1
|
Crawford CEW, Burslem GM. Acetylation: a new target for protein degradation in cancer. Trends Cancer 2025; 11:403-420. [PMID: 40055119 PMCID: PMC11981854 DOI: 10.1016/j.trecan.2025.01.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 01/15/2025] [Accepted: 01/24/2025] [Indexed: 04/11/2025]
Abstract
Acetylation is an increasing area of focus for cancer research as it is closely related to a variety of cellular processes through modulation of histone and non-histone proteins. However, broadly targeting acetylation threatens to yield nonselective toxic effects owing to the vital role of acetylation in cellular function. There is thus a pressing need to elucidate and characterize the specific cancer-relevant roles of acetylation for future therapeutic design. Acetylation-mediated protein homeostasis is an example of selective acetylation that affects a myriad of proteins as well as their correlated functions. We review recent examples of acetylation-mediated protein homeostasis that have emerged as key contributors to tumorigenesis, tumor proliferation, metastasis, and/or drug resistance, and we discuss their implications for future exploration of this intriguing phenomenon.
Collapse
Affiliation(s)
- Callie E W Crawford
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, PA 19104, USA
| | - George M Burslem
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, PA 19104, USA; Department of Cancer Biology and Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, PA 19104, USA.
| |
Collapse
|
2
|
Li Y, Kou S. A Ralstonia solanacearum Effector Targets Splicing Factor SR34a to Reprogram Alternative Splicing and Regulate Plant Immunity. PLANTS (BASEL, SWITZERLAND) 2025; 14:534. [PMID: 40006793 PMCID: PMC11859261 DOI: 10.3390/plants14040534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 12/29/2024] [Accepted: 01/01/2025] [Indexed: 02/27/2025]
Abstract
Alternative splicing is a critical post-transcriptional regulatory mechanism in eukaryotes. While infection with Ralstonia solanacearum GMI1000 significantly alters plant alternative splicing patterns, the underlying molecular mechanisms remain unclear. Herein, the effect of the GMI1000 Type III secretion system effectors on alternative splicing in the tomato cultivar Heinz 1706 was investigated. The RNA-seq analysis confirmed genome-wide alternative splicing changes induced by the Type III secretion system in tomato, including 1386 differential alternatively spliced events across 1023 genes, many of which are associated with plant defense. Seven nucleus-localized Type III effectors were transiently expressed in an RLPK splicing reporter system transgenic tobacco, identifying RipP2 as an effector that modulates alternative splicing levels. Sequence analysis, protein-protein interaction assays, and AlphaFold2 structural predictions revealed that RipP2 interacted with the tomato splicing factor SR34a. Furthermore, RipP2 acetylated a conserved lysine at position 132 within the SWQDLKD motif of SR34a, regulating its splicing pattern in defense-related genes and modulating plant immunity. This study elucidates how the "RipP2-SR34a module" influences plant immune responses by regulating the alternative splicing of immune-related genes, providing new insights into pathogen-plant interactions and splicing regulation.
Collapse
Affiliation(s)
- Yunyun Li
- Hunan Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha 410082, China
| | - Song Kou
- School of Chemical Engineering and Technology, Xi’an Jiaotong University, Xi’an 710049, China;
| |
Collapse
|
3
|
Cai J, Song L, Zhang F, Wu S, Zhu G, Zhang P, Chen S, Du J, Wang B, Cai Y, Yang Y, Wan J, Zhou J, Fan J, Dai Z. Targeting SRSF10 might inhibit M2 macrophage polarization and potentiate anti-PD-1 therapy in hepatocellular carcinoma. Cancer Commun (Lond) 2024; 44:1231-1260. [PMID: 39223929 PMCID: PMC11570766 DOI: 10.1002/cac2.12607] [Citation(s) in RCA: 27] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 08/18/2024] [Accepted: 08/21/2024] [Indexed: 09/04/2024] Open
Abstract
BACKGROUND The efficacy of immune checkpoint blockade therapy in patients with hepatocellular carcinoma (HCC) remains poor. Although serine- and arginine-rich splicing factor (SRSF) family members play crucial roles in tumors, their impact on tumor immunology remains unclear. This study aimed to elucidate the role of SRSF10 in HCC immunotherapy. METHODS To identify the key genes associated with immunotherapy resistance, we conducted single-nuclear RNA sequencing, multiplex immunofluorescence, and The Cancer Genome Atlas and Gene Expression Omnibus database analyses. We investigated the biological functions of SRSF10 in immune evasion using in vitro co-culture systems, flow cytometry, various tumor-bearing mouse models, and patient-derived organotypic tumor spheroids. RESULTS SRSF10 was upregulated in various tumors and associated with poor prognosis. Moreover, SRSF10 positively regulated lactate production, and SRSF10/glycolysis/ histone H3 lysine 18 lactylation (H3K18la) formed a positive feedback loop in tumor cells. Increased lactate levels promoted M2 macrophage polarization, thereby inhibiting CD8+ T cell activity. Mechanistically, SRSF10 interacted with the 3'-untranslated region of MYB, enhancing MYB RNA stability, and subsequently upregulating key glycolysis-related enzymes including glucose transporter 1 (GLUT1), hexokinase 1 (HK1), lactate dehydrogenase A (LDHA), resulting in elevated intracellular and extracellular lactate levels. Lactate accumulation induced histone lactylation, which further upregulated SRSF10 expression. Additionally, lactate produced by tumors induced lactylation of the histone H3K18la site upon transport into macrophages, thereby activating transcription and enhancing pro-tumor macrophage activity. M2 macrophages, in turn, inhibited the enrichment of CD8+ T cells and the proportion of interferon-γ+CD8+ T cells in the tumor microenvironment (TME), thus creating an immunosuppressive TME. Clinically, SRSF10 could serve as a biomarker for assessing immunotherapy resistance in various solid tumors. Pharmacological targeting of SRSF10 with a selective inhibitor 1C8 enhanced the efficacy of programmed cell death 1 (PD-1) monoclonal antibodies (mAbs) in both murine and human preclinical models. CONCLUSIONS The SRSF10/MYB/glycolysis/lactate axis is critical for triggering immune evasion and anti-PD-1 resistance. Inhibiting SRSF10 by 1C8 may overcome anti-PD-1 tolerance in HCC.
Collapse
Affiliation(s)
- Jialiang Cai
- Liver Cancer InstituteZhongshan HospitalFudan UniversityShanghaiP. R. China
- State Key Laboratory of Genetic EngineeringFudan UniversityShanghaiP. R. China
- Key Laboratory of Carcinogenesis and Cancer InvasionFudan UniversityMinistry of EducationShanghaiP. R. China
| | - Lina Song
- Liver Cancer InstituteZhongshan HospitalFudan UniversityShanghaiP. R. China
- State Key Laboratory of Genetic EngineeringFudan UniversityShanghaiP. R. China
- Key Laboratory of Carcinogenesis and Cancer InvasionFudan UniversityMinistry of EducationShanghaiP. R. China
| | - Feng Zhang
- Department of Gastroenterology and HepatologyZhongshan HospitalFudan University, 180 Fenglin RoadShanghaiP. R. China
- Shanghai Institute of Liver DiseaseShanghaiP. R. China
| | - Suiyi Wu
- Liver Cancer InstituteZhongshan HospitalFudan UniversityShanghaiP. R. China
| | - Guiqi Zhu
- State Key Laboratory of Genetic EngineeringFudan UniversityShanghaiP. R. China
- Department of Liver Surgery and TransplantationZhongshan HospitalFudan UniversityShanghaiP. R. China
- Research Unit of Liver Cancer Recurrence and MetastasisChinese Academy of Medical SciencesBeijingP. R. China
| | - Peiling Zhang
- Liver Cancer InstituteZhongshan HospitalFudan UniversityShanghaiP. R. China
- State Key Laboratory of Genetic EngineeringFudan UniversityShanghaiP. R. China
- Key Laboratory of Carcinogenesis and Cancer InvasionFudan UniversityMinistry of EducationShanghaiP. R. China
| | - Shiping Chen
- Liver Cancer InstituteZhongshan HospitalFudan UniversityShanghaiP. R. China
- State Key Laboratory of Genetic EngineeringFudan UniversityShanghaiP. R. China
- Key Laboratory of Carcinogenesis and Cancer InvasionFudan UniversityMinistry of EducationShanghaiP. R. China
| | - Junxian Du
- Department of general surgeryZhongshan HospitalFudan UniversityShanghaiP. R. China
| | - Biao Wang
- Department of Radiation OncologyZhongshan HospitalFudan UniversityShanghaiP. R. China
| | - Yufan Cai
- Department of general surgeryZhongshan HospitalFudan UniversityShanghaiP. R. China
| | - Yi Yang
- Department of Radiation OncologyZhongshan HospitalFudan UniversityShanghaiP. R. China
| | - Jinglei Wan
- Liver Cancer InstituteZhongshan HospitalFudan UniversityShanghaiP. R. China
- State Key Laboratory of Genetic EngineeringFudan UniversityShanghaiP. R. China
- Key Laboratory of Carcinogenesis and Cancer InvasionFudan UniversityMinistry of EducationShanghaiP. R. China
| | - Jian Zhou
- Department of Liver Surgery and TransplantationZhongshan HospitalFudan UniversityShanghaiP. R. China
- Research Unit of Liver Cancer Recurrence and MetastasisChinese Academy of Medical SciencesBeijingP. R. China
| | - Jia Fan
- Department of Liver Surgery and TransplantationZhongshan HospitalFudan UniversityShanghaiP. R. China
- Research Unit of Liver Cancer Recurrence and MetastasisChinese Academy of Medical SciencesBeijingP. R. China
| | - Zhi Dai
- Liver Cancer InstituteZhongshan HospitalFudan UniversityShanghaiP. R. China
- State Key Laboratory of Genetic EngineeringFudan UniversityShanghaiP. R. China
- Key Laboratory of Carcinogenesis and Cancer InvasionFudan UniversityMinistry of EducationShanghaiP. R. China
| |
Collapse
|
4
|
Long C, Ma B, Li K, Liu S. Comprehensive analysis of splicing factor SRs-related gene characteristics: predicting osteosarcoma prognosis and immune regulation status. Front Oncol 2024; 14:1456986. [PMID: 39286028 PMCID: PMC11403285 DOI: 10.3389/fonc.2024.1456986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Accepted: 08/09/2024] [Indexed: 09/19/2024] Open
Abstract
Objective To investigate the impact of SRs-related genes on the overall survival and prognosis of osteosarcoma patients through bulk and single-cell RNA-seq transcriptome analysis. Methods In this study, we constructed a prognosis model based on serine/arginine-rich splicing factors (SRs) and predicted the survival of osteosarcoma patients. By analyzing single-cell RNA sequencing data and applying AUCell enrichment analysis, we revealed oncogenic pathways of SRs in osteosarcoma immune cells. Additionally, we described the regulatory role of SRSF7 in pan-cancer. Results Lasso regression analysis identified 6 key SRs-related genes, and a prognosis prediction model was established. The upregulation of these pathways revealed that SRs promote tumor cell proliferation and survival by regulating related signaling pathways and help tumor cells evade host immune surveillance. Additionally, by grouping single-cell data using AUCell, we found significant differences in T cell expression between high and low-risk groups. The analysis results indicated that the regulatory activity of SRs is closely related to T cell function, particularly in regulating immune responses and promoting immune evasion. Furthermore, SRSF7 regulates cell proliferation and apoptosis. Conclusion SRs-related genes play a critical regulatory role in osteosarcoma. T cells are key in regulating immune responses and promoting immune evasion through SRs genes. SRSF7 is a significant gene influencing the occurrence and development of osteosarcoma.
Collapse
Affiliation(s)
- Changhai Long
- Department of Orthopedic Center, The Second Hospital Affiliated to Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Biao Ma
- Department of Orthopedic Center, The Second Hospital Affiliated to Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Kai Li
- Department of Orthopedic Center, The Second Hospital Affiliated to Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Sijing Liu
- Department of Orthopedic Center, The Second Hospital Affiliated to Guangdong Medical University, Zhanjiang, Guangdong, China
| |
Collapse
|
5
|
Hao B, Chen K, Zhai L, Liu M, Liu B, Tan M. Substrate and Functional Diversity of Protein Lysine Post-translational Modifications. GENOMICS, PROTEOMICS & BIOINFORMATICS 2024; 22:qzae019. [PMID: 38862432 PMCID: PMC12016574 DOI: 10.1093/gpbjnl/qzae019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 11/11/2023] [Accepted: 01/08/2024] [Indexed: 06/13/2024]
Abstract
Lysine post-translational modifications (PTMs) are widespread and versatile protein PTMs that are involved in diverse biological processes by regulating the fundamental functions of histone and non-histone proteins. Dysregulation of lysine PTMs is implicated in many diseases, and targeting lysine PTM regulatory factors, including writers, erasers, and readers, has become an effective strategy for disease therapy. The continuing development of mass spectrometry (MS) technologies coupled with antibody-based affinity enrichment technologies greatly promotes the discovery and decoding of PTMs. The global characterization of lysine PTMs is crucial for deciphering the regulatory networks, molecular functions, and mechanisms of action of lysine PTMs. In this review, we focus on lysine PTMs, and provide a summary of the regulatory enzymes of diverse lysine PTMs and the proteomics advances in lysine PTMs by MS technologies. We also discuss the types and biological functions of lysine PTM crosstalks on histone and non-histone proteins and current druggable targets of lysine PTM regulatory factors for disease therapy.
Collapse
Affiliation(s)
- Bingbing Hao
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Tianjian Laboratory of Advanced Biomedical Sciences, Institute of Advanced Biomedical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Kaifeng Chen
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Linhui Zhai
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan 528400, China
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing 210023, China
| | - Muyin Liu
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Bin Liu
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China
| | - Minjia Tan
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan 528400, China
| |
Collapse
|
6
|
Arnold B, Riegger RJ, Okuda EK, Slišković I, Keller M, Bakisoglu C, McNicoll F, Zarnack K, Müller-McNicoll M. hGRAD: A versatile "one-fits-all" system to acutely deplete RNA binding proteins from condensates. J Cell Biol 2024; 223:e202304030. [PMID: 38108808 PMCID: PMC10726014 DOI: 10.1083/jcb.202304030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 09/18/2023] [Accepted: 11/21/2023] [Indexed: 12/19/2023] Open
Abstract
Nuclear RNA binding proteins (RBPs) are difficult to study because they often belong to large protein families and form extensive networks of auto- and crossregulation. They are highly abundant and many localize to condensates with a slow turnover, requiring long depletion times or knockouts that cannot distinguish between direct and indirect or compensatory effects. Here, we developed a system that is optimized for the rapid degradation of nuclear RBPs, called hGRAD. It comes as a "one-fits-all" plasmid, and integration into any cell line with endogenously GFP-tagged proteins allows for an inducible, rapid, and complete knockdown. We show that the nuclear RBPs SRSF3, SRSF5, SRRM2, and NONO are completely cleared from nuclear speckles and paraspeckles within 2 h. hGRAD works in various cell types, is more efficient than previous methods, and does not require the expression of exogenous ubiquitin ligases. Combining SRSF5 hGRAD degradation with Nascent-seq uncovered transient transcript changes, compensatory mechanisms, and an effect of SRSF5 on transcript stability.
Collapse
Affiliation(s)
- Benjamin Arnold
- Institute of Molecular Biosciences, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Ricarda J. Riegger
- Institute of Molecular Biosciences, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Ellen Kazumi Okuda
- Institute of Molecular Biosciences, Goethe University Frankfurt, Frankfurt am Main, Germany
- International Max Planck Research School for Cellular Biophysics, Frankfurt am Main, Germany
| | - Irena Slišković
- Institute of Molecular Biosciences, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Mario Keller
- Institute of Molecular Biosciences, Goethe University Frankfurt, Frankfurt am Main, Germany
- Buchmann Institute for Molecular Life Sciences, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Cem Bakisoglu
- Institute of Molecular Biosciences, Goethe University Frankfurt, Frankfurt am Main, Germany
- Buchmann Institute for Molecular Life Sciences, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - François McNicoll
- Institute of Molecular Biosciences, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Kathi Zarnack
- Institute of Molecular Biosciences, Goethe University Frankfurt, Frankfurt am Main, Germany
- Buchmann Institute for Molecular Life Sciences, Goethe University Frankfurt, Frankfurt am Main, Germany
| | | |
Collapse
|
7
|
Bian Z, Yang F, Xu P, Gao G, Yang C, Cao Y, Yao S, Wang X, Yin Y, Fei B, Huang Z. LINC01852 inhibits the tumorigenesis and chemoresistance in colorectal cancer by suppressing SRSF5-mediated alternative splicing of PKM. Mol Cancer 2024; 23:23. [PMID: 38263157 PMCID: PMC10807094 DOI: 10.1186/s12943-024-01939-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Accepted: 01/12/2024] [Indexed: 01/25/2024] Open
Abstract
BACKGROUND Colorectal cancer (CRC) is a major cause of cancer-related deaths worldwide, and chemoresistance is a major obstacle in its treatment. Despite advances in therapy, the molecular mechanism underlying chemoresistance in CRC is not fully understood. Recent studies have implicated the key roles of long noncoding RNAs (lncRNAs) in the regulation of CRC chemoresistance. METHODS In this study, we investigated the role of the lncRNA LINC01852 in CRC chemoresistance. LINC01852 expression was evaluated in multiple CRC cohorts using quantitative reverse transcription PCR. We conducted in vitro and in vivo functional experiments using cell culture and mouse models. RNA pull-down, RNA immunoprecipitation, chromatin immunoprecipitation, and dual luciferase assays were used to investigate the molecular mechanism of LINC01852 in CRC. RESULTS Our findings revealed that a lncRNA with tumor-inhibiting properties, LINC01852, was downregulated in CRC and inhibited cell proliferation and chemoresistance both in vitro and in vivo. Further mechanistic investigations revealed that LINC01852 increases TRIM72-mediated ubiquitination and degradation of SRSF5, inhibiting SRSF5-mediated alternative splicing of PKM and thereby decreasing the production of PKM2. Overexpression of LINC01852 induces a metabolic switch from aerobic glycolysis to oxidative phosphorylation, which attenuates the chemoresistance of CRC cells by inhibiting PKM2-mediated glycolysis. CONCLUSIONS Our results demonstrate that LINC01852 plays an important role in repressing CRC malignancy and chemoresistance by regulating SRSF5-mediated alternative splicing of PKM, and that targeting the LINC01852/TRIM72/SRSF5/PKM2 signaling axis may represent a potential therapeutic strategy for CRC.
Collapse
Affiliation(s)
- Zehua Bian
- Wuxi Cancer Institute, Affiliated Hospital of Jiangnan University, 200 Hui He Road, Wuxi, Jiangsu, 214062, China
- Laboratory of Cancer Epigenetics, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Fan Yang
- Wuxi Cancer Institute, Affiliated Hospital of Jiangnan University, 200 Hui He Road, Wuxi, Jiangsu, 214062, China
- Laboratory of Cancer Epigenetics, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Peiwen Xu
- Wuxi Cancer Institute, Affiliated Hospital of Jiangnan University, 200 Hui He Road, Wuxi, Jiangsu, 214062, China
- Laboratory of Cancer Epigenetics, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Ge Gao
- Wuxi Cancer Institute, Affiliated Hospital of Jiangnan University, 200 Hui He Road, Wuxi, Jiangsu, 214062, China
- Laboratory of Cancer Epigenetics, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Chunyu Yang
- Wuxi Cancer Institute, Affiliated Hospital of Jiangnan University, 200 Hui He Road, Wuxi, Jiangsu, 214062, China
- Laboratory of Cancer Epigenetics, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Yulin Cao
- Laboratory of Cancer Epigenetics, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Surui Yao
- Wuxi Cancer Institute, Affiliated Hospital of Jiangnan University, 200 Hui He Road, Wuxi, Jiangsu, 214062, China
- Laboratory of Cancer Epigenetics, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Xue Wang
- Laboratory of Cancer Epigenetics, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Yuan Yin
- Wuxi Cancer Institute, Affiliated Hospital of Jiangnan University, 200 Hui He Road, Wuxi, Jiangsu, 214062, China
- Laboratory of Cancer Epigenetics, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Bojian Fei
- Wuxi Cancer Institute, Affiliated Hospital of Jiangnan University, 200 Hui He Road, Wuxi, Jiangsu, 214062, China
- Laboratory of Cancer Epigenetics, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, 214122, China
- Department of General Surgery, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu, 214062, China
| | - Zhaohui Huang
- Wuxi Cancer Institute, Affiliated Hospital of Jiangnan University, 200 Hui He Road, Wuxi, Jiangsu, 214062, China.
- Laboratory of Cancer Epigenetics, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, 214122, China.
| |
Collapse
|
8
|
Zhang J, Fang Z, Song C. Molecular characteristics and clinical implications of serine/arginine-rich splicing factors in human cancer. Aging (Albany NY) 2023; 15:13287-13311. [PMID: 38015716 DOI: 10.18632/aging.205241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 10/17/2023] [Indexed: 11/30/2023]
Abstract
As critical splicing regulators, serine/arginine-rich splicing factors (SRSFs) play pivotal roles in carcinogenesis. As dysregulation of SRSFs may confer potential cancer risks, targeting SRSFs could provide important insights into cancer therapy. However, a global and comprehensive pattern to elaborate the molecular characteristics, mechanisms, and clinical links of SRSFs in a wide variety of human cancer is still lacking. In this study, a systematic analysis was conducted to reveal the molecular characteristics and clinical implications of SRSFs covering more than 10000 tumour samples of 33 human cancer types. We found that SRSFs experienced prevalent genomic alterations and expression perturbations in multiple cancer types. The DNA methylation, m6A modification, and miRNA regulation of SRSFs were all cancer context-dependent. Importantly, we found that SRSFs were strongly associated with cancer immunity, and were capable of predicting response to immunotherapy. And SRSFs had colossal potential for predicting survival in multiple cancer types, including those that have received immunotherapy. Moreover, we also found that SRSFs could indicate the drug sensitivity of targeted therapy and chemotherapy. Our research highlights the significance of SRSFs in cancer occurrence and development, and provides sufficient resources for understanding the biological characteristics of SRSFs, offering a new and unique perspective for developing cancer therapeutic strategies.
Collapse
Affiliation(s)
- Jinjin Zhang
- Department of Emergency Medicine, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Zhicheng Fang
- Department of Emergency Medicine, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Congkuan Song
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
9
|
Cui Y, Sun Y, Li D, Zhang Y, Zhang Y, Cao D, Cao X. The crosstalk among the physical tumor microenvironment and the effects of glucose deprivation on tumors in the past decade. Front Cell Dev Biol 2023; 11:1275543. [PMID: 38020920 PMCID: PMC10646288 DOI: 10.3389/fcell.2023.1275543] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 10/18/2023] [Indexed: 12/01/2023] Open
Abstract
The occurrence and progression of tumors are inseparable from glucose metabolism. With the development of tumors, the volume increases gradually and the nutritional supply of tumors cannot be fully guaranteed. The tumor microenvironment changes and glucose deficiency becomes the common stress environment of tumors. Here, we discuss the mutual influences between glucose deprivation and other features of the tumor microenvironment, such as hypoxia, immune escape, low pH, and oxidative stress. In the face of a series of stress responses brought by glucose deficiency, different types of tumors have different coping mechanisms. We summarize the tumor studies on glucose deficiency in the last decade and review the genes and pathways that determine the fate of tumors under harsh conditions. It turns out that most of these genes help tumor cells survive in glucose-deprivation conditions. The development of related inhibitors may bring new opportunities for the treatment of tumors.
Collapse
Affiliation(s)
- Yingnan Cui
- Department of Gastric and Colorectal Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun, China
| | - Yuanlin Sun
- Department of Gastric and Colorectal Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun, China
| | - Dongming Li
- Department of Gastric and Colorectal Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun, China
| | - Yuzheng Zhang
- Division of Clinical Epidemiology, The First Hospital of Jilin University, Changchun, China
| | - Yangyu Zhang
- Division of Clinical Epidemiology, The First Hospital of Jilin University, Changchun, China
| | - Donghui Cao
- Division of Clinical Epidemiology, The First Hospital of Jilin University, Changchun, China
| | - Xueyuan Cao
- Department of Gastric and Colorectal Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
10
|
Alors-Pérez E, Pedraza-Arevalo S, Blázquez-Encinas R, Moreno-Montilla MT, García-Vioque V, Berbel I, Luque RM, Sainz B, Ibáñez-Costa A, Castaño JP. Splicing alterations in pancreatic ductal adenocarcinoma: a new molecular landscape with translational potential. J Exp Clin Cancer Res 2023; 42:282. [PMID: 37880792 PMCID: PMC10601233 DOI: 10.1186/s13046-023-02858-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 10/09/2023] [Indexed: 10/27/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) remains one of the most lethal cancers worldwide, mainly due to its late diagnosis and lack of effective therapies, translating into a low 5-year 12% survival rate, despite extensive clinical efforts to improve outcomes. International cooperative studies have provided informative multiomic landscapes of PDAC, but translation of these discoveries into clinical advances are lagging. Likewise, early diagnosis biomarkers and new therapeutic tools are sorely needed to tackle this cancer. The study of poorly explored molecular processes, such as splicing, can provide new tools in this regard. Alternative splicing of pre-RNA allows the generation of multiple RNA variants from a single gene and thereby contributes to fundamental biological processes by finely tuning gene expression. However, alterations in alternative splicing are linked to many diseases, and particularly to cancer, where it can contribute to tumor initiation, progression, metastasis and drug resistance. Splicing defects are increasingly being associated with PDAC, including both mutations or dysregulation of components of the splicing machinery and associated factors, and altered expression of specific relevant gene variants. Such disruptions can be a key element enhancing pancreatic tumor progression or metastasis, while they can also provide suitable tools to identify potential candidate biomarkers and discover new actionable targets. In this review, we aimed to summarize the current information about dysregulation of splicing-related elements and aberrant splicing isoforms in PDAC, and to describe their relationship with the development, progression and/or aggressiveness of this dismal cancer, as well as their potential as therapeutic tools and targets.
Collapse
Affiliation(s)
- Emilia Alors-Pérez
- Maimonides Biomedical Research Institute of Córdoba (IMIBIC), Cordoba, Spain
- Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Cordoba, Spain
- Reina Sofía University Hospital (HURS), Cordoba, Spain
| | - Sergio Pedraza-Arevalo
- Maimonides Biomedical Research Institute of Córdoba (IMIBIC), Cordoba, Spain
- Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Cordoba, Spain
- Reina Sofía University Hospital (HURS), Cordoba, Spain
| | - Ricardo Blázquez-Encinas
- Maimonides Biomedical Research Institute of Córdoba (IMIBIC), Cordoba, Spain
- Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Cordoba, Spain
- Reina Sofía University Hospital (HURS), Cordoba, Spain
| | - María Trinidad Moreno-Montilla
- Maimonides Biomedical Research Institute of Córdoba (IMIBIC), Cordoba, Spain
- Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Cordoba, Spain
- Reina Sofía University Hospital (HURS), Cordoba, Spain
| | - Víctor García-Vioque
- Maimonides Biomedical Research Institute of Córdoba (IMIBIC), Cordoba, Spain
- Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Cordoba, Spain
- Reina Sofía University Hospital (HURS), Cordoba, Spain
| | - Inmaculada Berbel
- Maimonides Biomedical Research Institute of Córdoba (IMIBIC), Cordoba, Spain
- Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Cordoba, Spain
- Reina Sofía University Hospital (HURS), Cordoba, Spain
| | - Raúl M Luque
- Maimonides Biomedical Research Institute of Córdoba (IMIBIC), Cordoba, Spain
- Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Cordoba, Spain
- Reina Sofía University Hospital (HURS), Cordoba, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición, (CIBERObn), Córdoba, Spain
| | - Bruno Sainz
- Department of Cancer Biology, Instituto de Investigaciones Biomédicas Alberto Sols CSIC-UAM, Madrid, Spain
- Cancer Stem Cells and Fibroinflammatory Microenvironment Group, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Area 3, Cancer, Madrid, Spain
- Gastrointestinal Tumours Research Programme, Biomedical Research Network in Cancer (CIBERONC), Madrid, Spain
| | - Alejandro Ibáñez-Costa
- Maimonides Biomedical Research Institute of Córdoba (IMIBIC), Cordoba, Spain.
- Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Cordoba, Spain.
- Reina Sofía University Hospital (HURS), Cordoba, Spain.
| | - Justo P Castaño
- Maimonides Biomedical Research Institute of Córdoba (IMIBIC), Cordoba, Spain.
- Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Cordoba, Spain.
- Reina Sofía University Hospital (HURS), Cordoba, Spain.
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición, (CIBERObn), Córdoba, Spain.
| |
Collapse
|
11
|
Wan JX, Wang YQ, Lan SN, Chen L, Feng MQ, Chen X. Research Progress in Function and Regulation of E3 Ubiquitin Ligase SMURF1. Curr Med Sci 2023; 43:855-868. [PMID: 37558865 DOI: 10.1007/s11596-023-2774-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 06/08/2023] [Indexed: 08/11/2023]
Abstract
Smad ubiquitylation regulatory factor 1 (Smurf1) is an important homologous member of E6-AP C-terminus type E3 ubiquitin ligase. Initially, Smurf1 was reportedly involved in the negative regulation of the bone morphogenesis protein (BMP) pathway. After further research, several studies have confirmed that Smurf1 is widely involved in various biological processes, such as bone homeostasis regulation, cell migration, apoptosis, and planar cell polarity. At the same time, recent studies have provided a deeper understanding of the regulatory mechanisms of Smurf1's expression, activity, and substrate selectivity. In our review, a brief summary of recent important biological functions and regulatory mechanisms of E3 ubiquitin ligase Smurf1 is proposed.
Collapse
Affiliation(s)
- Ji-Xi Wan
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yu-Qi Wang
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Si-Na Lan
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Liu Chen
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Ming-Qian Feng
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
- College of Biomedicine and Health, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xin Chen
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
12
|
Ghosh A, Chakraborty P, Biswas D. Fine tuning of the transcription juggernaut: A sweet and sour saga of acetylation and ubiquitination. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2023; 1866:194944. [PMID: 37236503 DOI: 10.1016/j.bbagrm.2023.194944] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 04/26/2023] [Accepted: 05/18/2023] [Indexed: 05/28/2023]
Abstract
Among post-translational modifications of proteins, acetylation, phosphorylation, and ubiquitination are most extensively studied over the last several decades. Owing to their different target residues for modifications, cross-talk between phosphorylation with that of acetylation and ubiquitination is relatively less pronounced. However, since canonical acetylation and ubiquitination happen only on the lysine residues, an overlap of the same lysine residue being targeted for both acetylation and ubiquitination happens quite frequently and thus plays key roles in overall functional regulation predominantly through modulation of protein stability. In this review, we discuss the cross-talk of acetylation and ubiquitination in the regulation of protein stability for the functional regulation of cellular processes with an emphasis on transcriptional regulation. Further, we emphasize our understanding of the functional regulation of Super Elongation Complex (SEC)-mediated transcription, through regulation of stabilization by acetylation, deacetylation and ubiquitination and associated enzymes and its implication in human diseases.
Collapse
Affiliation(s)
- Avik Ghosh
- Laboratory of Transcription Biology Molecular Genetics Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Kolkata 32, India
| | - Poushali Chakraborty
- Laboratory of Transcription Biology Molecular Genetics Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Kolkata 32, India
| | - Debabrata Biswas
- Laboratory of Transcription Biology Molecular Genetics Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Kolkata 32, India.
| |
Collapse
|
13
|
Li D, Yu W, Lai M. Targeting serine- and arginine-rich splicing factors to rectify aberrant alternative splicing. Drug Discov Today 2023; 28:103691. [PMID: 37385370 DOI: 10.1016/j.drudis.2023.103691] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/30/2023] [Accepted: 06/21/2023] [Indexed: 07/01/2023]
Abstract
Serine- and arginine-rich splicing factors are pivotal modulators of constitutive splicing and alternative splicing that bind to the cis-acting elements in precursor mRNAs and facilitate the recruitment and assembly of the spliceosome. Meanwhile, SR proteins shuttle between the nucleus and cytoplasm with a broad implication in multiple RNA-metabolizing events. Recent studies have demonstrated the positive correlation of overexpression and/or hyperactivation of SR proteins and development of the tumorous phenotype, indicating the therapeutic potentials of targeting SR proteins. In this review, we highlight key findings concerning the physiological and pathological roles of SR proteins. We have also investigated small molecules and oligonucleotides that effectively modulate the functions of SR proteins, which could benefit future studies of SR proteins.
Collapse
Affiliation(s)
- Dianyang Li
- Department of Pharmacology, China Pharmaceutical University, Nanjing 210009, China.
| | - Wenying Yu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China.
| | - Maode Lai
- Department of Pharmacology, China Pharmaceutical University, Nanjing 210009, China; Department of Pathology, Research Unit of Intelligence Classification of Tumor Pathology and Precision Therapy, Chinese Academy of Medical Science (2019RU042), Key Laboratory of Disease Proteomics of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou 310058, Zhejiang, China.
| |
Collapse
|
14
|
Yang R, Peng W, Shi S, Peng X, Cai Q, Zhao Z, He B, Tu G, Yin W, Chen Y, Zhang Y, Liu F, Wang X, Xiao D, Tao Y. The NLRP11 Protein Bridges the Histone Lysine Acetyltransferase KAT7 to Acetylate Vimentin in the Early Stage of Lung Adenocarcinoma. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2300971. [PMID: 37424170 PMCID: PMC10477884 DOI: 10.1002/advs.202300971] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 06/19/2023] [Indexed: 07/11/2023]
Abstract
Accumulation of vimentin is the core event in epithelial-mesenchymal transition (EMT). Post-translational modifications have been widely reported to play crucial roles in imparting different properties and functions to vimentin. Here, a novel modification of vimentin, acetylated at Lys104 (vimentin-K104Ac) is identified, which is stable in lung adenocarcinoma (LUAD) cells. Mechanistically, NACHT, LRR, and PYD domain-containing protein 11 (NLRP11), a regulator of the inflammatory response, bind to vimentin and promote vimentin-K104Ac expression, which is highly expressed in the early stages of LUAD and frequently appears in vimentin-positive LUAD tissues. In addition, it is observed that an acetyltransferase, lysine acetyltransferase 7 (KAT7), which binds to NLRP11 and vimentin, directly mediates the acetylation of vimentin at Lys104 and that the cytoplasmic localization of KAT7 can be induced by NLRP11. Malignant promotion mediated by transfection with vimentin-K104Q is noticeably greater than that mediated by transfection with vimentin-WT. Further, suppressing the effects of NLRP11 and KAT7 on vimentin noticeably inhibited the malignant behavior of vimentin-positive LUAD in vivo and in vitro. In summary, these findings have established a relationship between inflammation and EMT, which is reflected via KAT7-mediated acetylation of vimentin at Lys104 dependent on NLRP11.
Collapse
Affiliation(s)
- Rui Yang
- Department of PathologyXiangya Hospital and School of Basic MedicineCentral South UniversityChangshaHunan410008China
- NHC Key Laboratory of CarcinogenesisCancer Research Institute and School of Basic MedicineCentral South UniversityChangshaHunan410078China
| | - Weilin Peng
- Department of Thoracic SurgeryThe Second Xiangya HospitalCentral South UniversityChangshaHunan410011China
- Hunan Key Laboratory of Early Diagnosis and Precise Treatment of Lung Cancerthe Second Xiangya Hospital of Central South UniversityChangshaHunan410011China
| | - Shuai Shi
- Department of Thoracic SurgeryThe Second Xiangya HospitalCentral South UniversityChangshaHunan410011China
- Hunan Key Laboratory of Early Diagnosis and Precise Treatment of Lung Cancerthe Second Xiangya Hospital of Central South UniversityChangshaHunan410011China
| | - Xiong Peng
- Department of Thoracic SurgeryThe Second Xiangya HospitalCentral South UniversityChangshaHunan410011China
- Hunan Key Laboratory of Early Diagnosis and Precise Treatment of Lung Cancerthe Second Xiangya Hospital of Central South UniversityChangshaHunan410011China
| | - Qidong Cai
- Department of Thoracic SurgeryThe Second Xiangya HospitalCentral South UniversityChangshaHunan410011China
- Hunan Key Laboratory of Early Diagnosis and Precise Treatment of Lung Cancerthe Second Xiangya Hospital of Central South UniversityChangshaHunan410011China
| | - Zhenyu Zhao
- Department of Thoracic SurgeryThe Second Xiangya HospitalCentral South UniversityChangshaHunan410011China
- Hunan Key Laboratory of Early Diagnosis and Precise Treatment of Lung Cancerthe Second Xiangya Hospital of Central South UniversityChangshaHunan410011China
| | - Boxue He
- Department of Thoracic SurgeryThe Second Xiangya HospitalCentral South UniversityChangshaHunan410011China
- Hunan Key Laboratory of Early Diagnosis and Precise Treatment of Lung Cancerthe Second Xiangya Hospital of Central South UniversityChangshaHunan410011China
| | - Guangxu Tu
- Department of Thoracic SurgeryThe Second Xiangya HospitalCentral South UniversityChangshaHunan410011China
- Hunan Key Laboratory of Early Diagnosis and Precise Treatment of Lung Cancerthe Second Xiangya Hospital of Central South UniversityChangshaHunan410011China
| | - Wei Yin
- Department of Thoracic SurgeryThe Second Xiangya HospitalCentral South UniversityChangshaHunan410011China
- Hunan Key Laboratory of Early Diagnosis and Precise Treatment of Lung Cancerthe Second Xiangya Hospital of Central South UniversityChangshaHunan410011China
| | - Yichuan Chen
- Department of Cardiovascular SurgeryThe Second Xiangya HospitalCentral South UniversityChangshaHunan410011China
| | - Yuqian Zhang
- Department of Thoracic SurgeryThe First Affiliated HospitalSchool of MedicineZhejiang UniversityHangzhouZhejiang310000China
| | - Fang Liu
- Clinic Nursing Teaching and Research SectionThe Second Xiangya HospitalCentral South UniversityChangshaHunan410011China
| | - Xiang Wang
- Department of Thoracic SurgeryThe Second Xiangya HospitalCentral South UniversityChangshaHunan410011China
- Hunan Key Laboratory of Early Diagnosis and Precise Treatment of Lung Cancerthe Second Xiangya Hospital of Central South UniversityChangshaHunan410011China
| | - Desheng Xiao
- Department of PathologyXiangya Hospital and School of Basic MedicineCentral South UniversityChangshaHunan410008China
- NHC Key Laboratory of CarcinogenesisCancer Research Institute and School of Basic MedicineCentral South UniversityChangshaHunan410078China
| | - Yongguang Tao
- Department of PathologyXiangya Hospital and School of Basic MedicineCentral South UniversityChangshaHunan410008China
- NHC Key Laboratory of CarcinogenesisCancer Research Institute and School of Basic MedicineCentral South UniversityChangshaHunan410078China
- Department of Thoracic SurgeryThe Second Xiangya HospitalCentral South UniversityChangshaHunan410011China
- Hunan Key Laboratory of Early Diagnosis and Precise Treatment of Lung Cancerthe Second Xiangya Hospital of Central South UniversityChangshaHunan410011China
| |
Collapse
|
15
|
Zhao K, Zheng M, Su Z, Ghosh S, Zhang C, Zhong W, Ho JWK, Jin G, Zhou Z. MOF-mediated acetylation of SIRT6 disrupts SIRT6-FOXA2 interaction and represses SIRT6 tumor-suppressive function by upregulating ZEB2 in NSCLC. Cell Rep 2023; 42:112939. [PMID: 37566546 DOI: 10.1016/j.celrep.2023.112939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 06/05/2023] [Accepted: 07/20/2023] [Indexed: 08/13/2023] Open
Abstract
Mammalian sirtuin 6 (SIRT6) regulates a spectrum of vital biological processes and has long been implicated in the progression of cancer. However, the mechanisms underlying the regulation of SIRT6 in tumorigenesis remain elusive. Here, we report that the tumor-suppressive function of SIRT6 in non-small cell lung cancer (NSCLC) is regulated by acetylation. Specifically, males absent on the first (MOF) acetylates SIRT6 at K128, K160, and K267, resulting in a decreased deacetylase activity of SIRT6 and attenuated SIRT6 tumor-suppressive function in NSCLC. Mechanistically, MOF-mediated SIRT6 acetylation hinders the interaction between SIRT6 and transcriptional factor FOXA2, which in turn leads to the transcriptional activation of ZEB2, thus promoting NSCLC progression. Collectively, these data indicate an acetylation-dependent mechanism that modulates SIRT6 tumor-suppressive function in NSCLC. Our findings suggest that the MOF-SIRT6-ZEB2 axis may represent a promising therapeutic target for the management of NSCLC.
Collapse
Affiliation(s)
- Kaiqiang Zhao
- Medical Research Center, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, P.R. China; School of Biomedical Sciences, The University of Hong Kong, Hong Kong SAR, P.R. China; Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Hong Kong SAR, P.R. China
| | - Mingyue Zheng
- Medical Research Center, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, P.R. China
| | - Zezhuo Su
- School of Biomedical Sciences, The University of Hong Kong, Hong Kong SAR, P.R. China; Laboratory of Data Discovery for Health Limited (D24H), Hong Kong Science Park, Hong Kong SAR, P.R. China
| | - Shrestha Ghosh
- School of Biomedical Sciences, The University of Hong Kong, Hong Kong SAR, P.R. China; Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Chao Zhang
- Guangdong Lung Cancer Institute, Guangdong Provincial Key Laboratory of Translational Medicine in Lung Cancer, Guangdong Provincial People's Hospital & Guangdong Academy of Medical Sciences, Guangzhou 510080, P.R. China
| | - Wenzhao Zhong
- Guangdong Lung Cancer Institute, Guangdong Provincial Key Laboratory of Translational Medicine in Lung Cancer, Guangdong Provincial People's Hospital & Guangdong Academy of Medical Sciences, Guangzhou 510080, P.R. China
| | - Joshua Wing Kei Ho
- School of Biomedical Sciences, The University of Hong Kong, Hong Kong SAR, P.R. China; Laboratory of Data Discovery for Health Limited (D24H), Hong Kong Science Park, Hong Kong SAR, P.R. China
| | - Guoxiang Jin
- Medical Research Center, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, P.R. China.
| | - Zhongjun Zhou
- Medical Research Center, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, P.R. China; School of Biomedical Sciences, The University of Hong Kong, Hong Kong SAR, P.R. China; Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Hong Kong SAR, P.R. China; Reproductive Medical Center, The University of Hong Kong Shenzhen Hospital, Shenzhen, P.R. China.
| |
Collapse
|
16
|
Xu XC, Jiang JX, Zhou YQ, He S, Liu Y, Li YQ, Wei PP, Bei JX, Sun J, Luo CL. SRSF3/AMOTL1 splicing axis promotes the tumorigenesis of nasopharyngeal carcinoma through regulating the nucleus translocation of YAP1. Cell Death Dis 2023; 14:511. [PMID: 37558679 PMCID: PMC10412622 DOI: 10.1038/s41419-023-06034-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 07/27/2023] [Accepted: 08/01/2023] [Indexed: 08/11/2023]
Abstract
Dysregulation of serine/arginine splicing factors (SRSFs) and abnormal alternative splicing (AS) have been widely implicated in various cancers but scarcely investigated in nasopharyngeal carcinoma (NPC). Here we examine the expression of 12 classical SRSFs between 87 NPC and 10 control samples, revealing a significant upregulation of SRSF3 and its association with worse prognosis in NPC. Functional assays demonstrate that SRSF3 exerts an oncogenic function in NPC progression. Transcriptome analysis reveals 1,934 SRSF3-regulated AS events in genes related to cell cycle and mRNA metabolism. Among these events, we verify the generation of a long isoform of AMOTL1 (AMOTL1-L) through a direct bond of the SRSF3 RRM domain with the exon 12 of AMOTL1 to promote exon inclusion. Functional studies also reveal that AMOTL1-L promotes the proliferation and migration of NPC cells, while AMOTL1-S does not. Furthermore, overexpression of AMOTL1-L, but not -S, significantly rescues the inhibitory effects of SRSF3 knockdown. Additionally, compared with AMOTL1-S, AMOTL1-L has a localization preference in the intracellular than the cell membrane, leading to a more robust interaction with YAP1 to promote nucleus translocation. Our findings identify SRSF3/AMOTL1 as a novel alternative splicing axis with pivotal roles in NPC development, which could serve as promising prognostic biomarkers and therapeutic targets for NPC.
Collapse
Affiliation(s)
- Xiao-Chen Xu
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, 510060, P. R. China
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, P. R. China
| | - Jia-Xin Jiang
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, 510060, P. R. China
| | - Ya-Qing Zhou
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, 510060, P. R. China
| | - Shuai He
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, 510060, P. R. China
| | - Yang Liu
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, 510060, P. R. China
| | - Yi-Qi Li
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, 510060, P. R. China
| | - Pan-Pan Wei
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, 510060, P. R. China
| | - Jin-Xin Bei
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, 510060, P. R. China
- Department of Experimental Research, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China
- Department of Medical Oncology, National Cancer Centre of Singapore, Singapore, Singapore
| | - Jian Sun
- The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, P. R. China.
| | - Chun-Ling Luo
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, 510060, P. R. China.
| |
Collapse
|
17
|
Li D, Yu W, Lai M. Towards understandings of serine/arginine-rich splicing factors. Acta Pharm Sin B 2023; 13:3181-3207. [PMID: 37655328 PMCID: PMC10465970 DOI: 10.1016/j.apsb.2023.05.022] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 04/13/2023] [Accepted: 05/06/2023] [Indexed: 09/02/2023] Open
Abstract
Serine/arginine-rich splicing factors (SRSFs) refer to twelve RNA-binding proteins which regulate splice site recognition and spliceosome assembly during precursor messenger RNA splicing. SRSFs also participate in other RNA metabolic events, such as transcription, translation and nonsense-mediated decay, during their shuttling between nucleus and cytoplasm, making them indispensable for genome diversity and cellular activity. Of note, aberrant SRSF expression and/or mutations elicit fallacies in gene splicing, leading to the generation of pathogenic gene and protein isoforms, which highlights the therapeutic potential of targeting SRSF to treat diseases. In this review, we updated current understanding of SRSF structures and functions in RNA metabolism. Next, we analyzed SRSF-induced aberrant gene expression and their pathogenic outcomes in cancers and non-tumor diseases. The development of some well-characterized SRSF inhibitors was discussed in detail. We hope this review will contribute to future studies of SRSF functions and drug development targeting SRSFs.
Collapse
Affiliation(s)
- Dianyang Li
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Wenying Yu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Maode Lai
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 210009, China
- Department of Pathology, Research Unit of Intelligence Classification of Tumor Pathology and Precision Therapy, Chinese Academy of Medical Science (2019RU042), Key Laboratory of Disease Proteomics of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou 310058, China
| |
Collapse
|
18
|
Chang J, Yan S, Geng Z, Wang Z. Inhibition of splicing factors SF3A3 and SRSF5 contributes to As 3+/Se 4+ combination-mediated proliferation suppression and apoptosis induction in acute promyelocytic leukemia cells. Arch Biochem Biophys 2023; 743:109677. [PMID: 37356608 DOI: 10.1016/j.abb.2023.109677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/28/2023] [Accepted: 06/22/2023] [Indexed: 06/27/2023]
Abstract
The low-dose combination of Arsenite (As3+) and selenite (Se4+) has the advantages of lower biological toxicity and better curative effects for acute promyelocytic leukemia (APL) therapy. However, the underlying mechanisms remain unclear. Here, based on the fact that the combination of 2 μM A3+ plus 4 μM Se4+ possessed a stronger anti-leukemic effect on APL cell line NB4 as compared with each individual, we employed iTRAQ-based quantitative proteomics to identify a total of 58 proteins that were differentially expressed after treatment with As3+/Se4+ combination rather than As3+ or Se4+ alone, the majority of which were involved in spliceosome pathway. Among them, eight proteins stood out by virtue of their splicing function and significant changes. They were validated as being decreased in mRNA and protein levels under As3+/Se4+ combination treatment. Further functional studies showed that only knockdown of two splicing factors, SF3A3 and SRSF5, suppressed the growth of NB4 cells. The reduction of SF3A3 was found to cause G1/S cell cycle arrest, which resulted in proliferation inhibition. Moreover, SRSF5 downregulation induced cell apoptosis through the activation of caspase-3. Taken together, these findings indicate that SF3A3 and SRSF5 function as pro-leukemic factors and can be potential novel therapeutic targets for APL.
Collapse
Affiliation(s)
- Jiayin Chang
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210023, PR China
| | - Shihai Yan
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210023, PR China
| | - Zhirong Geng
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210046, PR China.
| | - Zhilin Wang
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210023, PR China.
| |
Collapse
|
19
|
Tsoi H, Fung NNC, Man EPS, Leung MH, You CP, Chan WL, Chan SY, Khoo US. SRSF5 Regulates the Expression of BQ323636.1 to Modulate Tamoxifen Resistance in ER-Positive Breast Cancer. Cancers (Basel) 2023; 15:cancers15082271. [PMID: 37190199 DOI: 10.3390/cancers15082271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 04/11/2023] [Accepted: 04/11/2023] [Indexed: 05/17/2023] Open
Abstract
About 70% of breast cancer patients are oestrogen receptor-positive (ER +ve). Adjuvant endocrine therapy using tamoxifen (TAM) is an effective approach for preventing local recurrence and metastasis. However, around half of the patients will eventually develop resistance. Overexpression of BQ323636.1 (BQ) is one of the mechanisms that confer TAM resistance. BQ is an alternative splice variant of NCOR2. The inclusion of exon 11 generates mRNA for NCOR2, while the exclusion of exon 11 produces mRNA for BQ. The expression of SRSF5 is low in TAM-resistant breast cancer cells. Modulation of SRSF5 can affect the alternative splicing of NCOR2 to produce BQ. In vitro and in vivo studies confirmed that the knockdown of SRSF5 enhanced BQ expression, and conferred TAM resistance; in contrast, SRSF5 overexpression reduced BQ expression and, thus, reversed TAM resistance. Clinical investigation using a tissue microarray confirmed the inverse correlation of SRSF5 and BQ. Low SRSF5 expression was associated with TAM resistance, local recurrence and metastasis. Survival analyses showed that low SRSF5 expression was associated with poorer prognosis. We showed that SRPK1 can interact with SRSF5 to phosphorylate it. Inhibition of SRPK1 by a small inhibitor, SRPKIN-1, suppressed the phosphorylation of SRSF5. This enhanced the proportion of SRSF5 interacting with exon 11 of NCOR2, reducing the production of BQ mRNA. As expected, SRPKIN-1 reduced TAM resistance. Our study confirms that SRSF5 is essential for BQ expression. Modulating the activity of SRSF5 in ER +ve breast cancer will be a potential approach to combating TAM resistance.
Collapse
Affiliation(s)
- Ho Tsoi
- Department of Pathology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Nicholas Nok-Ching Fung
- Department of Pathology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Ellen P S Man
- Department of Pathology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Man-Hong Leung
- Department of Pathology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Chan-Ping You
- Department of Pathology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Wing-Lok Chan
- Department of Clinical Oncology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Sum-Yin Chan
- Department of Clinical Oncology, Queen Mary Hospital, Hong Kong SAR, China
| | - Ui-Soon Khoo
- Department of Pathology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
20
|
Bader JM, Deigendesch N, Misch M, Mann M, Koch A, Meissner F. Proteomics separates adult-type diffuse high-grade gliomas in metabolic subgroups independent of 1p/19q codeletion and across IDH mutational status. Cell Rep Med 2023; 4:100877. [PMID: 36584682 PMCID: PMC9873829 DOI: 10.1016/j.xcrm.2022.100877] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 07/15/2022] [Accepted: 12/07/2022] [Indexed: 12/30/2022]
Abstract
High-grade adult-type diffuse gliomas are malignant neuroepithelial tumors with poor survival rates in combined chemoradiotherapy. The current WHO classification is based on IDH1/2 mutational and 1p/19q codeletion status. Glioma proteome alterations remain undercharacterized despite their promise for a better molecular patient stratification and therapeutic target identification. Here, we use mass spectrometry to characterize 42 formalin-fixed, paraffin-embedded (FFPE) samples from IDH-wild-type (IDHwt) gliomas, IDH-mutant (IDHmut) gliomas with and without 1p/19q codeletion, and non-neoplastic controls. Based on more than 5,500 quantified proteins and 5,000 phosphosites, gliomas separate by IDH1/2 mutational status but not by 1p/19q status. Instead, IDHmut gliomas split into two proteomic subtypes with widespread perturbations, including aerobic/anaerobic energy metabolism. Validations with three independent glioma proteome datasets confirm these subgroups and link the IDHmut subtypes to the established proneural and classic/mesenchymal subtypes in IDHwt glioma. This demonstrates common phenotypic subtypes across the IDH status with potential therapeutic implications for patients with IDHmut gliomas.
Collapse
Affiliation(s)
- Jakob Maximilian Bader
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany
| | - Nikolaus Deigendesch
- Pathology, Institute of Medical Genetics and Pathology, University Hospital Basel, University of Basel, 4031 Basel, Switzerland
| | - Martin Misch
- Department of Neurosurgery, Charité, Universitätsmedizin Berlin Corporate Member of Freie Universität Berlin, and Humboldt-Universität zu Berlin, Berlin Institute of Health, 13353 Berlin, Germany
| | - Matthias Mann
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany; Novo Nordisk Foundation Center for Protein Research, Faculty of Health Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Arend Koch
- Department of Neuropathology, Charité, Universitätsmedizin Berlin Corporate Member of Freie Universität Berlin, and Humboldt-Universität zu Berlin, Berlin Institute of Health, 13353 Berlin, Germany.
| | - Felix Meissner
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany; Department of Systems Immunology and Proteomics, Institute of Innate Immunity, University Hospital Bonn, 53127 Bonn, Germany.
| |
Collapse
|
21
|
Shi W, Yang J, Chen D, Yin C, Zhang H, Xu X, Pan X, Wang R, Fei L, Li M, Qi L, Bhadauria V, Liu J, Peng YL. The rice blast fungus SR protein 1 regulates alternative splicing with unique mechanisms. PLoS Pathog 2022; 18:e1011036. [PMID: 36480554 PMCID: PMC9767378 DOI: 10.1371/journal.ppat.1011036] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 12/20/2022] [Accepted: 11/30/2022] [Indexed: 12/13/2022] Open
Abstract
Serine/arginine-rich (SR) proteins are well known as splicing factors in humans, model animals and plants. However, they are largely unknown in regulating pre-mRNA splicing of filamentous fungi. Here we report that the SR protein MoSrp1 enhances and suppresses alternative splicing in a model fungal plant pathogen Magnaporthe oryzae. Deletion of MoSRP1 caused multiple defects, including reduced virulence and thousands of aberrant alternative splicing events in mycelia, most of which were suppressed or enhanced intron splicing. A GUAG consensus bound by MoSrp1 was identified in more than 94% of the intron or/and proximate exons having the aberrant splicing. The dual functions of regulating alternative splicing of MoSrp1 were exemplified in enhancing and suppressing the consensus-mediated efficient splicing of the introns in MoATF1 and MoMTP1, respectively, which both were important for mycelial growth, conidiation, and virulence. Interestingly, MoSrp1 had a conserved sumoylation site that was essential to nuclear localization and enhancing GUAG binding. Further, we showed that MoSrp1 interacted with a splicing factor and two components of the exon-joining complex via its N-terminal RNA recognition domain, which was required to regulate mycelial growth, development and virulence. In contrast, the C-terminus was important only for virulence and stress responses but not for mycelial growth and development. In addition, only orthologues from Pezizomycotina species could completely rescue defects of the deletion mutants. This study reveals that the fungal conserved SR protein Srp1 regulates alternative splicing in a unique manner.
Collapse
Affiliation(s)
- Wei Shi
- State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, China
- MARA Key Laboratory of Pest Monitoring and Green Management, Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing, China
| | - Jun Yang
- MARA Key Laboratory of Pest Monitoring and Green Management, Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing, China
- MARA Key Laboratory of Surveillance and Management for Plant Quarantine Pests, Department of Plant Biosecurity, College of Plant Protection, China Agricultural University, Beijing, China
| | - Deng Chen
- State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, China
- MARA Key Laboratory of Pest Monitoring and Green Management, Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing, China
| | - Changfa Yin
- State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, China
- MARA Key Laboratory of Pest Monitoring and Green Management, Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing, China
| | - Huixia Zhang
- MARA Key Laboratory of Pest Monitoring and Green Management, Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing, China
- MARA Key Laboratory of Surveillance and Management for Plant Quarantine Pests, Department of Plant Biosecurity, College of Plant Protection, China Agricultural University, Beijing, China
| | - Xiaozhou Xu
- State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, China
- MARA Key Laboratory of Pest Monitoring and Green Management, Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing, China
| | - Xiao Pan
- MARA Key Laboratory of Pest Monitoring and Green Management, Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing, China
- MARA Key Laboratory of Surveillance and Management for Plant Quarantine Pests, Department of Plant Biosecurity, College of Plant Protection, China Agricultural University, Beijing, China
| | - Ruijin Wang
- MARA Key Laboratory of Pest Monitoring and Green Management, Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing, China
- MARA Key Laboratory of Surveillance and Management for Plant Quarantine Pests, Department of Plant Biosecurity, College of Plant Protection, China Agricultural University, Beijing, China
| | - Liwang Fei
- State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, China
- MARA Key Laboratory of Pest Monitoring and Green Management, Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing, China
| | - Mengfei Li
- State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, China
- MARA Key Laboratory of Pest Monitoring and Green Management, Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing, China
| | - Linlu Qi
- MARA Key Laboratory of Pest Monitoring and Green Management, Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing, China
| | - Vijai Bhadauria
- MARA Key Laboratory of Pest Monitoring and Green Management, Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing, China
| | - Junfeng Liu
- State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, China
- MARA Key Laboratory of Pest Monitoring and Green Management, Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing, China
| | - You-Liang Peng
- State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, China
- MARA Key Laboratory of Pest Monitoring and Green Management, Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing, China
- * E-mail:
| |
Collapse
|
22
|
Li Q, Jiang Z, Ren S, Guo H, Song Z, Chen S, Gao X, Meng F, Zhu J, Liu L, Tong Q, Sun H, Sun Y, Pu J, Chang K, Liu J. SRSF5-Mediated Alternative Splicing of M Gene is Essential for Influenza A Virus Replication: A Host-Directed Target Against Influenza Virus. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2203088. [PMID: 36257906 PMCID: PMC9731694 DOI: 10.1002/advs.202203088] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 08/21/2022] [Indexed: 05/29/2023]
Abstract
Splicing of influenza A virus (IAV) RNA is an essential process in the viral life cycle that involves the co-opting of host factors. Here, it is demonstrated that induction of host serine and arginine-rich splicing factor 5 (SRSF5) by IAV facilitated viral replication by enhancing viral M mRNA splicing. Mechanistically, SRSF5 with its RRM2 domain directly bounds M mRNA at conserved sites (M mRNA position 163, 709, and 712), and interacts with U1 small nuclear ribonucleoprotein (snRNP) to promote M mRNA splicing and M2 production. Mutations introduced to the three binding sites, without changing amino acid code, significantly attenuates virus replication and pathogenesis in vivo. Likewise, SRSF5 conditional knockout in the lung protects mice against lethal IAV challenge. Furthermore, anidulafungin, an approved antifungal drug, is identified as an inhibitor of SRSF5 that effectively blocks IAV replication in vitro and in vivo. In conclusion, SRSF5 as an activator of M mRNA splicing promotes IAV replication and is a host-derived antiviral target.
Collapse
Affiliation(s)
- Qiuchen Li
- Key Laboratory for Prevention and Control of Avian Influenza and Other Major Poultry DiseasesKey Laboratory of Animal EpidemiologyMinistry of AgricultureCollege of Veterinary MedicineChina Agricultural UniversityBeijing100193China
| | - Zhimin Jiang
- Key Laboratory for Prevention and Control of Avian Influenza and Other Major Poultry DiseasesKey Laboratory of Animal EpidemiologyMinistry of AgricultureCollege of Veterinary MedicineChina Agricultural UniversityBeijing100193China
- Chinese Academy of Sciences Key Laboratory of Infection and ImmunityInstitute of BiophysicsChinese Academy of SciencesBeijing100101China
| | - Shuning Ren
- Key Laboratory for Prevention and Control of Avian Influenza and Other Major Poultry DiseasesKey Laboratory of Animal EpidemiologyMinistry of AgricultureCollege of Veterinary MedicineChina Agricultural UniversityBeijing100193China
| | - Hui Guo
- Chinese Academy of Sciences Key Laboratory of Infection and ImmunityInstitute of BiophysicsChinese Academy of SciencesBeijing100101China
| | - Zhimin Song
- Chinese Academy of Sciences Key Laboratory of Infection and ImmunityInstitute of BiophysicsChinese Academy of SciencesBeijing100101China
| | - Saini Chen
- Key Laboratory for Prevention and Control of Avian Influenza and Other Major Poultry DiseasesKey Laboratory of Animal EpidemiologyMinistry of AgricultureCollege of Veterinary MedicineChina Agricultural UniversityBeijing100193China
| | - Xintao Gao
- Biotechnology Research InstituteChinese Academy of Agricultural SciencesBeijing100081China
| | - Fanfeng Meng
- Key Laboratory for Prevention and Control of Avian Influenza and Other Major Poultry DiseasesKey Laboratory of Animal EpidemiologyMinistry of AgricultureCollege of Veterinary MedicineChina Agricultural UniversityBeijing100193China
| | - Junda Zhu
- Key Laboratory for Prevention and Control of Avian Influenza and Other Major Poultry DiseasesKey Laboratory of Animal EpidemiologyMinistry of AgricultureCollege of Veterinary MedicineChina Agricultural UniversityBeijing100193China
| | - Litao Liu
- Key Laboratory for Prevention and Control of Avian Influenza and Other Major Poultry DiseasesKey Laboratory of Animal EpidemiologyMinistry of AgricultureCollege of Veterinary MedicineChina Agricultural UniversityBeijing100193China
| | - Qi Tong
- Key Laboratory for Prevention and Control of Avian Influenza and Other Major Poultry DiseasesKey Laboratory of Animal EpidemiologyMinistry of AgricultureCollege of Veterinary MedicineChina Agricultural UniversityBeijing100193China
| | - Honglei Sun
- Key Laboratory for Prevention and Control of Avian Influenza and Other Major Poultry DiseasesKey Laboratory of Animal EpidemiologyMinistry of AgricultureCollege of Veterinary MedicineChina Agricultural UniversityBeijing100193China
| | - Yipeng Sun
- Key Laboratory for Prevention and Control of Avian Influenza and Other Major Poultry DiseasesKey Laboratory of Animal EpidemiologyMinistry of AgricultureCollege of Veterinary MedicineChina Agricultural UniversityBeijing100193China
| | - Juan Pu
- Key Laboratory for Prevention and Control of Avian Influenza and Other Major Poultry DiseasesKey Laboratory of Animal EpidemiologyMinistry of AgricultureCollege of Veterinary MedicineChina Agricultural UniversityBeijing100193China
| | - Kin‐Chow Chang
- School of Veterinary Medicine and ScienceUniversity of NottinghamSutton Bonington CampusSutton BoningtonLE12 5RDUK
| | - Jinhua Liu
- Key Laboratory for Prevention and Control of Avian Influenza and Other Major Poultry DiseasesKey Laboratory of Animal EpidemiologyMinistry of AgricultureCollege of Veterinary MedicineChina Agricultural UniversityBeijing100193China
| |
Collapse
|
23
|
RNA-binding proteins: Underestimated contributors in tumorigenesis. Semin Cancer Biol 2022; 86:431-444. [PMID: 35124196 DOI: 10.1016/j.semcancer.2022.01.010] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 01/17/2022] [Accepted: 01/28/2022] [Indexed: 02/07/2023]
Abstract
mRNA export, translation, splicing, cleavage or capping determine mRNA stability, which represents one of the primary aspects regulating gene expression and function. RNA-binding proteins (RBPs) bind to their target mRNAs to regulate multiple cell functions by increasing or reducing their stability. In recent decades, studies of the role of RBPs in tumorigenesis have revealed an increasing number of proteins impacting the prognosis, diagnosis and cancer treatment. Several RBPs have been identified based on their interactions with oncogenes or tumor suppressor genes in human cancers, which are involved in apoptosis, the epithelial-mesenchymal transition (EMT), DNA repair, autophagy, cell proliferation, immune response, metabolism, and the regulation of noncoding RNAs. In this review, we propose a model showing how RBP mutations influence tumorigenesis, and we update the current knowledge regarding the molecular mechanism by which RBPs regulate cancer. Special attention is being devoted to RBPs that represent prognostic and diagnostic factors in cancer patients.
Collapse
|
24
|
Luo Y, Tian G, Fang X, Bai S, Yuan G, Pan Y. Ferroptosis and Its Potential Role in Glioma: From Molecular Mechanisms to Therapeutic Opportunities. Antioxidants (Basel) 2022; 11:2123. [PMID: 36358495 PMCID: PMC9686959 DOI: 10.3390/antiox11112123] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/20/2022] [Accepted: 10/26/2022] [Indexed: 09/29/2023] Open
Abstract
Glioma is the most common intracranial malignant tumor, and the current main standard treatment option is a combination of tumor surgical resection, chemotherapy and radiotherapy. Due to the terribly poor five-year survival rate of patients with gliomas and the high recurrence rate of gliomas, some new and efficient therapeutic strategies are expected. Recently, ferroptosis, as a new form of cell death, has played a significant role in the treatment of gliomas. Specifically, studies have revealed key processes of ferroptosis, including iron overload in cells, occurrence of lipid peroxidation, inactivation of cysteine/glutathione antiporter system Xc- (xCT) and glutathione peroxidase 4 (GPX4). In the present review, we summarized the molecular mechanisms of ferroptosis and introduced the application and challenges of ferroptosis in the development and treatment of gliomas. Moreover, we highlighted the therapeutic opportunities of manipulating ferroptosis to improve glioma treatments, which may improve the clinical outcome.
Collapse
Affiliation(s)
- Yusong Luo
- Department of Neurosurgery, Lanzhou University Second Hospital, Lanzhou 730030, China
- Key Laboratory of Neurology of Gansu Province, Lanzhou 730030, China
- The Second Clinical Medical School, Lanzhou University, Lanzhou 730030, China
| | - Guopeng Tian
- Department of Neurosurgery, Lanzhou University Second Hospital, Lanzhou 730030, China
- Key Laboratory of Neurology of Gansu Province, Lanzhou 730030, China
- The Second Clinical Medical School, Lanzhou University, Lanzhou 730030, China
| | - Xiang Fang
- Department of Neurosurgery, Lanzhou University Second Hospital, Lanzhou 730030, China
- Key Laboratory of Neurology of Gansu Province, Lanzhou 730030, China
- The Second Clinical Medical School, Lanzhou University, Lanzhou 730030, China
| | - Shengwei Bai
- Department of Neurosurgery, Lanzhou University Second Hospital, Lanzhou 730030, China
- Key Laboratory of Neurology of Gansu Province, Lanzhou 730030, China
- The Second Clinical Medical School, Lanzhou University, Lanzhou 730030, China
| | - Guoqiang Yuan
- Department of Neurosurgery, Lanzhou University Second Hospital, Lanzhou 730030, China
- Key Laboratory of Neurology of Gansu Province, Lanzhou 730030, China
- The Second Clinical Medical School, Lanzhou University, Lanzhou 730030, China
| | - Yawen Pan
- Department of Neurosurgery, Lanzhou University Second Hospital, Lanzhou 730030, China
- Key Laboratory of Neurology of Gansu Province, Lanzhou 730030, China
- The Second Clinical Medical School, Lanzhou University, Lanzhou 730030, China
| |
Collapse
|
25
|
Mo M, Ma X, Luo Y, Tan C, Liu B, Tang P, Liao Q, Liu S, Yu H, Huang D, Zeng X, Qiu X. Liver-specific lncRNA FAM99A may be a tumor suppressor and promising prognostic biomarker in hepatocellular carcinoma. BMC Cancer 2022; 22:1098. [PMID: 36289466 PMCID: PMC9609286 DOI: 10.1186/s12885-022-10186-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 10/13/2022] [Indexed: 12/17/2022] Open
Abstract
Background Increasing evidence shows that liver-specific long non-coding RNAs (lncRNAs) play important roles in the development of hepatocellular carcinoma (HCC). We identified a novel liver-specific lncRNA, FAM99A, and examined its clinical significance and biological functions in HCC. Methods The expression level and clinical value of FAM99A in HCC were examined using The Cancer Genome Atlas (TCGA), International Cancer Genome Consortium (ICGC), and Gene Expression Omnibus (GEO) databases, and were further verified using quantitative real-time polymerase chain reaction (qRT–PCR) in our HCC cohort. Univariate and multivariate Cox proportional hazards regression models were also applied to identify independent prognostic indicators for HCC patients. Cell counting kit-8, colony formation, and Transwell assays were performed to evaluate the effects of FAM99A on the proliferation, migration, and invasion abilities of HCC cells in vitro. A subcutaneous xenograft tumor model was implemented to determine the effect of FAM99A on the tumor growth of HCC cells in vivo. RNA pull-down and mass spectrometry assays were performed to reveal the potential molecular mechanisms of FAM99A in HCC. Results The three public online databases and qRT–PCR data showed that FAM99A was frequently downregulated in HCC tissues and inversely correlated with microvascular invasion and advanced histological grade of HCC patients. Kaplan–Meier survival analysis indicated that decreased FAM99A was significantly associated with poor overall survival of HCC patients based on TCGA database (P = 0.040), ICGC data portal (P < 0.001), and our HCC cohort (P = 0.010). A multivariate Cox proportional hazards regression model based on our HCC cohort suggested that FAM99A was an independent prognostic factor of overall survival for HCC patients (hazard ratio: 0.425, P = 0.039). Upregulation of FAM99A suppressed the proliferation, colony formation, migration, and invasion capacities of HCC cells in vitro, and knockdown of FAM99A had the opposite effects. A subcutaneous xenograft tumor model demonstrated that overexpression of FAM99A significantly inhibited the tumor growth of HCC cells in vivo. Seven tumor-related proteins (PCBP1, SRSF5, SRSF6, YBX1, IGF2BP2, HNRNPK, and HNRNPL) were recognized as possible FAM99A-binding proteins by the RNA pull-down and mass spectrometry assays. Conclusion Our results suggest that FAM99A exerts cancer-inhibiting effects on HCC progression, and it may be a promising prognostic indicator for HCC patients. Supplementary Information The online version contains supplementary material available at 10.1186/s12885-022-10186-2.
Collapse
Affiliation(s)
- Meile Mo
- grid.256607.00000 0004 1798 2653Department of Epidemiology, School of Public Health, Guangxi Medical University, Nanning, Guangxi 530021 P.R. China
| | - Xiaoyun Ma
- grid.27255.370000 0004 1761 1174Department of Epidemiology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012 P.R. China
| | - Yihuan Luo
- grid.412594.f0000 0004 1757 2961Department of Acute Care Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021 P.R. China
| | - Chao Tan
- grid.443385.d0000 0004 1798 9548Department of Epidemiology and Statistics, School of Public Health, Guilin Medical University, Guilin, Guangxi 541004 P.R. China
| | - Bihu Liu
- grid.256607.00000 0004 1798 2653Department of Epidemiology, School of Public Health, Guangxi Medical University, Nanning, Guangxi 530021 P.R. China
| | - Peng Tang
- grid.256607.00000 0004 1798 2653Department of Epidemiology, School of Public Health, Guangxi Medical University, Nanning, Guangxi 530021 P.R. China
| | - Qian Liao
- grid.256607.00000 0004 1798 2653Department of Epidemiology, School of Public Health, Guangxi Medical University, Nanning, Guangxi 530021 P.R. China
| | - Shun Liu
- grid.256607.00000 0004 1798 2653Department of Maternal, Child and Adolescent Health, School of Public Health, Guangxi Medical University, Nanning, Guangxi 530021 P.R. China
| | - Hongping Yu
- grid.256607.00000 0004 1798 2653Guangxi Medical University Cancer Hospital, Nanning, Guangxi 530021 P.R. China
| | - Dongping Huang
- grid.256607.00000 0004 1798 2653Department of Sanitary Chemistry, School of Public Health, Guangxi Medical University, Nanning, Guangxi 530021 P.R. China
| | - Xiaoyun Zeng
- grid.256607.00000 0004 1798 2653Department of Epidemiology, School of Public Health, Guangxi Medical University, Nanning, Guangxi 530021 P.R. China
| | - Xiaoqiang Qiu
- grid.256607.00000 0004 1798 2653Department of Epidemiology, School of Public Health, Guangxi Medical University, Nanning, Guangxi 530021 P.R. China
| |
Collapse
|
26
|
Dong L, Li Y, Liu L, Meng X, Li S, Han D, Xiao Z, Xia Q. Smurf1 Suppression Enhances Temozolomide Chemosensitivity in Glioblastoma by Facilitating PTEN Nuclear Translocation. Cells 2022; 11:3302. [PMID: 36291166 PMCID: PMC9600526 DOI: 10.3390/cells11203302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/12/2022] [Accepted: 10/13/2022] [Indexed: 11/16/2022] Open
Abstract
The tumor suppressor PTEN mainly inhibits the PI3K/Akt pathway in the cytoplasm and maintains DNA stability in the nucleus. The status of PTEN remains therapeutic effectiveness for chemoresistance of the DNA alkylating agent temozolomide (TMZ) in glioblastoma (GB). However, the underlying mechanisms of PTEN's interconnected role in the cytoplasm and nucleus in TMZ resistance are still unclear. In this study, we report that TMZ-induced PTEN nuclear import depends on PTEN ubiquitylation modification by Smurf1. The Smurf1 suppression decreases the TMZ-induced PTEN nuclear translocation and enhances the DNA damage. In addition, Smurf1 degrades cytoplasmic PTEN K289E (the nuclear-import-deficient PTEN mutant) to activate the PI3K/Akt pathway under TMZ treatment. Altogether, Smurf1 interconnectedly promotes PTEN nuclear function (DNA repair) and cytoplasmic function (activation of PI3K/Akt pathway) to resist TMZ. These results provide a proof-of-concept demonstration for a potential strategy to overcome the TMZ resistance in PTEN wild-type GB patients by targeting Smurf1.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Qin Xia
- School of Life Science, Beijing Institute of Technology, Beijing 100081, China
| |
Collapse
|
27
|
Zhang M, Yang C, Ruan X, Liu X, Wang D, Liu L, Shao L, Wang P, Dong W, Xue Y. CPEB2 m6A methylation regulates blood-tumor barrier permeability by regulating splicing factor SRSF5 stability. Commun Biol 2022; 5:908. [PMID: 36064747 PMCID: PMC9445078 DOI: 10.1038/s42003-022-03878-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Accepted: 08/23/2022] [Indexed: 11/17/2022] Open
Abstract
The blood–tumor barrier (BTB) contributes to poor therapeutic efficacy by limiting drug uptake; therefore, elevating BTB permeability is essential for glioma treatment. Here, we prepared astrocyte microvascular endothelial cells (ECs) and glioma microvascular ECs (GECs) as in vitro blood–brain barrier (BBB) and BTB models. Upregulation of METTL3 and IGF2BP3 in GECs increased the stability of CPEB2 mRNA through its m6A methylation. CPEB2 bound to and increased SRSF5 mRNA stability, which promoted the ETS1 exon inclusion. P51-ETS1 promoted the expression of ZO-1, occludin, and claudin-5 transcriptionally, thus regulating BTB permeability. Subsequent in vivo knockdown of these molecules in glioblastoma xenograft mice elevated BTB permeability, promoted doxorubicin penetration, and improved glioma-specific chemotherapeutic effects. These results provide a theoretical and experimental basis for epigenetic regulation of the BTB, as well as insight into comprehensive glioma treatment. The methyl transferase METTL3 is up-regulated in brain tumors leading to the methylation of CPEB2 mRNA, which in turn stabilizes the splicing factor SRSF5 mRNA, leading to the incorporation of exon 7 in ETS-1 in models of the Blood–Tumor Barrier.
Collapse
Affiliation(s)
- Mengyang Zhang
- Department of Neurobiology, School of Life Sciences, China Medical University, Shenyang, PR China.,Key Laboratory of Cell Biology, Ministry of Public Health of China, China Medical University, Shenyang, PR China.,Key Laboratory of Medical Cell Biology, Ministry of Education of China, China Medical University, Shenyang, PR China
| | - Chunqing Yang
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, PR China.,Liaoning Research Center for Translational Medicine in Nervous System Disease, Shenyang, PR China.,Key Laboratory of Neuro-oncology in Liaoning Province, Shenyang, PR China
| | - Xuelei Ruan
- Department of Neurobiology, School of Life Sciences, China Medical University, Shenyang, PR China.,Key Laboratory of Cell Biology, Ministry of Public Health of China, China Medical University, Shenyang, PR China.,Key Laboratory of Medical Cell Biology, Ministry of Education of China, China Medical University, Shenyang, PR China
| | - Xiaobai Liu
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, PR China.,Liaoning Research Center for Translational Medicine in Nervous System Disease, Shenyang, PR China.,Key Laboratory of Neuro-oncology in Liaoning Province, Shenyang, PR China
| | - Di Wang
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, PR China.,Liaoning Research Center for Translational Medicine in Nervous System Disease, Shenyang, PR China.,Key Laboratory of Neuro-oncology in Liaoning Province, Shenyang, PR China
| | - Libo Liu
- Department of Neurobiology, School of Life Sciences, China Medical University, Shenyang, PR China.,Key Laboratory of Cell Biology, Ministry of Public Health of China, China Medical University, Shenyang, PR China.,Key Laboratory of Medical Cell Biology, Ministry of Education of China, China Medical University, Shenyang, PR China
| | - Lianqi Shao
- Department of Neurobiology, School of Life Sciences, China Medical University, Shenyang, PR China.,Key Laboratory of Cell Biology, Ministry of Public Health of China, China Medical University, Shenyang, PR China.,Key Laboratory of Medical Cell Biology, Ministry of Education of China, China Medical University, Shenyang, PR China
| | - Ping Wang
- Department of Neurobiology, School of Life Sciences, China Medical University, Shenyang, PR China.,Key Laboratory of Cell Biology, Ministry of Public Health of China, China Medical University, Shenyang, PR China.,Key Laboratory of Medical Cell Biology, Ministry of Education of China, China Medical University, Shenyang, PR China
| | - Weiwei Dong
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, PR China.,Liaoning Research Center for Translational Medicine in Nervous System Disease, Shenyang, PR China.,Key Laboratory of Neuro-oncology in Liaoning Province, Shenyang, PR China
| | - Yixue Xue
- Department of Neurobiology, School of Life Sciences, China Medical University, Shenyang, PR China. .,Key Laboratory of Cell Biology, Ministry of Public Health of China, China Medical University, Shenyang, PR China. .,Key Laboratory of Medical Cell Biology, Ministry of Education of China, China Medical University, Shenyang, PR China.
| |
Collapse
|
28
|
Wu H, Gonzalez Villalobos R, Yao X, Reilly D, Chen T, Rankin M, Myshkin E, Breyer MD, Humphreys BD. Mapping the single-cell transcriptomic response of murine diabetic kidney disease to therapies. Cell Metab 2022; 34:1064-1078.e6. [PMID: 35709763 PMCID: PMC9262852 DOI: 10.1016/j.cmet.2022.05.010] [Citation(s) in RCA: 133] [Impact Index Per Article: 44.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 03/21/2022] [Accepted: 05/24/2022] [Indexed: 11/29/2022]
Abstract
Diabetic kidney disease (DKD) occurs in ∼40% of patients with diabetes and causes kidney failure, cardiovascular disease, and premature death. We analyzed the response of a murine DKD model to five treatment regimens using single-cell RNA sequencing (scRNA-seq). Our atlas of ∼1 million cells revealed a heterogeneous response of all kidney cell types both to DKD and its treatment. Both monotherapy and combination therapies targeted differing cell types and induced distinct and non-overlapping transcriptional changes. The early effects of sodium-glucose cotransporter-2 inhibitors (SGLT2i) on the S1 segment of the proximal tubule suggest that this drug class induces fasting mimicry and hypoxia responses. Diabetes downregulated the spliceosome regulator serine/arginine-rich splicing factor 7 (Srsf7) in proximal tubule that was specifically rescued by SGLT2i. In vitro proximal tubule knockdown of Srsf7 induced a pro-inflammatory phenotype, implicating alternative splicing as a driver of DKD and suggesting SGLT2i regulation of proximal tubule alternative splicing as a potential mechanism of action for this drug class.
Collapse
Affiliation(s)
- Haojia Wu
- Division of Nephrology, Department of Medicine, Washington University, St. Louis, MO, USA
| | | | - Xiang Yao
- Tox LJ Janssen Research & Development, La Jolla, CA, USA
| | | | - Tao Chen
- PSTS Janssen Research & Development, Shanghai, China
| | | | | | | | - Benjamin D Humphreys
- Division of Nephrology, Department of Medicine, Washington University, St. Louis, MO, USA; Department of Developmental Biology, Washington University, St. Louis, MO, USA.
| |
Collapse
|
29
|
Dong J, He J, Zhang Z, Zhang W, Li Y, Li D, Xie H, Zuo W, Tang J, Zeng Z, Cai W, Lai L, Yun M, Shen L, Yin L, Tang D, Dai Y. Identification of lysine acetylome of oral squamous cell carcinoma by label-free quantitative proteomics. J Proteomics 2022; 262:104598. [PMID: 35489685 DOI: 10.1016/j.jprot.2022.104598] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 03/15/2022] [Accepted: 04/11/2022] [Indexed: 10/18/2022]
Abstract
Lysine acetylation (Kac) on histone promotes relaxation of the chromatin conformation and favors gene transcription to regulate oncogenesis, whereas the total acetylation profiling of oral squamous cell carcinoma (OSCC) is unknown. Liquid chromatography-tandem mass spectrometry (LC-MS/MS) was utilised to investigate lysine acetylation features of tumor tissues and adjacent normal tissues from 9 patients with OCSS. 282 upregulated Kac sites in 234 proteins and 235 downregulated Kac sites in 162 proteins between OSCC tissues and paired adjacent normal tissues were identified. Different acetylation proteins (DAPs) were analyzed through KEGG-based and MCODE. These DAPs are enriched in the ribosome biogenesis pathway. Survival Analysis of hub genes with TCGA database was performed. In addition, IPA software was used to explore the connection between 9 core DAPs (RPS3, RPL24, RPL19, EIF4A2, RPL12, MYBPC1, RPS6, ARCN1, and TMEM9) and the different expression of KATs and KDACs identified in our proteomic. The study is the first comparative study of Kac modification on oral squamous cell carcinoma. We propose to put forward the hypothesis that the dysfunction of ribosome biogenesis caused by the change of Lysine acetylation, especially downregulated acetylation on RPS6 and RPS3 may associated with the pathogenesis of OSCC. SIGNIFICANCE: The study is the first comparative study of Kac modification on oral squamous cell carcinoma through LC-MS/MS-based modified proteomic. These DAPs are high enriched in the ribosome biogenesis pathway. Used MCODE and survival analysis, 9 core DAPs (RPS3, RPL24, RPL19, EIF4A2, RPL12, MYBPC1, RPS6, ARCN1, and TMEM9) were screened. IPA software was used to explore the connection between 9 core DAPs and the different expression of KATs and KDACs identified in our proteomic. In addition, we propose to put forward the hypothesis that the dysfunction of ribosome biogenesis caused by the change of Lysine acetylation, especially downregulated acetylation on RPS6 and RPS3 may associated with the pathogenesis of OSCC.
Collapse
Affiliation(s)
- Jingjing Dong
- Clinical Medical Research Center, The Second Clinical Medical College of Jinan University, Shenzhen People's Hospital, Jinan University, Shenzhen, Guangdong 518020, PR China; Institute of Nephrology and Blood Purification, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou 510632, China
| | - Jingquan He
- Clinical Medical Research Center, The Second Clinical Medical College of Jinan University, Shenzhen People's Hospital, Jinan University, Shenzhen, Guangdong 518020, PR China
| | - Zeyu Zhang
- Institute of Nephrology and Blood Purification, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou 510632, China
| | - Wei Zhang
- Clinical Medical Research Center, The Second Clinical Medical College of Jinan University, Shenzhen People's Hospital, Jinan University, Shenzhen, Guangdong 518020, PR China
| | - Yixi Li
- Institute of Nephrology and Blood Purification, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou 510632, China
| | - Dandan Li
- Clinical Medical Research Center, The Second Clinical Medical College of Jinan University, Shenzhen People's Hospital, Jinan University, Shenzhen, Guangdong 518020, PR China
| | - Hongliang Xie
- Stomatology Department, The Second Clinical Medical College of Jinan University, Shenzhen People's Hospital, Jinan University, Shenzhen, Guangdong 518020, PR China
| | - Wenxin Zuo
- Stomatology Department, The Second Clinical Medical College of Jinan University, Shenzhen People's Hospital, Jinan University, Shenzhen, Guangdong 518020, PR China
| | - Jianming Tang
- Stomatology Department, The Second Clinical Medical College of Jinan University, Shenzhen People's Hospital, Jinan University, Shenzhen, Guangdong 518020, PR China
| | - Zhipeng Zeng
- Clinical Medical Research Center, The Second Clinical Medical College of Jinan University, Shenzhen People's Hospital, Jinan University, Shenzhen, Guangdong 518020, PR China
| | - Wanxia Cai
- Clinical Medical Research Center, The Second Clinical Medical College of Jinan University, Shenzhen People's Hospital, Jinan University, Shenzhen, Guangdong 518020, PR China
| | - Liusheng Lai
- Guangxi Key Laboratory of Metabolic Diseases Research, Affiliated No. 924 Hospital, Southern Medical University, Guilin 541002, Guangxi, China
| | - Manhua Yun
- Institute of Nephrology and Blood Purification, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou 510632, China
| | - Lingjun Shen
- Institute of Nephrology and Blood Purification, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou 510632, China
| | - Lianghong Yin
- Institute of Nephrology and Blood Purification, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou 510632, China.
| | - Donge Tang
- Clinical Medical Research Center, The Second Clinical Medical College of Jinan University, Shenzhen People's Hospital, Jinan University, Shenzhen, Guangdong 518020, PR China.
| | - Yong Dai
- Clinical Medical Research Center, The Second Clinical Medical College of Jinan University, Shenzhen People's Hospital, Jinan University, Shenzhen, Guangdong 518020, PR China; Guangxi Key Laboratory of Metabolic Diseases Research, Affiliated No. 924 Hospital, Southern Medical University, Guilin 541002, Guangxi, China.
| |
Collapse
|
30
|
Xu Y, Shi Z, Bao L. An expanding repertoire of protein acylations. Mol Cell Proteomics 2022; 21:100193. [PMID: 34999219 PMCID: PMC8933697 DOI: 10.1016/j.mcpro.2022.100193] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 12/22/2021] [Accepted: 01/04/2022] [Indexed: 01/03/2023] Open
Abstract
Protein post-translational modifications play key roles in multiple cellular processes by allowing rapid reprogramming of individual protein functions. Acylation, one of the most important post-translational modifications, is involved in different physiological activities including cell differentiation and energy metabolism. In recent years, the progression in technologies, especially the antibodies against acylation and the highly sensitive and effective mass spectrometry–based proteomics, as well as optimized functional studies, greatly deepen our understanding of protein acylation. In this review, we give a general overview of the 12 main protein acylations (formylation, acetylation, propionylation, butyrylation, malonylation, succinylation, glutarylation, palmitoylation, myristoylation, benzoylation, crotonylation, and 2-hydroxyisobutyrylation), including their substrates (histones and nonhistone proteins), regulatory enzymes (writers, readers, and erasers), biological functions (transcriptional regulation, metabolic regulation, subcellular targeting, protein–membrane interactions, protein stability, and folding), and related diseases (cancer, diabetes, heart disease, neurodegenerative disease, and viral infection), to present a complete picture of protein acylations and highlight their functional significance in future research. Provide a general overview of the 12 main protein acylations. Acylation of viral proteins promotes viral integration and infection. Hyperacylation of histone has antitumous and neuroprotective effects. MS is widely used in the identification of acylation but has its challenges.
Collapse
Affiliation(s)
- Yuxuan Xu
- Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research center for Cancer, 300060, Tianjin, China
| | - Zhenyu Shi
- Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research center for Cancer, 300060, Tianjin, China
| | - Li Bao
- Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research center for Cancer, 300060, Tianjin, China.
| |
Collapse
|
31
|
Jin J, Zhang L, Li X, Xu W, Yang S, Song J, Zhang W, Zhan J, Luo J, Zhang H. OUP accepted manuscript. Nucleic Acids Res 2022; 50:3817-3834. [PMID: 35349706 PMCID: PMC9023286 DOI: 10.1093/nar/gkac189] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 02/19/2022] [Accepted: 03/10/2022] [Indexed: 12/03/2022] Open
Abstract
Reactive oxygen species (ROS) are constantly produced in cells, an excess of which causes oxidative stress. ROS has been linked to regulation of the Hippo pathway; however, the underlying detailed mechanisms remain unclear. Here, we report that MOB1, a substrate of MST1/2 and co-activator of LATS1/2 in the canonical Hippo pathway, interacts with and is acetylated at lysine 11 by acetyltransferase CBP and deacetylated by HDAC6. MOB1-K11 acetylation stabilizes itself by reducing its binding capacity with E3 ligase Praja2 and subsequent ubiquitination. MOB1-K11 acetylation increases its phosphorylation and activates LATS1. Importantly, upstream oxidative stress signals promote MOB1 acetylation by suppressing CBP degradation, independent of MST1/2 kinase activity and HDAC6 deacetylation effect, thereby linking oxidative stress to activation of the Hippo pathway. Functionally, the acetylation-deficient mutant MOB1-K11R promotes lung cancer cell proliferation, migration and invasion in vitro and accelerates tumor growth in vivo, compared to the wild-type MOB1. Clinically, acetylated MOB1 corresponds to better prediction of overall survival in patients with non-small cell lung cancer. Therefore, as demonstrated, an oxidative stress-CBP regulatory axis controls MOB1-K11 acetylation and activates LATS1, thereby activating the Hippo pathway and suppressing YAP/TAZ nuclear translocation and tumor progression.
Collapse
Affiliation(s)
- Jiaqi Jin
- Program for Cancer and Cell Biology, Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences; Peking University International Cancer Institute; MOE Key Laboratory of Carcinogenesis and Translational Research and State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center, Beijing 100191, China
| | - Lei Zhang
- Program for Cancer and Cell Biology, Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences; Peking University International Cancer Institute; MOE Key Laboratory of Carcinogenesis and Translational Research and State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center, Beijing 100191, China
| | - Xueying Li
- Program for Cancer and Cell Biology, Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences; Peking University International Cancer Institute; MOE Key Laboratory of Carcinogenesis and Translational Research and State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center, Beijing 100191, China
| | - Weizhi Xu
- Program for Cancer and Cell Biology, Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences; Peking University International Cancer Institute; MOE Key Laboratory of Carcinogenesis and Translational Research and State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center, Beijing 100191, China
| | - Siyuan Yang
- Program for Cancer and Cell Biology, Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences; Peking University International Cancer Institute; MOE Key Laboratory of Carcinogenesis and Translational Research and State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center, Beijing 100191, China
| | - Jiagui Song
- Program for Cancer and Cell Biology, Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences; Peking University International Cancer Institute; MOE Key Laboratory of Carcinogenesis and Translational Research and State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center, Beijing 100191, China
| | - Wenhao Zhang
- School of Life Sciences, MOE Key Laboratory of Bioinformatics, Tsinghua University, Beijing 100084, China
| | - Jun Zhan
- Program for Cancer and Cell Biology, Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences; Peking University International Cancer Institute; MOE Key Laboratory of Carcinogenesis and Translational Research and State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center, Beijing 100191, China
| | - Jianyuan Luo
- Department of Medical Genetics, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Hongquan Zhang
- To whom correspondence should be addressed. Tel: +86 10 82802424; Fax: +86 10 82802424;
| |
Collapse
|
32
|
Han D, Li S, Xia Q, Meng X, Dong L. Overexpressed Smurf1 is degraded in glioblastoma cells through autophagy in a p62-dependent manner. FEBS Open Bio 2022; 12:118-129. [PMID: 34614303 PMCID: PMC8727935 DOI: 10.1002/2211-5463.13310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 10/05/2021] [Accepted: 10/05/2021] [Indexed: 11/07/2022] Open
Abstract
Homologous to E6AP C-terminus (HECT)-type E3 ubiquitin ligase SMAD-specific E3 ubiquitin protein ligase 1 (Smurf1) was originally identified to ubiquitinate Smad protein in the TGF-β/BMP signaling pathway. Recently, Smurf1 has been reported to promote tumorigenesis by regulating multiple biological processes. High expression of Smurf1 plays a vital role in brain tumor progression by mediating aberrant cell signaling pathways. Previous reports have shown that Smurf1 is degraded mainly through the ubiquitin-proteasome system, but it remains unclear whether Smurf1 is degraded by autophagy in tumor cells. In this study, we show that autophagy activators promote Smurf1 degradation in glioblastoma (GB) cells. The autophagy receptor p62 colocalizes with ubiquitinated substrates to promote sequestration of cytoplasm cargo into the autophagosome. We report that autophagic degradation of Smurf1 is dependent on p62. Moreover, the autophagic degradation of Smurf1 is prevented in the absence of the HECT domain or E3 ubiquitin ligase activity. We further proved that activation of autophagy leads to a decrease of Smurf1 and the inhibition of the phosphoinositide 3-kinase/protein kinase B signaling pathway in GB cells. Our results suggest that enhancement of autophagic degradation of Smurf1 may be a potential approach to treating GB.
Collapse
Affiliation(s)
- Da Han
- School of Life ScienceBeijing Institute of TechnologyChina
| | - Shengzhen Li
- School of Life ScienceBeijing Institute of TechnologyChina
| | - Qin Xia
- School of Life ScienceBeijing Institute of TechnologyChina
| | - Xinyi Meng
- School of Life ScienceBeijing Institute of TechnologyChina
| | - Lei Dong
- School of Life ScienceBeijing Institute of TechnologyChina
| |
Collapse
|
33
|
Exploring the multifunctionality of SR proteins. Biochem Soc Trans 2021; 50:187-198. [PMID: 34940860 PMCID: PMC9022966 DOI: 10.1042/bst20210325] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 12/01/2021] [Accepted: 12/02/2021] [Indexed: 12/31/2022]
Abstract
Members of the arginine–serine-rich protein family (SR proteins) are multifunctional RNA-binding proteins that have emerged as key determinants for mRNP formation, identity and fate. They bind to pre-mRNAs early during transcription in the nucleus and accompany bound transcripts until they are translated or degraded in the cytoplasm. SR proteins are mostly known for their essential roles in constitutive splicing and as regulators of alternative splicing. However, many additional activities of individual SR proteins, beyond splicing, have been reported in recent years. We will summarize the different functions of SR proteins and discuss how multifunctionality can be achieved. We will also highlight the difficulties of studying highly versatile SR proteins and propose approaches to disentangle their activities, which is transferrable to other multifunctional RBPs.
Collapse
|
34
|
Wu J, Sun Y, Li J, Ai M, You L, Shi J, Yu F. Analysis of Prognostic Alternative Splicing Reveals the Landscape of Immune Microenvironment in Thyroid Cancer. Front Oncol 2021; 11:763886. [PMID: 34733794 PMCID: PMC8558422 DOI: 10.3389/fonc.2021.763886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 09/28/2021] [Indexed: 11/28/2022] Open
Abstract
Background The incidence of thyroid cancer (THCA) continues to increase in recent decades. Accumulating evidence showed that the unbalanced alternative splicing (AS) promotes the occurrence of cancers and leads to poor prognosis of patients. However, the research on alternative splicing events in THCA is lacking, and its underlying mechanism is not fully understood. This study identifies a novel prognostic signature based on AS events to reveal the relationship of AS with tumor immune microenvironment. Methods Based on the AS data, transcriptional data, and clinical information, the differentially expressed alternative splicings (DEASs) were screened out. Least absolute shrinkage and selection operator (LASSO) regression and multi-Cox regression analyses were employed to identify prognostic results related to AS events and establish a prognostic signature. The predictive ability of the signature was assessed by Kaplan-Meier (K-M) survival curve, risk plots, and receiver operating characteristic (ROC) curves. Furthermore, correlations between tumor-infiltrating immune cells, immune checkpoints, immune score and prognostic signature were analyzed. Results According to the LASSO regression analysis, a total of five AS events were selected to construct the signature. K-M survival curve showed that the higher the risk score, the worse the OS of the patients. Risk plots further confirmed this result. ROC curves indicated the high predictive efficiency of the prognostic signature. As for tumor immune microenvironment, patients in the high-risk group had a higher proportion of immune cells, including plasma cell, CD8+ T cell, macrophages (M0 and M2), and activated dendritic cell. Immune checkpoint proteins, such as PDCD1LG2, HAVCR2, CD274, etc., were significantly higher in the high-risk group. We also found that the ESTIMATE score, stromal score, and immune score were lower in the high-risk group, while the result of tumor purity was the opposite. Conclusions Collectively, a prognostic signature consisting of five AS events in THCA was established. Furthermore, there was an inextricable correlation between immune cell infiltration, immune checkpoint proteins, and AS events. This study will provide a basis for THCA immunotherapy in the future.
Collapse
Affiliation(s)
- Jian Wu
- Department of Otorhinolaryngology-Head and Neck Surgery, Guangzhou Red Cross Hospital, Jinan University, Guangzhou, China
| | - Yifang Sun
- Department of Ophthalmology, Guangzhou Red Cross Hospital, Jinan University, Guangzhou, China
| | - Junzheng Li
- Department of Otorhinolaryngology-Head and Neck Surgery, Guangzhou Red Cross Hospital, Jinan University, Guangzhou, China
| | - Maomao Ai
- Department of Otorhinolaryngology-Head and Neck Surgery, Guangzhou Red Cross Hospital, Jinan University, Guangzhou, China
| | - Lihua You
- Department of Otorhinolaryngology-Head and Neck Surgery, Guangzhou Red Cross Hospital, Jinan University, Guangzhou, China
| | - Jianbo Shi
- Department of Otorhinolaryngology-Head and Neck Surgery, Guangzhou Red Cross Hospital, Jinan University, Guangzhou, China.,Department of Otorhinolaryngology, The First Affiliated Hospital of Sun Yat-Sen University, Sun Yat-Sen University, Guangzhou, China
| | - Feng Yu
- Department of Otorhinolaryngology-Head and Neck Surgery, Guangzhou Red Cross Hospital, Jinan University, Guangzhou, China
| |
Collapse
|
35
|
Zhou J. LncRNA MIAT promotes hypoxia-induced H9C2 cell pyroptosis via binding to SF1 to inhibit CGRP transcription. Exp Physiol 2021; 107:58-67. [PMID: 34713933 DOI: 10.1113/ep089833] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 10/26/2021] [Indexed: 12/26/2022]
Abstract
NEW FINDINGS What is the central question of this study? How does long non-coding RNA myocardial infarction-associated transcript (lncRNA MIAT) function in hypoxia-induced H9C2 cells? What is the main finding and its importance? LncRNA MIAT inhibited transcription of calcitonin gene-related peptide by binding to splicing factor 1, thereby promoting hypoxia-induced H9C2 cell pyroptosis. This study provides a new theoretical basis for the treatment of acute myocardial infarction by using lncRNA MIAT as a molecular target to mediate cardiomyocyte pyrodeath. ABSTRACT Hypoxia induces severe cardiomyocyte pyroptosis, contributing to acute myocardial infarction. The aim of this study was to analyse the molecular mechanism of long non-coding RNA myocardial infarction-associated transcript (lncRNA MIAT) in hypoxia-induced H9C2 cell pyroptosis. A hypoxic H9C2 cell model was established. Cell viability was detected via the Cell Counting Kit-8 method. Levels of lactate dehydrogenase, malondialdehyde and superoxide dismutase and expressions of pyroptotic markers, lncRNA MIAT, splicing factor 1 (SF1) and calcitonin gene-related peptide (CGRP) were detected via qRT-PCR. The subcellular localization of lncRNA MIAT was predicted and confirmed via LncATLAS and nuclear/cytosol fractionation assay. The binding relationships between lncRNA MIAT and SF1 and between SF1 and the CGRP promotor were verified via RNA immunoprecipitation. Rescue experiments were designed to confirm the role of lncRNA MIAT/SF1/CGRP in H9C2 cell pyroptosis. LncRNA MIAT was overexpressed in hypoxia-induced H9C2 cells. Hypoxia induced pyroptosis in H9C2 cells. Silencing of lncRNA MIAT enhanced cell viability and alleviated pyroptosis. LncRNA MIAT inhibited CGRP transcription via binding to SF1. Overexpression of SF1 promoted CGRP transcription and relieved H9C2 cell pyroptosis. Downregulation of CGRP reversed the role of silencing lncRNA MIAT in H9C2 cell pyroptosis. Overall, lncRNA MIAT inhibited CGRP transcription via binding to SF1, thereby promoting hypoxia-induced H9C2 cell pyroptosis.
Collapse
Affiliation(s)
- Jingli Zhou
- Department of Cardiology, Shanxi Provincial People's Hospital, Taiyuan City, Shanxi Province, 030000, PR China
| |
Collapse
|
36
|
Zhang X, Wang Z, Xu Q, Chen Y, Liu W, Zhong T, Li H, Quan C, Zhang L, Cui CP. Splicing factor Srsf5 deletion disrupts alternative splicing and causes noncompaction of ventricular myocardium. iScience 2021; 24:103097. [PMID: 34622152 PMCID: PMC8482499 DOI: 10.1016/j.isci.2021.103097] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 07/17/2021] [Accepted: 09/06/2021] [Indexed: 11/21/2022] Open
Abstract
The serine/arginine-rich (SR) family of splicing factors plays important roles in mRNA splicing activation, repression, export, stabilization, and translation. SR-splicing factor 5 (SRSF5) is a glucose-inducible protein that promotes tumor cell growth. However, the functional role of SRSF5 in tissue development and disease remains unknown. Here, Srsf5 knockout (Srsf5−/−) mice were generated using CRISPR-Cas9. Mutant mice were perinatally lethal and exhibited cardiac dysfunction with noncompaction of the ventricular myocardium. The left ventricular internal diameter and volume were increased in Srsf5−/− mice during systole. Null mice had abnormal electrocardiogram patterns, indicative of a light atrioventricular block. Mechanistically, Srsf5 promoted the alternative splicing of Myom1 (myomesin-1), a protein that crosslinks myosin filaments to the sarcomeric M-line. The switch between embryonic and adult isoforms of Myom1 could not be completed in Srsf5-deficient heart. These findings indicate that Srsf5-regulated alternative splicing plays a critical role during heart development. Systemic loss of Srsf5 causes perinatal lethality in mice Srsf5 deficiency leads to cardiac dysfunction Alternative splicing of Myom1 in the heart around birth is regulated by Srsf5
Collapse
Affiliation(s)
- Xiaoli Zhang
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, 126 Xinmin Avenue, Changchun, Jilin 130021, China.,State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, 27 Taiping Road, Beijing 100850, China
| | - Ze Wang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, 27 Taiping Road, Beijing 100850, China
| | - Qing Xu
- Core Facilities Centre, Capital Medical University, Beijing 100069, China
| | - Yuhan Chen
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, 27 Taiping Road, Beijing 100850, China
| | - Wen Liu
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, 27 Taiping Road, Beijing 100850, China
| | - Tong Zhong
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, 27 Taiping Road, Beijing 100850, China
| | - Hongchang Li
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, 27 Taiping Road, Beijing 100850, China
| | - Chengshi Quan
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, 126 Xinmin Avenue, Changchun, Jilin 130021, China
| | - Lingqiang Zhang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, 27 Taiping Road, Beijing 100850, China
| | - Chun-Ping Cui
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, 27 Taiping Road, Beijing 100850, China
| |
Collapse
|
37
|
Liu T, Huang J, Xu D, Li Y. Identifying a possible new target for diagnosis and treatment of postmenopausal osteoporosis through bioinformatics and clinical sample analysis. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:1154. [PMID: 34430595 PMCID: PMC8350639 DOI: 10.21037/atm-21-3098] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 07/14/2021] [Indexed: 12/26/2022]
Abstract
Background Postmenopausal osteoporosis, a common yet chronic systemic metabolic disease, has become a major public health problem due to life expectancy increasing around the world. The differentiation of mesenchymal stem cells (MSCs) into osteoblasts, and the differentiation of circulating monocyte cells into osteoclasts, play an important role in the balance of bone metabolism. However, when both undergo pathological changes, it can lead to abnormalities, resulting in osteoporosis. This study aims to explore a new biomarker for postmenopausal osteoporosis, thereby providing a new entry point for bioinformatic research into the clinical diagnosis and treatment of the disease. Methods Using the Gene Expression Omnibus (GEO) database, microarray analysis was conducted to identify differentially expressed genes in MSCs and monocytes in both postmenopausal osteoporosis patients and a healthy control group. The Database for Annotation, Visualization and Integrated Discovery (DAVID) database was used to analyze the function and enrichment of the selected genes, and a protein-protein interaction (PPI) network was constructed from the Search Tool for the Retrieval of Interacting Genes/Proteins (STRING) website and displayed in Cytoscape. To achieve the final results, module analysis of the PPI network was performed by using Molecular Complex Detection (MCODE). Results We identified 45 high-expression and 26 low-expression genes through the study, all of which underwent pathway enrichment analysis. This enrichment was observed in the cell cycle regulation, osteoclast differentiation, tumor necrosis factor (TNF) signaling pathway, and RNA transport. The top 10 hub genes of the PPI network were SF3B1, SRSF5, FUBP1, SRSF3, TIA1, KHSRP, LUC7L3, PNN, SRC, and ATRX. Comparing the MSCs and monocytes between the postmenopausal osteoporosis patients and the healthy control group, we noted that the expression of the above genes differed greatly. Conclusions Through bioinformatic analysis and clinical specimen validation, our study provides a new way for exploring the pathogenesis of postmenopausal osteoporosis. Most importantly, it suggests that the hub genes, SF3B1, SRSF5, FUBP1, KHSRP, and SRC, may become new diagnostic markers and therapeutic targets for diagnosing and treating postmenopausal osteoporosis in the future.
Collapse
Affiliation(s)
- Ting Liu
- Department of Anesthesia, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jiajun Huang
- Department of Orthopedics, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Dongni Xu
- Department of Anesthesia, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yuxi Li
- Department of Orthopedics, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
38
|
Li J, Li G, Qi Y, Lu Y, Wang H, Shi K, Li D, Shi J, Stovall DB, Sui G. SRSF5 regulates alternative splicing of DMTF1 pre-mRNA through modulating SF1 binding. RNA Biol 2021; 18:318-336. [PMID: 34291726 DOI: 10.1080/15476286.2021.1947644] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
ABBREVIATIONS ARF: alternative reading frame, that is, p14ARF, or CDKN2A (cyclin-dependent kinase inhibitor 2A); β-gal: β-galactosidase; CLIP-seq: crosslinking and immunoprecipitation-sequencing; DMTF1: the cyclin D binding myb-like transcription factor 1; ESS/ESE: exonic splicing silencer/enhancer; Ex: exon; FBS: fetal bovine serum; Gluc: Gaussia luciferase; hnRNPs: heterogeneous nuclear ribonucleoproteins; In: intron; ISS/ISE: intronic splicing silencer/enhancer; PBS: phosphate-buffered saline; PCR: polymerase chain reaction; PSI: percent-splice-in; qPCR: quantitative real-time PCR; RIP: RNA immunoprecipitation; RNAseq: RNA sequencing; RT: reverse transcription; SF1: splicing factor 1; SR: serine/arginine-rich proteins; SRSF5: serine and arginine-rich splicing factor 5; TCGA: the cancer genome atlas; UCSC: University of California, Santa Cruz. WT: Wild type.
Collapse
Affiliation(s)
- Jialiang Li
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Science, Northeast Forestry University, Harbin, China
| | - Guangyue Li
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Science, Northeast Forestry University, Harbin, China
| | - Yige Qi
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Science, Northeast Forestry University, Harbin, China
| | - Yao Lu
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Science, Northeast Forestry University, Harbin, China
| | - Hao Wang
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Science, Northeast Forestry University, Harbin, China
| | - Ke Shi
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Science, Northeast Forestry University, Harbin, China
| | - Dangdang Li
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Science, Northeast Forestry University, Harbin, China
| | - Jinming Shi
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Science, Northeast Forestry University, Harbin, China
| | - Daniel B Stovall
- College of Arts and Sciences, Winthrop University, Rock Hill, SC, USA
| | - Guangchao Sui
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Science, Northeast Forestry University, Harbin, China
| |
Collapse
|
39
|
Chen S, Yang C, Wang ZW, Hu JF, Pan JJ, Liao CY, Zhang JQ, Chen JZ, Huang Y, Huang L, Zhan Q, Tian YF, Shen BY, Wang YD. CLK1/SRSF5 pathway induces aberrant exon skipping of METTL14 and Cyclin L2 and promotes growth and metastasis of pancreatic cancer. J Hematol Oncol 2021; 14:60. [PMID: 33849617 PMCID: PMC8045197 DOI: 10.1186/s13045-021-01072-8] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Accepted: 03/29/2021] [Indexed: 12/11/2022] Open
Abstract
Background Both aberrant alternative splicing and m6A methylation play complicated roles in the development of pancreatic cancer (PC), while the relationship between these two RNA modifications remains unclear. Methods RNA sequencing (RNA-seq) was performed using 15 pairs of pancreatic ductal adenocarcinoma (PDAC) tissues and corresponding normal tissues, and Cdc2-like kinases 1 (CLK1) was identified as a significantly upregulated alternative splicing related gene. Real-time quantitative PCR (qPCR) and western blotting were applied to determine the CLK1 levels. The prognostic value of CLK1 was elucidated by Immunohistochemistry (IHC) analyses in two independent PDAC cohorts. The functional characterizations and mechanistic insights of CLK1 in PDAC growth and metastasis were evaluated with PDAC cell lines and nude mice. SR-like splicing factors5250-Ser (SRSF5250-Ser) was identified as an important target phosphorylation site by phosphorylation mass spectrometry. Through transcriptome sequencing, Methyltransferase-like 14exon10 (METTL14exon10) and Cyclin L2exon6.3 skipping were identified as key alternative splicing events regulated by the CLK1-SRSF5 axis. RIP assays, RNA-pulldown and CLIP-qPCR were performed to confirm molecular interactions and the precise binding sites. The roles of the shift of METTL14exon 10 and Cyclin L2exon6.3 skipping were surveyed. Results CLK1 expression was significantly increased in PDAC tissues at both the mRNA and protein levels. High CLK1 expression was associated with poor prognosis. Elevated CLK1 expression promoted growth and metastasis of PC cells in vitro and in vivo. Mechanistically, CLK1 enhanced phosphorylation on SRSF5250-Ser, which inhibited METTL14exon10 skipping while promoted Cyclin L2exon6.3 skipping. In addition, aberrant METTL14exon 10 skipping enhanced the N6-methyladenosine modification level and metastasis, while aberrant Cyclin L2exon6.3 promoted proliferation of PDAC cells. Conclusions The CLK1/SRSF5 pathway induces aberrant exon skipping of METTL14 and Cyclin L2, which promotes growth and metastasis and regulates m6A methylation of PDAC cells. This study suggests the potential prognostic value and therapeutic targeting of this pathway in PDAC patients. Supplementary Information The online version contains supplementary material available at 10.1186/s13045-021-01072-8.
Collapse
Affiliation(s)
- Shi Chen
- Shengli Clinical Medical College of Fujian Medical University, Fujian Medical University, No. 134, East Street, Fuzhou, 350001, Fujian Province, People's Republic of China. .,Department of Hepatobiliary Pancreatic Surgery, Fujian Provincial Hospital, Fuzhou, 350001, People's Republic of China.
| | - Can Yang
- Shengli Clinical Medical College of Fujian Medical University, Fujian Medical University, No. 134, East Street, Fuzhou, 350001, Fujian Province, People's Republic of China
| | - Zu-Wei Wang
- Shengli Clinical Medical College of Fujian Medical University, Fujian Medical University, No. 134, East Street, Fuzhou, 350001, Fujian Province, People's Republic of China
| | - Jian-Fei Hu
- Shengli Clinical Medical College of Fujian Medical University, Fujian Medical University, No. 134, East Street, Fuzhou, 350001, Fujian Province, People's Republic of China
| | - Jing-Jing Pan
- Shengli Clinical Medical College of Fujian Medical University, Fujian Medical University, No. 134, East Street, Fuzhou, 350001, Fujian Province, People's Republic of China
| | - Cheng-Yu Liao
- Shengli Clinical Medical College of Fujian Medical University, Fujian Medical University, No. 134, East Street, Fuzhou, 350001, Fujian Province, People's Republic of China
| | - Jia-Qiang Zhang
- Department of General Surgery, Pancreatic Disease Center, Research Institute of Pancreatic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No.197 Ruijin Second Road, Shanghai, 200025, People's Republic of China
| | - Jiang-Zhi Chen
- Department of Hepatobiliary Surgery, Union Hospital, Fujian Medical University, Fuzhou, 350001, People's Republic of China
| | - Yi Huang
- Shengli Clinical Medical College of Fujian Medical University, Fujian Medical University, No. 134, East Street, Fuzhou, 350001, Fujian Province, People's Republic of China.,Center for Experimental Research in Clinical Medicine, Fujian Provincial Hospital, Fuzhou, 350001, People's Republic of China
| | - Long Huang
- Shengli Clinical Medical College of Fujian Medical University, Fujian Medical University, No. 134, East Street, Fuzhou, 350001, Fujian Province, People's Republic of China.,Department of Hepatobiliary Pancreatic Surgery, Fujian Provincial Hospital, Fuzhou, 350001, People's Republic of China
| | - Qian Zhan
- Department of General Surgery, Pancreatic Disease Center, Research Institute of Pancreatic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No.197 Ruijin Second Road, Shanghai, 200025, People's Republic of China
| | - Yi-Feng Tian
- Shengli Clinical Medical College of Fujian Medical University, Fujian Medical University, No. 134, East Street, Fuzhou, 350001, Fujian Province, People's Republic of China.,Department of Hepatobiliary Pancreatic Surgery, Fujian Provincial Hospital, Fuzhou, 350001, People's Republic of China
| | - Bai-Yong Shen
- Department of General Surgery, Pancreatic Disease Center, Research Institute of Pancreatic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No.197 Ruijin Second Road, Shanghai, 200025, People's Republic of China.
| | - Yao-Dong Wang
- Shengli Clinical Medical College of Fujian Medical University, Fujian Medical University, No. 134, East Street, Fuzhou, 350001, Fujian Province, People's Republic of China. .,Department of Hepatobiliary Pancreatic Surgery, Fujian Provincial Hospital, Fuzhou, 350001, People's Republic of China.
| |
Collapse
|
40
|
Cieśla M, Ngoc PCT, Cordero E, Martinez ÁS, Morsing M, Muthukumar S, Beneventi G, Madej M, Munita R, Jönsson T, Lövgren K, Ebbesson A, Nodin B, Hedenfalk I, Jirström K, Vallon-Christersson J, Honeth G, Staaf J, Incarnato D, Pietras K, Bosch A, Bellodi C. Oncogenic translation directs spliceosome dynamics revealing an integral role for SF3A3 in breast cancer. Mol Cell 2021; 81:1453-1468.e12. [PMID: 33662273 DOI: 10.1016/j.molcel.2021.01.034] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 12/02/2020] [Accepted: 01/21/2021] [Indexed: 02/08/2023]
Abstract
Splicing is a central RNA-based process commonly altered in human cancers; however, how spliceosomal components are co-opted during tumorigenesis remains poorly defined. Here we unravel the core splice factor SF3A3 at the nexus of a translation-based program that rewires splicing during malignant transformation. Upon MYC hyperactivation, SF3A3 levels are modulated translationally through an RNA stem-loop in an eIF3D-dependent manner. This ensures accurate splicing of mRNAs enriched for mitochondrial regulators. Altered SF3A3 translation leads to metabolic reprogramming and stem-like properties that fuel MYC tumorigenic potential in vivo. Our analysis reveals that SF3A3 protein levels predict molecular and phenotypic features of aggressive human breast cancers. These findings unveil a post-transcriptional interplay between splicing and translation that governs critical facets of MYC-driven oncogenesis.
Collapse
Affiliation(s)
- Maciej Cieśla
- Division of Molecular Hematology, Department of Laboratory Medicine, Lund Stem Cell Center, Faculty of Medicine, Lund University, 22184 Lund, Sweden
| | - Phuong Cao Thi Ngoc
- Division of Molecular Hematology, Department of Laboratory Medicine, Lund Stem Cell Center, Faculty of Medicine, Lund University, 22184 Lund, Sweden
| | - Eugenia Cordero
- Division of Translational Cancer Research, Department of Laboratory Medicine, Faculty of Medicine, Lund University, 22363 Lund, Sweden
| | - Álvaro Sejas Martinez
- Division of Molecular Hematology, Department of Laboratory Medicine, Lund Stem Cell Center, Faculty of Medicine, Lund University, 22184 Lund, Sweden
| | - Mikkel Morsing
- Division of Translational Cancer Research, Department of Laboratory Medicine, Faculty of Medicine, Lund University, 22363 Lund, Sweden
| | - Sowndarya Muthukumar
- Division of Molecular Hematology, Department of Laboratory Medicine, Lund Stem Cell Center, Faculty of Medicine, Lund University, 22184 Lund, Sweden
| | - Giulia Beneventi
- Division of Molecular Hematology, Department of Laboratory Medicine, Lund Stem Cell Center, Faculty of Medicine, Lund University, 22184 Lund, Sweden
| | - Magdalena Madej
- Division of Molecular Hematology, Department of Laboratory Medicine, Lund Stem Cell Center, Faculty of Medicine, Lund University, 22184 Lund, Sweden
| | - Roberto Munita
- Division of Molecular Hematology, Department of Laboratory Medicine, Lund Stem Cell Center, Faculty of Medicine, Lund University, 22184 Lund, Sweden
| | - Terese Jönsson
- Division of Molecular Hematology, Department of Laboratory Medicine, Lund Stem Cell Center, Faculty of Medicine, Lund University, 22184 Lund, Sweden
| | - Kristina Lövgren
- Division of Oncology, Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Anna Ebbesson
- Division of Oncology, Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Björn Nodin
- Division of Oncology, Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Ingrid Hedenfalk
- Division of Oncology, Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Karin Jirström
- Division of Oncology, Department of Clinical Sciences, Lund University, Lund, Sweden
| | | | - Gabriella Honeth
- Division of Oncology, Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Johan Staaf
- Division of Oncology, Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Danny Incarnato
- Faculty of Science and Engineering, University of Groningen, Groningen, the Netherlands
| | - Kristian Pietras
- Division of Translational Cancer Research, Department of Laboratory Medicine, Faculty of Medicine, Lund University, 22363 Lund, Sweden
| | - Ana Bosch
- Division of Oncology, Department of Clinical Sciences, Lund University, Lund, Sweden; Department of Hematology, Oncology and Radiation Physics, Skåne University Hospital, Lund, Sweden.
| | - Cristian Bellodi
- Division of Molecular Hematology, Department of Laboratory Medicine, Lund Stem Cell Center, Faculty of Medicine, Lund University, 22184 Lund, Sweden.
| |
Collapse
|
41
|
Yang L, Zhou W, Lin H. Posttranslational Modifications of Smurfs: Emerging Regulation in Cancer. Front Oncol 2021; 10:610663. [PMID: 33718111 PMCID: PMC7950759 DOI: 10.3389/fonc.2020.610663] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Accepted: 12/30/2020] [Indexed: 12/14/2022] Open
Abstract
Smad ubiquitination regulatory factors (Smurfs) belong to the Nedd4 subfamily of HECT-type E3 ubiquitin ligases. Under normal situations, Smurfs are exactly managed by upstream regulators, and thereby strictly control tumor biological processes, including cell growth, differentiation, apoptosis, polarization, epithelial mesenchymal transition (EMT), and invasion. Disruption of Smurf activity has been implicated in cancer progression, and Smurf activity is controlled by a series of posttranslational modifications (PTMs), including phosphorylation, ubiquitination, neddylation, sumoylation, and methylation. The effect and function of Smurfs depend on PTMs and regulate biological processes. Specifically, these modifications regulate the functional expression of Smurfs by affecting protein degradation and protein interactions. In this review, we summarize the complexity and diversity of Smurf PTMs from biochemical and biological perspectives and highlight the understanding of their roles in cancer.
Collapse
Affiliation(s)
- Longtao Yang
- Second Clinical Medical School, Nanchang University, Nanchang, China
| | - Wenwen Zhou
- Second Clinical Medical School, Nanchang University, Nanchang, China
| | - Hui Lin
- Department of Pathophysiology, School of Basic Medical Sciences, Nanchang University, Nanchang, China
| |
Collapse
|
42
|
Wen S, Li J, Yang J, Li B, Li N, Zhan X. Quantitative Acetylomics Revealed Acetylation-Mediated Molecular Pathway Network Changes in Human Nonfunctional Pituitary Neuroendocrine Tumors. Front Endocrinol (Lausanne) 2021; 12:753606. [PMID: 34712204 PMCID: PMC8546192 DOI: 10.3389/fendo.2021.753606] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 09/27/2021] [Indexed: 12/11/2022] Open
Abstract
Acetylation at lysine residue in a protein mediates multiple cellular biological processes, including tumorigenesis. This study aimed to investigate the acetylated protein profile alterations and acetylation-mediated molecular pathway changes in human nonfunctional pituitary neuroendocrine tumors (NF-PitNETs). The anti-acetyl antibody-based label-free quantitative proteomics was used to analyze the acetylomes between NF-PitNETs (n = 4) and control pituitaries (n = 4). A total of 296 acetylated proteins with 517 acetylation sites was identified, and the majority of which were significantly down-acetylated in NF-PitNETs (p<0.05 or only be quantified in NF-PitNETs/controls). These acetylated proteins widely functioned in cellular biological processes and signaling pathways, including metabolism, translation, cell adhesion, and oxidative stress. The randomly selected acetylated phosphoglycerate kinase 1 (PGK1), which is involved in glycolysis and amino acid biosynthesis, was further confirmed with immunoprecipitation and western blot in NF-PitNETs and control pituitaries. Among these acetylated proteins, 15 lysine residues within 14 proteins were down-acetylated and simultaneously up-ubiquitinated in NF-PitNETs to demonstrate a direct competition relationship between acetylation and ubiquitination. Moreover, the potential effect of protein acetylation alterations on NF-PitNETs invasiveness was investigated. Overlapping analysis between acetylomics data in NF-PitNETs and transcriptomics data in invasive NF-PitNETs identified 26 overlapped molecules. These overlapped molecules were mainly involved in metabolism-associated pathways, which means that acetylation-mediated metabolic reprogramming might be the molecular mechanism to affect NF-PitNET invasiveness. This study provided the first acetylomic profiling and acetylation-mediated molecular pathways in human NF-PitNETs, and offered new clues to elucidate the biological functions of protein acetylation in NF-PitNETs and discover novel biomarkers for early diagnosis and targeted therapy of NF-PitNETs.
Collapse
Affiliation(s)
- Siqi Wen
- Key Laboratory of Cancer Proteomics of Chinese Ministry of Health, Central South University, Changsha, China
- Medical Science and Technology Innovation Center, Shandong First Medical University, Jinan, China
| | - Jiajia Li
- Key Laboratory of Cancer Proteomics of Chinese Ministry of Health, Central South University, Changsha, China
- Medical Science and Technology Innovation Center, Shandong First Medical University, Jinan, China
| | - Jingru Yang
- Medical Science and Technology Innovation Center, Shandong First Medical University, Jinan, China
| | - Biao Li
- Key Laboratory of Cancer Proteomics of Chinese Ministry of Health, Central South University, Changsha, China
- Medical Science and Technology Innovation Center, Shandong First Medical University, Jinan, China
| | - Na Li
- Medical Science and Technology Innovation Center, Shandong First Medical University, Jinan, China
- Shandong Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University, Jinan, China
| | - Xianquan Zhan
- Medical Science and Technology Innovation Center, Shandong First Medical University, Jinan, China
- Shandong Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University, Jinan, China
- Gastroenterology Research Institute and Clinical Center, Shandong First Medical University, Jinan, China
- *Correspondence: Xianquan Zhan,
| |
Collapse
|
43
|
Xia Q, Li Y, Han D, Dong L. SMURF1, a promoter of tumor cell progression? Cancer Gene Ther 2020; 28:551-565. [PMID: 33204002 DOI: 10.1038/s41417-020-00255-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 10/14/2020] [Accepted: 10/29/2020] [Indexed: 12/20/2022]
Abstract
Overexpression of HECT-type E3 ubiquitin ligase SMURF1 is correlated with poor prognosis in patients with various cancers, such as glioblastoma, colon cancer, and clear cell renal cell carcinoma. SMURF1 acts as a tumor promoter by ubiquitination modification and/or degradation of tumor-suppressing proteins. Combined treatment of Smurf1 knockdown with rapamycin showed collaborative antitumor effects in mice. This review described the role of HECT, WW, and C2 domains in regulating SMURF1 substrate selection. We summarized up to date SMURF1 substrates regulating different type cell signaling, thus, accelerating tumor progression, invasion, and metastasis. Furthermore, the downregulation of SMURF1 expression, inhibition of its E3 activity and regulation of its specificity to substrates prevent tumor progression. The potential application of SMURF1 regulators, specifically, wisely choose certain drugs by blocking SMURF1 selectivity in tumor suppressors, to develop novel anticancer treatments.
Collapse
Affiliation(s)
- Qin Xia
- School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Yang Li
- School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Da Han
- School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Lei Dong
- School of Life Science, Beijing Institute of Technology, Beijing, China.
| |
Collapse
|
44
|
Tang Z, Xu Z, Zhu X, Zhang J. New insights into molecules and pathways of cancer metabolism and therapeutic implications. Cancer Commun (Lond) 2020; 41:16-36. [PMID: 33174400 PMCID: PMC7819563 DOI: 10.1002/cac2.12112] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Revised: 08/17/2020] [Accepted: 11/04/2020] [Indexed: 12/13/2022] Open
Abstract
Cancer cells are abnormal cells that can reproduce and regenerate rapidly. They are characterized by unlimited proliferation, transformation and migration, and can destroy normal cells. To meet the needs for cell proliferation and migration, tumor cells acquire molecular materials and energy through unusual metabolic pathways as their metabolism is more vigorous than that of normal cells. Multiple carcinogenic signaling pathways eventually converge to regulate three major metabolic pathways in tumor cells, including glucose, lipid, and amino acid metabolism. The distinct metabolic signatures of cancer cells reflect that metabolic changes are indispensable for the genesis and development of tumor cells. In this review, we report the unique metabolic alterations in tumor cells which occur through various signaling axes, and present various modalities available for cancer diagnosis and clinical therapy. We further provide suggestions for the development of anti‐tumor therapeutic drugs.
Collapse
Affiliation(s)
- Zhenye Tang
- Southern Marine Science and Engineering Guangdong Laboratory Zhanjiang, the Marine Medical Research Institute of Guangdong Zhanjiang, Guangdong Medical University, Zhanjiang, Guangdong, 524023, P. R. China.,Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang, Guangdong, 524023, P. R. China
| | - Zhenhua Xu
- Center for Cancer and Immunology, Brain Tumor Institute, Children's National Health System, Washington, DC, 20010, USA
| | - Xiao Zhu
- Southern Marine Science and Engineering Guangdong Laboratory Zhanjiang, the Marine Medical Research Institute of Guangdong Zhanjiang, Guangdong Medical University, Zhanjiang, Guangdong, 524023, P. R. China.,Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang, Guangdong, 524023, P. R. China.,The Key Lab of Zhanjiang for R&D Marine Microbial Resources in the Beibu Gulf Rim, Guangdong Medical University, Zhanjiang, Guangdong, 524023, P. R. China.,The Marine Biomedical Research Institute of Guangdong Zhanjiang, Guangdong Medical University, Zhanjiang, Guangdong, 524023, P. R. China
| | - Jinfang Zhang
- Lingnan Medical Research Center, the First Affiliated Hospital of Guangzhou University of Chinese Medicine, the First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510405, P. R. China
| |
Collapse
|
45
|
Neuroepithelial cell competition triggers loss of cellular juvenescence. Sci Rep 2020; 10:18044. [PMID: 33093561 PMCID: PMC7582913 DOI: 10.1038/s41598-020-74874-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 10/07/2020] [Indexed: 12/02/2022] Open
Abstract
Cell competition is a cell–cell interaction mechanism which maintains tissue homeostasis through selective elimination of unfit cells. During early brain development, cells are eliminated through apoptosis. How cells are selected to undergo elimination remains unclear. Here we aimed to identify a role for cell competition in the elimination of suboptimal cells using an in vitro neuroepithelial model. Cell competition was observed when neural progenitor HypoE-N1 cells expressing RASV12 were surrounded by normal cells in the co-culture. The elimination through apoptosis was observed by cellular changes of RASV12 cells with rounding/fragmented morphology, by SYTOX blue-positivity, and by expression of apoptotic markers active caspase-3 and cleaved PARP. In this model, expression of juvenility-associated genes Srsf7 and Ezh2 were suppressed under cell-competitive conditions. Srsf7 depletion led to loss of cellular juvenescence characterized by suppression of Ezh2, cell growth impairment and enhancement of senescence-associated proteins. The cell bodies of eliminated cells were engulfed by the surrounding cells through phagocytosis. Our data indicates that neuroepithelial cell competition may have an important role for maintaining homeostasis in the neuroepithelium by eliminating suboptimal cells through loss of cellular juvenescence.
Collapse
|
46
|
Mei C, Song PY, Zhang W, Zhou HH, Li X, Liu ZQ. Aberrant RNA Splicing Events Driven by Mutations of RNA-Binding Proteins as Indicators for Skin Cutaneous Melanoma Prognosis. Front Oncol 2020; 10:568469. [PMID: 33178596 PMCID: PMC7593665 DOI: 10.3389/fonc.2020.568469] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 08/14/2020] [Indexed: 12/29/2022] Open
Abstract
The worldwide incidence of skin cutaneous melanoma (SKCM) is increasing at a more rapid rate than other tumors. Aberrant alternative splicing (AS) is found to be common in cancer; however, how this process contributes to cancer prognosis still remains largely unknown. Mutations in RNA-binding proteins (RBPs) may trigger great changes in the splicing process. In this study, we comprehensively analyzed DNA and RNA sequencing data and clinical information of SKCM patients, together with widespread changes in splicing patterns induced by RBP mutations. We screened mRNA expression-related and prognosis-related mutations in RBPs and investigated the potential affections of RBP mutations on splicing patterns. Mutations in 853 RBPs were demonstrated to be correlated with splicing aberrations (p < 0.01). Functional enrichment analysis revealed that these alternative splicing events (ASEs) may participate in tumor progress by regulating the modification process, cell-cycle checkpoint, metabolic pathways, MAPK signaling, PI3K-Akt signaling, and other important pathways in cancer. We also constructed a prediction model based on overall survival-related AS events (OS-ASEs) affected by RBP mutations, which exhibited a good predict efficiency with the area under the curve of 0.989. Our work highlights the importance of RBP mutations in splicing alterations and provides effective biomarkers for prediction of prognosis of SKCM.
Collapse
Affiliation(s)
- Chao Mei
- Department of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Key Laboratory of Biological Nanotechnology of National Health Commission, and National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.,Engineering Research Center for Applied Technology of Pharmacogenomics of Ministry of Education, Institute of Clinical Pharmacology, Central South University, Changsha, China
| | - Pei-Yuan Song
- Department of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Key Laboratory of Biological Nanotechnology of National Health Commission, and National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.,Engineering Research Center for Applied Technology of Pharmacogenomics of Ministry of Education, Institute of Clinical Pharmacology, Central South University, Changsha, China
| | - Wei Zhang
- Department of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Key Laboratory of Biological Nanotechnology of National Health Commission, and National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.,Engineering Research Center for Applied Technology of Pharmacogenomics of Ministry of Education, Institute of Clinical Pharmacology, Central South University, Changsha, China
| | - Hong-Hao Zhou
- Department of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Key Laboratory of Biological Nanotechnology of National Health Commission, and National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.,Engineering Research Center for Applied Technology of Pharmacogenomics of Ministry of Education, Institute of Clinical Pharmacology, Central South University, Changsha, China
| | - Xi Li
- Department of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Key Laboratory of Biological Nanotechnology of National Health Commission, and National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.,Engineering Research Center for Applied Technology of Pharmacogenomics of Ministry of Education, Institute of Clinical Pharmacology, Central South University, Changsha, China
| | - Zhao-Qian Liu
- Department of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Key Laboratory of Biological Nanotechnology of National Health Commission, and National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.,Engineering Research Center for Applied Technology of Pharmacogenomics of Ministry of Education, Institute of Clinical Pharmacology, Central South University, Changsha, China
| |
Collapse
|
47
|
Francies FZ, Marima R, Hull R, Molefi T, Dlamini Z. Genomics and splicing events of type II endometrial cancers in the black population: racial disparity, socioeconomic and geographical differences. Am J Cancer Res 2020; 10:3061-3082. [PMID: 33163258 PMCID: PMC7642673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 09/27/2020] [Indexed: 06/11/2023] Open
Abstract
Endometrial cancer, also known as uterine cancer, is the most common gynaecological malignancy with burgeoning incidence and mortality rates globally. Racial disparity, socioeconomic and geographical differences are important determinants of endometrial cancer incidence and mortality. Endometrial cancer is mainly categorised as type I and type II. Although less prevalent, type II is the most aggressive form of the disease and typically diagnosed at a late stage, contributing to higher mortality. Black women are at higher risk of developing aggressive, type II disease. Type I tumours are related to higher levels of circulating estrogen with lower-grade tumours that have a good prognosis and frequently related to PTEN mutations. In comparison, type II tumours are estrogen-independent, typically have poor prognosis and associated with the p53, HER2, PPP2R1A, FBXW7 and PIK3R1 mutations. The risk of developing type II malignancy is higher in women with Lynch syndrome as a result of mutations in the MMR gene family. Genetic modifications contribute to aberrant alternative splicing events that are related to tumour development, progression and resistance to therapy. Alternative splicing events are rapidly emerging as potential biomarkers and therapeutic targets. Type II endometrial cancer lacks targeted therapy and biomarkers for novel therapeutic strategies. Recent advances have illustrated a number of molecular targets that are currently explored for the treatment of advanced, late-stage endometrial cancer. The aim of this review is to outline 1) the epidemiology of type II endometrial cancer in black women, 2) discuss the correlated risk factors that contribute to the development of type II endometrial cancer and 3) the associated molecular mechanisms and genetic factors underlying the disease, and 4) aberrant splicing events and biomarkers with therapeutic potential as novel drug targets.
Collapse
Affiliation(s)
- Flavia Zita Francies
- SAMRC/UP Precision Prevention & Novel Drug Targets for HIV-Associated Cancers (PPNDTHAC) Extramural Unit, Pan African Cancer Research Institute (PACRI), University of Pretoria, Faculty of Health SciencesHatfield 0028, South Africa
| | - Rahaba Marima
- SAMRC/UP Precision Prevention & Novel Drug Targets for HIV-Associated Cancers (PPNDTHAC) Extramural Unit, Pan African Cancer Research Institute (PACRI), University of Pretoria, Faculty of Health SciencesHatfield 0028, South Africa
| | - Rodney Hull
- SAMRC/UP Precision Prevention & Novel Drug Targets for HIV-Associated Cancers (PPNDTHAC) Extramural Unit, Pan African Cancer Research Institute (PACRI), University of Pretoria, Faculty of Health SciencesHatfield 0028, South Africa
| | - Thulo Molefi
- Department of Medical Oncology, University of Pretoria, Faculty of Health SciencesHatfield 0028, South Africa
| | - Zodwa Dlamini
- SAMRC/UP Precision Prevention & Novel Drug Targets for HIV-Associated Cancers (PPNDTHAC) Extramural Unit, Pan African Cancer Research Institute (PACRI), University of Pretoria, Faculty of Health SciencesHatfield 0028, South Africa
| |
Collapse
|
48
|
Abstract
Objective Alternative splicing can generate various structural and functional protein isoforms. Recently, accumulating evidence shows a relationship between alternative splicing and cancer. Cancer is a complex and chronic disease that involves malignant transformation. In this review, we consider alternative splicing events in relation to the hallmarks of cancer cells, and discuss current therapies to treat cancer-related to alternative splicing. Data sources Data cited in this article are from the PubMed and Embase database, primarily focusing on research published from 2000 to 2018. Study selection Articles were selected with the search terms “alternative splicing,” “cancer cell,” “tumor microenvironment,” and “therapy.” Results Alternative splicing plays an important role in tumorigenesis, development, and escape from cell death. Taking this trait of cancer cells into consideration will allow more definite diagnoses of cancer, and allow the development of more effective medicines to intervene in cancer that could focus on controlling alternative splicing or competitively binding to the final products. Conclusions Alternative splicing is common in cancer cells. Consideration of alternative splicing may allow different strategies for cancer therapy or the identification of novel biomarkers for cancer diagnosis.
Collapse
|
49
|
Li D, Wang L, Feng J, Shen YW, Liu LN, Wang Y. RP11‑284F21.9 promotes lung carcinoma proliferation and invasion via the regulation of miR‑627‑3p/CCAR1. Oncol Rep 2020; 44:1638-1648. [PMID: 32945522 PMCID: PMC7448446 DOI: 10.3892/or.2020.7732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 07/10/2020] [Indexed: 11/11/2022] Open
Abstract
Lung carcinoma is a prominent cause of mortality among patients with cancer. Previous studies have reported the vital role of long non-coding RNAs (lncRNAs) in the malignant progression of lung cancer. lncRNA RP11-284F21.9 was originally identified to be expressed in lung carcinoma, but its specific function remains unknown. Therefore, the present study aimed to elucidate the role of lncRNA RP11-284F21.9 in lung carcinoma progression. The expression of RP11-284F21.9 in lung cell lines and tissues was measured using reverse transcription-quantitative PCR. The endogenous expression of RP11-284F21.9 was silenced using RNA interference, and cell viabilities were measured with a Cell Counting Kit-8 assay. The invasion and apoptosis of cells were determined via Transwell assays and flow cytometry, respectively. The protein expression levels were measured by western blotting. An increased expression of RP11-284F21.9 was identified in both lung carcinoma tissues and cells. Knockdown of RP11-284F21.9 in lung carcinoma cells inhibited cell proliferation and invasion, but promoted cell apoptosis. The present study identified the existence of a direct interaction between RP11-284F21.9 and microRNA (miRNA/miR)-627-3p. Mechanistically, it was demonstrated that RP11-284F21.9 promoted the proliferation and invasiveness of lung carcinoma cells, in part, via the regulation of miR-627-3p. Furthermore, cell division cycle and apoptosis regulator 1 (CCAR1) was identified as a target gene of miR-627-3p. The in vivo tumor growth assay also demonstrated that the knockdown of RP11-284F21.9 suppressed tumor growth, upregulated miR-627-3p and downregulated CCAR1 in the xenograft model of nude mice. Thus, the present findings indicated the tumor promoting functions of RP11-284F21.9 in the progression of lung carcinoma, and provided a novel lncRNA/miRNA axis as a target for the management of lung cancer.
Collapse
Affiliation(s)
- Dan Li
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Li Wang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Jin Feng
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Yan-Wei Shen
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Li-Na Liu
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Yuan Wang
- Department of Medical Imaging, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| |
Collapse
|
50
|
Mukherjee M, Goswami S. Global cataloguing of variations in untranslated regions of viral genome and prediction of key host RNA binding protein-microRNA interactions modulating genome stability in SARS-CoV-2. PLoS One 2020; 15:e0237559. [PMID: 32780783 PMCID: PMC7418985 DOI: 10.1371/journal.pone.0237559] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 07/29/2020] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND The world is going through the critical phase of COVID-19 pandemic, caused by human coronavirus, SARS-CoV-2. Worldwide concerted effort to identify viral genomic changes across different sub-types has identified several strong changes in the coding region. However, there have not been many studies focusing on the variations in the 5' and 3' untranslated regions and their consequences. Considering the possible importance of these regions in host mediated regulation of viral RNA genome, we wanted to explore the phenomenon. METHODS To have an idea of the global changes in 5' and 3'-UTR sequences, we downloaded 8595 complete and high-coverage SARS-CoV-2 genome sequence information from human host in FASTA format from Global Initiative on Sharing All Influenza Data (GISAID) from 15 different geographical regions. Next, we aligned them using Clustal Omega software and investigated the UTR variants. We also looked at the putative host RNA binding protein (RBP) and microRNA binding sites in these regions by 'RBPmap' and 'RNA22 v2' respectively. Expression status of selected RBPs and microRNAs were checked in lungs tissue. RESULTS We identified 28 unique variants in SARS-CoV-2 UTR region based on a minimum variant percentage cut-off of 0.5. Along with 241C>T change the important 5'-UTR change identified was 187A>G, while 29734G>C, 29742G>A/T and 29774C>T were the most familiar variants of 3'UTR among most of the continents. Furthermore, we found that despite the variations in the UTR regions, binding of host RBP to them remains mostly unaltered, which further influenced the functioning of specific miRNAs. CONCLUSION Our results, shows for the first time in SARS-Cov-2 infection, a possible cross-talk between host RBPs-miRNAs and viral UTR variants, which ultimately could explain the mechanism of escaping host RNA decay machinery by the virus. The knowledge might be helpful in developing anti-viral compounds in future.
Collapse
Affiliation(s)
- Moumita Mukherjee
- National Institute of Biomedical Genomics, Kalyani, West Bengal, India
| | - Srikanta Goswami
- National Institute of Biomedical Genomics, Kalyani, West Bengal, India
| |
Collapse
|