiji (Fiji is just ImageJ) plugin for automated, quantitative single vesicle analysis from imaging data. Using EVAnalyzer, we established a robust protocol for capture, (immuno-)labelling and fluorescent imaging of EVs. To exemplify the application scope, the process was optimised and systematically tested for (i) quantification of EV subpopulations, (ii) validation of EV labelling reagents, (iii) in situ determination of antibody specificity, sensitivity and species cross-reactivity for EV markers and (iv) optimisation of genetic EV engineering. Additionally, we show that the process can be applied to synthetic nanoparticles, allowing to determine siRNA encapsulation efficiencies of lipid-based nanoparticles (LNPs) and protein loading of SiO2 nanoparticles. EVAnalyzer further provides a pipeline for automated quantification of cell uptake at the single cell-single vesicle level, thereby enabling high content EV cell uptake assays and plate-based screens. Notably, the entire procedure from sample preparation to the final data output is entirely based on standard reagents, materials, laboratory equipment and open access software. In summary, we show that EVAnalyzer enables rigorous characterisation of EVs with generally accessible tools. Since we further provide the plugin as open-source code, we expect EVAnalyzer to not only be a resource of immediate impact, but an open innovation platform for the EV and nanoparticle research communities.
Collapse
Affiliation(s)
- Melanie Schürz
- Department of Biosciences and Medical BiologyParis Lodron University SalzburgSalzburgAustria
| | - Joachim Danmayr
- Department of Informatics and MathematicsFernuniversität HagenHagenGermany
| | - Maria Jaritsch
- Department of Biosciences and Medical BiologyParis Lodron University SalzburgSalzburgAustria
| | - Eva Klinglmayr
- Department of Biosciences and Medical BiologyParis Lodron University SalzburgSalzburgAustria
| | - Heloisa Melo Benirschke
- Department of Biosciences and Medical BiologyParis Lodron University SalzburgSalzburgAustria
| | - Cristian‐Tudor Matea
- Department of Biosciences and Medical BiologyParis Lodron University SalzburgSalzburgAustria
| | - Patrick Zimmerebner
- Department of Biosciences and Medical BiologyParis Lodron University SalzburgSalzburgAustria
| | - Jakob Rauter
- Department of Biosciences and Medical BiologyParis Lodron University SalzburgSalzburgAustria
| | - Martin Wolf
- Cell Therapy Institute, Spinal Cord Injury and Tissue Regeneration Centre Salzburg (SCI‐TReCS)Paracelsus Medical University (PMU)SalzburgAustria
| | - Fausto Gueths Gomes
- Cell Therapy Institute, Spinal Cord Injury and Tissue Regeneration Centre Salzburg (SCI‐TReCS)Paracelsus Medical University (PMU)SalzburgAustria
| | - Zdenek Kratochvil
- Department of Chemistry and BiochemistryMendel University in BrnoBrnoCzech Republic
| | - Zbynek Heger
- Department of Chemistry and BiochemistryMendel University in BrnoBrnoCzech Republic
| | - Andrew Miller
- Department of Chemistry and BiochemistryMendel University in BrnoBrnoCzech Republic
- Veterinary Research InstituteBrnoCzech Republic
- KP Therapeutics (Europe) sro.BrnoCzech Republic
| | | | - Vesna Stanojlovic
- Department of Biosciences and Medical BiologyParis Lodron University SalzburgSalzburgAustria
| | - Jana Kiefer
- Department of Biosciences and Medical BiologyParis Lodron University SalzburgSalzburgAustria
| | - Tanja Plank
- Department of Biosciences and Medical BiologyParis Lodron University SalzburgSalzburgAustria
| | - Litty Johnson
- Department of Biosciences and Medical BiologyParis Lodron University SalzburgSalzburgAustria
| | - Martin Himly
- Department of Biosciences and Medical BiologyParis Lodron University SalzburgSalzburgAustria
| | - Constantin Blöchl
- Department of Biosciences and Medical BiologyParis Lodron University SalzburgSalzburgAustria
| | - Christian G. Huber
- Department of Biosciences and Medical BiologyParis Lodron University SalzburgSalzburgAustria
| | | | - Nicole Meisner‐Kober
- Department of Biosciences and Medical BiologyParis Lodron University SalzburgSalzburgAustria
| |
Collapse
|
14
|
Li J, Zhong F, Li M, Liu Y, Wang L, Liu M, Li F, Zhang J, Wu J, Shi Y, Zhang Z, Tu X, Ruan K, Gao J. Two Binding Sites of SARS-CoV-2 Macrodomain 3 Probed by Oxaprozin and Meclomen. J Med Chem 2022; 65:15227-15237. [DOI: 10.1021/acs.jmedchem.2c01168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Jiao Li
- Ministry of Education Key Laboratory for Membrane-less Organelles & Cellular Dynamics, Biomedical Sciences and Health Laboratory of Anhui Province, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei230027, Anhui, P. R. China
| | - Fumei Zhong
- Ministry of Education Key Laboratory for Membrane-less Organelles & Cellular Dynamics, Biomedical Sciences and Health Laboratory of Anhui Province, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei230027, Anhui, P. R. China
| | - Mingwei Li
- Ministry of Education Key Laboratory for Membrane-less Organelles & Cellular Dynamics, Biomedical Sciences and Health Laboratory of Anhui Province, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei230027, Anhui, P. R. China
| | - Yaqian Liu
- Ministry of Education Key Laboratory for Membrane-less Organelles & Cellular Dynamics, Biomedical Sciences and Health Laboratory of Anhui Province, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei230027, Anhui, P. R. China
| | - Lei Wang
- Ministry of Education Key Laboratory for Membrane-less Organelles & Cellular Dynamics, Biomedical Sciences and Health Laboratory of Anhui Province, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei230027, Anhui, P. R. China
| | - Mingqing Liu
- Ministry of Education Key Laboratory for Membrane-less Organelles & Cellular Dynamics, Biomedical Sciences and Health Laboratory of Anhui Province, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei230027, Anhui, P. R. China
| | - Fudong Li
- Ministry of Education Key Laboratory for Membrane-less Organelles & Cellular Dynamics, Biomedical Sciences and Health Laboratory of Anhui Province, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei230027, Anhui, P. R. China
| | - Jiahai Zhang
- Ministry of Education Key Laboratory for Membrane-less Organelles & Cellular Dynamics, Biomedical Sciences and Health Laboratory of Anhui Province, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei230027, Anhui, P. R. China
| | - Jihui Wu
- Ministry of Education Key Laboratory for Membrane-less Organelles & Cellular Dynamics, Biomedical Sciences and Health Laboratory of Anhui Province, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei230027, Anhui, P. R. China
| | - Yunyu Shi
- Ministry of Education Key Laboratory for Membrane-less Organelles & Cellular Dynamics, Biomedical Sciences and Health Laboratory of Anhui Province, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei230027, Anhui, P. R. China
| | - Zhiyong Zhang
- Department of Physics, University of Science and Technology of China, Hefei230026, Anhui, P. R. China
| | - Xiaoming Tu
- Ministry of Education Key Laboratory for Membrane-less Organelles & Cellular Dynamics, Biomedical Sciences and Health Laboratory of Anhui Province, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei230027, Anhui, P. R. China
| | - Ke Ruan
- Ministry of Education Key Laboratory for Membrane-less Organelles & Cellular Dynamics, Biomedical Sciences and Health Laboratory of Anhui Province, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei230027, Anhui, P. R. China
| | - Jia Gao
- Ministry of Education Key Laboratory for Membrane-less Organelles & Cellular Dynamics, Biomedical Sciences and Health Laboratory of Anhui Province, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei230027, Anhui, P. R. China
| |
Collapse
|
15
|
Zilberzwige-Tal S, Gazit D, Adsi H, Gartner M, Behl R, Laor Bar-Yosef D, Gazit E. Engineered Riboswitch Nanocarriers as a Possible Disease-Modifying Treatment for Metabolic Disorders. ACS NANO 2022; 16:11733-11741. [PMID: 35815521 DOI: 10.1021/acsnano.2c02802] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Both DNA- and RNA-based nanotechnologies are remarkably useful for the engineering of molecular devices in vitro and are applied in a vast collection of applications. Yet, the ability to integrate functional nucleic acid nanostructures in applications outside of the lab requires overcoming their inherent degradation sensitivity and subsequent loss of function. Viruses are minimalistic yet sophisticated supramolecular assemblies, capable of shielding their nucleic acid content in nuclease-rich environments. Inspired by this natural ability, we engineered RNA-virus-like particles (VLPs) nanocarriers (NCs). We showed that the VLPs can function as an exceptional protective shell against nuclease-mediated degradation. We then harnessed biological recognition elements and demonstrated how engineered riboswitch NCs can act as a possible disease-modifying treatment for genetic metabolic disorders. The functional riboswitch is capable of selectively and specifically binding metabolites and preventing their self-assembly process and its downstream effects. When applying the riboswitch nanocarriers to an in vivo yeast model of adenine accumulation and self-assembly, significant inhibition of the sensitivity to adenine feeding was observed. In addition, using an amyloid-specific dye, we proved the riboswitch nanocarriers' ability to reduce the level of intracellular amyloid-like metabolite cytotoxic structures. The potential of this RNA therapeutic technology does not apply only to metabolic disorders, as it can be easily fine-tuned to be applied to other conditions and diseases.
Collapse
Affiliation(s)
- Shai Zilberzwige-Tal
- The Shmunis School of Biomedicine and Cancer Research, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Danielle Gazit
- The Shmunis School of Biomedicine and Cancer Research, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Hanaa Adsi
- The Shmunis School of Biomedicine and Cancer Research, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Myra Gartner
- The Shmunis School of Biomedicine and Cancer Research, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Rahat Behl
- The Shmunis School of Biomedicine and Cancer Research, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Dana Laor Bar-Yosef
- The Shmunis School of Biomedicine and Cancer Research, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Ehud Gazit
- The Shmunis School of Biomedicine and Cancer Research, Tel Aviv University, Tel Aviv 6997801, Israel
- Blavatnik Center for Drug Discovery, Tel Aviv University, Tel Aviv 6997801, Israel
- Department of Materials Science and Engineering Iby and Aladar Fleischman Faculty of Engineering, Tel Aviv University, Tel Aviv 6997801, Israel
| |
Collapse
|
16
|
The Coevolution of Biomolecules and Prebiotic Information Systems in the Origin of Life: A Visualization Model for Assembling the First Gene. Life (Basel) 2022; 12:life12060834. [PMID: 35743865 PMCID: PMC9225589 DOI: 10.3390/life12060834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 05/23/2022] [Accepted: 06/01/2022] [Indexed: 11/24/2022] Open
Abstract
Prebiotic information systems exist in three forms: analog, hybrid, and digital. The Analog Information System (AIS), manifested early in abiogenesis, was expressed in the chiral selection, nucleotide formation, self-assembly, polymerization, encapsulation of polymers, and division of protocells. It created noncoding RNAs by polymerizing nucleotides that gave rise to the Hybrid Information System (HIS). The HIS employed different species of noncoding RNAs, such as ribozymes, pre-tRNA and tRNA, ribosomes, and functional enzymes, including bridge peptides, pre-aaRS, and aaRS (aminoacyl-tRNA synthetase). Some of these hybrid components build the translation machinery step-by-step. The HIS ushered in the Digital Information System (DIS), where tRNA molecules become molecular architects for designing mRNAs step-by-step, employing their two distinct genetic codes. First, they created codons of mRNA by the base pair interaction (anticodon–codon mapping). Secondly, each charged tRNA transferred its amino acid information to the corresponding codon (codon–amino acid mapping), facilitated by an aaRS enzyme. With the advent of encoded mRNA molecules, the first genes emerged before DNA. With the genetic memory residing in the digital sequences of mRNA, a mapping mechanism was developed between each codon and its cognate amino acid. As more and more codons ‘remembered’ their respective amino acids, this mapping system developed the genetic code in their memory bank. We compared three kinds of biological information systems with similar types of human-made computer systems.
Collapse
|
17
|
Kumar S, Reddy Sannapureddi RK, Todankar CS, Ramanathan R, Biswas A, Sathyamoorthy B, Pradeepkumar PI. Bisindolylmaleimide Ligands Stabilize c-MYC G-Quadruplex DNA Structure and Downregulate Gene Expression. Biochemistry 2022; 61:1064-1076. [PMID: 35584037 DOI: 10.1021/acs.biochem.2c00116] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
G-Quadruplex (G4) structures play a pivotal role in diverse biological functions, including essential processes, such as telomere maintenance and gene regulation. G4 structures formed in functional regions of genomes are actively pursued toward therapeutics and are targeted by small-molecule ligands that alter their structure and/or stability. Herein, we report the synthesis of bisindolylmaleimide-based (BIM) ligands, which preferentially stabilize parallel G4 structures of c-MYC and c-KIT oncogenes over the telomeric h-RAS1 G4 and duplex DNAs. The preferential stabilization of parallel G4s with BIM ligands is further validated by the DNA polymerase stop assay, where stop products were only observed for templates containing the c-MYC G4 sequence. Nuclear magnetic resonance (NMR) titration studies indicate that the lead ligand BIM-Pr1 forms a 2:1 complex with c-MYC G4 DNA with a KD of 38 ± 5 μM. The BIM ligand stacks at the 5' and 3' quartets, with molecular modeling and dynamics studies supporting the proposed binding mode. The ligand is cytotoxic to HeLa cells and downregulates c-MYC gene expression. Collectively, the results present bisindolylmaleimide scaffolds as novel and powerful G4 targeting agents.
Collapse
Affiliation(s)
- Satendra Kumar
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | | | - Chaitra S Todankar
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - R Ramanathan
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Annyesha Biswas
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Bharathwaj Sathyamoorthy
- Department of Chemistry, Indian Institute of Science Education and Research, Bhopal 462066, India
| | - P I Pradeepkumar
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| |
Collapse
|
18
|
Barge LM, Rodriguez LE, Weber JM, Theiling BP. Determining the "Biosignature Threshold" for Life Detection on Biotic, Abiotic, or Prebiotic Worlds. ASTROBIOLOGY 2022; 22:481-493. [PMID: 34898272 DOI: 10.1089/ast.2021.0079] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The field of prebiotic chemistry has demonstrated that complex organic chemical systems that exhibit various life-like properties can be produced abiotically in the laboratory. Understanding these chemical systems is important for astrobiology and life detection since we do not know the extent to which prebiotic chemistry might exist or have existed on other worlds. Nor do we know what signatures are diagnostic of an extant or "failed" prebiotic system. On Earth, biology has suppressed most abiotic organic chemistry and overprints geologic records of prebiotic chemistry; therefore, it is difficult to validate whether chemical signatures from future planetary missions are remnant or extant prebiotic systems. The "biosignature threshold" between whether a chemical signature is more likely to be produced by abiotic versus biotic chemistry on a given world could vary significantly, depending on the particular environment, and could change over time, especially if life were to emerge and diversify on that world. To interpret organic signatures detected during a planetary mission, we advocate for (1) gaining a more complete understanding of prebiotic/abiotic chemical possibilities in diverse planetary environments and (2) involving experimental prebiotic samples as analogues when generating comparison libraries for "life-detection" mission instruments.
Collapse
Affiliation(s)
- Laura M Barge
- NASA Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA
| | - Laura E Rodriguez
- NASA Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA
| | - Jessica M Weber
- NASA Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA
| | | |
Collapse
|
19
|
Sithamparam M, Satthiyasilan N, Chen C, Jia TZ, Chandru K. A material-based panspermia hypothesis: The potential of polymer gels and membraneless droplets. Biopolymers 2022; 113:e23486. [PMID: 35148427 DOI: 10.1002/bip.23486] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 01/27/2022] [Accepted: 01/28/2022] [Indexed: 01/08/2023]
Abstract
The Panspermia hypothesis posits that either life's building blocks (molecular Panspermia) or life itself (organism-based Panspermia) may have been interplanetarily transferred to facilitate the origins of life (OoL) on a given planet, complementing several current OoL frameworks. Although many spaceflight experiments were performed in the past to test for potential terrestrial organisms as Panspermia seeds, it is uncertain whether such organisms will likely "seed" a new planet even if they are able to survive spaceflight. Therefore, rather than using organisms, using abiotic chemicals as seeds has been proposed as part of the molecular Panspermia hypothesis. Here, as an extension of this hypothesis, we introduce and review the plausibility of a polymeric material-based Panspermia seed (M-BPS) as a theoretical concept, where the type of polymeric material that can function as a M-BPS must be able to: (1) survive spaceflight and (2) "function", i.e., contingently drive chemical evolution toward some form of abiogenesis once arriving on a foreign planet. We use polymeric gels as a model example of a potential M-BPS. Polymeric gels that can be prebiotically synthesized on one planet (such as polyester gels) could be transferred to another planet via meteoritic transfer, where upon landing on a liquid bearing planet, can assemble into structures containing cellular-like characteristics and functionalities. Such features presupposed that these gels can assemble into compartments through phase separation to accomplish relevant functions such as encapsulation of primitive metabolic, genetic and catalytic materials, exchange of these materials, motion, coalescence, and evolution. All of these functions can result in the gels' capability to alter local geochemical niches on other planets, thereby allowing chemical evolution to lead to OoL events.
Collapse
Affiliation(s)
- Mahendran Sithamparam
- Space Science Center (ANGKASA), Institute of Climate Change, National University of Malaysia (UKM), Bangi, Selangor, Malaysia
| | - Nirmell Satthiyasilan
- Space Science Center (ANGKASA), Institute of Climate Change, National University of Malaysia (UKM), Bangi, Selangor, Malaysia
| | - Chen Chen
- Earth-Life Science Institute, Tokyo Institute of Technology, Tokyo, Japan
| | - Tony Z Jia
- Earth-Life Science Institute, Tokyo Institute of Technology, Tokyo, Japan.,Blue Marble Space Institute of Science, Seattle, Washington, USA
| | - Kuhan Chandru
- Space Science Center (ANGKASA), Institute of Climate Change, National University of Malaysia (UKM), Bangi, Selangor, Malaysia
| |
Collapse
|
20
|
Köksal ES, Põldsalu I, Friis H, Mojzsis SJ, Bizzarro M, Gözen I. Spontaneous Formation of Prebiotic Compartment Colonies on Hadean Earth and Pre‐Noachian Mars**. CHEMSYSTEMSCHEM 2022. [DOI: 10.1002/syst.202100040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Elif S. Köksal
- Centre for Molecular Medicine Norway Faculty of Medicine University of Oslo 0318 Oslo Norway
| | - Inga Põldsalu
- Centre for Molecular Medicine Norway Faculty of Medicine University of Oslo 0318 Oslo Norway
| | - Henrik Friis
- Natural History Museum University of Oslo Postboks 1172 Blindern 0318 Oslo Norway
| | - Stephen J. Mojzsis
- Research Centre for Astronomy and Earth Sciences 15–17 Konkoly Thege Miklós Road Budapest 1121 Hungary
- Department of Lithospheric Research University of Vienna UZA 2, Althanstraße 14 1090 Vienna Austria
- Department of Geological Sciences University of Colorado UCB 399, 2200 Colorado Avenue Boulder CO 80309-0399 USA
| | - Martin Bizzarro
- Centre for Star and Planet Formation GLOBE Institute University of Copenhagen 1350 Copenhagen K Denmark
| | - Irep Gözen
- Centre for Molecular Medicine Norway Faculty of Medicine University of Oslo 0318 Oslo Norway
- Department of Chemistry, Faculty of Mathematics and Natural Sciences University of Oslo 0315 Oslo Norway
| |
Collapse
|
21
|
Sebastianelli L, Mansy SS. Origins of life: Encapsulating Darwinian evolution. Curr Biol 2022; 32:R44-R46. [PMID: 35015996 DOI: 10.1016/j.cub.2021.11.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Encapsulation of RNA within model protocells promotes folding, promotes the binding of substrates, promotes catalysis, and protects against denaturation. A new study argues for an active role of lipid vesicles in the origins of life.
Collapse
Affiliation(s)
| | - Sheref S Mansy
- Department of Chemistry, University of Alberta, Edmonton, AB T6G 2G2, Canada.
| |
Collapse
|
22
|
Peng H, Lelievre A, Landenfeld K, Müller S, Chen IA. Vesicle encapsulation stabilizes intermolecular association and structure formation of functional RNA and DNA. Curr Biol 2022; 32:86-96.e6. [PMID: 34762821 PMCID: PMC8752491 DOI: 10.1016/j.cub.2021.10.047] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 09/02/2021] [Accepted: 10/21/2021] [Indexed: 01/12/2023]
Abstract
During the origin of life, encapsulation of RNA inside vesicles is believed to have been a defining feature of the earliest cells (protocells). The confined biophysical environment provided by membrane encapsulation differs from that of bulk solution and has been shown to increase activity as well as evolutionary rate for functional RNA. However, the structural basis of the effect on RNA has not been clear. Here, we studied how encapsulation of the hairpin ribozyme inside model protocells affects ribozyme kinetics, ribozyme folding into the active conformation, and cleavage and ligation activities. We further examined the effect of encapsulation on the folding of a stem-loop RNA structure and on the formation of a triplex structure in a pH-sensitive DNA switch. The results indicate that encapsulation promotes RNA-RNA association, both intermolecular and intramolecular, and also stabilizes tertiary folding, including the docked conformation characteristic of the active hairpin ribozyme and the triplex structure. The effects of encapsulation were sufficient to rescue the activity of folding-deficient mutants of the hairpin ribozyme. Stabilization of multiple modes of nucleic acid folding and interaction thus enhanced the activity of encapsulated nucleic acids. Increased association between RNA molecules may facilitate the formation of more complex structures and cooperative interactions. These effects could promote the emergence of biological functions in an "RNA world" and may have utility in the construction of minimal synthetic cells.
Collapse
Affiliation(s)
- Huan Peng
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, CA 90095, USA
| | - Amandine Lelievre
- Institute of Biochemistry, University of Greifswald, 17487 Greifswald, Germany
| | | | - Sabine Müller
- Institute of Biochemistry, University of Greifswald, 17487 Greifswald, Germany
| | - Irene A. Chen
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, CA 90095, USA,Lead Contact:
| |
Collapse
|
23
|
Ion D, Niculescu AG, Păduraru DN, Andronic O, Mușat F, Grumezescu AM, Bolocan A. An Up-to-Date Review of Natural Nanoparticles for Cancer Management. Pharmaceutics 2021; 14:18. [PMID: 35056915 PMCID: PMC8779479 DOI: 10.3390/pharmaceutics14010018] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 12/14/2021] [Accepted: 12/20/2021] [Indexed: 01/10/2023] Open
Abstract
Cancer represents one of the leading causes of morbidity and mortality worldwide, imposing an urgent need to develop more efficient treatment alternatives. In this respect, much attention has been drawn from conventional cancer treatments to more modern approaches, such as the use of nanotechnology. Extensive research has been done for designing innovative nanoparticles able to specifically target tumor cells and ensure the controlled release of anticancer agents. To avoid the potential toxicity of synthetic materials, natural nanoparticles started to attract increasing scientific interest. In this context, this paper aims to review the most important natural nanoparticles used as active ingredients (e.g., polyphenols, polysaccharides, proteins, and sterol-like compounds) or as carriers (e.g., proteins, polysaccharides, viral nanoparticles, and exosomes) of various anticancer moieties, focusing on their recent applications in treating diverse malignancies.
Collapse
Affiliation(s)
- Daniel Ion
- General Surgery Department, Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania; (D.I.); (D.N.P.); (O.A.); (F.M.); (A.B.)
- 3rd Clinic of General and Emergency Surgery, University Emergency Hospital of Bucharest, 050098 Bucharest, Romania
| | - Adelina-Gabriela Niculescu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, Politehnica University of Bucharest, 011061 Bucharest, Romania;
| | - Dan Nicolae Păduraru
- General Surgery Department, Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania; (D.I.); (D.N.P.); (O.A.); (F.M.); (A.B.)
- 3rd Clinic of General and Emergency Surgery, University Emergency Hospital of Bucharest, 050098 Bucharest, Romania
| | - Octavian Andronic
- General Surgery Department, Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania; (D.I.); (D.N.P.); (O.A.); (F.M.); (A.B.)
- 3rd Clinic of General and Emergency Surgery, University Emergency Hospital of Bucharest, 050098 Bucharest, Romania
| | - Florentina Mușat
- General Surgery Department, Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania; (D.I.); (D.N.P.); (O.A.); (F.M.); (A.B.)
- 3rd Clinic of General and Emergency Surgery, University Emergency Hospital of Bucharest, 050098 Bucharest, Romania
| | - Alexandru Mihai Grumezescu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, Politehnica University of Bucharest, 011061 Bucharest, Romania;
- Research Institute of the University of Bucharest—ICUB, University of Bucharest, 050657 Bucharest, Romania
- Academy of Romanian Scientists, Ilfov No. 3, 050044 Bucharest, Romania
| | - Alexandra Bolocan
- General Surgery Department, Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania; (D.I.); (D.N.P.); (O.A.); (F.M.); (A.B.)
- 3rd Clinic of General and Emergency Surgery, University Emergency Hospital of Bucharest, 050098 Bucharest, Romania
| |
Collapse
|
24
|
Suga K, Matsui D, Watanabe N, Okamoto Y, Umakoshi H. Insight into the Exosomal Membrane: From Viewpoints of Membrane Fluidity and Polarity. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:11195-11202. [PMID: 34528800 DOI: 10.1021/acs.langmuir.1c00687] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Numerous research studies have been done for exosomes, particularly focusing on membrane proteins and included nucleic acids, and the volume of the knowledge about the lipids in the exosomal membrane has been increasing. However, the dynamic property of the exosomal membrane is hardly studied. By employing milk exosome as an example, herein the exosomal membrane was characterized focusing on the membrane fluidity and polarity. The lipid composition and phase state of milk exosome (exosome from bovine milk) were estimated. The milk exosome contained enriched Chol (43.6 mol % in total lipid extracts), which made the membrane in the liquid-ordered (lo) phase by interacting with phospholipids. To suggest a model of exosomal vesicle cargo, the liposome compositions that mimic milk exosome were studied: liposomes were made of cholesterol (Chol), milk sphingomyelin (milk SM), and 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC). By using fluorescent probes 1,6-diphenyl-1,3,5-hexatriene and 6-dodecanoyl-2-dimethylaminonaphthalene, the microenvironments of submicron-sized membranes of exosome and model liposomes were investigated. The membrane fluidity of milk exosome was slightly higher than those of Chol/milk SM/POPC liposomes with a similar content of Chol, suggesting the presence of enriched unsaturated lipids. The most purposeful membrane property was obtained by the liposome composition of Chol/milk SM/POPC = 40/15/45. From the above, it is concluded that Chol is a fundamental component of the milk exosomal membrane to construct the enriched lo phase, which could increase the membrane rigidity and contribute to the function of exosome.
Collapse
Affiliation(s)
- Keishi Suga
- Division of Chemical Engineering, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama-cho, Toyonaka, Osaka 5608531, Japan
- Department of Chemical Engineering, Tohoku University, 6-6-07 Aoba, Aramaki-aza, Aoba-ku, Sendai, Miyagi 9808579, Japan
| | - Daiki Matsui
- Division of Chemical Engineering, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama-cho, Toyonaka, Osaka 5608531, Japan
| | - Nozomi Watanabe
- Division of Chemical Engineering, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama-cho, Toyonaka, Osaka 5608531, Japan
| | - Yukihiro Okamoto
- Division of Chemical Engineering, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama-cho, Toyonaka, Osaka 5608531, Japan
| | - Hiroshi Umakoshi
- Division of Chemical Engineering, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama-cho, Toyonaka, Osaka 5608531, Japan
| |
Collapse
|
25
|
Higgs PG. When Is a Reaction Network a Metabolism? Criteria for Simple Metabolisms That Support Growth and Division of Protocells. Life (Basel) 2021; 11:life11090966. [PMID: 34575115 PMCID: PMC8469938 DOI: 10.3390/life11090966] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 09/08/2021] [Accepted: 09/08/2021] [Indexed: 11/16/2022] Open
Abstract
With the aim of better understanding the nature of metabolism in the first cells and the relationship between the origin of life and the origin of metabolism, we propose three criteria that a chemical reaction system must satisfy in order to constitute a metabolism that would be capable of sustaining growth and division of a protocell. (1) Biomolecules produced by the reaction system must be maintained at high concentration inside the cell while they remain at low or zero concentration outside. (2) The total solute concentration inside the cell must be higher than outside, so there is a positive osmotic pressure that drives cell growth. (3) The metabolic rate (i.e., the rate of mass throughput) must be higher inside the cell than outside. We give examples of small-molecule reaction systems that satisfy these criteria, and others which do not, firstly considering fixed-volume compartments, and secondly, lipid vesicles that can grow and divide. If the criteria are satisfied, and if a supply of lipid is available outside the cell, then continued growth of membrane surface area occurs alongside the increase in volume of the cell. If the metabolism synthesizes more lipid inside the cell, then the membrane surface area can increase proportionately faster than the cell volume, in which case cell division is possible. The three criteria can be satisfied if the reaction system is bistable, because different concentrations can exist inside and out while the rate constants of all the reactions are the same. If the reaction system is monostable, the criteria can only be satisfied if there is a reason why the rate constants are different inside and out (for example, the decay rates of biomolecules are faster outside, or the formation rates of biomolecules are slower outside). If this difference between inside and outside does not exist, a monostable reaction system cannot sustain cell growth and division. We show that a reaction system for template-directed RNA polymerization can satisfy the requirements for a metabolism, even if the small-molecule reactions that make the single nucleotides do not.
Collapse
Affiliation(s)
- Paul G Higgs
- Department of Physics and Astronomy, Origins Institute, McMaster University, Hamilton, ON L8S 4M1, Canada
| |
Collapse
|
26
|
Ji Y, Mu W, Wu H, Qiao Y. Directing Transition of Synthetic Protocell Models via Physicochemical Cues-Triggered Interfacial Dynamic Covalent Chemistry. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2101187. [PMID: 34319646 PMCID: PMC8456217 DOI: 10.1002/advs.202101187] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 06/07/2021] [Indexed: 05/15/2023]
Abstract
As the preliminary synthetic analogs of living cells, protocells with life-like features serve as a versatile platform to explore the origin of life. Although protocells constructed from multiple components have been developed, the transition of primitive cellular compartments toward structural complexity and advanced function remains a scientific challenge. Herein, a programmable pathway is established to exploit a simple chemistry to construct structural transition of protocell models from emulsion droplets, nanocapsules to molecularly crowded droplets. The transitional process toward distinct cell-like compartments is driven by interfacial self-assembly of simple components and regulated by physicochemical cues (e.g., mechanical force, solvent evaporation, acid/base equilibrium) triggered dynamic covalent chemistry. These protocell models are further studied by comparing their compartmentalization behavior, sequestration efficiency, and the ability to enrich biomolecules (e.g., enzyme and substrate) toward catalytic reaction or biological activity within the compartments. The results showcase physiochemical cues-driven programmable transition of life-like compartments toward functionalization, and offer a new step toward the design of living soft materials.
Collapse
Affiliation(s)
- Yanglimin Ji
- Beijing National Laboratory for Molecular Sciences (BNLMS)Laboratory of Polymer Physics and ChemistryCAS Research/Education Center for Excellence in Molecular SciencesInstitute of ChemistryChinese Academy of SciencesBeijing100190China
- University of Chinese Academy of SciencesBeijing100049China
| | - Wenjing Mu
- Beijing National Laboratory for Molecular Sciences (BNLMS)Laboratory of Polymer Physics and ChemistryCAS Research/Education Center for Excellence in Molecular SciencesInstitute of ChemistryChinese Academy of SciencesBeijing100190China
- University of Chinese Academy of SciencesBeijing100049China
| | - Hua Wu
- Beijing National Laboratory for Molecular Sciences (BNLMS)Laboratory of Polymer Physics and ChemistryCAS Research/Education Center for Excellence in Molecular SciencesInstitute of ChemistryChinese Academy of SciencesBeijing100190China
- University of Chinese Academy of SciencesBeijing100049China
| | - Yan Qiao
- Beijing National Laboratory for Molecular Sciences (BNLMS)Laboratory of Polymer Physics and ChemistryCAS Research/Education Center for Excellence in Molecular SciencesInstitute of ChemistryChinese Academy of SciencesBeijing100190China
- University of Chinese Academy of SciencesBeijing100049China
| |
Collapse
|
27
|
Martin N, Douliez J. Fatty Acid Vesicles and Coacervates as Model Prebiotic Protocells. CHEMSYSTEMSCHEM 2021. [DOI: 10.1002/syst.202100024] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Nicolas Martin
- Univ. Bordeaux CNRS Centre de Recherche Paul Pascal UMR 5031 115 Avenue du Dr. Albert Schweitzer 33600 Pessac France
| | - Jean‐Paul Douliez
- Univ. Bordeaux INRAE Biologie du Fruit et Pathologie UMR 1332 71 Avenue Edouard Bourlaux 33140 Villenave d'Ornon France
| |
Collapse
|
28
|
Abstract
A major goal of synthetic biology is to understand the transition between non-living matter and life. The bottom-up development of an artificial cell would provide a minimal system with which to study the border between chemistry and biology. So far, a fully synthetic cell has remained elusive, but chemists are progressing towards this goal by reconstructing cellular subsystems. Cell boundaries, likely in the form of lipid membranes, were necessary for the emergence of life. In addition to providing a protective barrier between cellular cargo and the external environment, lipid compartments maintain homeostasis with other subsystems to regulate cellular processes. In this Review, we examine different chemical approaches to making cell-mimetic compartments. Synthetic strategies to drive membrane formation and function, including bioorthogonal ligations, dissipative self-assembly and reconstitution of biochemical pathways, are discussed. Chemical strategies aim to recreate the interactions between lipid membranes, the external environment and internal biomolecules, and will clarify our understanding of life at the interface of chemistry and biology.
Collapse
|
29
|
The Origin(s) of Cell(s): Pre-Darwinian Evolution from FUCAs to LUCA : To Carl Woese (1928-2012), for his Conceptual Breakthrough of Cellular Evolution. J Mol Evol 2021; 89:427-447. [PMID: 34173011 DOI: 10.1007/s00239-021-10014-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Accepted: 05/29/2021] [Indexed: 10/21/2022]
Abstract
The coming of the Last Universal Cellular Ancestor (LUCA) was the singular watershed event in the making of the biotic world. If the coming of LUCA marked the crossing of the "Darwinian Threshold", then pre-LUCA evolution must have been Pre-Darwinian and at least partly non-Darwinian. But how did Pre-Darwinian evolution before LUCA actually operate? I broaden our understanding of the central mechanism of biological evolution (i.e., variation-selection-inheritance) and then extend this broadened understanding to its natural starting point: the origin(s) of the First Universal Cellular Ancestors (FUCAs) before LUCA. My hypothesis centers upon vesicles' making-and-remaking as variation and competition as selection. More specifically, I argue that vesicles' acquisition and merger, via breaking-and-repacking, proto-endocytosis, proto-endosymbiosis, and other similar processes had been a central force of both variation and selection in the pre-Darwinian epoch. These new perspectives shed important new light upon the origin of FUCAs and their subsequent evolution into LUCA.
Collapse
|
30
|
Agarwal S, Klocke MA, Pungchai PE, Franco E. Dynamic self-assembly of compartmentalized DNA nanotubes. Nat Commun 2021; 12:3557. [PMID: 34117248 PMCID: PMC8196065 DOI: 10.1038/s41467-021-23850-1] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 05/20/2021] [Indexed: 02/05/2023] Open
Abstract
Bottom-up synthetic biology aims to engineer artificial cells capable of responsive behaviors by using a minimal set of molecular components. An important challenge toward this goal is the development of programmable biomaterials that can provide active spatial organization in cell-sized compartments. Here, we demonstrate the dynamic self-assembly of nucleic acid (NA) nanotubes inside water-in-oil droplets. We develop methods to encapsulate and assemble different types of DNA nanotubes from programmable DNA monomers, and demonstrate temporal control of assembly via designed pathways of RNA production and degradation. We examine the dynamic response of encapsulated nanotube assembly and disassembly with the support of statistical analysis of droplet images. Our study provides a toolkit of methods and components to build increasingly complex and functional NA materials to mimic life-like functions in synthetic cells.
Collapse
Affiliation(s)
- Siddharth Agarwal
- Department of Bioengineering, University of California, Los Angeles, CA, USA
| | - Melissa A Klocke
- Department of Mechanical Engineering, University of California, Riverside, CA, USA
- Department of Mechanical and Aerospace Engineering, University of California, Los Angeles, CA, USA
| | - Passa E Pungchai
- Department of Bioengineering, University of California, Los Angeles, CA, USA
| | - Elisa Franco
- Department of Bioengineering, University of California, Los Angeles, CA, USA.
- Department of Mechanical Engineering, University of California, Riverside, CA, USA.
- Department of Mechanical and Aerospace Engineering, University of California, Los Angeles, CA, USA.
- Molecular Biology Institute, University of California, Los Angeles, CA, USA.
| |
Collapse
|
31
|
Lai YC, Liu Z, Chen IA. Encapsulation of ribozymes inside model protocells leads to faster evolutionary adaptation. Proc Natl Acad Sci U S A 2021; 118:e2025054118. [PMID: 34001592 PMCID: PMC8166191 DOI: 10.1073/pnas.2025054118] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Functional biomolecules, such as RNA, encapsulated inside a protocellular membrane are believed to have comprised a very early, critical stage in the evolution of life, since membrane vesicles allow selective permeability and create a unit of selection enabling cooperative phenotypes. The biophysical environment inside a protocell would differ fundamentally from bulk solution due to the microscopic confinement. However, the effect of the encapsulated environment on ribozyme evolution has not been previously studied experimentally. Here, we examine the effect of encapsulation inside model protocells on the self-aminoacylation activity of tens of thousands of RNA sequences using a high-throughput sequencing assay. We find that encapsulation of these ribozymes generally increases their activity, giving encapsulated sequences an advantage over nonencapsulated sequences in an amphiphile-rich environment. In addition, highly active ribozymes benefit disproportionately more from encapsulation. The asymmetry in fitness gain broadens the distribution of fitness in the system. Consistent with Fisher's fundamental theorem of natural selection, encapsulation therefore leads to faster adaptation when the RNAs are encapsulated inside a protocell during in vitro selection. Thus, protocells would not only provide a compartmentalization function but also promote activity and evolutionary adaptation during the origin of life.
Collapse
Affiliation(s)
- Yei-Chen Lai
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, CA 90095
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095
| | - Ziwei Liu
- Medical Research Council Laboratory of Molecular Biology, Cambridge Biomedical Campus, Cambridge CB2 0QH, United Kingdom
| | - Irene A Chen
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, CA 90095;
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095
| |
Collapse
|
32
|
Zhang Y, Chen Y, Yang X, He X, Li M, Liu S, Wang K, Liu J, Mann S. Giant Coacervate Vesicles As an Integrated Approach to Cytomimetic Modeling. J Am Chem Soc 2021; 143:2866-2874. [PMID: 33566601 DOI: 10.1021/jacs.0c12494] [Citation(s) in RCA: 93] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Although giant unilamellar vesicles (GUVs) have been extensively studied as synthetic cell-like microcompartments, their applicability as cytomimetic models is severely compromised by low levels of membrane permeability, low encapsulation efficiencies, and high physicochemical instability. Here, we develop an integrated cytomimetic model comprising a macromolecularly crowded interior with high sequestration efficiency and enclosed within a phospholipid membrane that is permeable to molecules below a molecular weight cutoff of ca. 4 kDa. The protocells are readily prepared by spontaneous assembly of a phospholipid membrane on the surface of preformed polynucleotide/polysaccharide coacervate microdroplets and are designated as giant coacervate vesicles (GCVs). Partial anchoring of the GCV membrane to the underlying coacervate phase results in increased robustness, lower membrane fluidity, and increased permeability compared with GUV counterparts. As a consequence, enzyme and ribozyme catalysis can be triggered in the molecularly crowded interior of the GCV but not inside the GUVs when small molecule substrates or inducers are present in the external environment. By integrating processes of membrane-mediated compartmentalization and liquid-liquid microphase separation, GCVs could offer substantial advantages as cytomimetic models, synthetic protocells, and artificial biomolecular microreactors.
Collapse
Affiliation(s)
- Yanwen Zhang
- College of Chemistry and Chemical Engineering, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082, P. R. China
| | - Yufeng Chen
- College of Chemistry and Chemical Engineering, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082, P. R. China
| | - Xiaohai Yang
- College of Chemistry and Chemical Engineering, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082, P. R. China
| | - Xiaoxiao He
- College of Biology, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082, P. R. China
| | | | - Songyang Liu
- College of Chemistry and Chemical Engineering, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082, P. R. China
| | - Kemin Wang
- College of Chemistry and Chemical Engineering, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082, P. R. China
| | - Jianbo Liu
- College of Chemistry and Chemical Engineering, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082, P. R. China
| | - Stephen Mann
- School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| |
Collapse
|
33
|
Zerze GH, Stillinger FH, Debenedetti PG. Thermodynamics of DNA Hybridization from Atomistic Simulations. J Phys Chem B 2021; 125:771-779. [PMID: 33434025 DOI: 10.1021/acs.jpcb.0c09237] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Studying DNA hybridization equilibrium at atomistic length scales, either via molecular dynamics (MD) or through commonly used advanced sampling approaches, is notoriously difficult. In this work, we describe an order-parameter-based advanced sampling technique to calculate the free energy of hybridization, and estimate the melting temperature of DNA oligomers at atomistic resolution. The free energy landscapes are reported as a function of a native-topology-based order parameter for the Drew-Dickerson dodecamer and for a range of DNA decamer sequences of different GC content. Our estimated melting temperatures match the experimental numbers within ±15 °C. As a test of the numerical reliability of the procedures employed, it was verified that the predicted free energy surfaces and melting temperatures of the d- and l-enantiomers of the Drew-Dickerson dodecamer were indistinguishable within numerical accuracy.
Collapse
Affiliation(s)
- Gül H Zerze
- Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey 08544, United States
| | - Frank H Stillinger
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Pablo G Debenedetti
- Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey 08544, United States
| |
Collapse
|
34
|
Sarkar S, Das S, Dagar S, Joshi MP, Mungi CV, Sawant AA, Patki GM, Rajamani S. Prebiological Membranes and Their Role in the Emergence of Early Cellular Life. J Membr Biol 2020; 253:589-608. [PMID: 33200235 DOI: 10.1007/s00232-020-00155-w] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 11/08/2020] [Indexed: 01/30/2023]
Abstract
Membrane compartmentalization is a fundamental feature of contemporary cellular life. Given this, it is rational to assume that at some stage in the early origins of life, membrane compartments would have potentially emerged to form a dynamic semipermeable barrier in primitive cells (protocells), protecting them from their surrounding environment. It is thought that such prebiological membranes would likely have played a crucial role in the emergence and evolution of life on the early Earth. Extant biological membranes are highly organized and complex, which is a consequence of a protracted evolutionary history. On the other hand, prebiotic membrane assemblies, which are thought to have preceded sophisticated contemporary membranes, are hypothesized to have been relatively simple and composed of single chain amphiphiles. Recent studies indicate that the evolution of prebiotic membranes potentially resulted from interactions between the membrane and its physicochemical environment. These studies have also speculated on the origin, composition, function and influence of environmental conditions on protocellular membranes as the niche parameters would have directly influenced their composition and biophysical properties. Nonetheless, the evolutionary pathways involved in the transition from prebiological membranes to contemporary membranes are largely unknown. This review critically evaluates existing research on prebiotic membranes in terms of their probable origin, composition, energetics, function and evolution. Notably, we outline new approaches that can further our understanding about how prebiotic membranes might have evolved in response to relevant physicochemical parameters that would have acted as pertinent selection pressures on the early Earth.
Collapse
Affiliation(s)
- Susovan Sarkar
- Department of Biology, Indian Institute of Science Education and Research, Pune, 411008, India
| | - Souradeep Das
- Department of Biology, Indian Institute of Science Education and Research, Pune, 411008, India
| | - Shikha Dagar
- Department of Biology, Indian Institute of Science Education and Research, Pune, 411008, India
| | - Manesh Prakash Joshi
- Department of Biology, Indian Institute of Science Education and Research, Pune, 411008, India
| | - Chaitanya V Mungi
- Department of Biology, Indian Institute of Science Education and Research, Pune, 411008, India
| | - Anupam A Sawant
- Department of Biology, Indian Institute of Science Education and Research, Pune, 411008, India
| | - Gauri M Patki
- Department of Biology, Indian Institute of Science Education and Research, Pune, 411008, India
| | - Sudha Rajamani
- Department of Biology, Indian Institute of Science Education and Research, Pune, 411008, India.
| |
Collapse
|
35
|
Mao X, Liu M, Yan L, Deng M, Li F, Li M, Wang F, Li J, Wang L, Tian Y, Fan C, Zuo X. Programming Biomimetically Confined Aptamers with DNA Frameworks. ACS NANO 2020; 14:8776-8783. [PMID: 32484652 DOI: 10.1021/acsnano.0c03362] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Active sites of proteins are generally encapsulated within three-dimensional peptide scaffolds that provide the molecular-scale confinement microenvironment. Nevertheless, the ability to tune thermodynamic stability in biomimetic molecular confinement relies on the macromolecular crowding effect of lack of stoichiometry and reconfigurability. Here, we report a framework nucleic acid (FNA)-based strategy to increase thermodynamic stability of aptamers. We demonstrate that the molecular-scale confinement increases the thermodynamic stability of aptamers via facilitated folding kinetics, which is confirmed by the single-molecule FRET (smFRET). Unfavorable conformations of aptamers are restricted as revealed by the Monte Carlo simulation. The binding affinity of the DNA framework-confined aptamer is improved by ∼3-fold. With a similar strategy we improve the catalytic activity of hemin-binding aptamer. Our approach thus shows high potential for designing protein-mimicking DNA nanostructures with enhanced binding affinity and catalytic activity for biosensing and biomedical engineering.
Collapse
Affiliation(s)
- Xiuhai Mao
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Mengmeng Liu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, Department of Chemistry, School of Chemistry and Molecular Engineering, East China Normal University, Dongchuan Road 500, Shanghai 200241, China
| | - Lei Yan
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Mengying Deng
- Division of Physical Biology, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
- Bioimaging Center, Shanghai Synchrotron Radiation Facility, Zhangjiang Laboratory, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China
| | - Fan Li
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Min Li
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Fei Wang
- Joint Research Center for Precision Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital South Campus, Southern Medical University Affiliated Fengxian Hospital, Shanghai 201499, China
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Institute of Translational Medicine, Shanghai Jiao Tong University,, Shanghai 200240, China
| | - Jiang Li
- Division of Physical Biology, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
- Bioimaging Center, Shanghai Synchrotron Radiation Facility, Zhangjiang Laboratory, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China
| | - Lihua Wang
- Division of Physical Biology, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
- Bioimaging Center, Shanghai Synchrotron Radiation Facility, Zhangjiang Laboratory, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China
| | - Yang Tian
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, Department of Chemistry, School of Chemistry and Molecular Engineering, East China Normal University, Dongchuan Road 500, Shanghai 200241, China
| | - Chunhai Fan
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Institute of Translational Medicine, Shanghai Jiao Tong University,, Shanghai 200240, China
| | - Xiaolei Zuo
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Institute of Translational Medicine, Shanghai Jiao Tong University,, Shanghai 200240, China
| |
Collapse
|
36
|
Toparlak ÖD, Karki M, Egas Ortuno V, Krishnamurthy R, Mansy SS. Cyclophospholipids Increase Protocellular Stability to Metal Ions. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e1903381. [PMID: 31523894 DOI: 10.1002/smll.201903381] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Revised: 08/21/2019] [Indexed: 06/10/2023]
Abstract
Model protocells have long been constructed with fatty acids, because these lipids are prebiotically plausible and can, at least theoretically, support a protocell life cycle. However, fatty acid protocells are stable only within a narrow range of pH and metal ion concentration. This instability is particularly problematic as the early Earth would have had a range of conditions, and extant life is completely reliant on metal ions for catalysis and the folding and activity of biological polymers. Here, prebiotically plausible monoacyl cyclophospholipids are shown to form robust vesicles that survive a broad range of pH and high concentrations of Mg2+ , Ca2+ , and Na+ . Importantly, stability to Mg2+ and Ca2+ is improved by the presence of environmental concentrations of Na+ . These results suggest that cyclophospholipids, or lipids with similar characteristics, may have played a central role during the emergence of Darwinian evolution.
Collapse
Affiliation(s)
- Ö Duhan Toparlak
- Department CIBIO, University of Trento, via Sommarive 9, 38123, Povo, Italy
| | - Megha Karki
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Veronica Egas Ortuno
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Ramanarayanan Krishnamurthy
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Sheref S Mansy
- Department CIBIO, University of Trento, via Sommarive 9, 38123, Povo, Italy
| |
Collapse
|
37
|
Bartlett S, Wong ML. Defining Lyfe in the Universe: From Three Privileged Functions to Four Pillars. Life (Basel) 2020; 10:E42. [PMID: 32316364 PMCID: PMC7235751 DOI: 10.3390/life10040042] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 04/12/2020] [Accepted: 04/13/2020] [Indexed: 01/08/2023] Open
Abstract
Motivated by the need to paint a more general picture of what life is-and could be-with respect to the rest of the phenomena of the universe, we propose a new vocabulary for astrobiological research. Lyfe is defined as any system that fulfills all four processes of the living state, namely: dissipation, autocatalysis, homeostasis, and learning. Life is defined as the instance of lyfe that we are familiar with on Earth, one that uses a specific organometallic molecular toolbox to record information about its environment and achieve dynamical order by dissipating certain planetary disequilibria. This new classification system allows the astrobiological community to more clearly define the questions that propel their research-e.g., whether they are developing a historical narrative to explain the origin of life (on Earth), or a universal narrative for the emergence of lyfe, or whether they are seeking signs of life specifically, or lyfe at large across the universe. While the concept of "life as we don't know it" is not new, the four pillars of lyfe offer a novel perspective on the living state that is indifferent to the particular components that might produce it.
Collapse
Affiliation(s)
- Stuart Bartlett
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125, USA
- Earth-Life Science Institute, Tokyo Institute of Technology, Tokyo 152-8550, Japan
| | - Michael L. Wong
- Department of Astronomy and Astrobiology Program, University of Washington, Seattle, WA 98195, USA;
- NASA Nexus for Exoplanet System Science’s Virtual Planetary Laboratory, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
38
|
Gu C, Geng Y, Zheng F, Rotello VM. Rapid evaluation of gold nanoparticle-lipid membrane interactions using a lipid/polydiacetylene vesicle sensor. Analyst 2020; 145:3049-3055. [PMID: 32140698 PMCID: PMC7158861 DOI: 10.1039/d0an00226g] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Surface modification of gold nanoparticles (AuNPs) has significant and complicated effects on their interactions with cell membranes. In this study, we used a lipid/polyacetylene (PDA) vesicle sensor as the lipid membrane model to evaluate AuNP-lipid membrane interactions. Based on the colorimetric response (CR) of PDA vesicles before and after incubation with AuNPs, it was found that the interaction was highly dependent on the surface charge of AuNPs. As compared to the positively charged NPs, neutral and zwitterionic NPs adsorbed much less on the lipid membrane. Negatively charged NPs did not induce any noticeable color changes even at high concentrations. A class of cationic AuNPs with different degrees of surface hydrophobicity was further selected to investigate the role of hydrophobicity in interacting with lipid/PDA vesicles, and log(EC50) was employed as the evaluation index. According to the log(EC50)-NP concentration curve, the hydrophobicity of NPs enhanced the lipid membrane affinity, but electrostatic interactions weakened this effect. Finally, different concentrations of bovine serum albumin (BSA) were used to study the effect of the protein corona on NP-lipid membrane interactions. The formation of a NP-protein corona was found to mask the electrostatic interactions, leading to the decrease of the CR values of cationic NPs, and highly hydrophobic NPs were less affected by a low concentration of BSA due to the strong hydrophobic interactions. Although the effect of NP surface properties on their interactions with cells is far more complicated, our study provides a rapid and effective method for the evaluation of the interactions between surface modified AuNPs and lipid membranes.
Collapse
Affiliation(s)
- Congcong Gu
- Department of Pharmaceutical Analysis, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, China. and Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, China
| | - Yingying Geng
- Department of Chemistry, University of Massachusetts Amherst, 710 N. Pleasant St., Amherst, MA 01003, USA.
| | - Feng Zheng
- Department of Pharmaceutical Analysis, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, China. and Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, China and Department of Chemistry, University of Massachusetts Amherst, 710 N. Pleasant St., Amherst, MA 01003, USA.
| | - Vincent M Rotello
- Department of Chemistry, University of Massachusetts Amherst, 710 N. Pleasant St., Amherst, MA 01003, USA.
| |
Collapse
|
39
|
Liberles DA, Chang B, Geiler-Samerotte K, Goldman A, Hey J, Kaçar B, Meyer M, Murphy W, Posada D, Storfer A. Emerging Frontiers in the Study of Molecular Evolution. J Mol Evol 2020; 88:211-226. [PMID: 32060574 PMCID: PMC7386396 DOI: 10.1007/s00239-020-09932-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
A collection of the editors of Journal of Molecular Evolution have gotten together to pose a set of key challenges and future directions for the field of molecular evolution. Topics include challenges and new directions in prebiotic chemistry and the RNA world, reconstruction of early cellular genomes and proteins, macromolecular and functional evolution, evolutionary cell biology, genome evolution, molecular evolutionary ecology, viral phylodynamics, theoretical population genomics, somatic cell molecular evolution, and directed evolution. While our effort is not meant to be exhaustive, it reflects research questions and problems in the field of molecular evolution that are exciting to our editors.
Collapse
Affiliation(s)
- David A Liberles
- Department of Biology and Center for Computational Genetics and Genomics, Temple University, Philadelphia, PA, 19122, USA.
| | - Belinda Chang
- Department of Ecology and Evolutionary Biology and Department of Cell and Systems Biology, University of Toronto, 25 Harbord Street, Toronto, ON, M5S 3G5, Canada
| | - Kerry Geiler-Samerotte
- Center for Mechanisms of Evolution, School of Life Sciences, Arizona State University, Tempe, AZ, 85287, USA
| | - Aaron Goldman
- Department of Biology, Oberlin College and Conservatory, K123 Science Center, 119 Woodland Street, Oberlin, OH, 44074, USA
| | - Jody Hey
- Department of Biology and Center for Computational Genetics and Genomics, Temple University, Philadelphia, PA, 19122, USA
| | - Betül Kaçar
- Department of Molecular and Cell Biology, University of Arizona, Tucson, AZ, 85721, USA
| | - Michelle Meyer
- Department of Biology, Boston College, Chestnut Hill, MA, 02467, USA
| | - William Murphy
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, 77843, USA
| | - David Posada
- Biomedical Research Center (CINBIO), University of Vigo, Vigo, Spain
| | - Andrew Storfer
- School of Biological Sciences, Washington State University, Pullman, WA, 99164, USA
| |
Collapse
|
40
|
Zelger-Paulus S, Hadzic MCAS, Sigel RKO, Börner R. Encapsulation of Fluorescently Labeled RNAs into Surface-Tethered Vesicles for Single-Molecule FRET Studies in TIRF Microscopy. Methods Mol Biol 2020; 2113:1-16. [PMID: 32006303 DOI: 10.1007/978-1-0716-0278-2_1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Imaging fluorescently labeled biomolecules on a single-molecule level is a well-established technique to follow intra- and intermolecular processes in time, usually hidden in the ensemble average. The classical approach comprises surface immobilization of the molecule of interest, which increases the risk of restricting the natural behavior due to surface interactions. Encapsulation of such biomolecules into surface-tethered phospholipid vesicles enables to follow one molecule at a time, freely diffusing and without disturbing surface interactions. Further, the encapsulation allows to keep reaction partners (reactants and products) in close proximity and enables higher temperatures otherwise leading to desorption of the direct immobilized biomolecules.Here, we describe a detailed protocol for the encapsulation of a catalytically active RNA starting from surface passivation over RNA encapsulation to data evaluation of single-molecule FRET experiments in TIRF microscopy. We present an optimized procedure that preserves RNA functionality and applies to investigations of, e.g., large ribozymes and RNAs, where direct immobilization is structurally not possible.
Collapse
Affiliation(s)
| | | | - Roland K O Sigel
- Department of Chemistry, University of Zurich, Zurich, Switzerland.
| | - Richard Börner
- Department of Chemistry, University of Zurich, Zurich, Switzerland.
- Laserinstitut Hochschule Mittweida, University of Applied Sciences Mittweida, Mittweida, Germany.
| |
Collapse
|
41
|
Wang D, Ma B, Zhao Y, Sun Y, Luan Y, Wang J. Preparation and Properties of Semi-Self-Assembled Lipopeptide Vesicles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:13174-13181. [PMID: 31532218 DOI: 10.1021/acs.langmuir.9b02513] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Novel lipopeptide vesicles are prepared from self-assembled nanomembranes through an extrusion method. The size of vesicles can be controlled by the pore diameter of the extrusion filter. The vesicles are rather stable because hydrogen bonds exist among the peptide headgroups. When doxorubicin hydrochloride (DOX·HCl) is encapsulated in the vesicles, it could be released sustainably, and its side effect would also be reduced due to encapsulation. The leakage rate of DOX·HCl depends on the pH via charge regulation. As drug carriers, lipopeptide vesicles have been proved to have nontoxicity to normal cells. A magnetic surfactant CH3(CH2)14CH2N(CH3)3+ [FeCl3Br]- (CTAFe) was mixed with lipopeptide to modify the vesicles. Also, the results demonstrated that the vesicles is endowed with magnetic property after the addition of CTAFe. We believe that the strategy of lipopeptide vesicle preparation would enrich the drug carrier family and expand the application of lipopeptide materials.
Collapse
Affiliation(s)
- Dong Wang
- State Key Laboratory of Heavy Oil Processing and Centre for Bioengineering and Biotechnology , China University of Petroleum (East China) , Qingdao 266580 , China
| | - Bente Ma
- State Key Laboratory of Heavy Oil Processing and Centre for Bioengineering and Biotechnology , China University of Petroleum (East China) , Qingdao 266580 , China
| | - Yurong Zhao
- State Key Laboratory of Heavy Oil Processing and Centre for Bioengineering and Biotechnology , China University of Petroleum (East China) , Qingdao 266580 , China
| | - Yawei Sun
- State Key Laboratory of Heavy Oil Processing and Centre for Bioengineering and Biotechnology , China University of Petroleum (East China) , Qingdao 266580 , China
| | - Yuxia Luan
- School of Pharmaceutical Science, Key Laboratory of Chemical Biology (Ministry of Education) , Shandong University , 44 West Wenhua Road , Jinan , Shandong 250012 , China
| | - Jiqian Wang
- State Key Laboratory of Heavy Oil Processing and Centre for Bioengineering and Biotechnology , China University of Petroleum (East China) , Qingdao 266580 , China
| |
Collapse
|
42
|
Saha R, Chen IA. Effect of UV Radiation on Fluorescent RNA Aptamers' Functional and Templating Ability. Chembiochem 2019; 20:2609-2617. [PMID: 31125512 PMCID: PMC6899979 DOI: 10.1002/cbic.201900261] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2019] [Indexed: 12/25/2022]
Abstract
Damage from ultraviolet (UV) radiation was likely to be an important selection pressure during the origin of life. RNA is believed to have been central to the origin of life and might form the basis for simple synthetic cells. Although photodamage of DNA has been extensively studied, photodamage is highly dependent on local molecular context, and damage to functional RNAs has been relatively under‐studied. We irradiated two fluorescent RNA aptamers and monitored the loss of activity, folding, and the kinetics of lesion accumulation. The loss of activity differed depending on the aptamer, with the Spinach2 aptamer retaining substantial activity after long exposure times. The binding pocket was particularly susceptible to damage, and melting of the duplex regions increased susceptibility; this is consistent with the view that duplex formation is protective. At the same time, susceptibility varied greatly depending on context, thus emphasizing the importance of studying many different RNAs to understand UV hardiness.
Collapse
Affiliation(s)
- Ranajay Saha
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, CA, 93106, USA
| | - Irene A Chen
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, CA, 93106, USA.,Program in Biomolecular Sciences and Engineering, University of California, Santa Barbara, CA, 93106, USA.,Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, CA, 90095, USA
| |
Collapse
|
43
|
Lopez A, Fiore M. Investigating Prebiotic Protocells for A Comprehensive Understanding of the Origins of Life: A Prebiotic Systems Chemistry Perspective. Life (Basel) 2019; 9:E49. [PMID: 31181679 PMCID: PMC6616946 DOI: 10.3390/life9020049] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 05/21/2019] [Accepted: 06/06/2019] [Indexed: 01/06/2023] Open
Abstract
Protocells are supramolecular systems commonly used for numerous applications, such as the formation of self-evolvable systems, in systems chemistry and synthetic biology. Certain types of protocells imitate plausible prebiotic compartments, such as giant vesicles, that are formed with the hydration of thin films of amphiphiles. These constructs can be studied to address the emergence of life from a non-living chemical network. They are useful tools since they offer the possibility to understand the mechanisms underlying any living cellular system: Its formation, its metabolism, its replication and its evolution. Protocells allow the investigation of the synergies occurring in a web of chemical compounds. This cooperation can explain the transition between chemical (inanimate) and biological systems (living) due to the discoveries of emerging properties. The aim of this review is to provide an overview of relevant concept in prebiotic protocell research.
Collapse
Affiliation(s)
- Augustin Lopez
- Institut de Chimie et Biochimie Moléculaires et Supramoléculaires, Université de Lyon, Claude Bernard Lyon 1, 1 Rue Victor Grignard, Bâtiment Lederer, 69622 Villeurbanne CEDEX, France.
- Master de Biologie, École Normale Supérieure de Lyon, Université Claude Bernard Lyon I, Université de Lyon, 69342 Lyon CEDEX 07, France.
| | - Michele Fiore
- Institut de Chimie et Biochimie Moléculaires et Supramoléculaires, Université de Lyon, Claude Bernard Lyon 1, 1 Rue Victor Grignard, Bâtiment Lederer, 69622 Villeurbanne CEDEX, France.
| |
Collapse
|
44
|
Pirone D, Marturano V, Del Pezzo R, Fernández Prieto S, Underiner T, Giamberini M, Tylkowski B. Molecular Design of Microcapsule Shells for Visible Light-Triggered Release. Polymers (Basel) 2019; 11:E904. [PMID: 31108926 PMCID: PMC6572248 DOI: 10.3390/polym11050904] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 05/13/2019] [Accepted: 05/14/2019] [Indexed: 12/19/2022] Open
Abstract
The development of photo-responsive capsules to tune and control the sustained-release of encapsulated actives is a fascinating and challenging route to improve the performances and effectiveness of a wide range of delivery applications. In this work, we report the preparation of visible light-responsive capsules obtained via oil-in-water interfacial polycondensation between modified diacyl-chloride azobenzene moiety and diamine flexible spacer in the presence of cross-linkers with different structures and functionalities. The effect on the release profile of the encapsulated perfume oil was investigated using three flexible spacers with different lengths (1,8-diaminooctane; 1,6-diaminohexane and 1,4-diaminobutane) and two types of cross-linkers (1,3,5-benzenetricarbonyl trichloride and melamine). We analyzed how the properties of microcapsules can be tailored changing the design of the shell structure. Fine tuning of the perfume release profiles was obtained. The changes in capsules size and morphology due to visible light irradiation were monitored via light scattering, optical microscopy and atomic force microscopy. Perfume release was 50% faster in the systems prepared with melamine as the cross-linker. Modelling studies were carried out to support the discussion of the experimental results.
Collapse
Affiliation(s)
- Domenico Pirone
- Department of Chemical Engineering, Rovira i Virgili University, Av. Països Catalans 26, 43007 Tarragona, Spain.
- Centre Tecnològic de la Química de Catalunya, Carrer Marcelli Domingo s/n, 43007 Tarragona, Spain.
- Procter & Gamble Services Company n.v., Temselaan 100, 1853 Strombeek-Bever, Belgium.
| | - Valentina Marturano
- Department of Chemical, Materials, and Production Engineering (DICMAPI), University of Naples "Federico II", P. le Tecchio, 80, 80125 Napoli, Italy.
| | - Rita Del Pezzo
- Department of Chemical Engineering, Rovira i Virgili University, Av. Països Catalans 26, 43007 Tarragona, Spain.
- Centre Tecnològic de la Química de Catalunya, Carrer Marcelli Domingo s/n, 43007 Tarragona, Spain.
- Procter & Gamble Services Company n.v., Temselaan 100, 1853 Strombeek-Bever, Belgium.
| | | | - Todd Underiner
- The Procter and Gamble Company, 6210 Center Hill Avenue, Cincinnati, OH 45224, USA.
| | - Marta Giamberini
- Department of Chemical Engineering, Rovira i Virgili University, Av. Països Catalans 26, 43007 Tarragona, Spain.
| | - Bartosz Tylkowski
- Department of Chemical Engineering, Rovira i Virgili University, Av. Països Catalans 26, 43007 Tarragona, Spain.
- Centre Tecnològic de la Química de Catalunya, Carrer Marcelli Domingo s/n, 43007 Tarragona, Spain.
- The Procter and Gamble Company, 6210 Center Hill Avenue, Cincinnati, OH 45224, USA.
| |
Collapse
|
45
|
Blanco C, Janzen E, Pressman A, Saha R, Chen IA. Molecular Fitness Landscapes from High-Coverage Sequence Profiling. Annu Rev Biophys 2019; 48:1-18. [PMID: 30601678 DOI: 10.1146/annurev-biophys-052118-115333] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The function of fitness (or molecular activity) in the space of all possible sequences is known as the fitness landscape. Evolution is a random walk on the fitness landscape, with a bias toward climbing hills. Mapping the topography of real fitness landscapes is fundamental to understanding evolution, but previous efforts were hampered by the difficulty of obtaining large, quantitative data sets. The accessibility of high-throughput sequencing (HTS) has transformed this study, enabling large-scale enumeration of fitness for many mutants and even complete sequence spaces in some cases. We review the progress of high-throughput studies in mapping molecular fitness landscapes, both in vitro and in vivo, as well as opportunities for future research. Such studies are rapidly growing in number. HTS is expected to have a profound effect on the understanding of real molecular fitness landscapes.
Collapse
Affiliation(s)
- Celia Blanco
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106, USA; , , , ,
| | - Evan Janzen
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106, USA; , , , , .,Biomolecular Science and Engineering Program, University of California, Santa Barbara, California 93106, USA
| | - Abe Pressman
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106, USA; , , , , .,Department of Chemical Engineering, University of California, Santa Barbara, California 93106, USA
| | - Ranajay Saha
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106, USA; , , , ,
| | - Irene A Chen
- Biomolecular Science and Engineering Program, University of California, Santa Barbara, California 93106, USA
| |
Collapse
|
46
|
Del Pezzo R, Bandeira NA, Trojanowska A, Fernandez Prieto S, Underiner T, Giamberini M, Tylkowski B. Ortho-substituted azobenzene: shedding light on new benefits. PURE APPL CHEM 2018. [DOI: 10.1515/pac-2018-0719] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Novel functional polymeric microcapsules, based on modified azobenzene moieties, are exhaustively investigated, both from a theoretical and experimental points of view. Theoretical calculations and several measurements demonstrate that visible light can act as a trigger for release of encapsulated material, as a consequence of trans-cis isomerization which modifies microcapsule surface topography and can induce a “squeezing” release mechanism. Interfacial polymerization of an oil-in-water emulsion is performed and leads to core-shell microcapsules which are characterized by means of atomic force microscopy (AFM), optical microscopy (OM), scanning electron microscopy (SEM) and light scattering. These analyses put into evidence that microcapsules’ size and surface morphology are strongly affected by irradiation under visible light: moreover, these changes can be reverted by sample exposure to temperatures around 50°C. This last evidence is also confirmed by NMR kinetic analyses on modified azobenzene moiety. Finally, it is shown that these smart microcapsules can be successfully used to get a controlled release of actives such as fragrancies, as a consequence of visible light irradiation, as confirmed by an olfactive panel.
Collapse
Affiliation(s)
- Rita Del Pezzo
- Department of Chemical Engineering , Rovira i Virgili University , Av. Països Catalans 26 , Tarragona 43007 , Spain
- The Procter and Gamble Company , Temselaan 100 , Strombeek-Bever 1853 , Belgium
| | - Nuno A.G. Bandeira
- Biosystems and Integrative Sciences Institute, Faculty of Sciences , University of Lisbon , Campo Grande-C8 , Lisboa 1749-016 , Portugal
- Centro de Química Estrutural – Instituto Superior Técnico , Universidade de Lisboa , Av. Rovisco Pais , Lisboa 1049-001 , Portugal
- Institute of Chemical Research of Catalonia (ICIQ) – Avda. Països Catalans , Tarragona 16-43007 , Spain
| | - Anna Trojanowska
- Department of Chemical Engineering , Rovira i Virgili University , Av. Països Catalans 26 , Tarragona 43007 , Spain
- Centre Tecnològic de la Química de Catalunya , Carrer Marcelli Domingo s/n , Tarragona 43007 , Spain
| | | | - Todd Underiner
- The Procter and Gamble Company , 6210 Center Hill Avenue , Cincinnati, OH 45224 , USA
| | - Marta Giamberini
- Department of Chemical Engineering , Rovira i Virgili University , Av. Països Catalans 26 , Tarragona 43007 , Spain
- Centre Tecnològic de la Química de Catalunya , Carrer Marcelli Domingo s/n , Tarragona 43007 , Spain
| | - Bartosz Tylkowski
- Department of Chemical Engineering , Rovira i Virgili University , Av. Països Catalans 26 , Tarragona 43007 , Spain
- Centre Tecnològic de la Química de Catalunya , Carrer Marcelli Domingo s/n , Tarragona 43007 , Spain
- The Procter and Gamble Company , 6210 Center Hill Avenue , Cincinnati, OH 45224 , USA
| |
Collapse
|
47
|
Rahman MM, Matsumura S, Ikawa Y. Oligomerization of a Bimolecular Ribozyme Modestly Rescues its Structural Defects that Disturb Interdomain Assembly to Form the Catalytic Site. J Mol Evol 2018; 86:431-442. [DOI: 10.1007/s00239-018-9862-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Accepted: 08/07/2018] [Indexed: 12/31/2022]
|