1
|
Chen Y, Liu Y, Yu R, Zhao Y, Lu J, Chen G, Zheng Y, Ye C. Dynamically Switchable 3D Shape-Morphing and Rotation from Liquid Crystal Elastomer Actuators. ACS APPLIED MATERIALS & INTERFACES 2025. [PMID: 40420566 DOI: 10.1021/acsami.5c08979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2025]
Abstract
Polymer-based soft actuators capable of responsive shape morphing hold great potential for developing untethered soft robotics with dexterous motion under complex surroundings. To realize this potential, achieving fast, dynamically tunable shape morphing that can generate sufficient mechanical force is essential. Here, soft actuators composed of liquid crystal elastomer (LCE) bilayer film are constructed via direct ink writing (DIW), which exhibit rapid and sequential 3D-to-3D́ morphological reconfiguration within seconds under temperature stimulus. The dynamic shape morphing is facilitated by the bidirectional bending of the LCE film, which possesses anisotropic mesogen orientation and distinct phase transition temperatures. By balancing the two LCE layers in terms of differential contraction, layer sequence, and two-dimensional (2D) geometry, its bending directions, amplitude, and sequence can be programmed, thus enabling diverse three-dimensional (3D) shape reconfigurations, such as biomimetic "orchid" blooming and "palm" gesture switching. Beyond shape morphing, the LCE actuator is capable of converting shape morphing into rotational kinetic energy in different directions. As a prototype, it generates sufficient torque to drive the rotation of an LCE rotor, exhibiting switchable clockwise, "self-oscillating", and anticlockwise motions. With the merits of dynamic shape morphing and mechanical energy harvesting, the LCE actuator presents a promising platform for advancing soft robotics with adaptive and diverse locomotion for performing tasks in complex environments.
Collapse
Affiliation(s)
- Yang Chen
- School of Physical Science and Technology, ShanghaiTech University, 393 Huaxia Middle Road, Pudong, Shanghai 201210, China
| | - Yuxiang Liu
- School of Physical Science and Technology, ShanghaiTech University, 393 Huaxia Middle Road, Pudong, Shanghai 201210, China
| | - Runze Yu
- School of Physical Science and Technology, ShanghaiTech University, 393 Huaxia Middle Road, Pudong, Shanghai 201210, China
| | - Yingshuai Zhao
- School of Physical Science and Technology, ShanghaiTech University, 393 Huaxia Middle Road, Pudong, Shanghai 201210, China
| | - Juntong Lu
- School of Physical Science and Technology, ShanghaiTech University, 393 Huaxia Middle Road, Pudong, Shanghai 201210, China
| | - Gang Chen
- School of Physical Science and Technology, ShanghaiTech University, 393 Huaxia Middle Road, Pudong, Shanghai 201210, China
| | - Yijun Zheng
- School of Physical Science and Technology, ShanghaiTech University, 393 Huaxia Middle Road, Pudong, Shanghai 201210, China
- State Key Laboratory of Advanced Medical Materials and Devices, ShanghaiTech University, Shanghai 201210, China
- Shanghai Clinical Research and Trial Center, Shanghai 201210, China
| | - Chunhong Ye
- School of Physical Science and Technology, ShanghaiTech University, 393 Huaxia Middle Road, Pudong, Shanghai 201210, China
- State Key Laboratory of Advanced Medical Materials and Devices, ShanghaiTech University, Shanghai 201210, China
- Shanghai Clinical Research and Trial Center, Shanghai 201210, China
| |
Collapse
|
2
|
Yang Y, Cao Y, Li S, Wang Y, Zhang X, Li Y, Yang Z. Ultrastiff Bioinspired Protein-Carbon Nanotube Hybrid Sponge with Shape Memory Effects. ACS NANO 2025; 19:18874-18885. [PMID: 40329561 DOI: 10.1021/acsnano.5c06297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2025]
Abstract
Natural protein-based biomaterials with complex hierarchical structures often have incredible and even counterintuitive mechanical properties. Understanding and utilizing the conformational transition mechanisms of natural proteins will further guide the design of natural-inspired biomaterials. In this study, a small static-force-induced spatiotemporal "freezing" phenomenon of silk fibroins confined in porous carbon nanotube sponges has been investigated. The "freezing" silk fibroins not only bring the shape memory effect to elastic carbon nanotube sponges but also enable them to prop up heavy objects with loads exceeding 10,000 times their own weight. Also, the protein/CNTS hybrid achieves an ultrastiffness (over 10 MPa) and superelastic shape recovery (recovery strain >90%). Both experimental and numerical results indicate that the secondary conformational transition of silk fibroin plays a key role, where more α-helices/random coils transform into β-sheets under both confinement and low pressure. Our work reports a conformational transition mechanism of silk fibroin in a confined space, which provides guidance for constructing protein-based biological smart materials with potential applications in textiles, medicine, architecture, and other research fields.
Collapse
Affiliation(s)
- Yang Yang
- School of Physical Science and Technology, Soochow University, Suzhou 215006, P. R. China
- Center for Soft Condensed Matter Physics and Interdisciplinary Research, Soochow University, Suzhou 215006, P. R. China
| | - Yingjie Cao
- National Engineering Research Center for Colloidal Materials, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, P. R. China
- Suzhou Research Institute, Shandong University, Suzhou, Jiangsu 215123, P. R. China
- Intelligent Chemical Engineering Center, Hong Kong Research Institute of Shandong University, Hong Kong SAR 999077, P. R. China
| | - Shengjie Li
- School of Physical Science and Technology, Soochow University, Suzhou 215006, P. R. China
- Center for Soft Condensed Matter Physics and Interdisciplinary Research, Soochow University, Suzhou 215006, P. R. China
| | - Yana Wang
- School of Physical Science and Technology, Soochow University, Suzhou 215006, P. R. China
- Center for Soft Condensed Matter Physics and Interdisciplinary Research, Soochow University, Suzhou 215006, P. R. China
| | - Xiaohua Zhang
- School of Physical Science and Technology, Soochow University, Suzhou 215006, P. R. China
- Center for Soft Condensed Matter Physics and Interdisciplinary Research, Soochow University, Suzhou 215006, P. R. China
| | - Yitan Li
- National Engineering Research Center for Colloidal Materials, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, P. R. China
- Suzhou Research Institute, Shandong University, Suzhou, Jiangsu 215123, P. R. China
- Intelligent Chemical Engineering Center, Hong Kong Research Institute of Shandong University, Hong Kong SAR 999077, P. R. China
| | - Zhaohui Yang
- School of Physical Science and Technology, Soochow University, Suzhou 215006, P. R. China
- Center for Soft Condensed Matter Physics and Interdisciplinary Research, Soochow University, Suzhou 215006, P. R. China
| |
Collapse
|
3
|
Song J, Zhou T, Xiao X, Zhang M, Liu P, Zeng X, Duan R, Li Y, Li L, Xu B, Wu G, Guo Y. Centimeter-Scale Bulk Liquid Crystal Elastomer Artificial Muscle with Strong Mechanical Properties and Designable Complex Shape-Morphing. ACS APPLIED MATERIALS & INTERFACES 2025. [PMID: 40372804 DOI: 10.1021/acsami.5c05472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2025]
Abstract
Artificial muscles are regarded as indispensable for next-generation robots. They can mimic the complex motions of living organisms and demonstrate performance surpassing that of natural muscles. Liquid crystal elastomers (LCEs) possess the unique advantage of programmable three-dimensional shape-morphing compared to other soft materials, holding significant promise for artificial muscle applications. However, LCE-based artificial muscle with designable shape-morphing is limited to 100 μm thickness currently, which significantly restricts the driving capability of artificial muscles. Here, we developed the centimeter-scale bulk LCE (CBLCE) artificial muscles with all three dimensions up to centimeter-scale through two-step crosslinking of an LCE with acceptable actuation strain and large modulus, which results in CBLCE artificial muscles with strong mechanical properties. Specifically, this CBLCE demonstrates 37.5% actuation strain (comparable to human skeletal muscles) and strong mechanical properties, such as up to 24 MPa modulus (exceeding that of most powerful natural muscles), large energy density (10 times that of human skeletal muscle), and large output capability (3624 times its gravity). Beyond these remarkable mechanical properties, this artificial muscle further demonstrates designable complex three-dimensional shape-morphing. The developed CBLCEs hold great promise for advancing artificial muscle applications in soft robotics, expanding their potential for broader applications.
Collapse
Affiliation(s)
- Juncai Song
- School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China
| | - Tianfeng Zhou
- School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Xiang Xiao
- School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China
| | - Mingchao Zhang
- Department of Materials Science and Engineering, National University of Singapore, Singapore 117575, Singapore
| | - Peng Liu
- School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Xianbing Zeng
- School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China
| | - Ruijue Duan
- School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China
| | - Yue Li
- Institute of Flexible Electronics (IFE), Northwestern Polytechnical University, Xi'an 710072, China
| | - Lei Li
- School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China
| | - Baiqian Xu
- School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China
| | - Guanghao Wu
- School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China
| | - Yubing Guo
- School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China
| |
Collapse
|
4
|
Ding A, Tang F, Alsberg E. 4D Printing: A Comprehensive Review of Technologies, Materials, Stimuli, Design, and Emerging Applications. Chem Rev 2025; 125:3663-3771. [PMID: 40106790 DOI: 10.1021/acs.chemrev.4c00070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2025]
Abstract
4D printing is a groundbreaking technology that seamlessly integrates additive manufacturing with smart materials, enabling the creation of multiscale objects capable of changing shapes and/or functions in a controlled and programmed manner in response to applied energy inputs. Printing technologies, mathematical modeling, responsive materials, stimuli, and structural design constitute the blueprint of 4D printing, all of which have seen rapid advancement in the past decade. These advancements have opened up numerous possibilities for dynamic and adaptive structures, finding potential use in healthcare, textiles, construction, aerospace, robotics, photonics, and electronics. However, current 4D printing primarily focuses on proof-of-concept demonstrations. Further development is necessary to expand the range of accessible materials and address fabrication complexities for widespread adoption. In this paper, we aim to deliver a comprehensive review of the state-of-the-art in 4D printing, probing into shape programming, exploring key aspects of resulting constructs including printing technologies, materials, structural design, morphing mechanisms, and stimuli-responsiveness, and elaborating on prominent applications across various fields. Finally, we discuss perspectives on limitations, challenges, and future developments in the realm of 4D printing. While the potential of this technology is undoubtedly vast, continued research and innovation are essential to unlocking its full capabilities and maximizing its real-world impact.
Collapse
Affiliation(s)
- Aixiang Ding
- Richard and Loan Hill Department of Biomedical Engineering, University of Illinois at Chicago, Chicago, Illinois 60612, United States
| | - Fang Tang
- Department of Surgery, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, United States
| | - Eben Alsberg
- Richard and Loan Hill Department of Biomedical Engineering, University of Illinois at Chicago, Chicago, Illinois 60612, United States
- Departments of Mechanical & Industrial Engineering, Orthopaedic Surgery, and Pharmacology and Regenerative Medicine, University of Illinois at Chicago, Chicago, Illinois 60612, United States
- Jesse Brown Veterans Affairs Medical Center (JBVAMC), Chicago, Illinois 60612, United States
| |
Collapse
|
5
|
Dewang Y, Sharma V, Baliyan VK, Soundappan T, Singla YK. Research Progress in Electroactive Polymers for Soft Robotics and Artificial Muscle Applications. Polymers (Basel) 2025; 17:746. [PMID: 40292598 PMCID: PMC11945207 DOI: 10.3390/polym17060746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 03/01/2025] [Accepted: 03/04/2025] [Indexed: 04/30/2025] Open
Abstract
Soft robots, constructed from deformable materials, offer significant advantages over rigid robots by mimicking biological tissues and providing enhanced adaptability, safety, and functionality across various applications. Central to these robots are electroactive polymer (EAP) actuators, which allow large deformations in response to external stimuli. This review examines various EAP actuators, including dielectric elastomers, liquid crystal elastomers (LCEs), and ionic polymers, focusing on their potential as artificial muscles. EAPs, particularly ionic and electronic varieties, are noted for their high actuation strain, flexibility, lightweight nature, and energy efficiency, making them ideal for applications in mechatronics, robotics, and biomedical engineering. This review also highlights piezoelectric polymers like polyvinylidene fluoride (PVDF), known for their flexibility, biocompatibility, and ease of fabrication, contributing to tactile and pressure sensing in robotic systems. Additionally, conducting polymers, with their fast actuation speeds and high strain capabilities, are explored, alongside magnetic polymer composites (MPCs) with applications in biomedicine and electronics. The integration of machine learning (ML) and the Internet of Things (IoT) is transforming soft robotics, enhancing actuation, control, and design. Finally, the paper discusses future directions in soft robotics, focusing on self-healing composites, bio-inspired designs, sustainability, and the continued integration of IoT and ML for intelligent, adaptive, and responsive robotic systems.
Collapse
Affiliation(s)
- Yogesh Dewang
- Department of Mechanical Engineering, Lakshmi Narain College of Technology, Bhopal 462021, India;
| | - Vipin Sharma
- Department of Mechanical Engineering, Medi-Caps University, Indore 453331, India;
| | - Vijay Kumar Baliyan
- School of Sciences, Sanjeev Agarwal Global Education University, Bhopal 462022, India;
| | | | - Yogesh Kumar Singla
- School of Engineering, Math & Technology, Navajo Technical University, Crownpoint, NM 87313, USA
| |
Collapse
|
6
|
Benecke L, Schwingshackl SA, Schyra P, Cherif C, Aibibu D. Generation of Liquid Crystal Elastomer Fibers via a Wet Spinning Technology with Two-Stage Crosslinking. Polymers (Basel) 2025; 17:494. [PMID: 40006155 PMCID: PMC11860053 DOI: 10.3390/polym17040494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 02/10/2025] [Accepted: 02/12/2025] [Indexed: 02/27/2025] Open
Abstract
Liquid crystal elastomers (LCE) are a promising material to achieve reversible actuation while being able to perform work, showing great potential as artificial muscles in soft robotics and medical technology. Here, a wet spinning process to prepare liquid crystal elastomer fibers (LCEF) with reversible actuation capability is presented. Furthermore, we demonstrate the ability to process side-chain liquid crystal (LC) 4-Methoxyphenyl 4-(3-butenyloxy)benzoate (MBB) into a fiber, enlarging the material variance available in this field. The wet spinning process is presented and discussed in terms of spinning parameters and their influence on fiber properties, especially LC orientation. Moderate draw ratios of up to 2.3 enable highly oriented mesogens (f = 0.64), enabling the contractile behavior. The generated MBB-based LCEF show low activation temperature (54.52 °C), temperature-dependent mechanical properties, reversible contraction behavior while lifting up to 140 times their own weight and are able to perform work of up to 3.857 J kg-1. Actuation properties are compared with human skeletal muscle, and possible strategies of further enhancing the LCEF performance are discussed. The generated data show promising features of the LCEF for use as artificial muscle fibers in medical applications, e.g., prosthetics and artificial cardiac tissue.
Collapse
Affiliation(s)
- Lukas Benecke
- Institute of Textile Machinery and High Performance Material Technology, TU Dresden, 01069 Dresden, Germany (P.S.); (C.C.); (D.A.)
| | - Sina Anna Schwingshackl
- Institute of Textile Machinery and High Performance Material Technology, TU Dresden, 01069 Dresden, Germany (P.S.); (C.C.); (D.A.)
| | - Peter Schyra
- Institute of Textile Machinery and High Performance Material Technology, TU Dresden, 01069 Dresden, Germany (P.S.); (C.C.); (D.A.)
| | - Chokri Cherif
- Institute of Textile Machinery and High Performance Material Technology, TU Dresden, 01069 Dresden, Germany (P.S.); (C.C.); (D.A.)
- Centre for Tactile Internet with Human-in-the-Loop (CeTI), TU Dresden, 01062 Dresden, Germany
| | - Dilbar Aibibu
- Institute of Textile Machinery and High Performance Material Technology, TU Dresden, 01069 Dresden, Germany (P.S.); (C.C.); (D.A.)
| |
Collapse
|
7
|
Feng W, He Q, Zhang L. Embedded Physical Intelligence in Liquid Crystalline Polymer Actuators and Robots. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2312313. [PMID: 38375751 PMCID: PMC11733722 DOI: 10.1002/adma.202312313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 01/27/2024] [Indexed: 02/21/2024]
Abstract
Responsive materials possess the inherent capacity to autonomously sense and respond to various external stimuli, demonstrating physical intelligence. Among the diverse array of responsive materials, liquid crystalline polymers (LCPs) stand out for their remarkable reversible stimuli-responsive shape-morphing properties and their potential for creating soft robots. While numerous reviews have extensively detailed the progress in developing LCP-based actuators and robots, there exists a need for comprehensive summaries that elucidate the underlying principles governing actuation and how physical intelligence is embedded within these systems. This review provides a comprehensive overview of recent advancements in developing actuators and robots endowed with physical intelligence using LCPs. This review is structured around the stimulus conditions and categorizes the studies involving responsive LCPs based on the fundamental control and stimulation logic and approach. Specifically, three main categories are examined: systems that respond to changing stimuli, those operating under constant stimuli, and those equip with learning and logic control capabilities. Furthermore, the persisting challenges that need to be addressed are outlined and discuss the future avenues of research in this dynamic field.
Collapse
Affiliation(s)
- Wei Feng
- Department of Mechanical and Automation EngineeringThe Chinese University of Hong KongHong KongChina
| | - Qiguang He
- Department of Mechanical and Automation EngineeringThe Chinese University of Hong KongHong KongChina
| | - Li Zhang
- Department of Mechanical and Automation EngineeringThe Chinese University of Hong KongHong KongChina
| |
Collapse
|
8
|
Liu Z, Zagzag Y, Kamien RD, Osuji CO. Director Response of Liquid Crystals in Spatially Varying Magnetic Fields with Antagonistic Anchoring Conditions. ACS APPLIED MATERIALS & INTERFACES 2024; 16:70130-70137. [PMID: 39641760 DOI: 10.1021/acsami.4c17546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
In the presence of a magnetic field, a liquid crystal (LC) director can be distorted from a ground state set by a combination of LC elasticity and surface anchoring at any relevant interfaces. Uniform magnetic fields are often used to produce simple LC distortions on demand, but producing more spatially complex distortions is practically challenging. We develop a strategy for the spatially resolved control of the LC director by leveraging field patterns induced by ferromagnetic materials. Patterned magnetic fields are generated from high-permeability ferromagnetic microstructures embedded into nematic liquid crystals (NLCs) to manipulate the LC director's orientation. Each ferromagnetic microstructure produces a unique spatially varying magnetic field. In turn, tuning magnetic field strength in competition with NLC elasticity can pattern a range of spatially complex director configurations. Simulations relate the spatial variation induced in a magnetic field by a ferromagnetic geometry and the resultant director. Our predictive models can inform the inverse design of ferromagnetic microstructures to generate bespoke director patterns. We also link changes in the magnetic field to the migration of elastically driven periodic extinctions in birefringence near the edges of ferromagnetic structures.
Collapse
Affiliation(s)
- Zhe Liu
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Yvonne Zagzag
- Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Randall D Kamien
- Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Chinedum O Osuji
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
9
|
McCracken JM, Bauman GE, Williams G, Santos M, Smith L, MacCurdy R, White TJ. Cuboidal Deformation of Multimaterial Composites Prepared by 3-D Printing of Liquid Crystalline Elastomers. ACS APPLIED MATERIALS & INTERFACES 2024; 16:69851-69857. [PMID: 39630564 DOI: 10.1021/acsami.4c14792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
Multimaterial 3-D printing (3DP) of isotropic (IsoE) and liquid crystalline elastomers (LCE) yields spatially programmed elements that undergo a cuboidal shape transformation upon heating. The thermomechanical deformation of 3DP elements is determined by the geometry and extent of the isotropic and anisotropic regions. The synthesis and experimental characterization of the 3DP elements are complemented by finite element analysis (FEA). Calculations emphasize that the cuboidal deformation of the myriad 3DP elements is a manifestation of local stress gradients imparted by local control of the material composition and anisotropy. Varying the rectilinear spatial distribution of the multimaterial elastomer composites produces complex, multistable states that provide insights into how stress gradients drive multimaterial elastomer actuation. The thermomechanical stimuli response of the multimaterial elements is explored as a tactile element.
Collapse
Affiliation(s)
- Joselle M McCracken
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Grant E Bauman
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Graham Williams
- Department of Mechanical Engineering, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Misael Santos
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Lawrence Smith
- Department of Mechanical Engineering, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Robert MacCurdy
- Department of Mechanical Engineering, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Timothy J White
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, Colorado 80309, United States
- Materials Science and Engineering Program, University of Colorado Boulder, Boulder, Colorado 80309, United States
| |
Collapse
|
10
|
Xue S, Shi Z, Wang Z, Tan H, Gao F, Zhang Z, Ye Z, Nian S, Han T, Zhang J, Zhao Z, Tang BZ, Zhang Q. Fluorescent robust photoactuator via photo-crosslinking induced single-layered janus polyimide. Nat Commun 2024; 15:10084. [PMID: 39572542 PMCID: PMC11582805 DOI: 10.1038/s41467-024-54386-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 11/05/2024] [Indexed: 11/24/2024] Open
Abstract
Advanced smart polymer materials with the ability of reversible deformation under external stimuli hold great potential in robotics, soft machines, and flexible electronics. However, the complexity and low efficiency for fabricating actuators along with their limited functionality hinder further progress. Here an efficient and mild catalyst-free thiol-yne click polymerization was developed to fabricate photosensitive polyimide (PI) films. Then the fluorescent robust photoactuators with single-layered janus structure were directly obtained via UV assisted photo-crosslinking of the films, exhibiting reversible response driven by a pronounced mismatch in expansion between the front and back sides of the films. Achieving selective, non-uniform spatial distribution within the PI films, rapid and reversible complex morphing of the actuators, along with the capabilities for encrypting, reading, and erasing fluorescent information-all through the use of a single UV light source-becomes straightforward. The robust mechanical property and driving ability of these actuators enable the conversion of light energy into obvious motion even under heavy loads and the leaping through the storage and release of energy, ensuring their potential for practical applications that require durability and reliability.
Collapse
Affiliation(s)
- Shuyu Xue
- School of Chemistry and Chemical Engineering, Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, Northwestern Polytechnical University, Xi'an, Shaanxi, China
- School of Chemistry and Chemical Engineering, Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions of Ministry of Education, Northwestern Polytechnical University, Xi'an, Shaanxi, China
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong, China
| | - Zhipanxin Shi
- School of Chemistry and Chemical Engineering, Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, Northwestern Polytechnical University, Xi'an, Shaanxi, China
| | - Zaiyu Wang
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong, China
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Kowloon, Hong Kong, China
| | - Haozhe Tan
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong, China
| | - Feng Gao
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong, China
| | - Zicong Zhang
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong, China
| | - Ziyue Ye
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong, China
| | - Shifeng Nian
- School of Chemistry and Chemical Engineering, Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, Northwestern Polytechnical University, Xi'an, Shaanxi, China
| | - Ting Han
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, China
| | - Jianbo Zhang
- School of Chemistry and Chemical Engineering, Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, Northwestern Polytechnical University, Xi'an, Shaanxi, China.
- School of Chemistry and Chemical Engineering, Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions of Ministry of Education, Northwestern Polytechnical University, Xi'an, Shaanxi, China.
| | - Zheng Zhao
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong, China.
| | - Ben Zhong Tang
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong, China.
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Kowloon, Hong Kong, China.
| | - Qiuyu Zhang
- School of Chemistry and Chemical Engineering, Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, Northwestern Polytechnical University, Xi'an, Shaanxi, China.
- School of Chemistry and Chemical Engineering, Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions of Ministry of Education, Northwestern Polytechnical University, Xi'an, Shaanxi, China.
| |
Collapse
|
11
|
Maurin V, Chang Y, Ze Q, Leanza S, Wang J, Zhao RR. Liquid Crystal Elastomer-Liquid Metal Composite: Ultrafast, Untethered, and Programmable Actuation by Induction Heating. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2302765. [PMID: 37656872 DOI: 10.1002/adma.202302765] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 08/25/2023] [Indexed: 09/03/2023]
Abstract
Liquid crystal elastomers (LCEs) are a class of stimuli-responsive materials that have been intensively studied for applications including artificial muscles, shape morphing structures, and soft robotics due to their capability of large, programmable, and fully reversible actuation strains. To fully take advantage of LCEs, rapid, untethered, and programmable actuation methods are highly desirable. Here, a liquid crystal elastomer-liquid metal (LCE-LM) composite is reported, which enables ultrafast and programmable actuations by eddy current induction heating. The composite consists of LM sandwiched between two LCE layers printed via direct ink writing (DIW). When subjected to a high-frequency alternating magnetic field, the composite is actuated in milliseconds. By moving the magnetic field, the eddy current is spatially controlled for selective actuation. Additionally, sequential actuation is achievable by programming the LM thickness distribution in a sample. With these capabilities, the LCE-LM composite is further exploited for multimodal deformation of a pop-up structure, on-ground omnidirectional robotic motion, and in-water targeted object manipulation and crawling.
Collapse
Affiliation(s)
- Victor Maurin
- Department of Mechanical Engineering, Stanford University, Stanford, CA, 94305, USA
| | - Yilong Chang
- Department of Mechanical Engineering, Stanford University, Stanford, CA, 94305, USA
| | - Qiji Ze
- Department of Mechanical Engineering, Stanford University, Stanford, CA, 94305, USA
| | - Sophie Leanza
- Department of Mechanical Engineering, Stanford University, Stanford, CA, 94305, USA
| | - Jing Wang
- Department of Mechanical Engineering, Stanford University, Stanford, CA, 94305, USA
| | - Ruike Renee Zhao
- Department of Mechanical Engineering, Stanford University, Stanford, CA, 94305, USA
| |
Collapse
|
12
|
Nahon DM, Moerkens R, Aydogmus H, Lendemeijer B, Martínez-Silgado A, Stein JM, Dostanić M, Frimat JP, Gontan C, de Graaf MNS, Hu M, Kasi DG, Koch LS, Le KTT, Lim S, Middelkamp HHT, Mooiweer J, Motreuil-Ragot P, Niggl E, Pleguezuelos-Manzano C, Puschhof J, Revyn N, Rivera-Arbelaez JM, Slager J, Windt LM, Zakharova M, van Meer BJ, Orlova VV, de Vrij FMS, Withoff S, Mastrangeli M, van der Meer AD, Mummery CL. Standardizing designed and emergent quantitative features in microphysiological systems. Nat Biomed Eng 2024; 8:941-962. [PMID: 39187664 DOI: 10.1038/s41551-024-01236-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 04/06/2024] [Indexed: 08/28/2024]
Abstract
Microphysiological systems (MPSs) are cellular models that replicate aspects of organ and tissue functions in vitro. In contrast with conventional cell cultures, MPSs often provide physiological mechanical cues to cells, include fluid flow and can be interlinked (hence, they are often referred to as microfluidic tissue chips or organs-on-chips). Here, by means of examples of MPSs of the vascular system, intestine, brain and heart, we advocate for the development of standards that allow for comparisons of quantitative physiological features in MPSs and humans. Such standards should ensure that the in vivo relevance and predictive value of MPSs can be properly assessed as fit-for-purpose in specific applications, such as the assessment of drug toxicity, the identification of therapeutics or the understanding of human physiology or disease. Specifically, we distinguish designed features, which can be controlled via the design of the MPS, from emergent features, which describe cellular function, and propose methods for improving MPSs with readouts and sensors for the quantitative monitoring of complex physiology towards enabling wider end-user adoption and regulatory acceptance.
Collapse
Affiliation(s)
- Dennis M Nahon
- Leiden University Medical Center, Leiden, the Netherlands
| | - Renée Moerkens
- University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | | | - Bas Lendemeijer
- Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Adriana Martínez-Silgado
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and UMC Utrecht, Utrecht, the Netherlands
| | - Jeroen M Stein
- Leiden University Medical Center, Leiden, the Netherlands
| | | | | | - Cristina Gontan
- Erasmus University Medical Center, Rotterdam, the Netherlands
| | | | - Michel Hu
- Leiden University Medical Center, Leiden, the Netherlands
| | - Dhanesh G Kasi
- Leiden University Medical Center, Leiden, the Netherlands
| | - Lena S Koch
- University of Twente, Enschede, the Netherlands
| | - Kieu T T Le
- University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Sangho Lim
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and UMC Utrecht, Utrecht, the Netherlands
| | | | - Joram Mooiweer
- University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | | | - Eva Niggl
- Erasmus University Medical Center, Rotterdam, the Netherlands
| | | | - Jens Puschhof
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and UMC Utrecht, Utrecht, the Netherlands
| | - Nele Revyn
- Delft University of Technology, Delft, the Netherlands
| | | | - Jelle Slager
- University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Laura M Windt
- Leiden University Medical Center, Leiden, the Netherlands
| | | | | | | | | | - Sebo Withoff
- University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | | | | | | |
Collapse
|
13
|
Zang T, Fu S, Cheng J, Zhang C, Lu X, Hu J, Xia H, Zhao Y. 4D Printing of Shape-Morphing Liquid Crystal Elastomers. CHEM & BIO ENGINEERING 2024; 1:488-515. [PMID: 39974607 PMCID: PMC11835177 DOI: 10.1021/cbe.4c00027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 05/22/2024] [Accepted: 05/22/2024] [Indexed: 02/21/2025]
Abstract
In nature, biological systems can sense environmental changes and alter their performance parameters in real time to adapt to environmental changes. Inspired by these, scientists have developed a range of novel shape-morphing materials. Shape-morphing materials are a kind of "intelligent" materials that exhibit responses to external stimuli in a predetermined way and then display a preset function. Liquid crystal elastomer (LCE) is a typical representative example of shape-morphing materials. The emergence of 4D printing technology can effectively simplify the preparation process of shape-morphing LCEs, by changing the printing material compositions and printing conditions, enabling precise control and macroscopic design of the shape-morphing modes. At the same time, the layer-by-layer stacking method can also endow the shape-morphing LCEs with complex, hierarchical orientation structures, which gives researchers a great degree of design freedom. 4D printing has greatly expanded the application scope of shape-morphing LCEs as soft intelligent materials. This review systematically reports the recent progress of 3D/4D printing of shape-morphing LCEs, discusses various 4D printing technologies, synthesis methods and actuation modes of 3D/4D printed LCEs, and summarizes the opportunities and challenges of 3D/4D printing technologies in preparing shape-morphing LCEs.
Collapse
Affiliation(s)
- Tongzhi Zang
- State
Key Laboratory of Polymer Materials Engineering, Polymer Research
Institute, Sichuan University, Chengdu 610065, China
- Center
for Molecular Science and Engineering, College of Science, Northeastern University, Shenyang 110819, China
| | - Shuang Fu
- State
Key Laboratory of Polymer Materials Engineering, Polymer Research
Institute, Sichuan University, Chengdu 610065, China
| | - Junpeng Cheng
- State
Key Laboratory of Polymer Materials Engineering, Polymer Research
Institute, Sichuan University, Chengdu 610065, China
| | - Chun Zhang
- State
Key Laboratory of Polymer Materials Engineering, Polymer Research
Institute, Sichuan University, Chengdu 610065, China
| | - Xili Lu
- State
Key Laboratory of Polymer Materials Engineering, Polymer Research
Institute, Sichuan University, Chengdu 610065, China
| | - Jianshe Hu
- Center
for Molecular Science and Engineering, College of Science, Northeastern University, Shenyang 110819, China
| | - Hesheng Xia
- State
Key Laboratory of Polymer Materials Engineering, Polymer Research
Institute, Sichuan University, Chengdu 610065, China
| | - Yue Zhao
- Département
de chimie, Université de Sherbrooke, Sherbrooke, Québec J1K 2R1, Canada
| |
Collapse
|
14
|
van Hazendonk L, Khalil ZJ, van Grondelle W, Wijkhuijs LEA, Schreur-Piet I, Debije MG, Friedrich H. Hot Fingers: Individually Addressable Graphene-Heater Actuated Liquid Crystal Grippers. ACS APPLIED MATERIALS & INTERFACES 2024; 16:32739-32747. [PMID: 38869014 PMCID: PMC11212024 DOI: 10.1021/acsami.4c06130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/23/2024] [Accepted: 06/03/2024] [Indexed: 06/14/2024]
Abstract
Liquid crystal-based actuators are receiving increased attention for their applications in wearables and biomedical or surgical devices, with selective actuation of individual parts/fingers still being in its infancy. This work presents the design and realization of two gripper devices with four individually addressable liquid-crystal network (LCN) actuators thermally driven via printed graphene-based heating elements. The resistive heat causes the all-organic actuator to bend due to anisotropic volume expansions of the splay-aligned sample. A heat transfer model that includes all relevant interfaces is presented and verified via thermal imaging, which provides good estimates of dimensions, power production, and resistance required to reach the desired temperature for actuation while maintaining safe electrical potentials. The LCN films displace up to 11 mm with a bending force of 1.10 mN upon application of 0-15 V potentials. The robustness of the LCN finger is confirmed by repetitive on/off switching for 500 cycles. Actuators are assembled into two prototypes able to grip and lift objects of small weights (70-100 mg) and perform complex actions by individually controlling one of the device's fingers to grip an additional object. Selective actuation of parts in soft robotic devices will enable more complex motions and actions to be performed.
Collapse
Affiliation(s)
- Laura
S. van Hazendonk
- Laboratory
of Physical Chemistry, Department of Chemical
Engineering and Chemistry Eindhoven University of Technology, P.O. box 513, Eindhoven 5600 MB, The Netherlands
- Institute
for Complex Molecular Systems, Eindhoven
University of Technology, P.O. box 513, Eindhoven 5600 MB, The Netherlands
| | - Zafeiris J. Khalil
- Laboratory
of Physical Chemistry, Department of Chemical
Engineering and Chemistry Eindhoven University of Technology, P.O. box 513, Eindhoven 5600 MB, The Netherlands
| | - Wilko van Grondelle
- Laboratory
of Physical Chemistry, Department of Chemical
Engineering and Chemistry Eindhoven University of Technology, P.O. box 513, Eindhoven 5600 MB, The Netherlands
| | - Levina E. A. Wijkhuijs
- Laboratory
of Physical Chemistry, Department of Chemical
Engineering and Chemistry Eindhoven University of Technology, P.O. box 513, Eindhoven 5600 MB, The Netherlands
- Institute
for Complex Molecular Systems, Eindhoven
University of Technology, P.O. box 513, Eindhoven 5600 MB, The Netherlands
| | - Ingeborg Schreur-Piet
- Laboratory
of Physical Chemistry, Department of Chemical
Engineering and Chemistry Eindhoven University of Technology, P.O. box 513, Eindhoven 5600 MB, The Netherlands
- Center
for Multiscale Electron Microscopy, Department of Chemical Engineering
and Chemistry, Eindhoven University of Technology, P.O. box 513, Eindhoven 5600 MB, The Netherlands
| | - Michael G. Debije
- Institute
for Complex Molecular Systems, Eindhoven
University of Technology, P.O. box 513, Eindhoven 5600 MB, The Netherlands
- Stimuli-responsive
Functional Materials and Devices (SFD), Department of Chemical Engineering
and Chemistry, Eindhoven University of Technology, P.O. box 513, Eindhoven 5600 MB, The Netherlands
| | - Heiner Friedrich
- Laboratory
of Physical Chemistry, Department of Chemical
Engineering and Chemistry Eindhoven University of Technology, P.O. box 513, Eindhoven 5600 MB, The Netherlands
- Institute
for Complex Molecular Systems, Eindhoven
University of Technology, P.O. box 513, Eindhoven 5600 MB, The Netherlands
- Center
for Multiscale Electron Microscopy, Department of Chemical Engineering
and Chemistry, Eindhoven University of Technology, P.O. box 513, Eindhoven 5600 MB, The Netherlands
| |
Collapse
|
15
|
Berrow SR, Mandle RJ, Raistrick T, Reynolds M, Gleeson HF. Toward Monodomain Nematic Liquid Crystal Elastomers of Arbitrary Thickness through PET-RAFT Polymerization. Macromolecules 2024; 57:5218-5229. [PMID: 38882196 PMCID: PMC11171763 DOI: 10.1021/acs.macromol.4c00245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 03/21/2024] [Accepted: 05/16/2024] [Indexed: 06/18/2024]
Abstract
Liquid crystal elastomers (LCEs) are polymeric materials that are proposed for a range of applications. However, to reach their full potential, it is desirable to have as much flexibility as possible in terms of the sample dimensions, while maintaining well-defined alignment. In this work, photoinduced electron/energy transfer reversible addition-fragmentation chain transfer (PET-RAFT) polymerization is applied to the synthesis of LCEs for the first time. An initial LCE layer (∼100 μm thickness) is partially cured before a second layer of the precursor mixture is added. The curing reaction is then resumed and is observed by FTIR to complete within 15 min of irradiation, yielding samples of increased thickness. Monodomain samples that exhibit an auxetic response and are of thickness 250-300 μm are consistently achieved. All samples are characterized thermally, mechanically, and in terms of their order parameters. The LCEs have physical properties comparable to those of analogous LCEs produced via free-radical polymerization.
Collapse
Affiliation(s)
- Stuart R Berrow
- School of Physics and Astronomy, University of Leeds, Leeds LS2 9JT, U.K
| | - Richard J Mandle
- School of Physics and Astronomy, University of Leeds, Leeds LS2 9JT, U.K
- School of Chemistry, University of Leeds, Leeds LS2 9JT, U.K
| | - Thomas Raistrick
- School of Physics and Astronomy, University of Leeds, Leeds LS2 9JT, U.K
| | - Matthew Reynolds
- School of Physics and Astronomy, University of Leeds, Leeds LS2 9JT, U.K
| | - Helen F Gleeson
- School of Physics and Astronomy, University of Leeds, Leeds LS2 9JT, U.K
| |
Collapse
|
16
|
Rešetič A. Shape programming of liquid crystal elastomers. Commun Chem 2024; 7:56. [PMID: 38485773 PMCID: PMC10940691 DOI: 10.1038/s42004-024-01141-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 03/07/2024] [Indexed: 03/18/2024] Open
Abstract
Liquid crystal elastomers (LCEs) are shape-morphing materials that demonstrate reversible actuation when exposed to external stimuli, such as light or heat. The actuation's complexity depends heavily on the instilled liquid crystal alignment, programmed into the material using various shape-programming processes. As an unavoidable part of LCE synthesis, these also introduce geometrical and output restrictions that dictate the final applicability. Considering LCE's future implementation in real-life applications, it is reasonable to explore these limiting factors. This review offers a brief overview of current shape-programming methods in relation to the challenges of employing LCEs as soft, shape-memory components in future devices.
Collapse
Affiliation(s)
- Andraž Rešetič
- Jožef Stefan Institute, Solid State Physics Department, Jamova cesta 39, 1000, Ljubljana, Slovenia.
| |
Collapse
|
17
|
Xu Y, Zhang X, Song Z, Chen X, Huang Y, Wang J, Li B, Huang S, Li Q. In situ Light-Writable Orientation Control in Liquid Crystal Elastomer Film Enabled by Chalcones. Angew Chem Int Ed Engl 2024; 63:e202319698. [PMID: 38190301 DOI: 10.1002/anie.202319698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/07/2024] [Accepted: 01/08/2024] [Indexed: 01/10/2024]
Abstract
Liquid crystal elastomers (LCEs) are stimulus-responsive materials with intrinsic anisotropy. However, it is still challenging to in situ program the mesogen alignment to realize three-dimensional (3D) deformations with high-resolution patterned structures. This work presents a feasible strategy to program the anisotropy of LCEs by using chalcone mesogens that can undergo a photoinduced cycloaddition reaction under linear polarized light. It is shown that by controlling the polarization director and the irradiation region, patterned alignment distribution in a freestanding LCE film can be created, which leads to complex and reversible 3D shape-morphing behaviors. The work demonstrates an in situ light-writing method to achieve sophisticated topography changes in LCEs, which has potential applications in encryption, sensors, and beyond.
Collapse
Affiliation(s)
- Yiyi Xu
- Institute of Advanced Materials and School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China
| | - Xinfang Zhang
- Materials Science Graduate Program, Kent State University, Kent, OH-44242, USA
| | - Zhenpeng Song
- College of Electronic and Optical Engineering & College of Flexible Electronics (Future Technology), Nanjing University of Posts and Telecommunications, Nanjing, 210023, China
| | - Xiao Chen
- Institute of Advanced Materials and School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China
| | - Yinliang Huang
- Institute of Advanced Materials and School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China
| | - Jinyu Wang
- Institute of Advanced Materials and School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China
| | - Bingxiang Li
- College of Electronic and Optical Engineering & College of Flexible Electronics (Future Technology), Nanjing University of Posts and Telecommunications, Nanjing, 210023, China
| | - Shuai Huang
- Institute of Advanced Materials and School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China
| | - Quan Li
- Institute of Advanced Materials and School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China
- Materials Science Graduate Program, Kent State University, Kent, OH-44242, USA
| |
Collapse
|
18
|
Feng X, Wang L, Xue Z, Xie C, Han J, Pei Y, Zhang Z, Guo W, Lu B. Melt electrowriting enabled 3D liquid crystal elastomer structures for cross-scale actuators and temperature field sensors. SCIENCE ADVANCES 2024; 10:eadk3854. [PMID: 38446880 PMCID: PMC10917348 DOI: 10.1126/sciadv.adk3854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 01/30/2024] [Indexed: 03/08/2024]
Abstract
Liquid crystal elastomers (LCEs) have garnered attention for their remarkable reversible strains under various stimuli. Early studies on LCEs mainly focused on basic dimensional changes in macrostructures or quasi-three-dimensional (3D) microstructures. However, fabricating complex 3D microstructures and cross-scale LCE-based structures has remained challenging. In this study, we report a compatible method named melt electrowriting (MEW) to fabricate LCE-based microfiber actuators and various 3D actuators on the micrometer to centimeter scales. By controlling printing parameters, these actuators were fabricated with high resolutions (4.5 to 60 μm), actuation strains (10 to 55%), and a maximum work density of 160 J/kg. In addition, through the integration of a deep learning-based model, we demonstrated the application of LCE materials in temperature field sensing. Large-scale, real-time, LCE grid-based spatial temperature field sensors have been designed, exhibiting a low response time of less than 42 ms and a high precision of 94.79%.
Collapse
Affiliation(s)
- Xueming Feng
- The State Key Laboratory for Manufacturing Systems Engineering, Xi’an Jiaotong University, Xi’an 710049, China
- School of Mechanical Engineering, Xi’an Jiaotong University, Xi’an 710054, China
| | - Li Wang
- The State Key Laboratory for Manufacturing Systems Engineering, Xi’an Jiaotong University, Xi’an 710049, China
- School of Mechanical Engineering, Xi’an Jiaotong University, Xi’an 710054, China
- National Innovation Institute of Additive Manufacturing, No. 997, Shanglinyuan 8th Road, Gaoxin District, Xi’an 710300, China
| | - Zhengjie Xue
- The State Key Laboratory for Manufacturing Systems Engineering, Xi’an Jiaotong University, Xi’an 710049, China
- School of Mechanical Engineering, Xi’an Jiaotong University, Xi’an 710054, China
| | - Chao Xie
- The State Key Laboratory for Manufacturing Systems Engineering, Xi’an Jiaotong University, Xi’an 710049, China
- School of Mechanical Engineering, Xi’an Jiaotong University, Xi’an 710054, China
| | - Jie Han
- The State Key Laboratory for Manufacturing Systems Engineering, Xi’an Jiaotong University, Xi’an 710049, China
- School of Mechanical Engineering, Xi’an Jiaotong University, Xi’an 710054, China
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems, 70569 Stuttgart, Germany
| | - Yuechen Pei
- The State Key Laboratory for Manufacturing Systems Engineering, Xi’an Jiaotong University, Xi’an 710049, China
- School of Mechanical Engineering, Xi’an Jiaotong University, Xi’an 710054, China
| | - Zhaofa Zhang
- The State Key Laboratory for Manufacturing Systems Engineering, Xi’an Jiaotong University, Xi’an 710049, China
- School of Mechanical Engineering, Xi’an Jiaotong University, Xi’an 710054, China
| | - Wenhua Guo
- The State Key Laboratory for Manufacturing Systems Engineering, Xi’an Jiaotong University, Xi’an 710049, China
- School of Mechanical Engineering, Xi’an Jiaotong University, Xi’an 710054, China
- National Innovation Institute of Additive Manufacturing, No. 997, Shanglinyuan 8th Road, Gaoxin District, Xi’an 710300, China
| | - Bingheng Lu
- The State Key Laboratory for Manufacturing Systems Engineering, Xi’an Jiaotong University, Xi’an 710049, China
- School of Mechanical Engineering, Xi’an Jiaotong University, Xi’an 710054, China
- National Innovation Institute of Additive Manufacturing, No. 997, Shanglinyuan 8th Road, Gaoxin District, Xi’an 710300, China
| |
Collapse
|
19
|
Feng F, Dradrach K, Zmyślony M, Barnes M, Biggins JS. Geometry, mechanics and actuation of intrinsically curved folds. SOFT MATTER 2024; 20:2132-2140. [PMID: 38351724 DOI: 10.1039/d3sm01584j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/29/2024]
Abstract
We combine theory and experiments to explore the kinematics and actuation of intrinsically curved folds (ICFs) in otherwise developable shells. Unlike origami folds, ICFs are not bending isometries of flat sheets, but arise via non-isometric processes (growth/moulding) or by joining sheets along curved boundaries. Experimentally, we implement both, first making joined ICFs from paper, then fabricating flat liquid crystal elastomer (LCE) sheets that morph into ICFs upon heating/swelling via programmed metric changes. Theoretically, an ICF's intrinsic geometry is defined by the geodesic curvatures on either side, κgi. Given these, and a target 3D fold-line, one can construct the entire surface isometrically, and compute the bending energy. This construction shows ICFs are bending mechanisms, with a continuous family of isometries trading fold angle against fold-line curvature. In ICFs with symmetric κgi, straightening the fold-line culminates in a fully-folded flat state that is deployable but weak, while asymmetric ICFs ultimately lock with a mechanically strong finite-angle. When unloaded, freely-hinged ICFs simply adopt the (thickness t independent) isometry that minimizes the bend energy. In contrast, in LCE ICFs a competition between flank and ridge selects a ridge curvature that, unusually, scales as t-1/7. Finally, we demonstrate how multiple ICFs can be combined in one LCE sheet, to create a versatile intrinsically curved gripper that lifts a heavy weight.
Collapse
Affiliation(s)
- Fan Feng
- Department of Engineering, University of Cambridge, Trumpington Street, Cambridge CB2 1PZ, UK.
| | - Klaudia Dradrach
- Department of Engineering, University of Cambridge, Trumpington Street, Cambridge CB2 1PZ, UK.
| | - Michał Zmyślony
- Department of Engineering, University of Cambridge, Trumpington Street, Cambridge CB2 1PZ, UK.
| | - Morgan Barnes
- Department of Engineering, University of Cambridge, Trumpington Street, Cambridge CB2 1PZ, UK.
| | - John S Biggins
- Department of Engineering, University of Cambridge, Trumpington Street, Cambridge CB2 1PZ, UK.
| |
Collapse
|
20
|
den Hoed FM, Carlotti M, Palagi S, Raffa P, Mattoli V. Evolution of the Microrobots: Stimuli-Responsive Materials and Additive Manufacturing Technologies Turn Small Structures into Microscale Robots. MICROMACHINES 2024; 15:275. [PMID: 38399003 PMCID: PMC10893381 DOI: 10.3390/mi15020275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 02/02/2024] [Accepted: 02/07/2024] [Indexed: 02/25/2024]
Abstract
The development of functional microsystems and microrobots that have characterized the last decade is the result of a synergistic and effective interaction between the progress of fabrication techniques and the increased availability of smart and responsive materials to be employed in the latter. Functional structures on the microscale have been relevant for a vast plethora of technologies that find application in different sectors including automotive, sensing devices, and consumer electronics, but are now also entering medical clinics. Working on or inside the human body requires increasing complexity and functionality on an ever-smaller scale, which is becoming possible as a result of emerging technology and smart materials over the past decades. In recent years, additive manufacturing has risen to the forefront of this evolution as the most prominent method to fabricate complex 3D structures. In this review, we discuss the rapid 3D manufacturing techniques that have emerged and how they have enabled a great leap in microrobotic applications. The arrival of smart materials with inherent functionalities has propelled microrobots to great complexity and complex applications. We focus on which materials are important for actuation and what the possibilities are for supplying the required energy. Furthermore, we provide an updated view of a new generation of microrobots in terms of both materials and fabrication technology. While two-photon lithography may be the state-of-the-art technology at the moment, in terms of resolution and design freedom, new methods such as two-step are on the horizon. In the more distant future, innovations like molecular motors could make microscale robots redundant and bring about nanofabrication.
Collapse
Affiliation(s)
- Frank Marco den Hoed
- Center for Materials Interfaces, Istituto Italiano di Tecnologia, Via R. Piaggio 34, 56025 Pontedera, Italy;
- Smart and Sustainable Polymeric Products, Engineering and Technology Institute Groningen (ENTEG), University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands;
| | - Marco Carlotti
- Center for Materials Interfaces, Istituto Italiano di Tecnologia, Via R. Piaggio 34, 56025 Pontedera, Italy;
- Dipartimento di Chimica e Chimica Industriale, University of Pisa, Via Moruzzi 13, 56124 Pisa, Italy
| | - Stefano Palagi
- BioRobotics Institute, Sant’Anna School of Advanced Studies, P.zza Martiri della Libertà 33, 56127 Pisa, Italy;
| | - Patrizio Raffa
- Smart and Sustainable Polymeric Products, Engineering and Technology Institute Groningen (ENTEG), University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands;
| | - Virgilio Mattoli
- Center for Materials Interfaces, Istituto Italiano di Tecnologia, Via R. Piaggio 34, 56025 Pontedera, Italy;
| |
Collapse
|
21
|
Yu H, Gold JI, Wolter TJ, Bao N, Smith E, Zhang HA, Twieg RJ, Mavrikakis M, Abbott NL. Actuating Liquid Crystals Rapidly and Reversibly by Using Chemical Catalysis. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024:e2309605. [PMID: 38331028 DOI: 10.1002/adma.202309605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 01/25/2024] [Indexed: 02/10/2024]
Abstract
Microtubules and catalytic motor proteins underlie the microscale actuation of living materials, and they have been used in reconstituted systems to harness chemical energy to drive new states of organization of soft matter (e.g., liquid crystals (LCs)). Such materials, however, are fragile and challenging to translate to technological contexts. Rapid (sub-second) and reversible changes in the orientations of LCs at room temperature using reactions between gaseous hydrogen and oxygen that are catalyzed by Pd/Au surfaces are reported. Surface chemical analysis and computational chemistry studies confirm that dissociative adsorption of H2 on the Pd/Au films reduces preadsorbed O and generates 1 ML of adsorbed H, driving nitrile-containing LCs from a perpendicular to a planar orientation. Subsequent exposure to O2 leads to oxidation of the adsorbed H, reformation of adsorbed O on the Pd/Au surface, and a return of the LC to its initial orientation. The roles of surface composition and reaction kinetics in determining the LC dynamics are described along with a proof-of-concept demonstration of microactuation of beads. These results provide fresh ideas for utilizing chemical energy and catalysis to reversibly actuate functional LCs on the microscale.
Collapse
Affiliation(s)
- Huaizhe Yu
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, 1 Ho Plaza, Ithaca, NY, 14853, USA
| | - Jake I Gold
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, 1415 Engineering Drive, Madison, WI, 53706, USA
| | - Trenton J Wolter
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, 1415 Engineering Drive, Madison, WI, 53706, USA
| | - Nanqi Bao
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, 1 Ho Plaza, Ithaca, NY, 14853, USA
| | - Evangelos Smith
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, 1415 Engineering Drive, Madison, WI, 53706, USA
| | - Hanyu Alice Zhang
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, 1 Ho Plaza, Ithaca, NY, 14853, USA
| | - Robert J Twieg
- Department of Chemistry and Biochemistry, Kent State University, 1175 Risman Drive, Kent, OH, 44242, USA
| | - Manos Mavrikakis
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, 1415 Engineering Drive, Madison, WI, 53706, USA
| | - Nicholas L Abbott
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, 1 Ho Plaza, Ithaca, NY, 14853, USA
| |
Collapse
|
22
|
Lei B, Wen ZY, Wang HK, Gao J, Chen LJ. Bioinspired Jumping Soft Actuators of the Liquid Crystal Elastomer Enabled by Photo-Mechanical Coupling. ACS APPLIED MATERIALS & INTERFACES 2024; 16:1596-1604. [PMID: 38153381 DOI: 10.1021/acsami.3c16530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2023]
Abstract
Jumping, a fundamental survival behavior observed in organisms, serves as a vital mechanism for adapting to the surrounding environment and overcoming significant obstacles within a given terrain. Here, we present a light-controlled soft jumping actuator inspired by asphondylia, which employs a closed-loop structure and utilizes a liquid crystal elastomer (LCE). Photo-mechanical coupling highlights the significant influence of the light source on the actuator's jumping behavior. Manipulating the light intensity, the relative position of stimulus and light lock, and the concentration of disperse red 1 (DR1) allows precise control over both the maximum take-off velocity and jump height. Furthermore, tailoring the size of the LCE actuator offers a means of regulating jumping behavior. Upon exposure to 460 nm LED irradiation, our actuator achieves remarkable performance, with a maximum jumping height of 10 body length (BL) and take-off velocity of 62 BL/s. These actuators accumulate and rapidly release energy, enabling the effective transportation of microcargos across substantial distances. Our research yields valuable insights into the realm of soft robotics, underscoring the pivotal importance of photo-mechanical coupling in the field of soft robotics, thereby serving as a catalyst for inspiring continued exploration of agile and capable systems by prestoring elastic energy.
Collapse
Affiliation(s)
- Bing Lei
- Department of Electronic Engineering, School of Electronic Science and Engineering, Fujian Key Laboratory of Ultrafast Laser Technology and Applications, Xiamen University, Xiamen 361005, China
| | - Zhi-Yuan Wen
- Department of Electronic Engineering, School of Electronic Science and Engineering, Fujian Key Laboratory of Ultrafast Laser Technology and Applications, Xiamen University, Xiamen 361005, China
| | - Hua-Kun Wang
- Department of Civil Engineering, School of Architecture and Civil Engineering, Fujian Key Laboratory of Digital Simulations for Coastal Civil Engineering, Xiamen University, Xiamen 361005, China
| | - Jing Gao
- Department of Civil Engineering, School of Architecture and Civil Engineering, Fujian Key Laboratory of Digital Simulations for Coastal Civil Engineering, Xiamen University, Xiamen 361005, China
| | - Lu-Jian Chen
- Department of Electronic Engineering, School of Electronic Science and Engineering, Fujian Key Laboratory of Ultrafast Laser Technology and Applications, Xiamen University, Xiamen 361005, China
| |
Collapse
|
23
|
Mahmood A, Perveen F, Chen S, Akram T, Irfan A. Polymer Composites in 3D/4D Printing: Materials, Advances, and Prospects. Molecules 2024; 29:319. [PMID: 38257232 PMCID: PMC10818632 DOI: 10.3390/molecules29020319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 01/04/2024] [Accepted: 01/07/2024] [Indexed: 01/24/2024] Open
Abstract
Additive manufacturing (AM), commonly referred to as 3D printing, has revolutionized the manufacturing landscape by enabling the intricate layer-by-layer construction of three-dimensional objects. In contrast to traditional methods relying on molds and tools, AM provides the flexibility to fabricate diverse components directly from digital models without the need for physical alterations to machinery. Four-dimensional printing is a revolutionary extension of 3D printing that introduces the dimension of time, enabling dynamic transformations in printed structures over predetermined periods. This comprehensive review focuses on polymeric materials in 3D printing, exploring their versatile processing capabilities, environmental adaptability, and applications across thermoplastics, thermosetting materials, elastomers, polymer composites, shape memory polymers (SMPs), including liquid crystal elastomer (LCE), and self-healing polymers for 4D printing. This review also examines recent advancements in microvascular and encapsulation self-healing mechanisms, explores the potential of supramolecular polymers, and highlights the latest progress in hybrid printing using polymer-metal and polymer-ceramic composites. Finally, this paper offers insights into potential challenges faced in the additive manufacturing of polymer composites and suggests avenues for future research in this dynamic and rapidly evolving field.
Collapse
Affiliation(s)
- Ayyaz Mahmood
- School of Mechanical Engineering, Dongguan University of Technology, Dongguan 523808, China;
- School of Life Science and Technology, University of Electronic Science and Technology, Chengdu 610054, China
- School of Art and Design, Guangzhou Panyu Polytechnic, Guangzhou 511483, China
- Dongguan Institute of Science and Technology Innovation, Dongguan University of Technology, Dongguan 523808, China
| | - Fouzia Perveen
- School of Interdisciplinary Engineering & Sciences (SINES), National University of Sciences and Technology (NUST), Sector H-12, Islamabad 44000, Pakistan
| | - Shenggui Chen
- School of Mechanical Engineering, Dongguan University of Technology, Dongguan 523808, China;
- School of Art and Design, Guangzhou Panyu Polytechnic, Guangzhou 511483, China
- Dongguan Institute of Science and Technology Innovation, Dongguan University of Technology, Dongguan 523808, China
| | - Tayyaba Akram
- Department of Physics, COMSATS Institute of Information Technology, Lahore 54000, Pakistan
| | - Ahmad Irfan
- Department of Chemistry, College of Science, King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia
| |
Collapse
|
24
|
Exley T, Hays E, Johnson D, Moridani A, Motati R, Jafari A. Toward a Unified Naming Scheme for Thermo-Active Soft Actuators: A Review of Materials, Working Principles, and Applications. ROBOTICS REPORTS (NEW ROCHELLE, N.Y.) 2024; 2:15-28. [PMID: 38584677 PMCID: PMC10996867 DOI: 10.1089/rorep.2023.0023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Accepted: 12/12/2023] [Indexed: 04/09/2024]
Abstract
Soft robotics is a rapidly growing field that spans the fields of chemistry, materials science, and engineering. Due to the diverse background of the field, there have been contrasting naming schemes such as "intelligent," "smart," and "adaptive" materials, which add vagueness to the broad innovation among literature. Therefore, a clear, functional, and descriptive naming scheme is proposed in which a previously vague name-Soft Material for Soft Actuators-can remain clear and concise-Phase-Change Elastomers for Artificial Muscles. By synthesizing the working principle, material, and application into a naming scheme, the searchability of soft robotics can be enhanced and applied to other fields. The field of thermo-active soft actuators spans multiple domains and requires added clarity. Thermo-active actuators have potential for a variety of applications spanning virtual reality haptics to assistive devices. This review offers a comprehensive guide to selecting the type of thermo-active actuator when one has an application in mind. In addition, it discusses future directions and improvements that are necessary for implementation.
Collapse
Affiliation(s)
- Trevor Exley
- Advanced Robotic Manipulators (ARM) Lab, the Department of Biomedical Engineering, University of North Texas, Denton, Texas, USA
| | - Emilly Hays
- Advanced Robotic Manipulators (ARM) Lab, the Department of Biomedical Engineering, University of North Texas, Denton, Texas, USA
| | - Daniel Johnson
- Advanced Robotic Manipulators (ARM) Lab, the Department of Biomedical Engineering, University of North Texas, Denton, Texas, USA
| | - Arian Moridani
- Advanced Robotic Manipulators (ARM) Lab, the Department of Biomedical Engineering, University of North Texas, Denton, Texas, USA
| | - Ramya Motati
- Advanced Robotic Manipulators (ARM) Lab, the Department of Biomedical Engineering, University of North Texas, Denton, Texas, USA
| | - Amir Jafari
- Advanced Robotic Manipulators (ARM) Lab, the Department of Biomedical Engineering, University of North Texas, Denton, Texas, USA
| |
Collapse
|
25
|
Becerra D, Xu Y, Wang X, Hall LM. Impact of Molecular-level Structural Disruption on Relaxation Dynamics of Polymers with End-on and Side-on Liquid Crystal Moieties. ACS NANO 2023; 17:24790-24801. [PMID: 38047918 DOI: 10.1021/acsnano.3c05354] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
In side-chain liquid crystal polymers (SCLCPs), short side chains are attached on a flexible polymer backbone, and each side chain can have a liquid crystal (LC) group attached at the final bead in either an end-on or a side-on configuration. SCLCPs with random sequences of end-on and side-on LC moieties exhibit nonmonotonic thermal behavior as a function of composition, with some mixed sequences having a lower isotropic to LC phase transition than either purely end-on or side-on configurations. The origin of this nonmonotonic thermal trend lies in the disruption of molecular-level positional ordering and alignment due to the different preferred types of ordering of the different LC attachment types. We compare coarse-grained molecular dynamics (MD) simulations and experiments on SCLCP systems with only one type of LC moiety and demonstrate qualitative agreement in the observed mesophases of end-on and side-on SCLCP systems. Specifically, end-on SCLCPs display a smectic B-like mesophase, with layers of polymer between LC layers, while side-on SCLCPs exhibit a quasi-hexagonal columnar structure of polymer and a nematic surrounding the LC mesophase. Detailed analysis of SCLCP systems with various compositions of these types of LC attachments via MD reveals structural disruption in systems with intermediate compositions. Simulation snapshots and anisotropy ratio measurements show how random SCLCP systems deviate from the expected behavior of prolate or oblate systems in terms of their conformation. This molecular disruption in random SCLCP systems, particularly with a high composition of side-on LC moieties, also significantly impacts the relaxation dynamics. Modifying the composition of the LC type of attachment (molecular structure) is a possible route to tuning both the phase behavior and mechanical response of these systems.
Collapse
Affiliation(s)
- Diego Becerra
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio 43210, United States
| | - Yang Xu
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio 43210, United States
| | - Xiaoguang Wang
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio 43210, United States
- Sustainability Institute, The Ohio State University, Columbus, Ohio 43210, United States
| | - Lisa M Hall
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio 43210, United States
| |
Collapse
|
26
|
Barnes M, Feng F, Biggins JS. Surface Instability in a Nematic Elastomer. PHYSICAL REVIEW LETTERS 2023; 131:238101. [PMID: 38134776 DOI: 10.1103/physrevlett.131.238101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 11/03/2023] [Indexed: 12/24/2023]
Abstract
Liquid crystal elastomers (LCEs) are soft phase-changing solids that exhibit large reversible contractions upon heating, Goldstone-like soft modes, and resultant microstructural instabilities. We heat a planar LCE slab to isotropic, clamp the lower surface, then cool back to nematic. Clamping prevents macroscopic elongation, producing compression and microstructure. We see that the free surface destabilizes, adopting topography with amplitude and wavelength similar to thickness. To understand the instability, we numerically compute the microstructural relaxation of a "nonideal" LCE energy. Linear stability reveals a Biot-like scale-free instability, but with oblique wave vector. However, simulation and experiment show that, unlike classic elastic creasing, instability culminates in a crosshatch without cusps or hysteresis, and is constructed entirely from low-stress soft modes.
Collapse
Affiliation(s)
- Morgan Barnes
- Department of Engineering, University of Cambridge, Trumpington Street, Cambridge CB2 1PZ, United Kingdom
| | - Fan Feng
- Department of Engineering, University of Cambridge, Trumpington Street, Cambridge CB2 1PZ, United Kingdom
| | - John S Biggins
- Department of Engineering, University of Cambridge, Trumpington Street, Cambridge CB2 1PZ, United Kingdom
| |
Collapse
|
27
|
Zhang K, Fan Y, Shen S, Yang X, Li T. Tunable Folding Assembly Strategy for Soft Pneumatic Actuators. Soft Robot 2023; 10:1099-1114. [PMID: 37437102 DOI: 10.1089/soro.2022.0166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/14/2023] Open
Abstract
With intrinsic compliance, soft pneumatic actuators are widely utilized in delicate tasks. However, complex fabrication approaches and limited tunability are still problems. Here, we propose a tunable folding assembly strategy to design and fabricate soft pneumatic actuators called FASPAs (folding assembly soft pneumatic actuators). A FASPA consists only of a folded silicone tube constrained by rubber bands. By designing local stiffness and folding manner, the FASPA can be designed to achieve four configurations, pure bending, discontinuous-curvature bending, helix, and discontinuous-curvature helix. Analytical models are developed to predict the deformation and the tip trajectory of different configurations. Meanwhile, experiments are performed to verify the models. The stiffness, load capacity, output force, and step response are measured, and fatigue tests are performed. Further, grippers with single, double, and triple fingers are assembled by utilizing different types of FASPAs. As such, objects with different shapes, sizes, and weights can be easily grasped. The folding assembly strategy is a promising method to design and fabricate soft robots with complex configurations to complete tough tasks in harsh environments.
Collapse
Affiliation(s)
- Kaihang Zhang
- Center for X-Mechanics, Department of Engineering Mechanics, Zhejiang University, Hangzhou, China
- Key Laboratory of Soft Machines and Smart Devices of Zhejiang Province, Zhejiang University, Hangzhou, China
- State Key Laboratory of Fluid Power & Mechatronic Systems, Zhejiang University, Hangzhou, China
| | - Yaowei Fan
- Center for X-Mechanics, Department of Engineering Mechanics, Zhejiang University, Hangzhou, China
- Key Laboratory of Soft Machines and Smart Devices of Zhejiang Province, Zhejiang University, Hangzhou, China
- State Key Laboratory of Fluid Power & Mechatronic Systems, Zhejiang University, Hangzhou, China
| | - Shiming Shen
- Key Laboratory of Soft Machines and Smart Devices of Zhejiang Province, Zhejiang University, Hangzhou, China
- State Key Laboratory of Fluid Power & Mechatronic Systems, Zhejiang University, Hangzhou, China
| | - Xuxu Yang
- Center for X-Mechanics, Department of Engineering Mechanics, Zhejiang University, Hangzhou, China
- Key Laboratory of Soft Machines and Smart Devices of Zhejiang Province, Zhejiang University, Hangzhou, China
- State Key Laboratory of Fluid Power & Mechatronic Systems, Zhejiang University, Hangzhou, China
| | - Tiefeng Li
- Center for X-Mechanics, Department of Engineering Mechanics, Zhejiang University, Hangzhou, China
- Key Laboratory of Soft Machines and Smart Devices of Zhejiang Province, Zhejiang University, Hangzhou, China
- State Key Laboratory of Fluid Power & Mechatronic Systems, Zhejiang University, Hangzhou, China
| |
Collapse
|
28
|
Sagnelli D, D’Avino A, Rippa M, Vestri A, Marchesano V, Nenna G, Villani F, Ardila G, Centi S, Ratto F, Petti L. Photomobile Polymer-Piezoelectric Composite for Enhanced Actuation and Energy Generation. ACS APPLIED OPTICAL MATERIALS 2023; 1:1651-1660. [PMID: 37915969 PMCID: PMC10616835 DOI: 10.1021/acsaom.3c00227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 09/18/2023] [Accepted: 09/18/2023] [Indexed: 11/03/2023]
Abstract
In this study, we present an innovative approach to increase the quantum yield and wavelength sensitivity of photomobile polymer (PMP) films based on azobenzene by doping the polymer matrix with noble metal nanoparticles. These doped PMP films showed faster and more significant bending under both UV as well as visible and near-infrared light regardless of whether it was coherent, incoherent, polarized, or unpolarized irradiation, expanding the potential of PMP-based actuators. To illustrate their practical implications, we created a proof-of-concept model of power generation by coupling it to flexible piezoelectric materials under simulated sunlight. This model has been tested under real operating conditions, thus demonstrating the possibility of generating electricity with variable light exposure. Additionally, our synthetic protocol is solvent-free, which is another benefit of environmental relevance. Our research lays the groundwork for the development of sunlight-sensitive devices, such as photomechanical actuators and advanced photovoltaic modules, which may break ground in the thriving field of smart materials. We are confident that the presented findings will contribute to the ongoing discourse in the field and inspire additional advances in renewable energy applications.
Collapse
Affiliation(s)
- Domenico Sagnelli
- Institute
of Applied Sciences and Intelligent Systems of CNR, Pozzuoli 80072, Italy
| | - Amalia D’Avino
- Institute
of Applied Sciences and Intelligent Systems of CNR, Pozzuoli 80072, Italy
| | - Massimo Rippa
- Institute
of Applied Sciences and Intelligent Systems of CNR, Pozzuoli 80072, Italy
| | - Ambra Vestri
- Institute
of Applied Sciences and Intelligent Systems of CNR, Pozzuoli 80072, Italy
| | - Valentina Marchesano
- Institute
of Applied Sciences and Intelligent Systems of CNR, Pozzuoli 80072, Italy
| | - Giuseppe Nenna
- Energy
and Sustainable Economic Development, ENEA,
Italian National Agency for New Technologies, Portici Research Centre, Portici, Naples 80055, Italy
| | - Fulvia Villani
- Energy
and Sustainable Economic Development, ENEA,
Italian National Agency for New Technologies, Portici Research Centre, Portici, Naples 80055, Italy
| | - Gustavo Ardila
- CNRS,
Grenoble INP, IMEP-LaHC, Univ. Grenoble
Alpes, Univ. Savoie Mont Blanc, Grenoble F-38000, France
| | - Sonia Centi
- Nello
Carrara Institute of Applied Physics of CNR, Sesto Fiorentino 50019, Italy
| | - Fulvio Ratto
- Nello
Carrara Institute of Applied Physics of CNR, Sesto Fiorentino 50019, Italy
| | - Lucia Petti
- Institute
of Applied Sciences and Intelligent Systems of CNR, Pozzuoli 80072, Italy
| |
Collapse
|
29
|
Duffy D, McCracken JM, Hebner TS, White TJ, Biggins JS. Lifting, Loading, and Buckling in Conical Shells. PHYSICAL REVIEW LETTERS 2023; 131:148202. [PMID: 37862652 DOI: 10.1103/physrevlett.131.148202] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 08/15/2023] [Indexed: 10/22/2023]
Abstract
Liquid crystal elastomer films that morph into cones are strikingly capable lifters. Thus motivated, we combine theory, numerics, and experiments to reexamine the load-bearing capacity of conical shells. We show that a cone squashed between frictionless surfaces buckles at a smaller load, even in scaling, than the classical Seide-Koiter result. Such buckling begins in a region of greatly amplified azimuthal compression generated in an outer boundary layer with oscillatory bend. Experimentally and numerically, buckling then grows subcritically over the full cone. We derive a new thin-limit formula for the critical load, ∝t^{5/2}, and validate it numerically. We also investigate deep postbuckling, finding further instabilities producing intricate states with multiple Pogorelov-type curved ridges arranged in concentric circles or Archimedean spirals. Finally, we investigate the forces exerted by such states, which limit lifting performance in active cones.
Collapse
Affiliation(s)
- Daniel Duffy
- Department of Engineering, University of Cambridge, Trumpington Street, Cambridge CB2 1PZ, United Kingdom
| | - Joselle M McCracken
- Department of Chemical and Biological Engineering, University of Colorado Boulder, 596 UCB, Boulder, Colorado 80309, USA
| | - Tayler S Hebner
- Department of Chemical and Biological Engineering, University of Colorado Boulder, 596 UCB, Boulder, Colorado 80309, USA
| | - Timothy J White
- Department of Chemical and Biological Engineering, University of Colorado Boulder, 596 UCB, Boulder, Colorado 80309, USA
| | - John S Biggins
- Department of Engineering, University of Cambridge, Trumpington Street, Cambridge CB2 1PZ, United Kingdom
| |
Collapse
|
30
|
Wang Q, Tian X, Zhang D, Zhou Y, Yan W, Li D. Programmable spatial deformation by controllable off-center freestanding 4D printing of continuous fiber reinforced liquid crystal elastomer composites. Nat Commun 2023; 14:3869. [PMID: 37391425 DOI: 10.1038/s41467-023-39566-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Accepted: 06/16/2023] [Indexed: 07/02/2023] Open
Abstract
Owing to their high deformation ability, 4D printed structures have various applications in origami structures, soft robotics and deployable mechanisms. As a material with programmable molecular chain orientation, liquid crystal elastomer is expected to produce the freestanding, bearable and deformable three-dimensional structure. However, majority of the existing 4D printing methods for liquid crystal elastomers can only fabricate planar structures, which limits their deformation designability and bearing capacity. Here we propose a direct ink writing based 4D printing method for freestanding continuous fiber reinforced composites. Continuous fibers can support freestanding structures during the printing process and improve the mechanical property and deformation ability of 4D printed structures. In this paper, the integration of 4D printed structures with fully impregnated composite interfaces, programmable deformation ability and high bearing capacity are realized by adjusting the off-center distribution of the fibers, and the printed liquid crystal composite can carry a load of up to 2805 times its own weight and achieve a bending deformation curvature of 0.33 mm-1 at 150 °C. This research is expected to open new avenues for creating soft robotics, mechanical metamaterials and artificial muscles.
Collapse
Affiliation(s)
- Qingrui Wang
- State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, 710049, Shaanxi, China
| | - Xiaoyong Tian
- State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, 710049, Shaanxi, China.
| | - Daokang Zhang
- State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, 710049, Shaanxi, China
| | - Yanli Zhou
- State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, 710049, Shaanxi, China
| | - Wanquan Yan
- State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, 710049, Shaanxi, China
| | - Dichen Li
- State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, 710049, Shaanxi, China
| |
Collapse
|
31
|
Chen M, Gao M, Bai L, Zheng H, Qi HJ, Zhou K. Recent Advances in 4D Printing of Liquid Crystal Elastomers. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2209566. [PMID: 36461147 DOI: 10.1002/adma.202209566] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/22/2022] [Indexed: 06/09/2023]
Abstract
Liquid crystal elastomers (LCEs) are renowned for their large, reversible, and anisotropic shape change in response to various external stimuli due to their lightly cross-linked polymer networks with an oriented mesogen direction, thus showing great potential for applications in robotics, bio-medics, electronics, optics, and energy. To fully take advantage of the anisotropic stimuli-responsive behaviors of LCEs, it is preferable to achieve a locally controlled mesogen alignment into monodomain orientations. In recent years, the application of 4D printing to LCEs opens new doors for simultaneously programming the mesogen alignment and the 3D geometry, offering more opportunities and higher feasibility for the fabrication of 4D-printed LCE objects with desirable stimuli-responsive properties. Here, the state-of-the-art advances in 4D printing of LCEs are reviewed, with emphasis on both the mechanisms and potential applications. First, the fundamental properties of LCEs and the working principles of the representative 4D printing techniques are briefly introduced. Then, the fabrication of LCEs by 4D printing techniques and the advantages over conventional manufacturing methods are demonstrated. Finally, perspectives on the current challenges and potential development trends toward the 4D printing of LCEs are discussed, which may shed light on future research directions in this new field.
Collapse
Affiliation(s)
- Mei Chen
- Singapore Centre for 3D Printing, School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore, 639798, Singapore
- HP-NTU Digital Manufacturing Corporate Lab, School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - Ming Gao
- Singapore Centre for 3D Printing, School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore, 639798, Singapore
- HP-NTU Digital Manufacturing Corporate Lab, School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - Lichun Bai
- School of Traffic and Transportation Engineering, Central South University, Changsha, 410075, China
| | - Han Zheng
- Singapore Centre for 3D Printing, School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - H Jerry Qi
- School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Kun Zhou
- Singapore Centre for 3D Printing, School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore, 639798, Singapore
- HP-NTU Digital Manufacturing Corporate Lab, School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| |
Collapse
|
32
|
Dradrach K, Zmyślony M, Deng Z, Priimagi A, Biggins J, Wasylczyk P. Light-driven peristaltic pumping by an actuating splay-bend strip. Nat Commun 2023; 14:1877. [PMID: 37015926 PMCID: PMC10073117 DOI: 10.1038/s41467-023-37445-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 03/15/2023] [Indexed: 04/06/2023] Open
Abstract
Despite spectacular progress in microfluidics, small-scale liquid manipulation, with few exceptions, is still driven by external pumps and controlled by large-scale valves, increasing cost and size and limiting complexity. By contrast, optofluidics uses light to power, control and monitor liquid manipulation, potentially allowing for small, self-contained microfluidic devices. Here we demonstrate a soft light-propelled actuator made of liquid crystal gel that pumps microlitre volumes of water. The strip of actuating material serves as both a pump and a channel leading to an extremely simple microfluidic architecture that is both powered and controlled by light. The performance of the pump is well explained by a simple theoretical model in which the light-induced bending of the actuator competes with the liquid's surface tension. The theory highlights that effective pumping requires a threshold light intensity and strip width. The proposed system explores the benefits of shifting the complexity of microfluidic systems from the fabricated device to spatio-temporal control over stimulating light patterns.
Collapse
Affiliation(s)
- Klaudia Dradrach
- Department of Engineering, University of Cambridge, Cambridge, United Kingdom.
- Faculty of Physics, University of Warsaw, Warsaw, Poland.
| | - Michał Zmyślony
- Department of Engineering, University of Cambridge, Cambridge, United Kingdom
| | - Zixuan Deng
- Faculty of Engineering and Natural Sciences, Tampere University, Tampere, Finland
| | - Arri Priimagi
- Faculty of Engineering and Natural Sciences, Tampere University, Tampere, Finland
| | - John Biggins
- Department of Engineering, University of Cambridge, Cambridge, United Kingdom.
| | | |
Collapse
|
33
|
Peng M, Zhao Q, Wang M, Du X. Reconfigurable scaffolds for adaptive tissue regeneration. NANOSCALE 2023; 15:6105-6120. [PMID: 36919563 DOI: 10.1039/d3nr00281k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Tissue engineering and regenerative medicine have offered promising alternatives for clinical treatment of body tissue traumas, losses, dysfunctions, or diseases, where scaffold-based strategies are particularly popular and effective. Over the decades, scaffolds for tissue regeneration have been remarkably evolving. Nevertheless, conventional scaffolds still confront grand challenges in bio-adaptions in terms of both tissue-scaffold and cell-scaffold interplays, for example complying with complicated three-dimensional (3D) shapes of biological tissues and recapitulating the ordered cell regulation effects of native cell microenvironments. Benefiting from the recent advances in "intelligent" biomaterials, reconfigurable scaffolds have been emerging, demonstrating great promise in addressing the bio-adaption challenges through altering their macro-shapes and/or micro-structures. This mini-review article presents a brief overview of the cutting-edge research on reconfigurable scaffolds, summarizing the materials for forming reconfigurable scaffolds and highlighting their applications for adaptive tissue regeneration. Finally, the challenges and prospects of reconfigurable scaffolds are also discussed, shedding light on the bright future of next-generation reconfigurable scaffolds with upgrading adaptability.
Collapse
Affiliation(s)
- Mingxing Peng
- Institute of Biomedical & Health Engineering, Shenzhen Institute of Advanced Technology (SIAT), Chinese Academy of Sciences (CAS), Shenzhen, 518055, China.
- University of Chinese Academy of Sciences, China
| | - Qilong Zhao
- Institute of Biomedical & Health Engineering, Shenzhen Institute of Advanced Technology (SIAT), Chinese Academy of Sciences (CAS), Shenzhen, 518055, China.
| | - Min Wang
- Department of Mechanical Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong
| | - Xuemin Du
- Institute of Biomedical & Health Engineering, Shenzhen Institute of Advanced Technology (SIAT), Chinese Academy of Sciences (CAS), Shenzhen, 518055, China.
| |
Collapse
|
34
|
Liang H, Wei Y, Ji Y. Magnetic-responsive Covalent Adaptable Networks. Chem Asian J 2023; 18:e202201177. [PMID: 36645376 DOI: 10.1002/asia.202201177] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 01/07/2023] [Accepted: 01/16/2023] [Indexed: 01/17/2023]
Abstract
Covalent adaptable networks (CANs) are reprocessable polymers whose structural arrangement is based on the recombination of dynamic covalent bonds. Composite materials prepared by incorporating magnetic particles into CANs attract much attention due to their remote and precise control, fast response speed, high biological safety and strong penetration of magnetic stimuli. These properties often involve magnetothermal effect and direct magnetic-field guidance. Besides, some of them can also respond to light, electricity or pH values. Thus, they are favorable for soft actuators since various functions are achieved such as magnetic-assisted self-healing (heating or at ambient temperature), welding (on land or under water), shape-morphing, and so on. Although magnetic CANs just start to be studied in recent two years, their advances are promised to expand the practical applications in both cutting-edge academic and engineering fields. This review aims to summarize recent progress in magnetic-responsive CANs, including their design, synthesis and application.
Collapse
Affiliation(s)
- Huan Liang
- The Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Yen Wei
- The Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China.,Department of Chemistry, Center for Nanotechnology and Institute of Biomedical Technology, Chung-Yuan Christian University Chung-Li, 32023, Taiwan, P. R. China
| | - Yan Ji
- The Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| |
Collapse
|
35
|
Hebner TS, Bowman RGA, Duffy D, Mostajeran C, Griniasty I, Cohen I, Warner M, Bowman CN, White TJ. Discontinuous Metric Programming in Liquid Crystalline Elastomers. ACS APPLIED MATERIALS & INTERFACES 2023; 15:11092-11098. [PMID: 36791283 DOI: 10.1021/acsami.2c21984] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Liquid crystalline elastomers (LCEs) are shape-changing materials that exhibit large deformations in response to applied stimuli. Local control of the orientation of LCEs spatially directs the deformation of these materials to realize a spontaneous shape change in response to stimuli. Prior approaches to shape programming in LCEs utilize patterning techniques that involve the detailed inscription of spatially varying nematic fields to produce sheets. These patterned sheets deform into elaborate geometries with complex Gaussian curvatures. Here, we present an alternative approach to realize shape-morphing in LCEs where spatial patterning of the crosslink density locally regulates the material deformation magnitude on either side of a prescribed interface curve. We also present a simple mathematical model describing the behavior of these materials. Further experiments coupled with the mathematical model demonstrate the control of the sign of Gaussian curvature, which is used in combination with heat transfer effects to design LCEs that self-clean as a result of temperature-dependent actuation properties.
Collapse
Affiliation(s)
- Tayler S Hebner
- Department of Chemical and Biological Engineering, University of Colorado Boulder, 596 UCB, Boulder, Colorado 80309, United States
| | - Riley G A Bowman
- Department of Chemical and Biological Engineering, University of Colorado Boulder, 596 UCB, Boulder, Colorado 80309, United States
| | - Daniel Duffy
- Department of Engineering, University of Cambridge, Cambridge, England CB2 1PZ, U.K
| | - Cyrus Mostajeran
- Department of Engineering, University of Cambridge, Cambridge, England CB2 1PZ, U.K
- School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
| | - Itay Griniasty
- Laboratory of Atomic and Solid State Physics, Cornell University, Ithaca, New York 14853-2501, United States
| | - Itai Cohen
- Laboratory of Atomic and Solid State Physics, Cornell University, Ithaca, New York 14853-2501, United States
| | - Mark Warner
- Cavendish Laboratory, University of Cambridge, Cambridge CB3 0HE, United Kingdom
| | - Christopher N Bowman
- Department of Chemical and Biological Engineering, University of Colorado Boulder, 596 UCB, Boulder, Colorado 80309, United States
- Materials Science and Engineering Program, University of Colorado Boulder, 596 UCB, Boulder, Colorado 80309, United States
| | - Timothy J White
- Department of Chemical and Biological Engineering, University of Colorado Boulder, 596 UCB, Boulder, Colorado 80309, United States
- Materials Science and Engineering Program, University of Colorado Boulder, 596 UCB, Boulder, Colorado 80309, United States
| |
Collapse
|
36
|
Najiya N, Popov N, Jampani VSR, Lagerwall JPF. Continuous Flow Microfluidic Production of Arbitrarily Long Tubular Liquid Crystal Elastomer Peristaltic Pump Actuators. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2204693. [PMID: 36494179 DOI: 10.1002/smll.202204693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 11/14/2022] [Indexed: 06/17/2023]
Abstract
While liquid crystal elastomers (LCEs) are ideal materials for soft-robotic actuators, filling the role of muscle and shape-defining material simultaneously, it is non-trivial to give them ground state shapes beyond simple sheets or fibers. Here tubular LCE actuators scalable to arbitrary length are produced using a continuous three-phase coaxial flow microfluidic process. By pumping an oligomeric precursor solution between inner and outer aqueous phases in a cylindrically symmetric nested capillary set-up, and by reducing the interfacial tension to negligible values using surfactants adapted to each phase, the tubular liquid flow is stabilized over distances more than 200 times the diameter or 2000 times the thickness. In situ photocrosslinking of the middle phase turns it into an LCE network that is flow-aligned by the shear gradient over the phase. The reversible actuation of the tubes upon heating yields a reduction of the interior space, pumping out enclosed fluid, and the relaxation upon cooling leads to the fluid being sucked back in. By moving a local heat source along the tube, it acts as a peristaltic pump. It is proposed that the tubes could, pending functionalization for light-triggered actuation, function as active synthetic vasculature in biological contexts.
Collapse
Affiliation(s)
- Najiya Najiya
- Department of Physics and Materials Science, University of Luxembourg, 162a avenue de la faiencerie, Luxembourg city, 1511, Luxembourg
| | - Nikolay Popov
- Department of Physics and Materials Science, University of Luxembourg, 162a avenue de la faiencerie, Luxembourg city, 1511, Luxembourg
| | - Venkata Subba Rao Jampani
- Department of Physics and Materials Science, University of Luxembourg, 162a avenue de la faiencerie, Luxembourg city, 1511, Luxembourg
- Department of Condensed Matter Physics, Jozef Stefan Institute, Jamova 39, Ljubljana, 1000, Slovenia
| | - Jan P F Lagerwall
- Department of Physics and Materials Science, University of Luxembourg, 162a avenue de la faiencerie, Luxembourg city, 1511, Luxembourg
| |
Collapse
|
37
|
Yasuoka H, Takahashi KZ, Aoyagi T. Impact of molecular architectures on mesogen reorientation relaxation and post-relaxation stress of liquid crystal elastomers under electric fields. POLYMER 2023. [DOI: 10.1016/j.polymer.2023.125789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
|
38
|
Hebner TS, Korner K, Bowman CN, Bhattacharya K, White TJ. Leaping liquid crystal elastomers. SCIENCE ADVANCES 2023; 9:eade1320. [PMID: 36652507 PMCID: PMC9848472 DOI: 10.1126/sciadv.ade1320] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 12/14/2022] [Indexed: 06/17/2023]
Abstract
Snap-through mechanisms are pervasive in everyday life in biological systems, engineered devices, and consumer products. Snap-through transitions can be realized in responsive materials via stimuli-induced mechanical instability. Here, we demonstrate a rapid and powerful snap-through response in liquid crystalline elastomers (LCEs). While LCEs have been extensively examined as material actuators, their deformation rate is limited by the second-order character of their phase transition. In this work, we locally pattern the director orientation of LCEs and fabricate mechanical elements with through-thickness (functionally graded) modulus gradients to realize stimuli-induced responses as fast as 6 ms. The rapid acceleration and associated force output of the LCE elements cause the elements to leap to heights over 200 times the material thickness. The experimental examination in functionally graded LCE elements is complemented with computational evaluation of the underlying mechanics. The experimentally validated model is then exercised as a design tool to guide functional implementation, visualized as directional leaping.
Collapse
Affiliation(s)
- Tayler S. Hebner
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO 80309, USA
| | - Kevin Korner
- Division of Engineering and Applied Science, California Institute of Technology, Pasadena, CA 91125, USA
| | - Christopher N. Bowman
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO 80309, USA
- Materials Science and Engineering Program, University of Colorado Boulder, Boulder, CO 80309, USA
| | - Kaushik Bhattacharya
- Division of Engineering and Applied Science, California Institute of Technology, Pasadena, CA 91125, USA
| | - Timothy J. White
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO 80309, USA
- Materials Science and Engineering Program, University of Colorado Boulder, Boulder, CO 80309, USA
| |
Collapse
|
39
|
Sentjens H, Kragt AJ, Lub J, Claessen MD, Buurman VE, Schreppers J, Gongriep HA, Schenning AP. Programming Thermochromic Liquid Crystal Hetero-Oligomers for Near-Infrared Reflectors: Unequal Incorporation of Similar Reactive Mesogens in Thiol-ene Oligomers. Macromolecules 2023; 56:59-68. [PMID: 36644552 PMCID: PMC9835980 DOI: 10.1021/acs.macromol.2c02041] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 11/15/2022] [Indexed: 12/28/2022]
Abstract
Cholesteric liquid crystal oligomers are widely researched for their interesting thermochromic properties. However, structure-property relationships to program the thermochromic properties of these oligomers have been rarely reported. In this work, we use the versatile thiol-ene click reaction to synthesize a series of hetero-oligomers and study the impact of different compositions on the thermochromic behavior of the resulting material. Characterization of the oligomers shows significantly different rates of reaction for the monomers despite their very similar structures, which leads to oligomer compositions that do not match the original reaction feed. The oligomers are then used to produce thin near-infrared reflecting coatings. The best-performing thermochromic reflector has a room-temperature reflection band that shifts a total of 510 nanometers upon heating to 120 °C. The shift is repeatable for up to 10 times with no appreciable degradation. The room temperature reflection of the coatings is shown to be tunable not only by adjusting the chiral dopant concentration but also by the ratio of the monomers. Finally, we show that the oligomers can be chemically modified by making their reactive end groups undergo a reaction with monothiol compounds. These modifications allow for further fine-tuning of liquid crystal oligomers for heat-regulating window films, for example.
Collapse
Affiliation(s)
- Henk Sentjens
- Laboratory
of Stimuli-Responsive Functional Materials and Devices (SFD), Department
of Chemical Engineering and Chemistry, Eindhoven
University of Technology (TU/e), P.O. Box 513, 5600 MBEindhoven, The Netherlands
- Institute
for Complex Molecular Systems, Eindhoven
University of Technology (TU/e), P.O. Box 513, 5600 MBEindhoven, The Netherlands
| | - Augustinus J.J. Kragt
- Laboratory
of Stimuli-Responsive Functional Materials and Devices (SFD), Department
of Chemical Engineering and Chemistry, Eindhoven
University of Technology (TU/e), P.O. Box 513, 5600 MBEindhoven, The Netherlands
- Faculty
of Architecture, Delft University of Technology, Julianalaan 134, 2628 BLDelft, The Netherlands
- ClimAd
Technology, Valkenaerhof
68, 6538 TENijmegen, The Netherlands
| | - Johan Lub
- Laboratory
of Stimuli-Responsive Functional Materials and Devices (SFD), Department
of Chemical Engineering and Chemistry, Eindhoven
University of Technology (TU/e), P.O. Box 513, 5600 MBEindhoven, The Netherlands
| | - Mart D.T. Claessen
- Laboratory
of Stimuli-Responsive Functional Materials and Devices (SFD), Department
of Chemical Engineering and Chemistry, Eindhoven
University of Technology (TU/e), P.O. Box 513, 5600 MBEindhoven, The Netherlands
| | - Vera E. Buurman
- Laboratory
of Stimuli-Responsive Functional Materials and Devices (SFD), Department
of Chemical Engineering and Chemistry, Eindhoven
University of Technology (TU/e), P.O. Box 513, 5600 MBEindhoven, The Netherlands
| | - Joris Schreppers
- Laboratory
of Stimuli-Responsive Functional Materials and Devices (SFD), Department
of Chemical Engineering and Chemistry, Eindhoven
University of Technology (TU/e), P.O. Box 513, 5600 MBEindhoven, The Netherlands
| | - Henk A. Gongriep
- Laboratory
of Stimuli-Responsive Functional Materials and Devices (SFD), Department
of Chemical Engineering and Chemistry, Eindhoven
University of Technology (TU/e), P.O. Box 513, 5600 MBEindhoven, The Netherlands
| | - Albert P.H.J. Schenning
- Laboratory
of Stimuli-Responsive Functional Materials and Devices (SFD), Department
of Chemical Engineering and Chemistry, Eindhoven
University of Technology (TU/e), P.O. Box 513, 5600 MBEindhoven, The Netherlands
- Institute
for Complex Molecular Systems, Eindhoven
University of Technology (TU/e), P.O. Box 513, 5600 MBEindhoven, The Netherlands
| |
Collapse
|
40
|
Guillen Campos J, Stricker F, Clark KD, Park M, Bailey SJ, Kuenstler AS, Hayward RC, Read de Alaniz J. Controlled Diels-Alder "Click" Strategy to Access Mechanically Aligned Main-Chain Liquid Crystal Networks. Angew Chem Int Ed Engl 2023; 62:e202214339. [PMID: 36315038 DOI: 10.1002/anie.202214339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Indexed: 12/05/2022]
Abstract
Aligned liquid crystal polymers are materials of interest for electronic, optic, biological and soft robotic applications. The manufacturing and processing of these materials have been widely explored with mechanical alignment establishing itself as a preferred method due to its ease of use and widespread applicability. However, the fundamental chemistry behind the required two-step polymerization for mechanical alignment has limitations in both fabrication and substrate compatibility. In this work we introduce a new protection-deprotection approach utilizing a two-stage Diels-Alder cyclopentadiene-maleimide step-growth polymerization to enable mild yet efficient, fast, controlled, reproducible and user-friendly polymerizations, broadening the scope of liquid crystal systems. Thorough characterization of the films by DSC, DMA, POM and WAXD show the successful synthesis of a uniaxially aligned liquid crystal network with thermomechanical actuation abilities.
Collapse
Affiliation(s)
- Jesus Guillen Campos
- Department of Chemistry and Biochemistry, University of California Santa Barbara, Santa Barbara, CA 93106, USA
| | - Friedrich Stricker
- Department of Chemistry and Biochemistry, University of California Santa Barbara, Santa Barbara, CA 93106, USA
| | - Kyle D Clark
- Department of Chemistry and Biochemistry, University of California Santa Barbara, Santa Barbara, CA 93106, USA
| | - Minwook Park
- Department of Chemistry and Biochemistry, University of California Santa Barbara, Santa Barbara, CA 93106, USA
| | - Sophia J Bailey
- Department of Chemistry and Biochemistry, University of California Santa Barbara, Santa Barbara, CA 93106, USA
| | - Alexa S Kuenstler
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO 80305, USA
| | - Ryan C Hayward
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO 80305, USA
| | - Javier Read de Alaniz
- Department of Chemistry and Biochemistry, University of California Santa Barbara, Santa Barbara, CA 93106, USA
| |
Collapse
|
41
|
Brighenti R, Cosma MP. Multiphysics modelling of light-actuated liquid crystal elastomers. Proc Math Phys Eng Sci 2023. [DOI: 10.1098/rspa.2022.0417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Liquid crystalline elastomers (LCEs) represent a promising class of responsive polymers whose physical properties are peculiar to both fluids and solids. Thanks to their microscale structure made of elongated rigid molecules (mesogens)—characterized by their capability to reversibly switch from an isotropic to an ordered state—LCEs exhibit a number of remarkable physical effects, such as self-deformation and mechanical actuation triggered by external stimuli. Efficient and physics-based modelling, aimed at designing and optimizing LCE-based devices (such as artificial muscles, deployable structures, soft actuators, etc.), is a fundamental tool to quantitatively describe their mechanical behaviour in real applications. In the present study, we illustrate the multi-physics modelling of light-driven deformation of LCEs, based on the photo-thermal energy conversion. The role played by the light diffusion and heat transfer within the medium is considered and their effect on the obtainable actuation is studied through numerical simulations based on the multi-physics theory developed.
Collapse
Affiliation(s)
- Roberto Brighenti
- Department of Engineering and Architecture, University of Parma, Viale delle Scienze 181/A, 43124 Parma, Italy
| | - Mattia P. Cosma
- Department of Engineering and Architecture, University of Parma, Viale delle Scienze 181/A, 43124 Parma, Italy
| |
Collapse
|
42
|
Doi H, Takahashi KZ, Yasuoka H, Fukuda JI, Aoyagi T. Regression analysis for predicting the elasticity of liquid crystal elastomers. Sci Rep 2022; 12:19788. [PMID: 36396780 PMCID: PMC9672114 DOI: 10.1038/s41598-022-23897-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 11/07/2022] [Indexed: 11/18/2022] Open
Abstract
It is highly desirable but difficult to understand how microscopic molecular details influence the macroscopic material properties, especially for soft materials with complex molecular architectures. In this study we focus on liquid crystal elastomers (LCEs) and aim at identifying the design variables of their molecular architectures that govern their macroscopic deformations. We apply the regression analysis using machine learning (ML) to a database containing the results of coarse grained molecular dynamics simulations of LCEs with various molecular architectures. The predictive performance of a surrogate model generated by the regression analysis is also tested. The database contains design variables for LCE molecular architectures, system and simulation conditions, and stress-strain curves for each LCE molecular system. Regression analysis is applied using the stress-strain curves as objective variables and the other factors as explanatory variables. The results reveal several descriptors governing the stress-strain curves. To test the predictive performance of the surrogate model, stress-strain curves are predicted for LCE molecular architectures that were not used in the ML scheme. The predicted curves capture the characteristics of the results obtained from molecular dynamics simulations. Therefore, the ML scheme has great potential to accelerate LCE material exploration by detecting the key design variables in the molecular architecture and predicting the LCE deformations.
Collapse
Affiliation(s)
- Hideo Doi
- National Institute of Advanced Industrial Science and Technology (AIST), Research Center for Computational Design of Advanced Functional Materials, Central 2, 1-1-1 Umezono, Tsukuba, Ibaraki, 305-8568, Japan
| | - Kazuaki Z Takahashi
- National Institute of Advanced Industrial Science and Technology (AIST), Research Center for Computational Design of Advanced Functional Materials, Central 2, 1-1-1 Umezono, Tsukuba, Ibaraki, 305-8568, Japan.
| | - Haruka Yasuoka
- Research Association of High-Throughput Design and Development for Advanced Functional Materials, Central 2, 1-1-1 Umezono, Tsukuba, Ibaraki, 305-8568, Japan
- Panasonic Corporation, 3-1-1 Yagumo-naka-machi, Moriguchi, Osaka, 570-8501, Japan
| | - Jun-Ichi Fukuda
- Department of Physics, Faculty of Science, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, Fukuoka, 819-0395, Japan
| | - Takeshi Aoyagi
- National Institute of Advanced Industrial Science and Technology (AIST), Research Center for Computational Design of Advanced Functional Materials, Central 2, 1-1-1 Umezono, Tsukuba, Ibaraki, 305-8568, Japan
| |
Collapse
|
43
|
Kim IH, Choi S, Lee J, Jung J, Yeo J, Kim JT, Ryu S, Ahn SK, Kang J, Poulin P, Kim SO. Human-muscle-inspired single fibre actuator with reversible percolation. NATURE NANOTECHNOLOGY 2022; 17:1198-1205. [PMID: 36302962 PMCID: PMC9646516 DOI: 10.1038/s41565-022-01220-2] [Citation(s) in RCA: 67] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 08/22/2022] [Indexed: 05/19/2023]
Abstract
Artificial muscles are indispensable components for next-generation robotics capable of mimicking sophisticated movements of living systems. However, an optimal combination of actuation parameters, including strain, stress, energy density and high mechanical strength, is required for their practical applications. Here we report mammalian-skeletal-muscle-inspired single fibres and bundles with large and strong contractive actuation. The use of exfoliated graphene fillers within a uniaxial liquid crystalline matrix enables photothermal actuation with large work capacity and rapid response. Moreover, the reversible percolation of graphene fillers induced by the thermodynamic conformational transition of mesoscale structures can be in situ monitored by electrical switching. Such a dynamic percolation behaviour effectively strengthens the mechanical properties of the actuator fibres, particularly in the contracted actuation state, enabling mammalian-muscle-like reliable reversible actuation. Taking advantage of a mechanically compliant fibre structure, smart actuators are readily integrated into strong bundles as well as high-power soft robotics with light-driven remote control.
Collapse
Affiliation(s)
- In Ho Kim
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
- National Creative Research Initiative Center for Multi-dimensional Directed Nanoscale Assembly, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Subi Choi
- Department of Polymer Science and Engineering, Pusan National University, Busan, Republic of Korea
| | - Jieun Lee
- Department of Polymer Science and Engineering, Pusan National University, Busan, Republic of Korea
| | - Jiyoung Jung
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Jinwook Yeo
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Jun Tae Kim
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
- National Creative Research Initiative Center for Multi-dimensional Directed Nanoscale Assembly, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Seunghwa Ryu
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Suk-Kyun Ahn
- Department of Polymer Science and Engineering, Pusan National University, Busan, Republic of Korea
| | - Jiheong Kang
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Philippe Poulin
- Université de Bordeaux, CNRS, Centre de Recherche Paul Pascal, Pessac, France
| | - Sang Ouk Kim
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea.
- National Creative Research Initiative Center for Multi-dimensional Directed Nanoscale Assembly, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea.
- Materials Creation, Seoul, Republic of Korea.
| |
Collapse
|
44
|
Yan H, He Y, Yao L, Wang X, Zhang X, Zhang Y, Han D, Li C, Sun L, Zhang J. Thermo-crosslinking assisted preparation of thiol-acrylate main-chain liquid-crystalline elastomers. JOURNAL OF POLYMER RESEARCH 2022. [DOI: 10.1007/s10965-022-03238-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
45
|
Li Y, Teixeira Y, Parlato G, Grace J, Wang F, Huey BD, Wang X. Three-dimensional thermochromic liquid crystal elastomer structures with reversible shape-morphing and color-changing capabilities for soft robotics. SOFT MATTER 2022; 18:6857-6867. [PMID: 36043504 DOI: 10.1039/d2sm00876a] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Functional structures with reversible shape-morphing and color-changing capabilities are promising for applications including soft robotics and biomimetic camouflage devices. Despite extensive studies, there are few reports on achieving both reversible shape-switching and color-changing capabilities within one structure. Here, we report a facile and versatile strategy to realize such capabilities via spatially programmed liquid crystal elastomer (LCE) structures incorporated with thermochromic dyes. By coupling the shape-changing behavior of LCEs resulting from the nematic-to-isotropic transition of liquid crystals with the color-changing thermochromic dyes, 3D thermochromic LCE structures change their shapes and colors simultaneously, which are controlled by the nematic-isotropic transition temperature of LCEs and the critical color-changing temperature of dyes, respectively. Demonstrations, including the simulated blooming process of a resembled flower, the camouflage behavior of a "butterfly"/"chameleon" robot in response to environmental changes, and the underwater camouflage of an "octopus" robot, highlight the reliability of this strategy. Furthermore, integrating micro-ferromagnetic particles into the "octopus" thermochromic LCE robot allows it to respond to thermal-magnetic dual stimuli for "adaptive" motion and diverse biomimetic motion modes, including swimming, rolling, rotating, and crawling, accompanied by color-changing behaviors for camouflage. The reversibly reconfigurable and color-changing thermochromic LCE structures are promising for applications including soft camouflage robots and multifunctional biomimetic devices.
Collapse
Affiliation(s)
- Yi Li
- Department of Materials Science and Engineering, University of Connecticut, Storrs, CT 06269, USA
| | - Yasmin Teixeira
- Polymer Program, Institute of Materials Science, University of Connecticut, Storrs, CT 06269, USA
| | - Gina Parlato
- Department of Materials Science and Engineering, University of Connecticut, Storrs, CT 06269, USA
| | - Jaclyn Grace
- Department of Materials Science and Engineering, University of Connecticut, Storrs, CT 06269, USA
| | - Fei Wang
- Department of Materials Science and Engineering, University of Connecticut, Storrs, CT 06269, USA
| | - Bryan D Huey
- Department of Materials Science and Engineering, University of Connecticut, Storrs, CT 06269, USA
| | - Xueju Wang
- Department of Materials Science and Engineering, Institute of Materials Science, University of Connecticut, Storrs, CT 06269, USA.
| |
Collapse
|
46
|
Cang Y, Liu J, Ryu M, Graczykowski B, Morikawa J, Yang S, Fytas G. On the origin of elasticity and heat conduction anisotropy of liquid crystal elastomers at gigahertz frequencies. Nat Commun 2022; 13:5248. [PMID: 36068238 PMCID: PMC9448779 DOI: 10.1038/s41467-022-32865-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Accepted: 08/18/2022] [Indexed: 11/09/2022] Open
Abstract
Liquid crystal elastomers that offer exceptional load-deformation response at low frequencies often require consideration of the mechanical anisotropy only along the two symmetry directions. However, emerging applications operating at high frequencies require all five true elastic constants. Here, we utilize Brillouin light spectroscopy to obtain the engineering moduli and probe the strain dependence of the elasticity anisotropy at gigahertz frequencies. The Young's modulus anisotropy, E||/E⊥~2.6, is unexpectedly lower than that measured by tensile testing, suggesting disparity between the local mesogenic orientation and the larger scale orientation of the network strands. Unprecedented is the robustness of E||/E⊥ to uniaxial load that it does not comply with continuously transformable director orientation observed in the tensile testing. Likewise, the heat conductivity is directional, κ||/κ⊥~3.0 with κ⊥ = 0.16 Wm-1K-1. Conceptually, this work reveals the different length scales involved in the thermoelastic anisotropy and provides insights for programming liquid crystal elastomers on-demand for high-frequency applications.
Collapse
Affiliation(s)
- Yu Cang
- School of Aerospace Engineering and Applied Mechanics, Tongji University, Zhangwu Road 100, Shanghai, 200092, China.,Max Planck Institute for Polymer Research, Ackermannweg 10, Mainz, 55128, Germany
| | - Jiaqi Liu
- Department of Materials Science and Engineering, University of Pennsylvania, 3231 Walnut Street, Philadelphia, PA, 19104, USA
| | - Meguya Ryu
- School of Materials and Chemical Technology, Tokyo Institute of Technology, Ookayama, Meguro-ku, Tokyo, 152-8550, Japan.,National Metrology Institute of Japan (NMIJ), National Institute of Advanced Industrial Science and Technology (AIST), Umezono, Tsukuba, 305-8563, Japan
| | - Bartlomiej Graczykowski
- Max Planck Institute for Polymer Research, Ackermannweg 10, Mainz, 55128, Germany.,Faculty of Physics, Adam Mickiewicz University, Uniwersytetu Poznanskiego 2, Poznan, 61-614, Poland
| | - Junko Morikawa
- School of Materials and Chemical Technology, Tokyo Institute of Technology, Ookayama, Meguro-ku, Tokyo, 152-8550, Japan
| | - Shu Yang
- Department of Materials Science and Engineering, University of Pennsylvania, 3231 Walnut Street, Philadelphia, PA, 19104, USA.
| | - George Fytas
- Max Planck Institute for Polymer Research, Ackermannweg 10, Mainz, 55128, Germany.
| |
Collapse
|
47
|
Ohzono T, Koyama E. Enhanced photocontrollable dynamic adhesion of nematic elastomers on rough surfaces. POLYMER 2022. [DOI: 10.1016/j.polymer.2022.125377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
48
|
Ohzono T, Koyama E. Photo-Rewritable Glaring Patterns Composed of Stripe Domains in Nematic Elastomers. Macromol Rapid Commun 2022; 43:e2200599. [PMID: 35904150 DOI: 10.1002/marc.202200599] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 07/21/2022] [Indexed: 11/08/2022]
Abstract
Dynamic ordered micropatterns in polymeric materials provide an effective approach for the on-demand tuning of optical properties toward a smart optical material. In this study, we show that glaring patterns exhibiting strong anisotropic light diffusion can be developed at specific locations in nematic liquid-crystal elastomers with light-sensitive azobenzene units. Glaring originates from the stripe domains of the nematic directors that self-organize in light-irradiated regions after a simple uniaxial stretching and releasing process without any complicated lithographic technique. The nematic order transiently reduced by the photo-induced cis azobenzene isomers unlocks entropic elasticity, which induces local uniaxial shrinkage that causes buckling of the directors forming stripe domains. The written pattern on the film is tangibly visible with the backlight owing to the difference in anisotropic light diffusion. Furthermore, this pattern can be erased by light irradiation or thermal annealing. These films can be applied to optical elements for achieving augmented luminaries, security labeling, and sign-sheeting applications. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Takuya Ohzono
- Research Institute for Advanced Electronics and Photonics, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, 305-8565, Japan
| | - Emiko Koyama
- Research Institute for Advanced Electronics and Photonics, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, 305-8565, Japan
| |
Collapse
|
49
|
Photothermal-Driven Liquid Crystal Elastomers: Materials, Alignment and Applications. Molecules 2022; 27:molecules27144330. [PMID: 35889204 PMCID: PMC9317631 DOI: 10.3390/molecules27144330] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 07/02/2022] [Accepted: 07/04/2022] [Indexed: 02/01/2023] Open
Abstract
Liquid crystal elastomers (LCEs) are programmable deformable materials that can respond to physical fields such as light, heat, and electricity. Photothermal-driven LCE has the advantages of accuracy and remote control and avoids the requirement of high photon energy for photochemistry. In this review, we discuss recent advances in photothermal LCE materials and investigate methods for mechanical alignment, external field alignment, and surface-induced alignment. Advances in the synthesis and orientation of LCEs have enabled liquid crystal elastomers to meet applications in optics, robotics, and more. The review concludes with a discussion of current challenges and research opportunities.
Collapse
|
50
|
Xiao YY, Jiang ZC, Hou JB, Chen XS, Zhao Y. Electrically driven liquid crystal network actuators. SOFT MATTER 2022; 18:4850-4867. [PMID: 35730498 DOI: 10.1039/d2sm00544a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Soft actuators based on liquid crystal networks (LCNs) have aroused great scientific interest for use as stimuli-controlled shape-changing and moving components for robotic devices due to their fast, large, programmable and solvent-free actuation responses. Recently, various LCN actuators have been implemented in soft robotics using stimulus sources such as heat, light, humidity and chemical reactions. Among them, electrically driven LCN actuators allow easy modulation and programming of the input electrical signals (amplitude, phase, and frequency) as well as stimulation throughout the volume, rendering them promising actuators for practical applications. Herein, the progress of electrically driven LCN actuators regarding their construction, actuation mechanisms, actuation performance, actuation programmability and the design strategies for intelligent systems is elucidated. We also discuss new robotic functions and advanced actuation control. Finally, an outlook is provided, highlighting the research challenges faced with this type of actuator.
Collapse
Affiliation(s)
- Yao-Yu Xiao
- Département de Chimie, Université de Sherbrooke, Sherbrooke, Québec, Canada.
| | - Zhi-Chao Jiang
- Département de Chimie, Université de Sherbrooke, Sherbrooke, Québec, Canada.
| | - Jun-Bo Hou
- Département de Chimie, Université de Sherbrooke, Sherbrooke, Québec, Canada.
| | - Xin-Shi Chen
- Département de Chimie, Université de Sherbrooke, Sherbrooke, Québec, Canada.
| | - Yue Zhao
- Département de Chimie, Université de Sherbrooke, Sherbrooke, Québec, Canada.
| |
Collapse
|