1
|
Li J, Xia Q, Wu T, Zhang Y, Peng S, Li Y, Li Y, Lin H, Zhang M, Qian J. High-contrast in vivo fluorescence imaging exploiting wavelengths beyond 1880 nm. Nat Commun 2025; 16:4436. [PMID: 40360524 PMCID: PMC12075662 DOI: 10.1038/s41467-025-59630-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 04/25/2025] [Indexed: 05/15/2025] Open
Abstract
The second near-infrared (NIR-II) window is widely acknowledged for its excellent potential in in vivo fluorescence imaging. Currently, NIR-II fluorescence imaging predominantly operates within the 900-1880 nm spectral range, while the region beyond 1880 nm has been disregarded due to the large light absorption of water. Based on a refined understanding of the effect of light absorption on imaging, we propose an approach that utilizes the previously neglected region surrounding the water absorption peak at ~1930 nm for imaging. Both simulations and experiments confirm that the water absorption contributes positively to imaging, enabling high-contrast in vivo fluorescence imaging in the 1880-2080 nm window. To further assess the applicability of this approach in different biological media, we extend our focus to fluorescence imaging in adipose tissue. This leads to the expansion of the imaging window to 1700-2080 nm, owing to the unique light absorption characteristics of adipose tissue. Our results demonstrate that the 1700-2080 nm region provides optimal imaging quality in adipose tissue, attributing to its moderate absorption and low scattering. This work advances our understanding of the interplay between light absorption and photon scattering in bioimaging, providing an insight for selecting optimal imaging windows to achieve high-contrast fluorescence imaging.
Collapse
Affiliation(s)
- Jiayi Li
- State Key Laboratory of Extreme Photonics and Instrumentations, Centre for Optical and Electromagnetic Research, College of Optical Science and Engineering, International Research Center for Advanced Photonics, Zhejiang University, Hangzhou, China
| | - Qiming Xia
- Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Tianxiang Wu
- State Key Laboratory of Extreme Photonics and Instrumentations, Centre for Optical and Electromagnetic Research, College of Optical Science and Engineering, International Research Center for Advanced Photonics, Zhejiang University, Hangzhou, China
| | - Yuhuang Zhang
- State Key Laboratory of Extreme Photonics and Instrumentations, Centre for Optical and Electromagnetic Research, College of Optical Science and Engineering, International Research Center for Advanced Photonics, Zhejiang University, Hangzhou, China
| | - Shiyi Peng
- State Key Laboratory of Extreme Photonics and Instrumentations, Centre for Optical and Electromagnetic Research, College of Optical Science and Engineering, International Research Center for Advanced Photonics, Zhejiang University, Hangzhou, China
| | - Yifei Li
- State Key Laboratory of Extreme Photonics and Instrumentations, Centre for Optical and Electromagnetic Research, College of Optical Science and Engineering, International Research Center for Advanced Photonics, Zhejiang University, Hangzhou, China
| | - Yixuan Li
- Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Hui Lin
- Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Mingxi Zhang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, China.
| | - Jun Qian
- State Key Laboratory of Extreme Photonics and Instrumentations, Centre for Optical and Electromagnetic Research, College of Optical Science and Engineering, International Research Center for Advanced Photonics, Zhejiang University, Hangzhou, China.
| |
Collapse
|
2
|
Huang L, Lv F, Bin Y, Zhao J, Li C, Zhao S, Hu S, Zhang L. A Hydrogen Sulfide-Activated NIR-II Fluorescence/NIR-I Photoacoustic Dual-Ratiometric Nanoprobe With Unique Recognition Reaction for Precise Visual Diagnosis of Hepatitis Disease. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025:e2501269. [PMID: 40270361 DOI: 10.1002/smll.202501269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Revised: 03/11/2025] [Indexed: 04/25/2025]
Abstract
Hydrogen sulfide (H2S) is a vital gaseous signaling molecule that plays a central role in various physiological and pathological processes. Given the complementary advantages of fluorescence (FL) and photoacoustic (PA) imaging, there is a growing demand for dual-ratiometric probes that enable precise in vivo monitoring of H2S levels. In this study, the use of 2-mercapto-1,3,4-thiadiazole (MTD) as a novel recognition group of H2S is presented for the first time, following conjugation with cyanine dyes to obtain a new PA probe Cy-MTD. To achieve dual-ratiometric imaging, Cy-MTD is incorporated into down-conversion nanoparticle (DCNP), resulting in the creation of a pioneering NIR-II FL/NIR-I PA dual-ratiometric nanoprobe DCNP@Cy-MTD. Cy-MTD undergoes the blueshift in absorption from 840 to 670 nm after reaction with H2S, enabling NIR-I ratiometric PA imaging of H2S by measuring the ratio of PA signal at 670 and 840 nm (PA670/PA840). In addition, due to the strong absorption of Cy-MTD ≈840 nm and the overlapping between the absorption spectrum of Cy-MTD and 808 nm excitation band of DCNP, the 808 nm-excited FL emission (F1550 nm,808Ex) of DCNP in DCNP@Cy-MTD nanoprobe is quenched through the competitive absorption, while it is restored upon the interaction with H2S because of the blueshift in absorption of Cy-MTD. Using the stable FL emission of DCNP under 980 nm excitation (F1550 nm,980Ex) as the reference signal, NIR-II ratiometric FL imaging (F1550 nm,808Ex/F1550 nm,980Ex) of H2S is achieved. The dual-ratiometric response features of the DCNP@Cy-MTD nanoprobe offer a significant advancement over traditional single-signal or single-modality imaging techniques. By providing enhanced accuracy and reliability, this probe allows for the diagnosis of hepatitis by monitoring the H2S, surpassing the capabilities of conventional histopathological methods, which provides a new way for more effective diagnostic strategies for liver diseases.
Collapse
Affiliation(s)
- Lixian Huang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, China
| | - Fei Lv
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, China
| | - Yidong Bin
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, China
| | - Jingjin Zhao
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, China
| | - Caiying Li
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, China
| | - Shulin Zhao
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, China
| | - Shengqiang Hu
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, China
| | - Liangliang Zhang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, China
| |
Collapse
|
3
|
Jia F, Mao Q, Liu J, Jiao H, Chen M, Wu X, Cui J. Long-Term and Real-Time Post-External Radiotherapy Assessment Based on an In Situ Activatable Radiolabeled Platform. ACS APPLIED BIO MATERIALS 2025; 8:2429-2439. [PMID: 39928911 DOI: 10.1021/acsabm.4c01913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2025]
Abstract
Long-term monitoring in postoperative assessment is essential for clinicians to assess the effectiveness of therapies and establish subsequent clinical pharmacotherapeutic plans. However, precise and real-time postoperative assessment is often overlooked, relying instead on various clinical histopathological and cytological assays or the experience of physicians. Therefore, it is urgent to develop a general strategy for long-term, real-time, and accurate postoperative assessment. Herein, we present a facile method utilizing radiolabeled probes for postradiotherapy assessment. The probe consists of a tumor-specific targeting group, an external radiotherapy-activated peptide sequence (DEVD), and a 177Lu-1,4,7,10-tetraazacyclododecane-N,N',N″,N‴-tetraacetic acid (DOTA)-decorated tetraphenyl ethylene. This design not only avoids photobleaching and the limitations associated with traditional organic ligands for long-term monitoring but also achieves in situ aggregation at the lesion site, allowing for prolonged tumor retention over 96 h. This work serves as a glance at utilizing radiolabeled probes for postoperative assessment, broadening the possibilities for the design, application, and clinical translation of radionuclide-labeled probes.
Collapse
Affiliation(s)
- Fang Jia
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Centre of Radiation Medicine of Jiangsu Higher Education, Soochow University, Suzhou 215123, P. R. China
| | - Qiulian Mao
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Centre of Radiation Medicine of Jiangsu Higher Education, Soochow University, Suzhou 215123, P. R. China
| | - Jing Liu
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Centre of Radiation Medicine of Jiangsu Higher Education, Soochow University, Suzhou 215123, P. R. China
| | - Haorong Jiao
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Centre of Radiation Medicine of Jiangsu Higher Education, Soochow University, Suzhou 215123, P. R. China
| | - Mei Chen
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Centre of Radiation Medicine of Jiangsu Higher Education, Soochow University, Suzhou 215123, P. R. China
| | - Xinyue Wu
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Centre of Radiation Medicine of Jiangsu Higher Education, Soochow University, Suzhou 215123, P. R. China
| | - Jiabin Cui
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Centre of Radiation Medicine of Jiangsu Higher Education, Soochow University, Suzhou 215123, P. R. China
| |
Collapse
|
4
|
Liu J, Cheng P, Xu C, Pu K. Molecular probes for in vivo optical imaging of immune cells. Nat Biomed Eng 2025:10.1038/s41551-024-01275-7. [PMID: 39984703 DOI: 10.1038/s41551-024-01275-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 09/23/2024] [Indexed: 02/23/2025]
Abstract
Advancing the understanding of the various roles and components of the immune system requires sophisticated methods and technology for the detection of immune cells in their natural states. Recent advancements in the development of molecular probes for optical imaging have paved the way for non-invasive visualization and real-time monitoring of immune responses and functions. Here we discuss recent progress in the development of molecular probes for the selective imaging of specific immune cells. We emphasize the design principles of the probes and their comparative performance when using various optical modalities across disease contexts. We highlight molecular probes for imaging tumour-infiltrating immune cells, and their applications in drug screening and in the prediction of therapeutic outcomes of cancer immunotherapies. We also discuss the use of these probes in visualizing immune cells in atherosclerosis, lung inflammation, allograft rejection and other immune-related conditions, and the translational opportunities and challenges of using optical molecular probes for further understanding of the immune system and disease diagnosis and prognosis.
Collapse
Affiliation(s)
- Jing Liu
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore, Singapore
| | - Penghui Cheng
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore, Singapore
| | - Cheng Xu
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore, Singapore
| | - Kanyi Pu
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore, Singapore.
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore.
| |
Collapse
|
5
|
Singh N, Xia W, Need E, McManus K, Huang J, Shi S, Goel S. Tumor agnostic ultrasmall nanoprobes for fluorescence-guided surgical resection in peritoneal metastasis. Eur J Nucl Med Mol Imaging 2025; 52:1149-1165. [PMID: 39446146 DOI: 10.1007/s00259-024-06950-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 10/07/2024] [Indexed: 10/25/2024]
Abstract
PURPOSE Surgical excision of metastases is the only curative treatment strategy in peritoneal carcinomatosis management, and the completeness of tumor resection determines the success of the surgery. Tumor-specific fluorescence-guided probes can improve the outcomes of cytoreductive surgery and thereby prognosis. This study aimed to develop and evaluate the feasibility of fluorescently labeled ultrasmall porous silica nanoparticles (UPSN) for image-guided resection of peritoneally disseminated tumors of different origins. METHODS Ultrasmall fluorescent nanoprobes were synthesized and characterized for their physicochemical properties and stability. Tumor-specific uptake and biodistribution profiles were evaluated in syngeneic CT26 colorectal and KPC-689 pancreatic cancer murine models. The practicability of real-time optical UPSN-guided resection was examined in the CT26 colorectal cancer model using a surgical stereomicroscope. Quantitative measurements of tumor sensitivity and specificity were performed. Histopathological examination validated in vivo findings about tumor-specific accumulation and safety of ultrasmall fluorescent probes. RESULTS As-synthesized UPSNs were successfully surface modified with Cy5 or Cy3 dyes maintaining sub-15 nm size and near neutral charge which is beneficial for optimized in vivo pharmacokinetics. UPSN-Cy5 demonstrated high tumor-specific uptake and favorable biodistribution profiles in peritoneal metastasis models of CT26 and KPC tumors. Dye-conjugated UPSN enabled resection of microscopic lesions and achieved a higher tumor-to-background ratios in comparison to FDA-approved indocyanine green (ICG) dye in both models. Microscopic evaluation showed tumor localization and off-target safety profile of the UPSN-Cy5. CONCLUSION Ultrasmall fluorescent probes were effective in surgical resection of peritoneal metastases with high sensitivity and specificity, thus emerging as promising tumor agnostic agents for image-guided cancer surgery.
Collapse
Affiliation(s)
- Neetu Singh
- Department of Molecular Pharmaceutics, University of Utah, Salt Lake City, UT, 84112, USA
| | - Wenxi Xia
- Department of Molecular Pharmaceutics, University of Utah, Salt Lake City, UT, 84112, USA
| | - Esther Need
- Department of Molecular Pharmaceutics, University of Utah, Salt Lake City, UT, 84112, USA
| | - Kylee McManus
- College of Science and Honors College (Biology), University of Utah, Salt Lake City, UT, 84112, USA
| | - Jiemin Huang
- Department of Molecular Pharmaceutics, University of Utah, Salt Lake City, UT, 84112, USA
| | - Sixiang Shi
- Department of Molecular Pharmaceutics, University of Utah, Salt Lake City, UT, 84112, USA.
- Department of Radiology and Imaging Sciences, University of Utah, Salt Lake City, UT, 84112, USA.
| | - Shreya Goel
- Department of Molecular Pharmaceutics, University of Utah, Salt Lake City, UT, 84112, USA.
- Department of Radiology and Imaging Sciences, University of Utah, Salt Lake City, UT, 84112, USA.
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT, 84112, USA.
| |
Collapse
|
6
|
Wang Y, Lu W, Chen ZH, Xiao Y, Wang Y, Gao W, Wang Z, Song R, Fang Z, Hu W, Tong X, Lee K, Pei Z, Xu M, Zhang F, Chen H, Feng Y. Molecular Imaging of Ovarian Follicles and Tumors With Near-Infrared II Bioconjugates. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2414129. [PMID: 39696888 DOI: 10.1002/adma.202414129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 10/22/2024] [Indexed: 12/20/2024]
Abstract
Follicular tracking is typically conducted using ultrasound technology, but its effectiveness is constrained by limited resolution. High-resolution imaging of deep tissues can be accomplished using luminescence imaging in the near-infrared II window (NIR-II, 1000-1700 nm); however, the contrast agents that are used lack specificity. Here, it is reported that the FDA-approved indocyanine green (ICG)-conjugated recombinant human chorionic gonadotropin (hCG) protein can target early follicles with long-term effectiveness. A novel high-resolution NIR-II imaging approach is developed for monitoring follicular development as well as ovulation using multi-color imaging of ovarian vessels with a combination of non-overlapping downconversion nanoparticles (DCNPs). The results showed that the ability to monitor early follicles of around 50 µm in diameter exceeded the spatial and temporal resolution of ultrasound or MRI without the reproductive damage associated with computed tomography radiation, and this enabled the clinical identification of the follicular reserve in patients with infertility diseases such as polycystic ovary syndrome (PCOS). In addition, NIR-II imaging clearly targeted ovarian tumors and showed micro-metastatic lesions, thus providing a new tool for monitoring tumors in vivo and guiding surgical resection.
Collapse
Affiliation(s)
- Yicong Wang
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Sciences, Shanghai Medical College, Brain Science Collaborative Innovation Center, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, 200032, China
- Shanghai Key Laboratory of Acupuncture Mechanism and Acupoint Function, Shanghai Institute of Acupuncture and Moxibustion, Shanghai, 200433, China
- Fudan Zhangjiang Institute, Shanghai, 201203, China
| | - Wenhan Lu
- Department of Ophthalmology & Visual Science, Eye & ENT Hospital, Shanghai Medical College, Fudan University, 83 Fenyang Road, Shanghai, 200031, China
| | - Zi-Han Chen
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers and iChem, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200433, China
| | - Yan Xiao
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Sciences, Shanghai Medical College, Brain Science Collaborative Innovation Center, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, 200032, China
- Shanghai Key Laboratory of Acupuncture Mechanism and Acupoint Function, Shanghai Institute of Acupuncture and Moxibustion, Shanghai, 200433, China
- Fudan Zhangjiang Institute, Shanghai, 201203, China
| | - Yu Wang
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Sciences, Shanghai Medical College, Brain Science Collaborative Innovation Center, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, 200032, China
- Shanghai Key Laboratory of Acupuncture Mechanism and Acupoint Function, Shanghai Institute of Acupuncture and Moxibustion, Shanghai, 200433, China
- Fudan Zhangjiang Institute, Shanghai, 201203, China
| | - Wenhao Gao
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Sciences, Shanghai Medical College, Brain Science Collaborative Innovation Center, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, 200032, China
- Shanghai Key Laboratory of Acupuncture Mechanism and Acupoint Function, Shanghai Institute of Acupuncture and Moxibustion, Shanghai, 200433, China
- Fudan Zhangjiang Institute, Shanghai, 201203, China
| | - Zhiming Wang
- State Key Laboratory of Drug Research, Molecular Imaging Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Ruihu Song
- State Key Laboratory of Drug Research, Molecular Imaging Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Zhao Fang
- State Key Laboratory of Drug Research, Molecular Imaging Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Wei Hu
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Sciences, Shanghai Medical College, Brain Science Collaborative Innovation Center, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, 200032, China
- Shanghai Key Laboratory of Acupuncture Mechanism and Acupoint Function, Shanghai Institute of Acupuncture and Moxibustion, Shanghai, 200433, China
- Fudan Zhangjiang Institute, Shanghai, 201203, China
| | - Xiaoyu Tong
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Sciences, Shanghai Medical College, Brain Science Collaborative Innovation Center, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, 200032, China
- Shanghai Key Laboratory of Acupuncture Mechanism and Acupoint Function, Shanghai Institute of Acupuncture and Moxibustion, Shanghai, 200433, China
- Fudan Zhangjiang Institute, Shanghai, 201203, China
| | - Kuinyu Lee
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Sciences, Shanghai Medical College, Brain Science Collaborative Innovation Center, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, 200032, China
- Shanghai Key Laboratory of Acupuncture Mechanism and Acupoint Function, Shanghai Institute of Acupuncture and Moxibustion, Shanghai, 200433, China
- Fudan Zhangjiang Institute, Shanghai, 201203, China
| | - Zhenle Pei
- Shanghai Ji Ai Genetics & IVF Institute, Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, 200011, China
| | - Minzhen Xu
- Department of Nuclear Medicine, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
| | - Fan Zhang
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers and iChem, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200433, China
| | - Hao Chen
- State Key Laboratory of Drug Research, Molecular Imaging Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Yi Feng
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Sciences, Shanghai Medical College, Brain Science Collaborative Innovation Center, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, 200032, China
- Shanghai Key Laboratory of Acupuncture Mechanism and Acupoint Function, Shanghai Institute of Acupuncture and Moxibustion, Shanghai, 200433, China
- Fudan Zhangjiang Institute, Shanghai, 201203, China
| |
Collapse
|
7
|
Zhou L, Dai M, Zhou J, Zhao X, Liu Z, Bu H, Zhou Y, Liao Y, Liu H, Cheng W, Chen K. Active-Targeted ICG for Surgical Navigation and Fluorescence-Guided Laparoscopic Photothermal Ablation in Pancreatic Ductal Adenocarcinoma. Anal Chem 2025; 97:473-481. [PMID: 39711038 DOI: 10.1021/acs.analchem.4c04575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2024]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is an aggressive malignancy, but there is limited improvement in its treatment. Near-infrared fluorescence (NIRF) imaging could potentially address the clinical challenges of PDAC. Indocyanine green (ICG) has been widely used in clinical practice; however, its short half-life and lack of active targeting greatly limit its application in pancreatic surgery. In this study, the active targeting peptide KTLLPTP (which actively recognizes PDAC cell surface overexpression Plectin-1) was modified to the ICG to create the novel contrast agent ICG-PTP, which actively targets PDAC cells. It was successfully applied to the NIRF imaging of the PDAC orthotopic mice model, achieving an improved tumor signal background ratio (T/N ratio) of 4.28, compared to 2.34 in the free ICG group. Next, Fluorescence-guided excision of subcutaneous/orthotopic PDAC using ICG-PTP was performed, accurately identifying the tumor margin and significantly facilitating resection efficiency. Finally, PDAC metastases were identified, and interventional photothermal ablation (iPTA) was performed under fluorescence laparoscope guidance. ICG-PTP exhibits good biosafety and clinical transitional potential. Thus, they can provide surgeons with efficient real-time tumor information and offer new treatment strategies for metastases. Accordingly, modification of probes for clinical use and adaptation studies of current equipment are the current focus.
Collapse
Affiliation(s)
- Lei Zhou
- Department of Hepatobiliary Surgery, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, 410005, Hunan Province China
| | - Manxiong Dai
- Department of Hepatobiliary Surgery, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, 410005, Hunan Province China
- Department of Biomedical Sciences, University of Macau, Macau SAR 999078, China
| | - Jiahao Zhou
- Department of Hepatobiliary Surgery, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, 410005, Hunan Province China
- Department of Biomedical Sciences, University of Macau, Macau SAR 999078, China
| | - Xingyang Zhao
- Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China
| | - Zixiong Liu
- Department of Hepatobiliary Surgery, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, 410005, Hunan Province China
| | - Hao Bu
- Department of Hepatobiliary Surgery, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, 410005, Hunan Province China
| | - Yang Zhou
- Department of Hepatobiliary Surgery, The Affiliated Changsha Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan Province 410005, China
| | - Yan Liao
- Department of Hepatobiliary Surgery, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, 410005, Hunan Province China
| | - Hongwen Liu
- Department of Hepatobiliary Surgery, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, 410005, Hunan Province China
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, Hunan Province 410005, China
| | - Wei Cheng
- Department of Hepatobiliary Surgery, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, 410005, Hunan Province China
| | - Kang Chen
- Department of Hepatobiliary Surgery, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, 410005, Hunan Province China
| |
Collapse
|
8
|
Zuo Y, Li P, Wang W, Xu C, Xu S, Sung HHY, Sun J, Jin G, Wang W, Kwok RTK, Lam JWY, Tang BZ. Tumor Site-Specific In Vivo Theranostics Enabled by Microenvironment-Dependent Chemical Transformation and Self-Amplifying Effect. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2409506. [PMID: 39612249 PMCID: PMC11789590 DOI: 10.1002/advs.202409506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 11/12/2024] [Indexed: 12/01/2024]
Abstract
Precise tumor diagnosis and treatment remain complex challenges. While numerous fluorescent probes have been developed for tumor-specific imaging and therapy, few exhibit effective function in vivo. Herein, a probe called TQ-H2 is designed that can realize robust theranostic effects both in vitro and in vivo. In vitro, TQ-H2 specifically targets the lysosome and reacts with hydroxyl radical (·OH) to generate TQ-HA, which lights up the cells. TQ-HA generates reactive oxygen species (ROS) under light irradiation, enabling the simultaneous induction and monitoring of apoptosis and ferroptosis in tumor cells. Remarkably, TQ-HA also acts as a self-amplifier, autocatalytically activating TQ-H2 by generating ·OH under light exposure. This self-amplification aligns with the tumor microenvironment, where TQ-H2 undergoes chemical transformation, distinguishing tumors from healthy tissue via near-infrared (NIR) fluorescence imaging. Furthermore, ROS generated by TQ-HA effectively kills tumor cells and inhibits tumor growth without harming normal cells. This study offers a promising strategy for targeted tumor theranostics using self-amplifying microenvironment-responsive fluorescent probes.
Collapse
Affiliation(s)
- Yunfei Zuo
- Department of ChemistryHong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and ReconstructionDivision of Life ScienceState Key Laboratory of Molecular Neuroscienceand Department of Chemical and Biological EngineeringThe Hong Kong University of Science & TechnologyClear Water BayKowloonHong Kong999077P. R. China
| | - Pei Li
- Department of ChemistryHong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and ReconstructionDivision of Life ScienceState Key Laboratory of Molecular Neuroscienceand Department of Chemical and Biological EngineeringThe Hong Kong University of Science & TechnologyClear Water BayKowloonHong Kong999077P. R. China
- National Clinical Research Center for Infectious DiseasesShenzhen Third People's HospitalSouthern University of Science and TechnologyShenzhenGuangdong518112China
| | - Wen‐Jin Wang
- China Clinical Translational Research Center of Aggregation‐Induced EmissionThe Second Affiliated HospitalSchool of MedicineSchool of Science and EngineeringShenzhen Institute of Aggregate Science and TechnologyThe Chinese University of Hong KongShenzhen (CUHK‐Shenzhen)Guangdong518172China
| | - Changhuo Xu
- MOE Frontiers Science Center for Precision OncologyFaculty of Health SciencesUniversity of MacauMacao999078China
| | - Shuting Xu
- Department of Pharmacology and PharmacyLi Ka Shing Faculty of MedicineThe University of Hong KongHong Kong999077China
| | - Herman H. Y. Sung
- Department of ChemistryHong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and ReconstructionDivision of Life ScienceState Key Laboratory of Molecular Neuroscienceand Department of Chemical and Biological EngineeringThe Hong Kong University of Science & TechnologyClear Water BayKowloonHong Kong999077P. R. China
| | - Jianwei Sun
- Department of ChemistryHong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and ReconstructionDivision of Life ScienceState Key Laboratory of Molecular Neuroscienceand Department of Chemical and Biological EngineeringThe Hong Kong University of Science & TechnologyClear Water BayKowloonHong Kong999077P. R. China
| | - Guorui Jin
- The Key Laboratory of Biomedical Information Engineering of Ministry of EducationSchool of Life Science and TechnologyXi'an Jiaotong UniversityXi'an710049China
| | - Weiping Wang
- Department of Pharmacology and PharmacyLi Ka Shing Faculty of MedicineThe University of Hong KongHong Kong999077China
| | - Ryan T. K. Kwok
- Department of ChemistryHong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and ReconstructionDivision of Life ScienceState Key Laboratory of Molecular Neuroscienceand Department of Chemical and Biological EngineeringThe Hong Kong University of Science & TechnologyClear Water BayKowloonHong Kong999077P. R. China
| | - Jacky W. Y. Lam
- Department of ChemistryHong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and ReconstructionDivision of Life ScienceState Key Laboratory of Molecular Neuroscienceand Department of Chemical and Biological EngineeringThe Hong Kong University of Science & TechnologyClear Water BayKowloonHong Kong999077P. R. China
| | - Ben Zhong Tang
- Department of ChemistryHong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and ReconstructionDivision of Life ScienceState Key Laboratory of Molecular Neuroscienceand Department of Chemical and Biological EngineeringThe Hong Kong University of Science & TechnologyClear Water BayKowloonHong Kong999077P. R. China
- China Clinical Translational Research Center of Aggregation‐Induced EmissionThe Second Affiliated HospitalSchool of MedicineSchool of Science and EngineeringShenzhen Institute of Aggregate Science and TechnologyThe Chinese University of Hong KongShenzhen (CUHK‐Shenzhen)Guangdong518172China
| |
Collapse
|
9
|
Yu M, Zhu L, Dong G, Chen J, Ruan B, Liu Y, Yi S, Meng Z, Chen G, Xu W, Huang J, Han F. Spatiotemporal Mapping of Lymphatic Metastases in Gastric Cancer Using Tumor-Trackable and Enzyme-Activatable Near-Infrared Fluorescent Nanoprobes. ACS NANO 2024; 18:35490-35506. [PMID: 39680710 DOI: 10.1021/acsnano.4c12915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2024]
Abstract
Sentinel lymph node biopsy holds significant importance in cancer management, yet the challenge persists in early detection and precise resection of metastasis lymph nodes (LNs) due to the absence of specific and sensitive optical probes. This study reports metastatic LN reporters (MLRs) with an activatable optical output for accurate spatiotemporal mapping of lymphatic metastases in gastric cancer. MLRs are self-assembled entities incorporating mixed amphiphiles with a lipophilic tail and a tumor-targeting ligand or a fluorescent moiety that is caged with a switch cleavable by tumor-specific β-galactosidase (β-Gal). After draining into LNs, MLRs selectively activate their near-infrared fluorescence in the presence of spreading tumor cells. In orthotopic gastric cancer mouse models, the representative reporter MLR1 distinguishes macro/micrometastatic LNs from benign LNs and enables early detection of skip LNs metastasis patterns in a spatial-dependent manner. Such an active sensing mechanism provides a high level of sensitivity and specificity comparable to those of flow cytometry analysis. In surgically resected patient specimens, MLR1 differentiates cancerous tissues and metastatic LNs from normal tissues and benign LNs within 1 h. This study thus presents NIRF nanoprobes that permit facile detection of LN metastases in GC patient samples and highlights a generic translatable nanoprobe design for understanding metastatic progression.
Collapse
Affiliation(s)
- Mengya Yu
- State Key Laboratory of Anti-Infective Drug Discovery and Development, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
- Department of Gastrointestinal Surgery, The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou 510317, China
- Department of Gastrointestinal Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510120, China
| | - Lijuan Zhu
- State Key Laboratory of Anti-Infective Drug Discovery and Development, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
- National-Local Joint Engineering Laboratory of Druggability and New Drugs Evaluation, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-sen University, Guangzhou 510006, China
| | - Guoqi Dong
- State Key Laboratory of Anti-Infective Drug Discovery and Development, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
- National-Local Joint Engineering Laboratory of Druggability and New Drugs Evaluation, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-sen University, Guangzhou 510006, China
| | - Jianjiao Chen
- Department of Gastrointestinal Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510120, China
- Department of Colorectal Surgery, Zhejiang Provincial People's Hospital, Hangzhou 310014, China
| | - Bankang Ruan
- State Key Laboratory of Anti-Infective Drug Discovery and Development, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
- National-Local Joint Engineering Laboratory of Druggability and New Drugs Evaluation, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-sen University, Guangzhou 510006, China
| | - Yi Liu
- State Key Laboratory of Anti-Infective Drug Discovery and Development, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
- National-Local Joint Engineering Laboratory of Druggability and New Drugs Evaluation, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-sen University, Guangzhou 510006, China
| | - Shujuan Yi
- State Key Laboratory of Anti-Infective Drug Discovery and Development, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
- National-Local Joint Engineering Laboratory of Druggability and New Drugs Evaluation, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-sen University, Guangzhou 510006, China
| | - Zhenqi Meng
- Department of Gastrointestinal Surgery, The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou 510317, China
- Department of Gastrointestinal Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510120, China
| | - Guanjian Chen
- Department of Gastrointestinal Surgery, The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou 510317, China
- Department of Gastrointestinal Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510120, China
| | - Weiping Xu
- State Key Laboratory of Anti-Infective Drug Discovery and Development, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
- National-Local Joint Engineering Laboratory of Druggability and New Drugs Evaluation, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-sen University, Guangzhou 510006, China
| | - Jiaguo Huang
- State Key Laboratory of Anti-Infective Drug Discovery and Development, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
- National-Local Joint Engineering Laboratory of Druggability and New Drugs Evaluation, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-sen University, Guangzhou 510006, China
| | - Fanghai Han
- Department of Gastrointestinal Surgery, The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou 510317, China
- Department of Gastrointestinal Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510120, China
| |
Collapse
|
10
|
Xu R, Cao H, Yang Y, Han F, Lin D, Chen X, Wu C, Liu L, Yu B, Qu J. Tm 3+-Based Downshifting Nanoprobes with Enhanced Luminescence at 1680 nm for In Vivo Vascular Growth Monitoring. ACS NANO 2024; 18:35039-35051. [PMID: 39663198 DOI: 10.1021/acsnano.4c14468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2024]
Abstract
Optical imaging in the 1500-1700 nm region, known as near-infrared IIb (NIR-IIb), shows potential for noninvasive in vivo detection owing to its ultrahigh tissue penetration depth and spatiotemporal resolution. Rare earth-doped nanoparticles have emerged as widely used NIR-IIb probes because of their excellent optical properties. However, their downshifting emissions rarely exhibit sufficient brightness beyond 1600 nm. This study presents tetragonal-phase thulium-doped nanoparticles (Tm3+-NPs) with core-shell-shell structures (CSS, LiYbF4:3%Tm@LiYbF4@LiYF4) that exhibit bright downshifting luminescence at 1680 nm. Enhanced luminescence is attributed to (1) the promoted nonradiative relaxation between the doping ions and (2) the maximized sensitization process. Additionally, this strategy was validated for NIR-IIb luminescence enhancement of erbium (Er3+)-doped NPs. After surface modification with PEGylated liposomes, tetragonal-phase Tm3+-NPs exhibited a prolonged blood cycle time, high colloidal stability, and good biocompatibility. Owing to the advantages of Tm3+-based probes in NIR-IIb imaging, in vivo thrombus detection and monitoring of angiogenesis and arteriogenesis were successfully performed in a mouse model of ischemic hind limbs.
Collapse
Affiliation(s)
- Rong Xu
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Huiqun Cao
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
| | - Yicheng Yang
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Fuhong Han
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Danying Lin
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Xian Chen
- Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China
| | - Changfeng Wu
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Liwei Liu
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Bin Yu
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Junle Qu
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| |
Collapse
|
11
|
Xia X, Huang M, Hu Y, Zhou Z, Chen Y, Wang J, Ren J, Wang E, Wang F. Rational Design of a Tandem Activatable Fluorescent Probe for Differential Diagnosis and Therapeutic Assessment of Hepatocellular Carcinoma. Anal Chem 2024; 96:18898-18906. [PMID: 39541570 DOI: 10.1021/acs.analchem.4c05202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Hepatocellular carcinoma (HCC) is a formidable disease, distinguished by its high aggressiveness and dismal outcomes. Although leucine aminopeptidase (LAP) has been widely employed as a biomarker in biological imaging of HCC, it is still susceptible to interference from false-positive signals activated in injured liver tissues. In this study, based on the significant difference of GSH levels in alcohol-damaged liver tissues and tumor tissues, a dual-tandem activatable probe (PCLT) was designed for differential diagnosis and treatment guidance of HCC by near-infrared fluorescence (NIRF) imaging. This probe comprised a dual-locked hemicyanine dye decorated with a tetraethylene glycol chain and dual-recognition unit of glutathione (GSH) and LAP, which could be sequentially cleaved by GSH and LAP to restore its NIRF signal. PCLT excellently discriminated orthotopic HCC from ALI far earlier (7 days) than histological analysis (28 days) and exhibited higher specificity toward early orthotopic HCC than the single-locked probe (PCL). In addition, PCLT is capable of accurately delineating the tumor contour, assisting in surgical resection of HCC tumors under fluorescence visualization, and noninvasively assessing the antitumor effect of HCC chemotherapy during ferroptosis, thereby presenting promising clinical implications for clinical diagnosis and therapy of HCC.
Collapse
Affiliation(s)
- Xiaofeng Xia
- Hubei Key Laboratory for Precision Synthesis of Small Molecule Pharmaceuticals & Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Hubei University, Wuhan 430062, P. R. China
| | - Minrong Huang
- Hubei Key Laboratory for Precision Synthesis of Small Molecule Pharmaceuticals & Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Hubei University, Wuhan 430062, P. R. China
| | - Yazhou Hu
- Hubei Key Laboratory for Precision Synthesis of Small Molecule Pharmaceuticals & Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Hubei University, Wuhan 430062, P. R. China
| | - Zhe Zhou
- Hubei Key Laboratory for Precision Synthesis of Small Molecule Pharmaceuticals & Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Hubei University, Wuhan 430062, P. R. China
| | - Yiyu Chen
- Hubei Key Laboratory for Precision Synthesis of Small Molecule Pharmaceuticals & Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Hubei University, Wuhan 430062, P. R. China
| | - Juan Wang
- Hubei Key Laboratory for Precision Synthesis of Small Molecule Pharmaceuticals & Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Hubei University, Wuhan 430062, P. R. China
| | - Jun Ren
- Hubei Key Laboratory for Precision Synthesis of Small Molecule Pharmaceuticals & Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Hubei University, Wuhan 430062, P. R. China
| | - Erfei Wang
- Hubei Key Laboratory for Precision Synthesis of Small Molecule Pharmaceuticals & Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Hubei University, Wuhan 430062, P. R. China
| | - Feiyi Wang
- Hubei Key Laboratory for Precision Synthesis of Small Molecule Pharmaceuticals & Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Hubei University, Wuhan 430062, P. R. China
| |
Collapse
|
12
|
He L, Meng F, Chen R, Qin J, Sun M, Fan Z, Du J. Precise Regulations at the Subcellular Level through Intracellular Polymerization, Assembly, and Transformation. JACS AU 2024; 4:4162-4186. [PMID: 39610726 PMCID: PMC11600172 DOI: 10.1021/jacsau.4c00849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 10/18/2024] [Accepted: 10/22/2024] [Indexed: 11/30/2024]
Abstract
A living cell is an intricate machine that creates subregions to operate cell functions effectively. Subcellular dysfunction has been identified as a potential druggable target for successful drug design and therapy. The treatments based on intracellular polymerization, self-assembly, or transformation offer various advantages, including enhanced blood circulation of monomers, long-term drug delivery pharmacokinetics, low drug resistance, and the ability to target deep tissues and organelles. In this review, we discuss the latest developments of intracellular synthesis applied to precisely control cellular functions. First, we discuss the design and applications of endogenous and exogenous stimuli-triggered intracellular polymerization, self-assembly, and dynamic morphology transformation of biomolecules at the subcellular level. Second, we highlight the benefits of these strategies applied in cancer diagnosis and treatment and modulating cellular states or cell metabolism of living systems. Finally, we conclude the recent progress in this field, discuss future perspectives, analyze the challenges of the intracellular functional reactions for regulation, and find future opportunities.
Collapse
Affiliation(s)
- Le He
- School
of Materials Science and Engineering, East
China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
- Department
of Gynaecology and Obstetrics, Shanghai Key Laboratory of Anesthesiology
and Brain Functional Modulation, Clinical Research Center for Anesthesiology
and Perioperative Medicine, Translational Research Institute of Brain
and Brain-Like Intelligence, Shanghai Fourth People’s Hospital,
School of Medicine, Tongji University, Shanghai 200434, China
| | - Fanying Meng
- Department
of Polymeric Materials, School of Materials Science and Engineering, Tongji University, 4800 Caoan Road, Shanghai 201804, China
| | - Ran Chen
- Department
of Polymeric Materials, School of Materials Science and Engineering, Tongji University, 4800 Caoan Road, Shanghai 201804, China
| | - Jinlong Qin
- Department
of Gynaecology and Obstetrics, Shanghai Key Laboratory of Anesthesiology
and Brain Functional Modulation, Clinical Research Center for Anesthesiology
and Perioperative Medicine, Translational Research Institute of Brain
and Brain-Like Intelligence, Shanghai Fourth People’s Hospital,
School of Medicine, Tongji University, Shanghai 200434, China
| | - Min Sun
- Department
of Gynaecology and Obstetrics, Shanghai Key Laboratory of Anesthesiology
and Brain Functional Modulation, Clinical Research Center for Anesthesiology
and Perioperative Medicine, Translational Research Institute of Brain
and Brain-Like Intelligence, Shanghai Fourth People’s Hospital,
School of Medicine, Tongji University, Shanghai 200434, China
| | - Zhen Fan
- Department
of Gynaecology and Obstetrics, Shanghai Key Laboratory of Anesthesiology
and Brain Functional Modulation, Clinical Research Center for Anesthesiology
and Perioperative Medicine, Translational Research Institute of Brain
and Brain-Like Intelligence, Shanghai Fourth People’s Hospital,
School of Medicine, Tongji University, Shanghai 200434, China
- Department
of Polymeric Materials, School of Materials Science and Engineering, Tongji University, 4800 Caoan Road, Shanghai 201804, China
| | - Jianzhong Du
- School
of Materials Science and Engineering, East
China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
- Department
of Gynaecology and Obstetrics, Shanghai Key Laboratory of Anesthesiology
and Brain Functional Modulation, Clinical Research Center for Anesthesiology
and Perioperative Medicine, Translational Research Institute of Brain
and Brain-Like Intelligence, Shanghai Fourth People’s Hospital,
School of Medicine, Tongji University, Shanghai 200434, China
- Department
of Polymeric Materials, School of Materials Science and Engineering, Tongji University, 4800 Caoan Road, Shanghai 201804, China
| |
Collapse
|
13
|
Zhao F, Ling H, Zhang W, Zhang Y, Liu Q. Dye-to-Er 3+ Direct Energy Transfer for Enhancing Up- and Down-conversion Luminescence in Sub-10 nm NaErF 4. NANO LETTERS 2024; 24:14838-14846. [PMID: 39530389 DOI: 10.1021/acs.nanolett.4c04539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Dye sensitization enhances the luminescence of lanthanide nanoparticles by improving light-harvesting. Typically, Yb3+ serves as an energy bridge but absorbs at a single transition, limiting dyes' options (λex > 700 nm) due to the spectral overlap requirement. In contrast, the emitter Er3+ spans energy levels from UV to NIR, making it ideal for multicolor excitation. We developed a strategy to directly sensitize Er3+ upconversion (UCL) and downconversion luminescence (DCL) by using cyanine dyes. Cy5 demonstrated the greatest enhancement, achieving a 1942-fold UCL and 70-fold DCL increase compared to nanoparticles alone (Er-NPs) under 980 nm excitation. Smaller Er-NPs exhibited brighter dye-sensitized luminescence due to enhanced interfacial energy transfer. A 2 nm inert shell produced the brightest UCL, while thicker shells improved DCL. Dye-sensitized Er3+ emissions at 2H11/2 (525 nm) and 2P3/2 (408 nm) enabled temperature monitoring with a maximum sensitivity (Sa) of 3.69%/K. This approach holds significant potential for optical temperature sensing and medical imaging.
Collapse
Affiliation(s)
- Fei Zhao
- Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200438, China
| | - Huan Ling
- Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200438, China
| | - Wenrui Zhang
- Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200438, China
| | - Yunxiang Zhang
- Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200438, China
| | - Qian Liu
- Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200438, China
| |
Collapse
|
14
|
Wu Q, Zhou Z, Xu L, Zhong H, Xiong B, Ren T, Li Z, Yuan L, Zhang XB. Multivalent supramolecular fluorescent probes for accurate disease imaging. SCIENCE ADVANCES 2024; 10:eadp8719. [PMID: 39423274 PMCID: PMC11488570 DOI: 10.1126/sciadv.adp8719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 09/16/2024] [Indexed: 10/21/2024]
Abstract
Optical imaging is a powerful tool for early disease detection and effective treatment planning, but its accuracy is often compromised by the uptake of imaging materials by the mononuclear phagocyte system (MPS). Herein, we leverage multivalent host-guest interactions between cyanine dyes and β-cyclodextrin polymers to develop supramolecular probes with enhanced stability, optical, and transport profiles for accurate in vivo imaging. These multivalent interactions not only ensure the stability of the probes but also enhance fluorescence efficiency by minimizing nonradiative decay. Our self-assembly approach effectively modulates probe size and surface properties, enabling evasion of MPS clearance and promoting prolonged bloodstream circulation, thereby improving the signal-to-background ratio for imaging. The effectiveness of our design is demonstrated by substantial advancements in the early diagnosis of acute kidney injury and by providing high-contrast imaging and precise surgical navigation across various tumor models. Our strategy not only advances optical imaging materials toward clinical translation but also establishes a versatile platform applicable to multiple imaging modalities.
Collapse
Affiliation(s)
| | | | - Li Xu
- State Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Haichen Zhong
- State Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Bin Xiong
- State Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Tianbing Ren
- State Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Zhe Li
- State Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Lin Yuan
- State Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Xiao-Bing Zhang
- State Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| |
Collapse
|
15
|
Xi X, Feng W. Fine-tuning of composition in multi-layered core-shell rare earth nanoparticles for the enhanced NIR-II emission. MATERIALS RESEARCH BULLETIN 2024; 178:112889. [DOI: 10.1016/j.materresbull.2024.112889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
16
|
Yan Z, Wang Y, Qiu M, Long K, Zhang Z, Sun M, Yin C, Wang W, Wang HQ, Yuan Z. Persistent luminescence nanoparticles with high intensity for colorectal cancer surgery navigation and precision resection. J Mater Chem B 2024; 12:8655-8661. [PMID: 39082116 DOI: 10.1039/d4tb01062k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
Surgical resection remains the main treatment for malignant tumors. Image-guided surgery aims to remove tumor tissue completely while preserving normal tissue, thereby reducing tumor recurrence rates and injury. However, challenges like tissue autofluorescence, limited probe penetration and low contrast restrict its use. Near-infrared (NIR) persistent luminescent nanoparticles (PLNPs) provide a solution by emitting persistent luminescence (PersL) even after excitation ceases, thus circumventing autofluorescence and enabling deep tumor imaging. In this study, we prepared nano-sized (140 nm hydrodynamic size) Cr3+ doped zinc gallogermanate (ZGC) using a removable template method and modified it with folate acid to obtain ZGC-FA, which exhibits NIR (695 nm) PersL with a signal-to-noise ratio of 23.9 in vivo. We utilized a colon cancer model that selectively expressed luciferase for the first time to validate the guiding efficacy of ZGC-FA in precision surgical resection. Post-intraperitoneal injection at 50 minutes, the PersL closely matched the tumor boundaries, achieving an overlap rate of approximately 98%. Complete tumor resection was achieved under PersL guidance, with only 2.3% of healthy tissue removed. This research underscores the potential of ZGC-FA in the field of surgical oncology. The precision of the ZGC-FA guided surgical approach holds promise to enhance surgical outcomes and facilitate postoperative recovery in patients.
Collapse
Affiliation(s)
- Zichao Yan
- Key Laboratory of Functional Polymer Materials of Ministry of Education, College of Chemistry, Nankai University, Tianjin 300071, China.
| | - Yifei Wang
- Key Laboratory of Functional Polymer Materials of Ministry of Education, College of Chemistry, Nankai University, Tianjin 300071, China.
| | - Minghan Qiu
- Department of Oncology, Tianjin Union Medical Center, Nankai University, Tianjin 300191, China.
| | - Kai Long
- Key Laboratory of Functional Polymer Materials of Ministry of Education, College of Chemistry, Nankai University, Tianjin 300071, China.
| | - Zhouyu Zhang
- Key Laboratory of Functional Polymer Materials of Ministry of Education, College of Chemistry, Nankai University, Tianjin 300071, China.
| | - Mengjie Sun
- Key Laboratory of Functional Polymer Materials of Ministry of Education, College of Chemistry, Nankai University, Tianjin 300071, China.
| | - Chang Yin
- Key Laboratory of Functional Polymer Materials of Ministry of Education, College of Chemistry, Nankai University, Tianjin 300071, China.
| | - Wei Wang
- Key Laboratory of Functional Polymer Materials of Ministry of Education, College of Chemistry, Nankai University, Tianjin 300071, China.
| | - Hua-Qing Wang
- Department of Oncology, Tianjin Union Medical Center, Nankai University, Tianjin 300191, China.
| | - Zhi Yuan
- Key Laboratory of Functional Polymer Materials of Ministry of Education, College of Chemistry, Nankai University, Tianjin 300071, China.
| |
Collapse
|
17
|
Zhou D, Zhang G, Li J, Zhuang Z, Shen P, Fu X, Wang L, Qian J, Qin A, Tang BZ. Near-Infrared II Agent with Excellent Overall Performance for Imaging-Guided Photothermal Thrombolysis. ACS NANO 2024; 18:25144-25154. [PMID: 39190833 DOI: 10.1021/acsnano.4c06965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/29/2024]
Abstract
Near-infrared II (NIR-II) imaging and photothermal therapy hold tremendous potential in precision diagnosis and treatment within biological organisms. However, a significant challenge is the shortage of NIR-II fluorescent probes with both high photothermal conversion coefficient (PCE) and fluorescence quantum yield (ΦF). Herein, we address this issue by integrating a large conjugated electron-withdrawing core, multiple rotors, and multiple alkyl chains into a molecule to successfully generate a NIR-II agent 4THTPB with excellent PCE (87.6%) and high ΦF (3.2%). 4THTPB shows a maximum emission peak at 1058 nm, and the emission tail could extend to as long as 1700 nm. These characteristics make its nanoparticles (NPs) perform well in NIR-II high-resolution angiography, thereby allowing for precise diagnosis of thrombus through NIR-II imaging and enabling efficient photothermal thrombolysis. This work not only furnishes a NIR-II agent with excellent overall performance but also provides valuable guidance for the design of high-performance NIR-II agents.
Collapse
Affiliation(s)
- Daming Zhou
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou 510640, China
- Center for Aggregation-Induced Emission, AIE Institute, South China University of Technology, Guangzhou 510640, China
| | - Guiquan Zhang
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou 510640, China
- Center for Aggregation-Induced Emission, AIE Institute, South China University of Technology, Guangzhou 510640, China
| | - Jiayi Li
- State Key Laboratory of Modern Optical Instrumentations, College of Optical Science and Engineering, International Research Center for Advanced Photonics, Centre for Optical and Electromagnetic Research, Zhejiang University, Hangzhou 310058, China
| | - Zeyan Zhuang
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou 510640, China
- Center for Aggregation-Induced Emission, AIE Institute, South China University of Technology, Guangzhou 510640, China
| | - Pingchuan Shen
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou 510640, China
- Center for Aggregation-Induced Emission, AIE Institute, South China University of Technology, Guangzhou 510640, China
| | - Xinyao Fu
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou 510640, China
- Center for Aggregation-Induced Emission, AIE Institute, South China University of Technology, Guangzhou 510640, China
| | - Lirong Wang
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou 510640, China
- Center for Aggregation-Induced Emission, AIE Institute, South China University of Technology, Guangzhou 510640, China
| | - Jun Qian
- State Key Laboratory of Modern Optical Instrumentations, College of Optical Science and Engineering, International Research Center for Advanced Photonics, Centre for Optical and Electromagnetic Research, Zhejiang University, Hangzhou 310058, China
| | - Anjun Qin
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou 510640, China
- Center for Aggregation-Induced Emission, AIE Institute, South China University of Technology, Guangzhou 510640, China
| | - Ben Zhong Tang
- Center for Aggregation-Induced Emission, AIE Institute, South China University of Technology, Guangzhou 510640, China
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong 518172, China
- Hong Kong Branch of the Chinese National Engineering Research Centre for Tissue Restoration and Reconstruction, The Hong Kong University of Science & Technology, Kowloon, Hong Kong 999077, China
| |
Collapse
|
18
|
Pan M, Zhao R, Fu C, Tang M, Zhou J, Ma B, Liu J, Yang Y, Chen B, Zhang Q, Wang Y. Tuning nanoparticle core composition drives orthogonal fluorescence amplification for enhanced tumour imaging. Nat Commun 2024; 15:7824. [PMID: 39242636 PMCID: PMC11379858 DOI: 10.1038/s41467-024-52029-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 08/23/2024] [Indexed: 09/09/2024] Open
Abstract
Tumour detection with high selectivity and sensitivity is crucial for delineating tumour margins and identifying metastatic foci during image-guided surgery. Optical nanoprobes with preferential tumour accumulation is often limited by inefficient amplification of biological signals. Here, we report the design of a library of hydrophobic core-tunable ultra-pH-sensitive nanoprobes (HUNPs) for orthogonally amplifying tumour microenvironmental signals on multiple tumour models. We find that tuning the hydrophobicity of nanoparticle core composition with non-ionizable monomers can enhance cellular association of HUNPs by more than ten-fold, resulting in a high cellular internalization efficiency of HUNPs with up to 50% in tumours. Combining high tumour accumulation and high cell internalization efficiency, HUNPs show orthogonally amplified fluorescence signals, permitting the precise locating and delineating margins between malignant lesions and normal tissues with high contrast-to-noise ratio and resolution. Our study provides key strategies to design nanomedicines with high intracellular bioavailability for cancer detection, drug/gene delivery, and therapy.
Collapse
Affiliation(s)
- Meijie Pan
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
- Beijing Key Laboratory of Molecular Pharmaceutics, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Ruiyang Zhao
- Beijing Key Laboratory of Molecular Pharmaceutics, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Chuanxun Fu
- Beijing Key Laboratory of Molecular Pharmaceutics, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Mingmei Tang
- Beijing Key Laboratory of Molecular Pharmaceutics, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Jiayi Zhou
- Beijing Key Laboratory of Molecular Pharmaceutics, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Bin Ma
- Beijing Key Laboratory of Molecular Pharmaceutics, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Jianxiong Liu
- Beijing Key Laboratory of Molecular Pharmaceutics, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Ye Yang
- Beijing Key Laboratory of Molecular Pharmaceutics, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Binlong Chen
- Beijing Key Laboratory of Molecular Pharmaceutics, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Qiang Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
- Beijing Key Laboratory of Molecular Pharmaceutics, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Yiguang Wang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China.
- Beijing Key Laboratory of Molecular Pharmaceutics, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China.
- Chemical Biology Center, Peking University, Beijing, China.
| |
Collapse
|
19
|
Zhang B, Lu J, Lin X, Wang J, Li Q, Jin T, Shi Q, Lu Y, Zhang J, Deng J, Zhang Y, Guo Y, Gao J, Chen H, Yan Y, Wu J, Gao J, Che J, Dong X, Gu Z, Lin N. Injectable and Sprayable Fluorescent Nanoprobe for Rapid Real-Time Detection of Human Colorectal Tumors. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2405275. [PMID: 38897213 DOI: 10.1002/adma.202405275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 06/08/2024] [Indexed: 06/21/2024]
Abstract
The development of minimally invasive surgery has greatly advanced precision tumor surgery, but sometime suffers from restricted visualization of the surgical field, especially during the removal of abdominal tumors. A 3-D inspection of tumors could be achieved by intravenously injecting tumor-selective fluorescent probes, whereas most of which are unable to instantly distinguish tumors via in situ spraying, which is urgently needed in the process of surgery in a convenient manner. In this study, this work has designed an injectable and sprayable fluorescent nanoprobe, termed Poly-g-BAT, to realize rapid tumor imaging in freshly dissected human colorectal tumors and animal models. Mechanistically, the incorporation of γ-glutamyl group facilitates the rapid internalization of Poly-g-BAT, and these internalized nanoprobes can be subsequently activated by intracellular NAD(P)H: quinone oxidoreductase-1 to release near-infrared fluorophores. As a result, Poly-g-BAT can achieve a superior tumor-to-normal ratio (TNR) up to 12.3 and enable a fast visualization (3 min after in situ spraying) of tumor boundaries in the xenograft tumor models, Apcmin/+ mice models and fresh human tumor tissues. In addition, Poly-g-BAT is capable of identifying minimal premalignant lesions via intravenous injection.
Collapse
Affiliation(s)
- Bo Zhang
- Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Hangzhou First People's Hospital, Cancer Center of Zhejiang University, Hangzhou, 310006, China
| | - Jialiang Lu
- Hangzhou Institute of Innovative Medicine, Institute of Drug Discovery and Design, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Xu Lin
- Department of Thoracic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Jinqiang Wang
- National Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou, 310058, China
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Qi Li
- Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Hangzhou First People's Hospital, Cancer Center of Zhejiang University, Hangzhou, 310006, China
| | - Tingting Jin
- Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Hangzhou First People's Hospital, Cancer Center of Zhejiang University, Hangzhou, 310006, China
| | - Qiuqiu Shi
- Hangzhou Institute of Innovative Medicine, Institute of Drug Discovery and Design, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yang Lu
- Hangzhou Institute of Innovative Medicine, Institute of Drug Discovery and Design, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Jingyu Zhang
- Hangzhou Institute of Innovative Medicine, Institute of Drug Discovery and Design, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Jun Deng
- Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Hangzhou First People's Hospital, Cancer Center of Zhejiang University, Hangzhou, 310006, China
| | - Yinqiong Zhang
- Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Hangzhou First People's Hospital, Cancer Center of Zhejiang University, Hangzhou, 310006, China
| | - Yu Guo
- Hangzhou Institute of Innovative Medicine, Institute of Drug Discovery and Design, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Jian Gao
- Hangzhou Institute of Innovative Medicine, Institute of Drug Discovery and Design, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Haifeng Chen
- Hangzhou Institute of Innovative Medicine, Institute of Drug Discovery and Design, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Youyou Yan
- Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Hangzhou First People's Hospital, Cancer Center of Zhejiang University, Hangzhou, 310006, China
- Westlake Laboratory of Life Sciences and Biomedicine of Zhejiang Province, Hangzhou, 310024, China
| | - Jiahe Wu
- Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Hangzhou First People's Hospital, Cancer Center of Zhejiang University, Hangzhou, 310006, China
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Jianqing Gao
- National Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou, 310058, China
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Jinxin Che
- Hangzhou Institute of Innovative Medicine, Institute of Drug Discovery and Design, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
- National Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou, 310058, China
| | - Xiaowu Dong
- Hangzhou Institute of Innovative Medicine, Institute of Drug Discovery and Design, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
- National Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou, 310058, China
| | - Zhen Gu
- National Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou, 310058, China
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Nengming Lin
- Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Hangzhou First People's Hospital, Cancer Center of Zhejiang University, Hangzhou, 310006, China
- Westlake Laboratory of Life Sciences and Biomedicine of Zhejiang Province, Hangzhou, 310024, China
| |
Collapse
|
20
|
Wu R, Li W, Yang P, Shen N, Yang A, Liu X, Ju Y, Lei L, Fang B. DNA hydrogels and their derivatives in biomedical engineering applications. J Nanobiotechnology 2024; 22:518. [PMID: 39210464 PMCID: PMC11360341 DOI: 10.1186/s12951-024-02791-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 08/20/2024] [Indexed: 09/04/2024] Open
Abstract
Deoxyribonucleotide (DNA) is uniquely programmable and biocompatible, and exhibits unique appeal as a biomaterial as it can be precisely designed and programmed to construct arbitrary shapes. DNA hydrogels are polymer networks comprising cross-linked DNA strands. As DNA hydrogels present programmability, biocompatibility, and stimulus responsiveness, they are extensively explored in the field of biomedicine. In this study, we provide an overview of recent advancements in DNA hydrogel technology. We outline the different design philosophies and methods of DNA hydrogel preparation, discuss its special physicochemical characteristics, and highlight the various uses of DNA hydrogels in biomedical domains, such as drug delivery, biosensing, tissue engineering, and cell culture. Finally, we discuss the current difficulties facing DNA hydrogels and their potential future development.
Collapse
Affiliation(s)
- Rui Wu
- Department of Plastic and Aesthetic (Burn) Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Wenting Li
- Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences School of Basic Medicine, Peking Union Medical College, Beijing, 100000, China
| | - Pu Yang
- Department of Plastic and Aesthetic (Burn) Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Naisi Shen
- Department of Plastic and Aesthetic (Burn) Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Anqi Yang
- Department of Plastic and Aesthetic (Burn) Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Xiangjun Liu
- Department of Plastic and Aesthetic (Burn) Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Yikun Ju
- Department of Plastic and Aesthetic (Burn) Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Lanjie Lei
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Institute of Translational Medicine, Zhejiang Shuren University, Hangzhou, 310015, China.
| | - Bairong Fang
- Department of Plastic and Aesthetic (Burn) Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China.
| |
Collapse
|
21
|
Tatsi E, Nitti A, Pasini D, Griffini G. Aggregation-induced emissive nanoarchitectures for luminescent solar concentrators. NANOSCALE 2024; 16:15502-15514. [PMID: 39073376 DOI: 10.1039/d4nr01910e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Aggregation-induced emission (AIE), the phenomenon by which selected luminophores undergo the enhancement of emission intensity upon aggregation, has demonstrated potential in materials and biomaterials science, and in particular in those branches for which spectral management in the solid state is of fundamental importance. Its development in the area of luminescent spectral conversion devices like luminescent solar concentrators (LSCs) is instead still in its infancy. This account aims at summarizing relevant contributions made in this field so far, with a special emphasis on the design of molecular and macromolecular architectures capable of extending their spectral breadth to the deep-red (DR) and the near-infrared (NIR) wavelengths. Because of the many prospective advantages characterizing these spectral regions in terms of photon flux density and human-eye perception, it is anticipated that further development in the design, synthesis and engineering of advanced molecular and macromolecular DR/NIR-active AIE luminophores will enable faster and easier integration of LSCs into the built environment as highly transparent, active elements for unobtrusive light-to-electricity conversion.
Collapse
Affiliation(s)
- Elisavet Tatsi
- Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano, Italy.
| | - Andrea Nitti
- Department of Chemistry and INSTM Research Unit, University of Pavia, Viale Taramelli 10, Pavia 27100, Italy.
| | - Dario Pasini
- Department of Chemistry and INSTM Research Unit, University of Pavia, Viale Taramelli 10, Pavia 27100, Italy.
| | - Gianmarco Griffini
- Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano, Italy.
| |
Collapse
|
22
|
Wang B, Hu S, Teng Y, Chen J, Wang H, Xu Y, Wang K, Xu J, Cheng Y, Gao X. Current advance of nanotechnology in diagnosis and treatment for malignant tumors. Signal Transduct Target Ther 2024; 9:200. [PMID: 39128942 PMCID: PMC11323968 DOI: 10.1038/s41392-024-01889-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 05/04/2024] [Accepted: 06/02/2024] [Indexed: 08/13/2024] Open
Abstract
Cancer remains a significant risk to human health. Nanomedicine is a new multidisciplinary field that is garnering a lot of interest and investigation. Nanomedicine shows great potential for cancer diagnosis and treatment. Specifically engineered nanoparticles can be employed as contrast agents in cancer diagnostics to enable high sensitivity and high-resolution tumor detection by imaging examinations. Novel approaches for tumor labeling and detection are also made possible by the use of nanoprobes and nanobiosensors. The achievement of targeted medication delivery in cancer therapy can be accomplished through the rational design and manufacture of nanodrug carriers. Nanoparticles have the capability to effectively transport medications or gene fragments to tumor tissues via passive or active targeting processes, thus enhancing treatment outcomes while minimizing harm to healthy tissues. Simultaneously, nanoparticles can be employed in the context of radiation sensitization and photothermal therapy to enhance the therapeutic efficacy of malignant tumors. This review presents a literature overview and summary of how nanotechnology is used in the diagnosis and treatment of malignant tumors. According to oncological diseases originating from different systems of the body and combining the pathophysiological features of cancers at different sites, we review the most recent developments in nanotechnology applications. Finally, we briefly discuss the prospects and challenges of nanotechnology in cancer.
Collapse
Affiliation(s)
- Bilan Wang
- Department of Pharmacy, Evidence-based Pharmacy Center, Children's Medicine Key Laboratory of Sichuan Province, West China Second University Hospital, Sichuan University, Chengdu, 610041, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, 610041, P.R. China
| | - Shiqi Hu
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, 610041, P.R. China
- Department of Gynecology and Obstetrics, Development and Related Diseases of Women and Children Key Laboratory of Sichuan Province, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, 610041, P.R. China
| | - Yan Teng
- Institute of Laboratory Medicine, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, P.R. China
| | - Junli Chen
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610041, China
| | - Haoyuan Wang
- Department of Neurosurgery and Institute of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Yezhen Xu
- Department of Neurosurgery and Institute of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Kaiyu Wang
- Department of Neurosurgery and Institute of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Jianguo Xu
- Department of Neurosurgery and Institute of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Yongzhong Cheng
- Department of Neurosurgery and Institute of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China.
| | - Xiang Gao
- Department of Neurosurgery and Institute of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China.
| |
Collapse
|
23
|
Chen Y, Yang Y, Zhang F. Noninvasive in vivo microscopy of single neutrophils in the mouse brain via NIR-II fluorescent nanomaterials. Nat Protoc 2024; 19:2386-2407. [PMID: 38605264 DOI: 10.1038/s41596-024-00983-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 02/12/2024] [Indexed: 04/13/2024]
Abstract
In vivo microscopy of single cells enables following pathological changes in tissues, revealing signaling networks and cell interactions critical to disease progression. However, conventional intravital microscopy at visible and near-infrared wavelengths <900 nm (NIR-I) suffers from attenuation and is typically performed following the surgical creation of an imaging window. Such surgical procedures cause the alteration of the local vasculature and induce inflammation in skin, muscle and skull, inevitably altering the microenvironment in the imaging area. Here, we detail the use of near-infrared fluorescence (NIR-II, 1,000-1,700 nm) for in vivo microscopy to circumvent attenuation in living tissues. This approach enables the noninvasive visualization of cell migration in deep tissues by labeling specific cells with NIR-II lanthanide downshifting nanoparticles exhibiting high physicochemical stability and photostability. We further developed a NIR-II fluorescence microscopy setup for in vivo imaging through the intact skull with high spatiotemporal resolution, which we use for the real-time dynamic visualization of single-neutrophil behavior in the deep brain of a mouse model of ischemic stroke. The labeled downshifting nanoparticle synthesis takes 5-6 d, the imaging system setup takes 1-2 h, the in vivo cell labeling takes 1-3 h, the in vivo NIR-II microscopic imaging takes 3-5 h and the data analysis takes 3-8 h. The procedures can be performed by users with standard laboratory training in nanomaterials research and appropriate animal handling.
Collapse
Affiliation(s)
- Ying Chen
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers and iChem, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, China
| | - Yiwei Yang
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers and iChem, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, China
| | - Fan Zhang
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers and iChem, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, China.
| |
Collapse
|
24
|
Wen Y, Liu R, Xie Y, Li M. Targeted SERS Imaging and Intraoperative Real-Time Elimination of Microscopic Tumors for Improved Breast-Conserving Surgery. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2405253. [PMID: 38820719 DOI: 10.1002/adma.202405253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 05/20/2024] [Indexed: 06/02/2024]
Abstract
Breast-conserving surgery is the favorable option for breast cancer patients owing to its advantages of less aggressiveness and better cosmetic outcomes over mastectomy. However, it often suffers from postsurgical lethal recurrence due to the incomplete removal of microscopic tumors. Here, a surface-enhanced Raman scattering (SERS) surgical strategy is reported for precise delineation of tumor margins and intraoperative real-time elimination of microscopic tumor foci, which is capable of complete surgical removal of breast tumors and significantly improve the outcomes of breast-conserving surgery without local tumor recurrence. The technique is chiefly based on the human epidermal growth factor receptor 2 (HER2)-targeting SERS probes with integrated multifunctionalities of ultrahigh sensitive detection, significant HER2 expression suppression, cell proliferation inhibition, and superior photothermal ablation. In a HER2+ breast tumor mouse model, the remarkable capability of the SERS surgical strategy for complete removal of HER2+ breast tumors through SERS-guided surgical resection and intraoperative real-time photothermal elimination is demonstrated. The results show complete eradiation of HER2+ breast tumors without local recurrence, consequently delivering a 100% tumor-free survival. Expectedly, this SERS surgical strategy holds great promise for clinical treatment of HER2+ breast cancer with improved patients' survival.
Collapse
Affiliation(s)
- Yu Wen
- School of Materials Science and Engineering, Central South University, Changsha, Hunan, 410083, China
- Furong Laboratory, Central South University, Changsha, Hunan, 410008, China
| | - Ruoxuan Liu
- School of Materials Science and Engineering, Central South University, Changsha, Hunan, 410083, China
| | - Yangcenzi Xie
- School of Materials Science and Engineering, Central South University, Changsha, Hunan, 410083, China
| | - Ming Li
- School of Materials Science and Engineering, Central South University, Changsha, Hunan, 410083, China
| |
Collapse
|
25
|
Liu TI, Wang JS, Nguyen AP, Raabe M, Quiroz Reyes CJ, Lin CH, Lin CW. Cytometry in the Short-Wave Infrared. ACS NANO 2024; 18:18534-18547. [PMID: 38973534 PMCID: PMC11256901 DOI: 10.1021/acsnano.4c04345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 06/23/2024] [Accepted: 06/24/2024] [Indexed: 07/09/2024]
Abstract
Cytometry plays a crucial role in characterizing cell properties, but its restricted optical window (400-850 nm) limits the number of stained fluorophores that can be detected simultaneously and hampers the study and utilization of short-wave infrared (SWIR; 900-1700 nm) fluorophores in cells. Here we introduce two SWIR-based methods to address these limitations: SWIR flow cytometry and SWIR image cytometry. We develop a quantification protocol for deducing cellular fluorophore mass. Both systems achieve a limit of detection of ∼0.1 fg cell-1 within a 30 min experimental time frame, using individualized, high-purity (6,5) single-wall carbon nanotubes as a model fluorophore and macrophage-like RAW264.7 as a model cell line. This high-sensitivity feature reveals that low-dose (6,5) serves as an antioxidant, and cell morphology and oxidative stress dose-dependently correlate with (6,5) uptake. Our SWIR cytometry holds immediate applicability for existing SWIR fluorophores and offers a solution to the issue of spectral overlapping in conventional cytometry.
Collapse
Affiliation(s)
- Te-I Liu
- Institute
of Atomic and Molecular Sciences, Academia
Sinica, Taipei
City 106319, Taiwan
| | - Jhih-Shan Wang
- Institute
of Atomic and Molecular Sciences, Academia
Sinica, Taipei
City 106319, Taiwan
- Department
of Materials Science and Engineering, National
Taiwan University, Taipei City 106319, Taiwan
- Department
of Physics, University of Stuttgart, Stuttgart 70174, Germany
| | - Ai-Phuong Nguyen
- Institute
of Atomic and Molecular Sciences, Academia
Sinica, Taipei
City 106319, Taiwan
- Department
of Chemistry, National Tsing Hua University, Hsinchu 300044, Taiwan
| | - Marco Raabe
- Institute
of Atomic and Molecular Sciences, Academia
Sinica, Taipei
City 106319, Taiwan
| | - Carlos Jose Quiroz Reyes
- Institute
of Atomic and Molecular Sciences, Academia
Sinica, Taipei
City 106319, Taiwan
- International
Ph.D. Program in Biomedical Engineering, Taipei Medical University, New
Taipei City 235603, Taiwan
| | - Chih-Hsin Lin
- Graduate
Institute of Nanomedicine and Medical Engineering, Taipei Medical University, New Taipei City 235603, Taiwan
| | - Ching-Wei Lin
- Institute
of Atomic and Molecular Sciences, Academia
Sinica, Taipei
City 106319, Taiwan
| |
Collapse
|
26
|
Solidoro R, Centonze A, Miciaccia M, Baldelli OM, Armenise D, Ferorelli S, Perrone MG, Scilimati A. Fluorescent imaging probes for in vivo ovarian cancer targeted detection and surgery. Med Res Rev 2024; 44:1800-1866. [PMID: 38367227 DOI: 10.1002/med.22027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 12/05/2023] [Accepted: 01/25/2024] [Indexed: 02/19/2024]
Abstract
Ovarian cancer is the most lethal gynecological cancer, with a survival rate of approximately 40% at five years from the diagno. The first-line treatment consists of cytoreductive surgery combined with chemotherapy (platinum- and taxane-based drugs). To date, the main prognostic factor is related to the complete surgical resection of tumor lesions, including occult micrometastases. The presence of minimal residual diseases not detected by visual inspection and palpation during surgery significantly increases the risk of disease relapse. Intraoperative fluorescence imaging systems have the potential to improve surgical outcomes. Fluorescent tracers administered to the patient may support surgeons for better real-time visualization of tumor lesions during cytoreductive procedures. In the last decade, consistent with the discovery of an increasing number of ovarian cancer-specific targets, a wide range of fluorescent agents were identified to be employed for intraoperatively detecting ovarian cancer. Here, we present a collection of fluorescent probes designed and developed for fluorescence-guided ovarian cancer surgery. Original articles published between 2011 and November 2022 focusing on fluorescent probes, currently under preclinical and clinical investigation, were searched in PubMed. The keywords used were targeted detection, ovarian cancer, fluorescent probe, near-infrared fluorescence, fluorescence-guided surgery, and intraoperative imaging. All identified papers were English-language full-text papers, and probes were classified based on the location of the biological target: intracellular, membrane, and extracellular.
Collapse
Affiliation(s)
- Roberta Solidoro
- Department of Pharmacy-Pharmaceutical Sciences, University of Bari, Bari, Italy
| | - Antonella Centonze
- Department of Pharmacy-Pharmaceutical Sciences, University of Bari, Bari, Italy
| | - Morena Miciaccia
- Department of Pharmacy-Pharmaceutical Sciences, University of Bari, Bari, Italy
| | - Olga Maria Baldelli
- Department of Pharmacy-Pharmaceutical Sciences, University of Bari, Bari, Italy
| | - Domenico Armenise
- Department of Pharmacy-Pharmaceutical Sciences, University of Bari, Bari, Italy
| | - Savina Ferorelli
- Department of Pharmacy-Pharmaceutical Sciences, University of Bari, Bari, Italy
| | | | - Antonio Scilimati
- Department of Pharmacy-Pharmaceutical Sciences, University of Bari, Bari, Italy
| |
Collapse
|
27
|
Lu J, Miao Y, Li Y. Cuproptosis: Advances in Stimulus-Responsive Nanomaterials for Cancer Therapy. Adv Healthc Mater 2024; 13:e2400652. [PMID: 38622782 DOI: 10.1002/adhm.202400652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 04/02/2024] [Indexed: 04/17/2024]
Abstract
Cuproptosis, a recently identified non-apoptotic programmed cell death modality, attracts considerable attention in the realm of cancer therapeutics owing to its unique cellular demise mechanisms. Since its initial report in 2022, strategies inducing or amplifying cuproptosis for cancer treatment emerge. The engineering of nano-systems to elicit cuproptosis effectively circumvents constraints associated with conventional small-molecule pharmaceutical interventions, presenting novel prospects for oncological therapy. Stimulus-responsive nanomaterials, leveraging their distinctive spatiotemporal control attributes, are investigated for their role in modulating the induction or augmentation of cuproptosis. In this comprehensive review, the physiological characteristics of cuproptosis, encompassing facets such as copper overload and depletion, coupled with regulatory factors intrinsic to cuproptosis, are expounded upon. Subsequently, design methodologies for stimulus-responsive induction or enhancement of cuproptosis, employing stimuli such as light, ultrasound, X-ray, and the tumor microenvironment, are systematically delineated. This review encompasses intricacies in nanomaterial design, insights into the therapeutic processes, and the associated advantages. Finally, challenges inherent in stimulus-responsive induction/enhancement of cuproptosis are deliberated upon and prospective insights into the future trajectory of copper-mediated cancer therapy are provided.
Collapse
Affiliation(s)
- Jiacheng Lu
- School of Materials and Chemistry, Institute of Bismuth Science, Shanghai Collaborative Innovation Center of Energy Therapy for Tumors, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Yuqing Miao
- School of Materials and Chemistry, Institute of Bismuth Science, Shanghai Collaborative Innovation Center of Energy Therapy for Tumors, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Yuhao Li
- School of Materials and Chemistry, Institute of Bismuth Science, Shanghai Collaborative Innovation Center of Energy Therapy for Tumors, University of Shanghai for Science and Technology, Shanghai, 200093, China
| |
Collapse
|
28
|
Zhang Z, Du Y, Shi X, Wang K, Qu Q, Liang Q, Ma X, He K, Chi C, Tang J, Liu B, Ji J, Wang J, Dong J, Hu Z, Tian J. NIR-II light in clinical oncology: opportunities and challenges. Nat Rev Clin Oncol 2024; 21:449-467. [PMID: 38693335 DOI: 10.1038/s41571-024-00892-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/04/2024] [Indexed: 05/03/2024]
Abstract
Novel strategies utilizing light in the second near-infrared region (NIR-II; 900-1,880 nm wavelengths) offer the potential to visualize and treat solid tumours with enhanced precision. Over the past few decades, numerous techniques leveraging NIR-II light have been developed with the aim of precisely eliminating tumours while maximally preserving organ function. During cancer surgery, NIR-II optical imaging enables the visualization of clinically occult lesions and surrounding vital structures with increased sensitivity and resolution, thereby enhancing surgical quality and improving patient prognosis. Furthermore, the use of NIR-II light promises to improve cancer phototherapy by enabling the selective delivery of increased therapeutic energy to tissues at greater depths. Initial clinical studies of NIR-II-based imaging and phototherapy have indicated impressive potential to decrease cancer recurrence, reduce complications and prolong survival. Despite the encouraging results achieved, clinical translation of innovative NIR-II techniques remains challenging and inefficient; multidisciplinary cooperation is necessary to bridge the gap between preclinical research and clinical practice, and thus accelerate the translation of technical advances into clinical benefits. In this Review, we summarize the available clinical data on NIR-II-based imaging and phototherapy, demonstrating the feasibility and utility of integrating these technologies into the treatment of cancer. We also introduce emerging NIR-II-based approaches with substantial potential to further enhance patient outcomes, while also highlighting the challenges associated with imminent clinical studies of these modalities.
Collapse
Affiliation(s)
- Zeyu Zhang
- Key Laboratory of Big Data-Based Precision Medicine of Ministry of Industry and Information Technology, School of Engineering Medicine, Beihang University, Beijing, China
| | - Yang Du
- CAS Key Laboratory of Molecular Imaging, Beijing Key Laboratory of Molecular Imaging, Chinese Academy of Sciences, Beijing, China
| | - Xiaojing Shi
- CAS Key Laboratory of Molecular Imaging, Beijing Key Laboratory of Molecular Imaging, Chinese Academy of Sciences, Beijing, China
| | - Kun Wang
- CAS Key Laboratory of Molecular Imaging, Beijing Key Laboratory of Molecular Imaging, Chinese Academy of Sciences, Beijing, China
| | - Qiaojun Qu
- Department of Radiology, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Qian Liang
- CAS Key Laboratory of Molecular Imaging, Beijing Key Laboratory of Molecular Imaging, Chinese Academy of Sciences, Beijing, China
| | - Xiaopeng Ma
- School of Control Science and Engineering, Shandong University, Jinan, China
| | - Kunshan He
- CAS Key Laboratory of Molecular Imaging, Beijing Key Laboratory of Molecular Imaging, Chinese Academy of Sciences, Beijing, China
| | - Chongwei Chi
- CAS Key Laboratory of Molecular Imaging, Beijing Key Laboratory of Molecular Imaging, Chinese Academy of Sciences, Beijing, China
| | - Jianqiang Tang
- Department of Colorectal Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Bo Liu
- Department of General Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Jiafu Ji
- Department of Gastrointestinal Surgery, Peking University Cancer Hospital and Institute, Beijing, China.
| | - Jun Wang
- Thoracic Oncology Institute/Department of Thoracic Surgery, Peking University People's Hospital, Beijing, China.
| | - Jiahong Dong
- Hepatopancreatobiliary Center, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China.
| | - Zhenhua Hu
- CAS Key Laboratory of Molecular Imaging, Beijing Key Laboratory of Molecular Imaging, Chinese Academy of Sciences, Beijing, China.
| | - Jie Tian
- Key Laboratory of Big Data-Based Precision Medicine of Ministry of Industry and Information Technology, School of Engineering Medicine, Beihang University, Beijing, China.
- CAS Key Laboratory of Molecular Imaging, Beijing Key Laboratory of Molecular Imaging, Chinese Academy of Sciences, Beijing, China.
- Engineering Research Center of Molecular and Neuro Imaging of Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, China.
| |
Collapse
|
29
|
Troncoso-Afonso L, Vinnacombe-Willson GA, García-Astrain C, Liz-Márzan LM. SERS in 3D cell models: a powerful tool in cancer research. Chem Soc Rev 2024; 53:5118-5148. [PMID: 38607302 PMCID: PMC11104264 DOI: 10.1039/d3cs01049j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Indexed: 04/13/2024]
Abstract
Unraveling the cellular and molecular mechanisms underlying tumoral processes is fundamental for the diagnosis and treatment of cancer. In this regard, three-dimensional (3D) cancer cell models more realistically mimic tumors compared to conventional 2D cell cultures and are more attractive for performing such studies. Nonetheless, the analysis of such architectures is challenging because most available techniques are destructive, resulting in the loss of biochemical information. On the contrary, surface-enhanced Raman spectroscopy (SERS) is a non-invasive analytical tool that can record the structural fingerprint of molecules present in complex biological environments. The implementation of SERS in 3D cancer models can be leveraged to track therapeutics, the production of cancer-related metabolites, different signaling and communication pathways, and to image the different cellular components and structural features. In this review, we highlight recent progress in the use of SERS for the evaluation of cancer diagnosis and therapy in 3D tumoral models. We outline strategies for the delivery and design of SERS tags and shed light on the possibilities this technique offers for studying different cellular processes, through either biosensing or bioimaging modalities. Finally, we address current challenges and future directions, such as overcoming the limitations of SERS and the need for the development of user-friendly and robust data analysis methods. Continued development of SERS 3D bioimaging and biosensing systems, techniques, and analytical strategies, can provide significant contributions for early disease detection, novel cancer therapies, and the realization of patient-tailored medicine.
Collapse
Affiliation(s)
- Lara Troncoso-Afonso
- BioNanoPlasmonics Laboratory, CIC biomaGUNE, Basque Research and Technology Alliance (BRTA), 20014 Donostia-San Sebastián, Spain.
- Department of Applied Chemistry, University of the Basque Country, 20018 Donostia-San Sebastián, Gipuzkoa, Spain
| | - Gail A Vinnacombe-Willson
- BioNanoPlasmonics Laboratory, CIC biomaGUNE, Basque Research and Technology Alliance (BRTA), 20014 Donostia-San Sebastián, Spain.
| | - Clara García-Astrain
- BioNanoPlasmonics Laboratory, CIC biomaGUNE, Basque Research and Technology Alliance (BRTA), 20014 Donostia-San Sebastián, Spain.
- Centro de Investigación Biomédica en Red de Bioingeniería Biomateriales, y Nanomedicina (CIBER-BBN), Paseo de Miramón 182, 20014 Donostia-San Sebastián, Spain
| | - Luis M Liz-Márzan
- BioNanoPlasmonics Laboratory, CIC biomaGUNE, Basque Research and Technology Alliance (BRTA), 20014 Donostia-San Sebastián, Spain.
- Centro de Investigación Biomédica en Red de Bioingeniería Biomateriales, y Nanomedicina (CIBER-BBN), Paseo de Miramón 182, 20014 Donostia-San Sebastián, Spain
- Ikerbasque Basque Foundation for Science, 48013 Bilbao, Spain
| |
Collapse
|
30
|
Tang X, Zhou Z, Zhou L, Huang Y, Zhang L, Zhao S, Hu S. Acid-Triggered Degradation of Three-In-One Ag 2S Quantum Dots for In Situ Ratiometric NIR-II Fluorescence Imaging-Guided Ion/Gas Combination Therapy. Anal Chem 2024; 96:7687-7696. [PMID: 38693877 DOI: 10.1021/acs.analchem.4c00619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2024]
Abstract
Smart theranostic nanoprobes with the integration of multiple therapeutic modalities are preferred for precise diagnosis and efficient therapy of tumors. However, it remains a big challenge to arrange the imaging and two or more kinds of therapeutic agents without weakening the intended performances. In addition, most existing fluorescence (FL) imaging agents suffer from low spatiotemporal resolution due to the short emission wavelength (<900 nm). Here, novel three-in-one Ag2S quantum dot (QD)-based smart theranostic nanoprobes were proposed for in situ ratiometric NIR-II FL imaging-guided ion/gas combination therapy of tumors. Under the acidic tumor microenvironment, three-in-one Ag2S QDs underwent destructive degradation, generating toxic Ag+ and H2S. Meanwhile, their FL emission at 1270 nm was weakened. Upon introduction of a downconversion nanoparticle (DCNP) as the delivery carrier and NIR-II FL reference signal unit, the formed Ag2S QD-based theranostic nanoprobes could achieve precise diagnosis of tumors through ratiometric NIR-II FL signals. Also, the generated Ag+ and H2S enabled specific ion/gas combination therapy toward tumors. By combining the imaging and therapeutic functions, three-in-one Ag2S QDs may open a simple yet reliable avenue to design theranostic nanoprobes.
Collapse
Affiliation(s)
- Xiaolan Tang
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, P. R. China
| | - Zhihong Zhou
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, P. R. China
| | - Liuyan Zhou
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, P. R. China
| | - Yong Huang
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, P. R. China
| | - Liangliang Zhang
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, P. R. China
| | - Shulin Zhao
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, P. R. China
| | - Shengqiang Hu
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, P. R. China
| |
Collapse
|
31
|
Valimukhametova AR, Fannon O, Topkiran UC, Dorsky A, Sottile O, Gonzalez-Rodriguez R, Coffer J, Naumov AV. Five near-infrared-emissive graphene quantum dots for multiplex bioimaging. 2D MATERIALS 2024; 11:025009. [PMID: 39149578 PMCID: PMC11326670 DOI: 10.1088/2053-1583/ad1c6e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
Due to high tissue penetration depth and low autofluorescence backgrounds, near-infrared (NIR) fluorescence imaging has recently become an advantageous diagnostic technique used in a variety of fields. However, most of the NIR fluorophores do not have therapeutic delivery capabilities, exhibit low photostabilities, and raise toxicity concerns. To address these issues, we developed and tested five types of biocompatible graphene quantum dots (GQDs) exhibiting spectrally-separated fluorescence in the NIR range of 928-1053 nm with NIR excitation. Their optical properties in the NIR are attributed to either rare-earth metal dopants (Ho-NGQDs, Yb-NGQDs, Nd-NGQDs) or defect-states (nitrogen doped GQDS (NGQDs), reduced graphene oxides) as verified by Hartree-Fock calculations. Moderate up to 1.34% quantum yields of these GQDs are well-compensated by their remarkable >4 h photostability. At the biocompatible concentrations of up to 0.5-2 mg ml-1 GQDs successfully internalize into HEK-293 cells and enable in vitro imaging in the visible and NIR. Tested all together in HEK-293 cells five GQD types enable simultaneous multiplex imaging in the NIR-I and NIR-II shown for the first time in this work for GQD platforms. Substantial photostability, spectrally-separated NIR emission, and high biocompatibility of five GQD types developed here suggest their promising potential in multianalyte testing and multiwavelength bioimaging of combination therapies.
Collapse
Affiliation(s)
- Alina R Valimukhametova
- Department of Physics and Astronomy, Texas Christian University, TCU Box 298840, Fort Worth, TX 76129, United States of America
| | - Olivia Fannon
- Department of Physics and Astronomy, Texas Christian University, TCU Box 298840, Fort Worth, TX 76129, United States of America
| | - Ugur C Topkiran
- Department of Physics and Astronomy, Texas Christian University, TCU Box 298840, Fort Worth, TX 76129, United States of America
| | - Abby Dorsky
- Department of Physics and Astronomy, Texas Christian University, TCU Box 298840, Fort Worth, TX 76129, United States of America
| | - Olivia Sottile
- Department of Physics and Astronomy, Texas Christian University, TCU Box 298840, Fort Worth, TX 76129, United States of America
| | | | - Jeffery Coffer
- Department of Chemistry and Biochemistry, Texas Christian University, TCU Box 298860, Fort Worth, TX 76129, United States of America
| | - Anton V Naumov
- Department of Physics and Astronomy, Texas Christian University, TCU Box 298840, Fort Worth, TX 76129, United States of America
| |
Collapse
|
32
|
Xu Y, Liang H, Zeng Q, He F, Liu C, Gai S, Ding H, Yang P. A bubble-enhanced lanthanide-doped up/down-conversion platform with tumor microenvironment response for dual-modal photoacoustic and near-infrared-II fluorescence imaging. J Colloid Interface Sci 2024; 659:149-159. [PMID: 38159491 DOI: 10.1016/j.jcis.2023.12.088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 12/12/2023] [Accepted: 12/13/2023] [Indexed: 01/03/2024]
Abstract
As an important tumor diagnosis strategy in precision medicine, multimodal imaging has been widely studied. However, the weak imaging signal with low spatial resolution and the constant signal of lack of specific activation severely limit its disease diagnosis. Herein, a bubble-enhanced lanthanide-based up/down-conversion platform with tumor microenvironment response for dual-mode imaging, LDNP@DMSN-Au@CaCO3 nanoparticles (named as LDAC NPs) were successfully developed. Combining the advantages of photoacoustic imaging (PAI) and the second near-infrared window (NIR-II) fluorescence imaging (FI), significantly improved the accuracy of diseases diagnosis. LDAC NPs with flower-like structure were synthesized through the encapsulation of uniform lanthanide-doped nanoparticles (NaYbF4:Ce,Er@NaYF4 named LDNPs) with dendritic mesoporous silica (DMSN). The gold nanoparticles (Au NPs) were then in situ grown on the surface of DMSN and the surface were finally coated with a layer of calcium carbonate (CaCO3). Under the excitation of the 980 nm laser, LDNPs showed strong emission of NIR-II at 1550 nm due to the doping of Ce and Er ions, showcasing excellent spatial resolution and deep tissue penetration characteristics, while the resulting visible light emission (540 nm) enables Au NPs to generate PAI signals with the aid of LDNPs via the fluorescence resonance energy transfer effect. In acidic tumoral environment, CaCO3 layer could produce CO2 microbubbles, and the PAI signals of LDAC NPs could be further enhanced with the generation of CO2 bubbles due to the bubble cavitation effect. Simultaneously, the NIR-II FI of LDAC NPs was self-enhanced with the degradation of the CaCO3. This intelligent nanoparticle with stimulus-activated dual-mode imaging capability holds great promise in future precision diagnostics.
Collapse
Affiliation(s)
- Yuening Xu
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Material Sciences and Chemical Engineering, Harbin Engineering University, Harbin 150001, PR China
| | - Haoran Liang
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Material Sciences and Chemical Engineering, Harbin Engineering University, Harbin 150001, PR China
| | - Qingtan Zeng
- Changhai Hospital Affiliated to Navy Military Medical University, Shanghai, PR China
| | - Fei He
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Material Sciences and Chemical Engineering, Harbin Engineering University, Harbin 150001, PR China.
| | - Changlin Liu
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Material Sciences and Chemical Engineering, Harbin Engineering University, Harbin 150001, PR China
| | - Shili Gai
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Material Sciences and Chemical Engineering, Harbin Engineering University, Harbin 150001, PR China
| | - He Ding
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Material Sciences and Chemical Engineering, Harbin Engineering University, Harbin 150001, PR China.
| | - Piaoping Yang
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Material Sciences and Chemical Engineering, Harbin Engineering University, Harbin 150001, PR China.
| |
Collapse
|
33
|
Yang Y, Liu Y, Weng J, Wen X, Liu Y, Ye D. A carbonic anhydrase-targeted NIR-II fluorescent cisplatin theranostic nanoparticle for combined therapy of pancreatic tumors. Biomaterials 2024; 305:122454. [PMID: 38159360 DOI: 10.1016/j.biomaterials.2023.122454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 12/22/2023] [Accepted: 12/23/2023] [Indexed: 01/03/2024]
Abstract
Optically active organic nanoparticles capable of emitting strong near-infrared II (NIR-II) fluorescence and eliciting tumor hyperthermia are promising for tumor imaging and photothermal therapy (PTT). However, their applications for the treatment of pancreatic tumors via mere PTT are challenging as both the nanoparticles and light are hard to enter the deeply located pancreatic tumors. Here, we report a NIR-II light excitable, carbonic anhydrase (CA)-targeting cisplatin prodrug-decorated nanoparticle (IRNPs-SBA/PtIV) for NIR-II fluorescence imaging (FLI)-guided combination PTT and chemotherapy of pancreatic tumors. IRNPs-SBA/PtIV is designed to hold a high photothermal conversion efficiency (PCE ≈ 65.17 %) under 1064 nm laser excitation, a strong affinity toward CA (Kd = 14.40 ± 5.49 nM), and a prominent cisplatin release profile in response to glutathione (GSH) and 1064 nm laser irradiation. We show that IRNPs-SBA/PtIV can be actively delivered into pancreatic tumors where the CA is upregulated, and emits NIR-II fluorescence to visualize tumors with a high sensitivity and penetration depth under 980 nm laser excitation. Moreover, the tumor-resided IRNPs-SBA/PtIV can efficiently inhibit the CA activity and consequently, relieve the acidic and hypoxic tumor microenvironment, benefiting to intensify chemotherapy. Guided by the NIR-II FLI, IRNPs-SBA/PtIV is capable of efficiently inhibiting pancreatic tumor growth via combinational PTT and chemotherapy with 1064 nm laser excitation under a low-power density (0.5 W cm-2, 10 min). This study demonstrates promise to fabricate NIR-II excitable nanoparticles for FLI-guided precise theranostics of pancreatic tumors.
Collapse
Affiliation(s)
- Yanling Yang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, 210023, China
| | - Yili Liu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, 210023, China
| | - Jianhui Weng
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, 210023, China
| | - Xidan Wen
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, 210023, China
| | - Ying Liu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, 210023, China
| | - Deju Ye
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, 210023, China.
| |
Collapse
|
34
|
Yang X, Zhang X, Yang Z, Cheng L, Liu X, Cao S, Yue H, Cao Y, Wang KN, Zhang Y. "Two-Stage Rocket-Propelled" Strategy Boosting Theranostic Efficacy with Mitochondria-Specific Type I-II Photosensitizers. ACS APPLIED MATERIALS & INTERFACES 2024; 16:9816-9825. [PMID: 38381128 DOI: 10.1021/acsami.3c17723] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/22/2024]
Abstract
Imaging-guided photodynamic therapy (PDT) holds great potential for tumor therapy. However, achieving the synergistic enhancement of the reactive oxygen species (ROS) generation efficiency and fluorescence emission of photosensitizers (PSs) remains a challenge, resulting in suboptimal image guidance and theranostic efficacy. The hypoxic tumor microenvironment also hinders the efficacy of PDT. Herein, we propose a "two-stage rocket-propelled" photosensitive system for tumor cell ablation. This system utilizes MitoS, a mitochondria-targeted PS, to ablate tumor cells. Importantly, MitoS can react with HClO to generate a more efficient PS, MitoSO, with a significantly improved fluorescence quantum yield. Both MitoS and MitoSO exhibit less O2-dependent type I ROS generation capability, inducing apoptosis and ferroptosis. In vivo PDT results confirm that this mitochondrial-specific type I-II cascade phototherapeutic strategy is a potent intervention for tumor downstaging. This study not only sheds light on the correlation between the PS structure and the ROS generation pathway but also proposes a novel and effective strategy for tumor downstaging intervention.
Collapse
Affiliation(s)
- Xucan Yang
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling,, Shaanxi 712100, China
| | - Xiaoxuan Zhang
- Department of Basic Medical Sciences, The 960th Hospital of PLA, Jinan, Shandong 250031, China
| | - Zhaoyi Yang
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling,, Shaanxi 712100, China
| | - Lulu Cheng
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling,, Shaanxi 712100, China
| | - Xiao Liu
- Department of Basic Medical Sciences, The 960th Hospital of PLA, Jinan, Shandong 250031, China
| | - Shixian Cao
- State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China
| | - Haiyun Yue
- Department of Basic Medical Sciences, The 960th Hospital of PLA, Jinan, Shandong 250031, China
| | - Yuan Cao
- Department of Basic Medical Sciences, The 960th Hospital of PLA, Jinan, Shandong 250031, China
| | - Kang-Nan Wang
- State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China
| | - Yanrong Zhang
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling,, Shaanxi 712100, China
| |
Collapse
|
35
|
Xu H, Yuan L, Shi Q, Tian Y, Hu F. Ultrabright NIR-II Nanoprobe for Image-Guided Accurate Resection of Tiny Metastatic Lesions. NANO LETTERS 2024; 24:1367-1375. [PMID: 38227970 DOI: 10.1021/acs.nanolett.3c04483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2024]
Abstract
Fluorescence imaging is a vital way to delineate the tumor boundaries. Here, we achieve a NIR-II aggregation-induced emission luminogen (AIEgen) with a fluorescence quantum yield (QY) of 12.6% in water through straightforward alkyl side chain modification. After loading of NIR-II AIEgen into polystyrene (PS) nanospheres, the thermal deactivation pathway is extremely limited, thereby concentrating absorption excitation on fluorescence emission. The fluorescence intensity is further enhanced by 5.4 times, the QY increases to 21.1%, and the NIR-II imaging signal is accordingly enhanced by 8.7 times, surpassing conventional DSPE-PEG carriers. The NIR-II@PS nanoprobe showcases superior resolution and tissue penetration depth compared to indocyanine green (ICG) and short-range near-infrared AIEgens. In vivo investigations underscore its tumor-to-normal tissue ratio (3.9) at 24 h post intravenous injection, enabling complete resection of ≤1 mm metastases under NIR-II bioimaging guidance. Additionally, the PS carrier-nanoparticles exhibit low toxicity in vivo, laying a promising foundation for the future design of medical nanomaterials.
Collapse
Affiliation(s)
- Huihui Xu
- Biomaterials Research Center, School of Biomedical Engineering, Southern Medical University, Guangzhou 510515, China
| | - Lishan Yuan
- Biomaterials Research Center, School of Biomedical Engineering, Southern Medical University, Guangzhou 510515, China
| | - Qiankun Shi
- Biomaterials Research Center, School of Biomedical Engineering, Southern Medical University, Guangzhou 510515, China
| | - Ye Tian
- Biomaterials Research Center, School of Biomedical Engineering, Southern Medical University, Guangzhou 510515, China
| | - Fang Hu
- Biomaterials Research Center, School of Biomedical Engineering, Southern Medical University, Guangzhou 510515, China
- Division of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou 510282 China
| |
Collapse
|
36
|
Baghdasaryan A, Liu H, Ren F, Hsu R, Jiang Y, Wang F, Zhang M, Grigoryan L, Dai H. Intratumor injected gold molecular clusters for NIR-II imaging and cancer therapy. Proc Natl Acad Sci U S A 2024; 121:e2318265121. [PMID: 38261618 PMCID: PMC10835035 DOI: 10.1073/pnas.2318265121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 12/21/2023] [Indexed: 01/25/2024] Open
Abstract
Surgical resections of solid tumors guided by visual inspection of tumor margins have been performed for over a century to treat cancer. Near-infrared (NIR) fluorescence labeling/imaging of tumor in the NIR-I (800 to 900 nm) range with systemically administrated fluorophore/tumor-targeting antibody conjugates have been introduced to improve tumor margin delineation, tumor removal accuracy, and patient survival. Here, we show Au25 molecular clusters functionalized with phosphorylcholine ligands (AuPC, ~2 nm in size) as a preclinical intratumorally injectable agent for NIR-II/SWIR (1,000 to 3,000 nm) fluorescence imaging-guided tumor resection. The AuPC clusters were found to be uniformly distributed in the 4T1 murine breast cancer tumor upon intratumor (i.t.) injection. The phosphocholine coating afforded highly stealth clusters, allowing a high percentage of AuPC to fill the tumor interstitial fluid space homogeneously. Intra-operative surgical navigation guided by imaging of the NIR-II fluorescence of AuPC allowed for complete and non-excessive tumor resection. The AuPC in tumors were also employed as a photothermal therapy (PTT) agent to uniformly heat up and eradicate tumors. Further, we performed in vivo NIR-IIb (1,500 to 1,700 nm) molecular imaging of the treated tumor using a quantum dot-Annexin V (QD-P3-Anx V) conjugate, revealing cancer cell apoptosis following PTT. The therapeutic functionalities of AuPC clusters combined with rapid renal excretion, high biocompatibility, and safety make them promising for clinical translation.
Collapse
Affiliation(s)
- Ani Baghdasaryan
- Department of Chemistry and Bio-X, Stanford University, Stanford, CA94305
| | - Haoran Liu
- Department of Chemistry and Bio-X, Stanford University, Stanford, CA94305
| | - Fuqiang Ren
- Department of Chemistry and Bio-X, Stanford University, Stanford, CA94305
| | - RuSiou Hsu
- Department of Chemistry and Bio-X, Stanford University, Stanford, CA94305
| | - Yingying Jiang
- Department of Chemistry and Bio-X, Stanford University, Stanford, CA94305
| | - Feifei Wang
- Department of Chemistry and Bio-X, Stanford University, Stanford, CA94305
| | - Mengzhen Zhang
- Department of Chemistry and Bio-X, Stanford University, Stanford, CA94305
| | - Lilit Grigoryan
- Institute for Immunity, Transplantation, and Infection, Stanford University School of Medicine, Stanford University, Stanford, CA94305
| | - Hongjie Dai
- Department of Chemistry and Bio-X, Stanford University, Stanford, CA94305
| |
Collapse
|
37
|
Yang Y, Jiang Q, Zhang F. Nanocrystals for Deep-Tissue In Vivo Luminescence Imaging in the Near-Infrared Region. Chem Rev 2024; 124:554-628. [PMID: 37991799 DOI: 10.1021/acs.chemrev.3c00506] [Citation(s) in RCA: 45] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2023]
Abstract
In vivo imaging technologies have emerged as a powerful tool for both fundamental research and clinical practice. In particular, luminescence imaging in the tissue-transparent near-infrared (NIR, 700-1700 nm) region offers tremendous potential for visualizing biological architectures and pathophysiological events in living subjects with deep tissue penetration and high imaging contrast owing to the reduced light-tissue interactions of absorption, scattering, and autofluorescence. The distinctive quantum effects of nanocrystals have been harnessed to achieve exceptional photophysical properties, establishing them as a promising category of luminescent probes. In this comprehensive review, the interactions between light and biological tissues, as well as the advantages of NIR light for in vivo luminescence imaging, are initially elaborated. Subsequently, we focus on achieving deep tissue penetration and improved imaging contrast by optimizing the performance of nanocrystal fluorophores. The ingenious design strategies of NIR nanocrystal probes are discussed, along with their respective biomedical applications in versatile in vivo luminescence imaging modalities. Finally, thought-provoking reflections on the challenges and prospects for future clinical translation of nanocrystal-based in vivo luminescence imaging in the NIR region are wisely provided.
Collapse
Affiliation(s)
- Yang Yang
- College of Energy Materials and Chemistry, State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Inner Mongolia University, Hohhot 010021, China
| | - Qunying Jiang
- College of Energy Materials and Chemistry, State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Inner Mongolia University, Hohhot 010021, China
| | - Fan Zhang
- College of Energy Materials and Chemistry, State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Inner Mongolia University, Hohhot 010021, China
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200433, China
| |
Collapse
|
38
|
Doan TKD, Umezawa M, Okubo K, Kamimura M, Soga K. Enhancing near-infrared fluorescence intensity and stability of PLGA-b-PEG micelles by introducing Gd-DOTA at the core boundary. J Biomed Mater Res B Appl Biomater 2024; 112:e35327. [PMID: 37732480 DOI: 10.1002/jbm.b.35327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 07/16/2023] [Accepted: 09/07/2023] [Indexed: 09/22/2023]
Abstract
Micelles have been extensively used in biomedicine as potential carriers of hydrophobic fluorescent dyes. Their small diameters can potentially enable them to evade recognition by the reticuloendothelial system, resulting in prolonged circulation. Nevertheless, their lack of stability in physiological environments limits the imaging utility of micelles. In particular, when a dye sensitive to water, such as IR-1061, is encapsulated in the micelle core, the destabilized structure leads to interactions between water and dye, degrading the fluorescence. In this study, we investigated a method to improve micelle stability utilizing the electrical effect of gadolinium (Gd3+ ) and tetraazacyclododecane tetraacetic acid (DOTA), introduced into the micelles. Three micellar structures, one containing a poly(lactic-co-glycolic acid)-block-poly(ethylene glycol) (PLGA-b-PEG) block copolymer, and two other structures, including PLGA-b-PEG with DOTA or Gd-DOTA introduced at the boundary of PLGA and PEG, were prepared with IR-1061 in the core. Structures that contained DOTA at the border of the PLGA core and PEG shell exhibited much higher fluorescence intensity than probes without DOTA. With Gd3+ ions at the DOTA center, fluorescence stability was enhanced remarkably in physiological environments. Most interesting is the finding that fluorescence is enhanced with increased Gd-DOTA concentrations. In conclusion, we found that overall fluorescence and stability are improved by introducing Gd-DOTA at the boundary of the PLGA core and PEG shell. Improving micelle stability is crucial for further biomedical applications of micellar probes such as bimodal fluorescence and magnetic resonance imaging.
Collapse
Affiliation(s)
- Thi Kim Dung Doan
- Research Institute for Biomedical Science, Tokyo University of Science, Chiba, Japan
- Division of Functional Imaging, Exploratory Oncology Research & Clinical Trial Center, National Cancer Center, Kashiwa, Japan
| | - Masakazu Umezawa
- Department of Material Science and Technology, Tokyo University of Science, Tokyo, Japan
| | - Kyohei Okubo
- Department of Material Science and Technology, Tokyo University of Science, Tokyo, Japan
| | - Masao Kamimura
- Department of Material Science and Technology, Tokyo University of Science, Tokyo, Japan
| | - Kohei Soga
- Research Institute for Biomedical Science, Tokyo University of Science, Chiba, Japan
- Department of Material Science and Technology, Tokyo University of Science, Tokyo, Japan
| |
Collapse
|
39
|
Xu Z, Tao W, Qian J, Zhao H, Peng Y, Sun T, Gao G, Ling C, Li P, Chen J, Ling Y. Dual Tumor-Selective β-Carboline-Based Fluorescent Probe for High-Contrast/Rapid Diagnosis of Clinical Tumor Tissues. Mol Pharm 2024; 21:152-163. [PMID: 38113058 DOI: 10.1021/acs.molpharmaceut.3c00689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
Given that precise/rapid intraoperative tumor margin identification is still challenging, novel fluorescent probes HY and HYM, based on acidic tumor microenvironment (TME) activation and organic anion transporting polypeptide (OATPs)-mediated selective uptake, were constructed and synthesized. Both of them possessed acidic pH-activatable and reversible fluorescence as well as large Stokes shift. Compared with HY, HYM had a higher (over 9-fold) enhancement in fluorescence with pH ranging from 7.6 to 4.0, and the fluorescence quantum yield of HYM (ΦF = 0.49) at pH = 4.0 was 8-fold stronger than that (ΦF = 0.06) at pH = 7.4. Mechanism research demonstrated that acidic TME-induced protonation of the pyridine N atom on β-carbolines accounted for the pH-sensitive fluorescence by influencing the intramolecular charge transfer (ICT) effect. Furthermore, HYM selectively lit up cancer cells and tumor tissues not only by "off-on" fluorescence but also by OATPs (overexpressed on cancer cells)-mediated cancer cellular internalization, offering dual tumor selectivity for precise visualization of tumor mass and intraoperative guidance upon in situ spraying. Most importantly, HYM enabled rapid and high-contrast (tumor-to-normal tissue ratios > 6) human tumor margin identification in clinical tumor tissues by simple spraying within 6 min, being promising for aiding in clinical surgical resection.
Collapse
Affiliation(s)
- Zhongyuan Xu
- School of Pharmacy and Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong Key Laboratory of Small Molecular Drug Innovation, Nantong University, 226001 Nantong, Jiangsu, P. R. China
- Department of Hepatobiliary Surgery, Nantong Third People's Hospital and the Third Affiliated Hospital of Nantong University, 226001 Nantong, Jiangsu, P. R. China
| | - Weizhi Tao
- School of Pharmacy and Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong Key Laboratory of Small Molecular Drug Innovation, Nantong University, 226001 Nantong, Jiangsu, P. R. China
| | - Jianqiang Qian
- School of Pharmacy and Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong Key Laboratory of Small Molecular Drug Innovation, Nantong University, 226001 Nantong, Jiangsu, P. R. China
| | - Huimin Zhao
- School of Pharmacy and Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong Key Laboratory of Small Molecular Drug Innovation, Nantong University, 226001 Nantong, Jiangsu, P. R. China
| | - Yiqian Peng
- School of Pharmacy and Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong Key Laboratory of Small Molecular Drug Innovation, Nantong University, 226001 Nantong, Jiangsu, P. R. China
| | - Tiantian Sun
- School of Pharmacy and Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong Key Laboratory of Small Molecular Drug Innovation, Nantong University, 226001 Nantong, Jiangsu, P. R. China
| | - Ge Gao
- School of Pharmacy and Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong Key Laboratory of Small Molecular Drug Innovation, Nantong University, 226001 Nantong, Jiangsu, P. R. China
| | - Changchun Ling
- Department of General Surgery, Affiliated Hospital of Nantong University, 226001 Nantong, Jiangsu, P. R. China
| | - Peng Li
- Department of General Surgery, Affiliated Hospital of Nantong University, 226001 Nantong, Jiangsu, P. R. China
| | - Jun Chen
- Department of Hepatobiliary Surgery, Nantong Third People's Hospital and the Third Affiliated Hospital of Nantong University, 226001 Nantong, Jiangsu, P. R. China
| | - Yong Ling
- School of Pharmacy and Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong Key Laboratory of Small Molecular Drug Innovation, Nantong University, 226001 Nantong, Jiangsu, P. R. China
| |
Collapse
|
40
|
Xu R, Liu J, Cao H, Lin D, Chen X, Han F, Weng X, Wang Y, Liu L, Yu B, Qu J. In Vivo High-Contrast Biomedical Imaging in the Second Near-Infrared Window Using Ultrabright Rare-Earth Nanoparticles. NANO LETTERS 2023; 23:11203-11210. [PMID: 38088357 PMCID: PMC10723063 DOI: 10.1021/acs.nanolett.3c03698] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 11/17/2023] [Accepted: 11/17/2023] [Indexed: 12/17/2023]
Abstract
Intravital luminescence imaging in the second near-infrared window (NIR-II) enables noninvasive deep-tissue imaging with high spatiotemporal resolution of live mammals because of the properties of suppressed light scattering and diminished autofluorescence in the long-wavelength region. Herein, we present the synthesis of a downconversion luminescence rare-earth nanocrystal with a core-shell-shell structure (NaYF4@NaYbF4:Er,Ce@NaYF4:Ca). The structure efficiently maximized the doping concentration of the sensitizers and increased Er3+ luminescence while preventing cross relaxation. Furthermore, Ce3+ doping in the middle layer efficiently limited the upconversion pathway and increased downconversion by 24-fold to produce bright 1550 nm luminescence under 975 nm excitation. Finally, optimizing the inert shell coating of NaYF4:Ca and liposome encapsulation reduced the luminescence quenching impact by water and improved biological metabolism. Thus, our synthesized biocompatible, ultrabright NIR-II probes provide high contrast and resolution for through-scalp and through-skull luminescence imaging of mice cerebral vasculature without craniotomy as well as imaging of mouse hindlimb microvessels.
Collapse
Affiliation(s)
- Rong Xu
- Key
Laboratory of Optoelectronic Devices and Systems of Ministry of Education
and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Jiantao Liu
- Key
Laboratory of Optoelectronic Devices and Systems of Ministry of Education
and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Huiqun Cao
- College
of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
| | - Danying Lin
- Key
Laboratory of Optoelectronic Devices and Systems of Ministry of Education
and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Xian Chen
- Shenzhen
Key Laboratory of New Information Display and Storage Materials, College
of Materials Science and Engineering, Shenzhen
University, Shenzhen 518060, China
| | - Fuhong Han
- Key
Laboratory of Optoelectronic Devices and Systems of Ministry of Education
and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Xiaoyu Weng
- Key
Laboratory of Optoelectronic Devices and Systems of Ministry of Education
and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Yiping Wang
- Key
Laboratory of Optoelectronic Devices and Systems of Ministry of Education
and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Liwei Liu
- Key
Laboratory of Optoelectronic Devices and Systems of Ministry of Education
and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Bin Yu
- Key
Laboratory of Optoelectronic Devices and Systems of Ministry of Education
and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Junle Qu
- Key
Laboratory of Optoelectronic Devices and Systems of Ministry of Education
and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| |
Collapse
|
41
|
Zou Y, Hu C, Lv S, Shao Y, Teng B, You F, Xu H, Zhong D. Realization of Broadband Near-Infrared Emission with High Thermal Stability in YGa 3(BO 3) 4: Cr 3+ Borate Phosphor. Inorg Chem 2023; 62:19507-19515. [PMID: 37975536 DOI: 10.1021/acs.inorgchem.3c02572] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
As a key material for phosphor-converted light-emitting diodes (pc-LEDs) applications, broadband near-infrared (NIR) phosphors currently face poor thermal stability issues. In this work, we synthesized a broadband near-infrared phosphor YGa3(BO3)4: Cr3+ (YGBO: Cr3+) with a high thermal stability. The YGBO: Cr3+ sample exhibits a broadband near-infrared emission centered at 770 nm with a full width at half-maximum (fwhm) of 2130 cm-1 under blue light excitation. Benefiting from the borate host crystal's strong structural rigidity, wide optical band gap, and weak electron-phonon coupling strength, YGBO: Cr3+ demonstrates strong luminescence thermal stability, and the corresponding luminescence intensity can maintain 80% at 150 °C compared to room temperature. Furthermore, we fabricated a pc-LED device using a blue light chip and YGBO: Cr3+ phosphor, and confirmed its application potential as a near-infrared light source in the spectral analysis of fruit freshness.
Collapse
Affiliation(s)
- Yanfei Zou
- College of Physics, University-Industry Joint Center for Ocean Observation and Broadband Communication, Qingdao University, Qingdao 266071, China
| | - Chen Hu
- College of Physics, University-Industry Joint Center for Ocean Observation and Broadband Communication, Qingdao University, Qingdao 266071, China
| | - Shoukun Lv
- College of Physics, University-Industry Joint Center for Ocean Observation and Broadband Communication, Qingdao University, Qingdao 266071, China
| | - Yimeng Shao
- College of Physics, University-Industry Joint Center for Ocean Observation and Broadband Communication, Qingdao University, Qingdao 266071, China
| | - Bing Teng
- College of Physics, University-Industry Joint Center for Ocean Observation and Broadband Communication, Qingdao University, Qingdao 266071, China
- National Demonstration Center for Experiment Applied Physics Education (Qingdao University), Qingdao 266071, China
- Weihai Innovation Research Institute of Qingdao University, Weihai 264200, China
| | - Fei You
- College of Physics, University-Industry Joint Center for Ocean Observation and Broadband Communication, Qingdao University, Qingdao 266071, China
| | - Hui Xu
- CRYSTECH Inc., Qingdao 266107, China
| | - Degao Zhong
- College of Physics, University-Industry Joint Center for Ocean Observation and Broadband Communication, Qingdao University, Qingdao 266071, China
- National Demonstration Center for Experiment Applied Physics Education (Qingdao University), Qingdao 266071, China
- Weihai Innovation Research Institute of Qingdao University, Weihai 264200, China
| |
Collapse
|
42
|
Zhao F, Hu J, Guan D, Liu J, Zhang X, Ling H, Zhang Y, Liu Q. Boosting Dye-Sensitized Luminescence by Enhanced Short-Range Triplet Energy Transfer. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2304907. [PMID: 37566538 DOI: 10.1002/adma.202304907] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 07/26/2023] [Indexed: 08/13/2023]
Abstract
Dye-sensitization can enhance lanthanide-based upconversion luminescence, but is hindered by interfacial energy transfer from organic dye to lanthanide ion Yb3+ . To overcome these limitations, modifying coordination sites on dye conjugated structures and minimizing the distance between fluorescence cores and Yb3+ in upconversion nanoparticles (UCNPs) are proposed. The specially designed near-infrared (NIR) dye, disulfo-indocyanine green (disulfo-ICG), acts as the antenna molecule and exhibits a 2413-fold increase in luminescence under 808 nm excitation compared to UCNPs alone using 980 nm irradiation. The significant improvement is attributed to the high energy transfer efficiency of 72.1% from disulfo-ICG to Yb3+ in UCNPs, with majority of energy originating from triplet state (T1 ) of disulfo-ICG. Shortening the distance between the dye and lanthanide ions increases the probability of energy transfer and strengthens the heavy atom effect, leading to enhanced T1 generation and improved dye-triplet sensitization upconversion. Importantly, this approach also applies to 730 nm excitation Cy7-SO3 sensitization system, overcoming the spectral mismatch between Cy7 and Yb3+ and achieving a 52-fold enhancement in luminescence. Furthermore, the enhancement of upconversion at single particle level through dye-sensitization is demonstrated. This strategy expands the range of NIR dyes for sensitization and opens new avenues for highly efficient dye-sensitized upconversion systems.
Collapse
Affiliation(s)
- Fei Zhao
- Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200438, China
| | - Jialing Hu
- Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200438, China
| | - Daoming Guan
- Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200438, China
| | - Jinyang Liu
- Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200438, China
| | - Xuebo Zhang
- Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200438, China
| | - Huan Ling
- Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200438, China
| | - Yunxiang Zhang
- Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200438, China
| | - Qian Liu
- Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200438, China
| |
Collapse
|
43
|
Dai W, Chen Y, Xue Y, Wan M, Mao C, Zhang K. Progress in the Treatment of Peritoneal Metastatic Cancer and the Application of Therapeutic Nanoagents. ACS APPLIED BIO MATERIALS 2023; 6:4518-4548. [PMID: 37916787 DOI: 10.1021/acsabm.3c00662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2023]
Abstract
Peritoneal metastatic cancer is a cancer caused by the direct growth of cancer cells from the primary site through the bloodstream, lymph, or peritoneum, which is a difficult part of current clinical treatment. In the abdominal cavity of patients with metastatic peritoneal cancer, there are usually nodules of various sizes and malignant ascites. Among them, nodules of different sizes can obstruct intestinal movement and form intestinal obstruction, while malignant ascites can cause abdominal distension and discomfort, and even cause patients to have difficulty in breathing. The pathology and physiology of peritoneal metastatic cancer are complex and not fully understood. The main hypothesis is "seed" and "soil"; i.e., cells from the primary tumor are shed and implanted in the peritoneal cavity (peritoneal metastasis). In the last two decades, the main treatment modalities used clinically are cytoreductive surgery (CRS), systemic chemotherapy, intraperitoneal chemotherapy, and combined treatment, all of which help to improve patient survival and quality of life (QOL). However, the small-molecule chemotherapeutic drugs used clinically still have problems such as rapid drug metabolism and systemic toxicity. With the rapid development of nanotechnology in recent years, therapeutic nanoagents for the treatment of peritoneal metastatic cancer have been gradually developed, which has improved the therapeutic effect and reduced the systemic toxicity of small-molecule chemotherapeutic drugs to a certain extent. In addition, nanomaterials have been developed not only as therapeutic agents but also as imaging agents to guide peritoneal tumor CRS. In this review, we describe the etiology and pathological features of peritoneal metastatic cancer, discuss in detail the clinical treatments that have been used for peritoneal metastatic cancer, and analyze the advantages and disadvantages of the different clinical treatments and the QOL of the treated patients, followed by a discussion focusing on the progress, obstacles, and challenges in the use of therapeutic nanoagents in peritoneal metastatic cancer. Finally, therapeutic nanoagents and therapeutic tools that may be used in the future for the treatment of peritoneal metastatic cancer are prospected.
Collapse
Affiliation(s)
- Wenjun Dai
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Yidan Chen
- Department of Radiation Oncology, Affiliated Hangzhou Cancer Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China
| | - Yunxin Xue
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Mimi Wan
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Chun Mao
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Ke Zhang
- Department of Radiation Oncology, Affiliated Hangzhou Cancer Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China
| |
Collapse
|
44
|
Wu M, Gong D, Zhou Y, Zha Z, Xia X. Activatable probes with potential for intraoperative tumor-specific fluorescence-imaging guided surgery. J Mater Chem B 2023; 11:9777-9797. [PMID: 37749982 DOI: 10.1039/d3tb01590d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2023]
Abstract
Owing to societal development and aging population, the impact of cancer on human health and quality of life has increased. Early detection and surgical treatment are the most effective approaches for most cancer patients. As the scope of conventional tumor resection is determined by auxiliary examination and surgeon experience, there is often insufficient recognition of tiny tumors. The ability to detect such tumors can be improved by using fluorescent tumor-specific probes for surgical navigation. This review mainly describes the design principles and mechanisms of activatable probes for the fluorescence imaging of tumors. This type of probe is nonfluorescent in normal tissue but exhibits obvious fluorescence emission upon encountering tumor-specific substrates, such as enzymes or bioactive molecules, or changes in the microenvironment, such as a low pH. In some cases, a single-factor response does not guarantee the effective fluorescence labeling of tumors. Therefore, two-factor-activatable fluorescence imaging probes that react with two specific factors in tumor cells have also been developed. Compared with single biomarker testing, the simultaneous monitoring of multiple biomarkers may provide additional insight into the role of these substances in cancer development and aid in improving the accuracy of early cancer diagnosis. Research and progress in this field can provide new methods for precision medicine and targeted therapy. The development of new approaches for early diagnosis and treatment can effectively improve the prognosis of cancer patients and help enhance their quality of life.
Collapse
Affiliation(s)
- Mingzhu Wu
- Department of Obstetrics and Gynecology, Anhui Provincial Children's Hospital, Children's Hospital of Fudan University Anhui Hospital, Children's Hospital of Anhui Medical University, Hefei, Anhui 230051, P. R. China.
| | - Deyan Gong
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui 230009, P. R. China.
| | - Yuanyuan Zhou
- Department of Obstetrics and Gynecology, Anhui Provincial Children's Hospital, Children's Hospital of Fudan University Anhui Hospital, Children's Hospital of Anhui Medical University, Hefei, Anhui 230051, P. R. China.
| | - Zhengbao Zha
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui 230009, P. R. China.
| | - Xiaoping Xia
- Department of Obstetrics and Gynecology, Anhui Provincial Children's Hospital, Children's Hospital of Fudan University Anhui Hospital, Children's Hospital of Anhui Medical University, Hefei, Anhui 230051, P. R. China.
| |
Collapse
|
45
|
Rainu SK, Ramachandran RG, Parameswaran S, Krishnakumar S, Singh N. Advancements in Intraoperative Near-Infrared Fluorescence Imaging for Accurate Tumor Resection: A Promising Technique for Improved Surgical Outcomes and Patient Survival. ACS Biomater Sci Eng 2023; 9:5504-5526. [PMID: 37661342 DOI: 10.1021/acsbiomaterials.3c00828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
Clear surgical margins for solid tumor resection are essential for preventing cancer recurrence and improving overall patient survival. Complete resection of tumors is often limited by a surgeon's ability to accurately locate malignant tissues and differentiate them from healthy tissue. Therefore, techniques or imaging modalities are required that would ease the identification and resection of tumors by real-time intraoperative visualization of tumors. Although conventional imaging techniques such as positron emission tomography (PET), computed tomography (CT), magnetic resonance imaging (MRI), or radiography play an essential role in preoperative diagnostics, these cannot be utilized in intraoperative tumor detection due to their large size, high cost, long imaging time, and lack of cancer specificity. The inception of several imaging techniques has paved the way to intraoperative tumor margin detection with a high degree of sensitivity and specificity. Particularly, molecular imaging using near-infrared fluorescence (NIRF) based nanoprobes provides superior imaging quality due to high signal-to-noise ratio, deep penetration to tissues, and low autofluorescence, enabling accurate tumor resection and improved survival rates. In this review, we discuss the recent developments in imaging technologies, specifically focusing on NIRF nanoprobes that aid in highly specific intraoperative surgeries with real-time recognition of tumor margins.
Collapse
Affiliation(s)
- Simran Kaur Rainu
- Center for Biomedical Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Remya Girija Ramachandran
- L&T Ocular Pathology Department, Vision Research Foundation, Kamalnayan Bajaj Institute for Research in Vision and Ophthalmology, Chennai 600006, India
| | - Sowmya Parameswaran
- L&T Ocular Pathology Department, Vision Research Foundation, Kamalnayan Bajaj Institute for Research in Vision and Ophthalmology, Chennai 600006, India
| | - Subramanian Krishnakumar
- L&T Ocular Pathology Department, Vision Research Foundation, Kamalnayan Bajaj Institute for Research in Vision and Ophthalmology, Chennai 600006, India
| | - Neetu Singh
- Center for Biomedical Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
- Biomedical Engineering Unit, All India Institute of Medical Sciences, Ansari Nagar, New Delhi 110029, India
| |
Collapse
|
46
|
Lee G, Jeong WH, Kim B, Jeon S, Smith AM, Seo J, Suzuki K, Kim JY, Lee H, Choi H, Chung DS, Choi J, Choi H, Lim SJ. Design and Synthesis of CdHgSe/HgS/CdZnS Core/Multi-Shell Quantum Dots Exhibiting High-Quantum-Yield Tissue-Penetrating Shortwave Infrared Luminescence. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2301161. [PMID: 37127870 PMCID: PMC11341011 DOI: 10.1002/smll.202301161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 04/18/2023] [Indexed: 05/03/2023]
Abstract
Cdx Hg1- x Se/HgS/Cdy Zn1- y S core/multi-shell quantum dots (QDs) exhibiting bright tissue-penetrating shortwave infrared (SWIR; 1000-1700 nm) photoluminescence (PL) are engineered. The new structure consists of a quasi-type-II Cdx Hg1- x Se/HgS core/inner shell domain creating luminescent bandgap tunable across SWIR window and a wide-bandgap Cdy Zn1- y S outer shell boosting the PL quantum yield (QY). This compositional sequence also facilitates uniform and coherent shell growth by minimizing interfacial lattice mismatches, resulting in high QYs in both organic (40-80%) and aqueous (20-70%) solvents with maximum QYs of 87 and 73%, respectively, which are comparable to those of brightest visible-to-near infrared QDs. Moreover, they maintain bright PL in a photocurable resin (QY 40%, peak wavelength ≈ 1300 nm), enabling the fabrication of SWIR-luminescent composites of diverse morphology and concentration. These composites are used to localize controlled amounts of SWIR QDs inside artificial (Intralipid) and porcine tissues and quantitatively evaluate the applicability as luminescent probes for deep-tissue imaging.
Collapse
Affiliation(s)
- Gyudong Lee
- Department of Energy Science and Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST), 333 Techno Jungang Daero, Hyeonpung-Eup, Dalseong-Gun, Daegu, 42988, Republic of Korea
- Division of Nanotechnology, DGIST, 333 Techno Jungang Daero, Hyeonpung-Eup, Dalseong-Gun, Daegu, 42988, Republic of Korea
| | - Woo Hyeon Jeong
- Division of Nanotechnology, DGIST, 333 Techno Jungang Daero, Hyeonpung-Eup, Dalseong-Gun, Daegu, 42988, Republic of Korea
- Department of Chemistry and Research Institute for Natural Science, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul, 04763, Republic of Korea
| | - Beomjoo Kim
- Department of Robotics Engineering, DGIST, 333 Techno Jungang Daero, Hyeonpung-Eup, Dalseong-Gun, Daegu, 42988, Republic of Korea
- DGIST-ETH Microrobotics Research Center, DGIST, 333 Techno Jungang Daero, Hyeonpung-Eup, Dalseong-Gun, Daegu, 42988, Republic of Korea
| | - Sungwoong Jeon
- DGIST-ETH Microrobotics Research Center, DGIST, 333 Techno Jungang Daero, Hyeonpung-Eup, Dalseong-Gun, Daegu, 42988, Republic of Korea
- IMsystem Corp., DGIST, 333 Techno Jungang Daero, Hyeonpung-Eup, Dalseong-Gun, Daegu, 42988, Republic of Korea
| | - Andrew M Smith
- Department of Bioengineering, University of Illinois Urbana-Champaign (UIUC), Urbana, IL, 61801, USA
- Department of Materials Science and Engineering, UIUC, Urbana, IL, 61801, USA
- Cancer Center at Illinois, UIUC, Urbana, IL, 61801, USA
- Carle Illinois College of Medicine, UIUC, Urbana, IL, 61801, USA
| | - Jongcheol Seo
- Department of Chemistry, POSTECH, 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongsangbuk-Do, 37673, Republic of Korea
| | - Kengo Suzuki
- Applied Spectroscopy System Department, Hamamatsu Photonics K.K., 812 Joko-Cho, Higashi-Ku, Hamamatsu City, 431-3196, Japan
| | - Jin-Young Kim
- DGIST-ETH Microrobotics Research Center, DGIST, 333 Techno Jungang Daero, Hyeonpung-Eup, Dalseong-Gun, Daegu, 42988, Republic of Korea
- Division of Biotechnology, DGIST, 333 Techno Jungang Daero, Hyeonpung-Eup, Dalseong-Gun, Daegu, 42988, Republic of Korea
| | - Hyunki Lee
- DGIST-ETH Microrobotics Research Center, DGIST, 333 Techno Jungang Daero, Hyeonpung-Eup, Dalseong-Gun, Daegu, 42988, Republic of Korea
- Division of Intelligent Robot, DGIST, 333 Techno Jungang Daero, Hyeonpung-Eup, Dalseong-Gun, Daegu, 42988, Republic of Korea
| | - Hongsoo Choi
- Department of Robotics Engineering, DGIST, 333 Techno Jungang Daero, Hyeonpung-Eup, Dalseong-Gun, Daegu, 42988, Republic of Korea
- DGIST-ETH Microrobotics Research Center, DGIST, 333 Techno Jungang Daero, Hyeonpung-Eup, Dalseong-Gun, Daegu, 42988, Republic of Korea
| | - Dae Sung Chung
- Department of Chemical Engineering, POSTECH, 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongsangbuk-Do, 37673, Republic of Korea
| | - Jongmin Choi
- Department of Energy Science and Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST), 333 Techno Jungang Daero, Hyeonpung-Eup, Dalseong-Gun, Daegu, 42988, Republic of Korea
| | - Hyosung Choi
- Department of Chemistry and Research Institute for Natural Science, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul, 04763, Republic of Korea
| | - Sung Jun Lim
- Division of Nanotechnology, DGIST, 333 Techno Jungang Daero, Hyeonpung-Eup, Dalseong-Gun, Daegu, 42988, Republic of Korea
| |
Collapse
|
47
|
Wang Z, Zhao C, Li Y, Wang J, Hou D, Wang L, Wang Y, Wang X, Liu X, Wang H, Xu W. Photostable Cascade-Activatable Peptide Self-Assembly on a Cancer Cell Membrane for High-Performance Identification of Human Bladder Cancer. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2210732. [PMID: 37172955 DOI: 10.1002/adma.202210732] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 05/10/2023] [Indexed: 05/15/2023]
Abstract
Missed or residual tumor burden results in high risk for bladder cancer relapse. However, existing fluorescent probes cannot meet the clinical needs because of inevitable photobleaching properties. Performance can be improved by maintaining intensive and sustained fluorescence signals via resistance to intraoperative saline flushing and intrinsic fluorescent decay, providing surgeons with sufficiently clear and high-contrast surgical fields, avoiding residual tumors or missed diagnosis. This study designs and synthesizes a photostable cascade-activatable peptide, a target reaction-induced aggregation peptide (TRAP) system, which can construct polypeptide-based nanofibers in situ on the cell membrane to achieve long-term and stable imaging of bladder cancer. The probe has two parts: a target peptide (TP) targets CD44v6 to recognize bladder cancer cells, and a reaction-induced aggregation peptide (RAP) is introduced, which effectively reacts with the TP via a click reaction to enhance the hydrophobicity of the whole molecule, assembling into nanofibers and further nanonetworks. Accordingly, probe retention on the cell membrane is prolonged, and photostability is significantly improved. Finally, the TRAP system is successfully employed in the high-performance identification of human bladder cancer in ex vivo bladder tumor tissues. This cascade-activatable peptide molecular probe based on the TRAP system enables efficient and stable imaging of bladder cancer.
Collapse
Affiliation(s)
- Ziqi Wang
- NHC and CAMS Key Laboratory of Molecular Probes and Targeted Theranostics, Harbin Medical University, Harbin, 150001, China
- Department of Urology, Harbin Medical University Cancer Hospital, Harbin, 150081, China
| | - Changhao Zhao
- NHC and CAMS Key Laboratory of Molecular Probes and Targeted Theranostics, Harbin Medical University, Harbin, 150001, China
- Department of Urology, Harbin Medical University Cancer Hospital, Harbin, 150081, China
| | - Yaowei Li
- NHC and CAMS Key Laboratory of Molecular Probes and Targeted Theranostics, Harbin Medical University, Harbin, 150001, China
- Department of Urology, Harbin Medical University Cancer Hospital, Harbin, 150081, China
| | - Jiaqi Wang
- NHC and CAMS Key Laboratory of Molecular Probes and Targeted Theranostics, Harbin Medical University, Harbin, 150001, China
- Department of Urology, Harbin Medical University Cancer Hospital, Harbin, 150081, China
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology (NCNST), Beijing, 100190, China
| | - Dayong Hou
- NHC and CAMS Key Laboratory of Molecular Probes and Targeted Theranostics, Harbin Medical University, Harbin, 150001, China
- Department of Urology, Harbin Medical University Cancer Hospital, Harbin, 150081, China
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology (NCNST), Beijing, 100190, China
| | - Lu Wang
- Department of Urology, the Fourth Hospital of Harbin Medical University, Heilongjiang Key Laboratory of Scientific Research in Urology, Harbin, 150001, China
| | - Yueze Wang
- NHC and CAMS Key Laboratory of Molecular Probes and Targeted Theranostics, Harbin Medical University, Harbin, 150001, China
- Department of Urology, Harbin Medical University Cancer Hospital, Harbin, 150081, China
| | - Xunwei Wang
- Department of Urology, the Fourth Hospital of Harbin Medical University, Heilongjiang Key Laboratory of Scientific Research in Urology, Harbin, 150001, China
| | - Xiao Liu
- NHC and CAMS Key Laboratory of Molecular Probes and Targeted Theranostics, Harbin Medical University, Harbin, 150001, China
- Department of Urology, Harbin Medical University Cancer Hospital, Harbin, 150081, China
| | - Hao Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology (NCNST), Beijing, 100190, China
| | - Wanhai Xu
- NHC and CAMS Key Laboratory of Molecular Probes and Targeted Theranostics, Harbin Medical University, Harbin, 150001, China
- Department of Urology, Harbin Medical University Cancer Hospital, Harbin, 150081, China
| |
Collapse
|
48
|
Lu Q, Yu H, Zhao T, Zhu G, Li X. Nanoparticles with transformable physicochemical properties for overcoming biological barriers. NANOSCALE 2023; 15:13202-13223. [PMID: 37526946 DOI: 10.1039/d3nr01332d] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/02/2023]
Abstract
In recent years, tremendous progress has been made in the development of nanomedicines for advanced therapeutics, yet their unsatisfactory targeting ability hinders the further application of nanomedicines. Nanomaterials undergo a series of processes, from intravenous injection to precise delivery at target sites. Each process faces different or even contradictory requirements for nanoparticles to pass through biological barriers. To overcome biological barriers, researchers have been developing nanomedicines with transformable physicochemical properties in recent years. Physicochemical transformability enables nanomedicines to responsively switch their physicochemical properties, including size, shape, surface charge, etc., thus enabling them to cross a series of biological barriers and achieve maximum delivery efficiency. In this review, we summarize recent developments in nanomedicines with transformable physicochemical properties. First, the biological dilemmas faced by nanomedicines are analyzed. Furthermore, the design and synthesis of nanomaterials with transformable physicochemical properties in terms of size, charge, and shape are summarized. Other switchable physicochemical parameters such as mobility, roughness and mechanical properties, which have been sought after most recently, are also discussed. Finally, the prospects and challenges for nanomedicines with transformable physicochemical properties are highlighted.
Collapse
Affiliation(s)
- Qianqian Lu
- Department of Chemistry, Laboratory of Advanced Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, Collaborative Innovation Center of Chemistry for Energy Materials (2011-iChEM), Fudan University, Shanghai 200433, P. R. China.
| | - Hongyue Yu
- Department of Chemistry, Laboratory of Advanced Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, Collaborative Innovation Center of Chemistry for Energy Materials (2011-iChEM), Fudan University, Shanghai 200433, P. R. China.
| | - Tiancong Zhao
- Department of Chemistry, Laboratory of Advanced Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, Collaborative Innovation Center of Chemistry for Energy Materials (2011-iChEM), Fudan University, Shanghai 200433, P. R. China.
| | - Guanjia Zhu
- Institute of Nanochemistry and Nanobiology, Shanghai University, Shanghai 200444, P. R. China.
| | - Xiaomin Li
- Department of Chemistry, Laboratory of Advanced Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, Collaborative Innovation Center of Chemistry for Energy Materials (2011-iChEM), Fudan University, Shanghai 200433, P. R. China.
| |
Collapse
|
49
|
Xu Z, Qian J, Wu H, Meng C, Ding Q, Tao W, Ling CC, Chen J, Li P, Yang Y, Ling Y. Novel pH-activatable NIR fluorogenic spray mediated near-instant and precise tumor margins identification in human cancer tissues for surgical resection. Theranostics 2023; 13:4497-4511. [PMID: 37649597 PMCID: PMC10465228 DOI: 10.7150/thno.85651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 07/31/2023] [Indexed: 09/01/2023] Open
Abstract
Rationale: Challenges such as developing a universal tumor-specific probe for tumor margin identification in diverse tumors with an easy-operative and fast-imaging pattern still exist. Hence, in the present study, a rapidly "off-on" near-infrared (NIR) fluorescent probe NBD with pH-activatable fluorescence and a large Stokes shift was constructed for spray mediated near-instant and precise clinical tumor margins identification. Methods: NBD was designed and synthesized by introducing both diphenyl amino group and benzo[e]indolium to β-carboline at C-6 and C-3 positions respectively. The optical properties of NBD was characterized by absorption spectra, fluorescence spectra. Subsequently, we investigated its pH-dependent mechanism by 1H NMR and density functional theory (DFT) calculation. NBD was further under deeper investigation into its imaging performance in nude mice models (subcutaneous, orthotopic, metastatic tumor), and clinical tissues from patients with three clinically representative tumors (liver cancer, colon cancer, and lung cancer). Results: It was found that NBD had NIR fluorescence (742 nm), a large Stokes shift (160 nm), and two-photon absorbance (1040 nm). Fluorescence quantum yield (ФF) increased by 5.5-fold when pH decreased from 7.4 to 4.0, to show pH-dependent property. Furthermore, NBD could not only selectively light up all four cancer cell lines, but also delineate xenograft tumor and orthotopic microtumor to guide surgical tumor resection, and track metastatic tissues. Particularly, after simple topical spray (three minutes later), NBD could rapidly and precisely distinguish the boundary ranges of three kinds of clinical cancer specimens including liver, colon, and lung cancers, with high tumor-to-normal tissue signal ratios (6.48~9.80). Conclusions: Therefore, the proposed fluorescent probe NBD may serve as a versatile NIR fluorogenic spray for the near-instant visualization of tumor margins and assisting surgeons in surgerical resection of clinical cancers.
Collapse
Affiliation(s)
- Zhongyuan Xu
- School of Pharmacy and Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, 226001 Nantong, Jiangsu, PR China
- Nantong Key Laboratory of Small Molecular Drug Innovation, Nantong University, 226001 Nantong, Jiangsu, PR China
| | - Jianqiang Qian
- School of Pharmacy and Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, 226001 Nantong, Jiangsu, PR China
- Nantong Key Laboratory of Small Molecular Drug Innovation, Nantong University, 226001 Nantong, Jiangsu, PR China
| | - Hongmei Wu
- School of Pharmacy and Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, 226001 Nantong, Jiangsu, PR China
- Nantong Key Laboratory of Small Molecular Drug Innovation, Nantong University, 226001 Nantong, Jiangsu, PR China
| | - Chi Meng
- School of Pharmacy and Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, 226001 Nantong, Jiangsu, PR China
| | - Qian Ding
- School of Pharmacy and Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, 226001 Nantong, Jiangsu, PR China
| | - Weizhi Tao
- School of Pharmacy and Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, 226001 Nantong, Jiangsu, PR China
- Nantong Key Laboratory of Small Molecular Drug Innovation, Nantong University, 226001 Nantong, Jiangsu, PR China
| | - Chang-Chun Ling
- Department of General Surgery, Affiliated Hospital of Nantong University, 226001 Nantong, Jiangsu, PR China
| | - Jun Chen
- Department of Hepatobiliary surgery, Nantong Third People's Hospital and the Third Affiliated Hospital of Nantong University, 226001 Nantong, Jiangsu, PR China
| | - Peng Li
- Department of General Surgery, Affiliated Hospital of Nantong University, 226001 Nantong, Jiangsu, PR China
| | - Yumin Yang
- School of Pharmacy and Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, 226001 Nantong, Jiangsu, PR China
- Nantong Key Laboratory of Small Molecular Drug Innovation, Nantong University, 226001 Nantong, Jiangsu, PR China
| | - Yong Ling
- School of Pharmacy and Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, 226001 Nantong, Jiangsu, PR China
- Nantong Key Laboratory of Small Molecular Drug Innovation, Nantong University, 226001 Nantong, Jiangsu, PR China
| |
Collapse
|
50
|
Duan G, Zhang J, Wei Z, Wang X, Zeng J, Wu S, Hu C, Wen L. Intraoperative diagnosis of early lymphatic metastasis using neodymium-based rare-earth NIR-II fluorescence nanoprobe. NANOSCALE ADVANCES 2023; 5:4240-4249. [PMID: 37560436 PMCID: PMC10408585 DOI: 10.1039/d3na00254c] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 07/11/2023] [Indexed: 08/11/2023]
Abstract
The high mortality of breast cancer is closely related to lymph node (LN) metastasis. Sentinel LNs (SLNs) are the first station where tumor cells metastasize through the lymphatic system. As such, achieving precise diagnosis of the early metastatic status of SLNs during surgery is of paramount importance for precision therapy of breast cancer. While invasive SLNs biopsy is the gold standard for evaluating the status of SLNs, its use is often time-consuming and may increase the risk of operation. It is still challenging to develop a means for rapid SLN metastasis diagnosis. Herein, NaGdF4:5%Nd@NaLuF4 rare earth nanoparticles (Gd:Nd-RENPs) with near-infrared-II (NIR-II) fluorescence and magnetic resonance imaging (MRI) properties were fabricated. With the nanoprobe, metastatic SLNs and lymph vessels (LVs) rapidly brighten and can be observed by the NIR-II imaging system, which is totally different from normal LNs and LVs. The remarkable contrast observed via NIR-II imaging serves to swiftly delineate metastatic SLNs from normal ones, subsequently guiding precise surgical resection of metastatic LNs in just 10 minutes. Furthermore, the consistency between the results obtained via MRI and NIR-II imaging further validates the dependability of this nanoprobe as a diagnostic tool for metastatic SLNs. Additionally, the Gd:Nd-RENPs exhibited good biocompatibility in vitro and in vivo. In this study, we demonstrated the advantages and prospects of NIR-II imaging for intraoperative early SLN metastasis assessment and shed light on the potential of the dual-modal Gd:Nd-RENPs as a nanoprobe.
Collapse
Affiliation(s)
- Guangxin Duan
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Soochow University, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions Suzhou 215123 China
| | - Jingyu Zhang
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Soochow University, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions Suzhou 215123 China
| | - Zhuxin Wei
- Department of Radiology, Suzhou Dushu Lake Hospital, Dushu Lake Hospital Affiliated to Soochow University, Medical Centre of Soochow University Suzhou 215001 Jiangsu China
- Department of MRI, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences, Peking Union Medical College Beijing 100037 China
| | - Ximing Wang
- Department of Radiology, The First Affiliated Hospital of Soochow University Suzhou 215000 China
| | - Jianfeng Zeng
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Soochow University, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions Suzhou 215123 China
- Suzhou Xinying Biomedical Technology Co. Ltd. Suzhou 215123 China
| | - Shuwang Wu
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Soochow University, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions Suzhou 215123 China
| | - Chunhong Hu
- Department of Radiology, The First Affiliated Hospital of Soochow University Suzhou 215000 China
| | - Ling Wen
- Department of Radiology, Suzhou Dushu Lake Hospital, Dushu Lake Hospital Affiliated to Soochow University, Medical Centre of Soochow University Suzhou 215001 Jiangsu China
- Department of Radiology, The First Affiliated Hospital of Soochow University Suzhou 215000 China
| |
Collapse
|