1
|
Fortkord L, Veit L. Social context affects sequence modification learning in birdsong. Front Psychol 2025; 16:1488762. [PMID: 39973966 PMCID: PMC11835814 DOI: 10.3389/fpsyg.2025.1488762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 01/13/2025] [Indexed: 02/21/2025] Open
Abstract
Social interactions are crucial for imitative vocal learning such as human speech learning or song learning in songbirds. Recently, introducing specific learned modifications into adult song by experimenter-controlled reinforcement learning has emerged as a key protocol to study aspects of vocal learning in songbirds. This form of adult plasticity does not require conspecifics as a model for imitation or to provide social feedback on song performance. We therefore hypothesized that social interactions are irrelevant to, or even inhibit, song modification learning. We tested whether social context affects song sequence learning in adult male Bengalese finches (Lonchura striata domestica). We targeted specific syllable sequences in adult birds' songs with negative auditory feedback, which led the birds to reduce the targeted syllable sequence in favor of alternate sequences. Changes were apparent in catch trials without feedback, indicating a learning process. Each experiment was repeated within subjects with three different social contexts (male-male, MM; male-female, MF; and male alone, MA) in randomized order. We found robust learning in all three social contexts, with a nonsignificant trend toward facilitated learning with social company (MF, MM) compared to the single-housed (MA) condition. This effect could not be explained by the order of social contexts, nor by different singing rates across contexts. Our results demonstrate that social context can influence degree of learning in adult birds even in experimenter-controlled reinforcement learning tasks, and therefore suggest that social interactions might facilitate song plasticity beyond their known role for imitation and social feedback.
Collapse
Affiliation(s)
| | - Lena Veit
- Neurobiology of Vocal Communication, Institute for Neurobiology, University of Tübingen, Tübingen, Germany
| |
Collapse
|
2
|
Peterson RE, Choudhri A, Mitelut C, Tanelus A, Capo-Battaglia A, Williams AH, Schneider DM, Sanes DH. Unsupervised discovery of family specific vocal usage in the Mongolian gerbil. eLife 2024; 12:RP89892. [PMID: 39680425 PMCID: PMC11649239 DOI: 10.7554/elife.89892] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2024] Open
Abstract
In nature, animal vocalizations can provide crucial information about identity, including kinship and hierarchy. However, lab-based vocal behavior is typically studied during brief interactions between animals with no prior social relationship, and under environmental conditions with limited ethological relevance. Here, we address this gap by establishing long-term acoustic recordings from Mongolian gerbil families, a core social group that uses an array of sonic and ultrasonic vocalizations. Three separate gerbil families were transferred to an enlarged environment and continuous 20-day audio recordings were obtained. Using a variational autoencoder (VAE) to quantify 583,237 vocalizations, we show that gerbils exhibit a more elaborate vocal repertoire than has been previously reported and that vocal repertoire usage differs significantly by family. By performing gaussian mixture model clustering on the VAE latent space, we show that families preferentially use characteristic sets of vocal clusters and that these usage preferences remain stable over weeks. Furthermore, gerbils displayed family-specific transitions between vocal clusters. Since gerbils live naturally as extended families in complex underground burrows that are adjacent to other families, these results suggest the presence of a vocal dialect which could be exploited by animals to represent kinship. These findings position the Mongolian gerbil as a compelling animal model to study the neural basis of vocal communication and demonstrates the potential for using unsupervised machine learning with uninterrupted acoustic recordings to gain insights into naturalistic animal behavior.
Collapse
Affiliation(s)
- Ralph E Peterson
- Center for Neural Science, New York UniversityNew YorkUnited States
- Center for Computational Neuroscience, Flatiron InstituteNew YorkUnited States
| | | | - Catalin Mitelut
- Center for Neural Science, New York UniversityNew YorkUnited States
| | - Aramis Tanelus
- Center for Neural Science, New York UniversityNew YorkUnited States
- Center for Computational Neuroscience, Flatiron InstituteNew YorkUnited States
| | | | - Alex H Williams
- Center for Neural Science, New York UniversityNew YorkUnited States
- Center for Computational Neuroscience, Flatiron InstituteNew YorkUnited States
| | | | - Dan H Sanes
- Center for Neural Science, New York UniversityNew YorkUnited States
- Department of Psychology, New York UniversityNew YorkUnited States
- Neuroscience Institute, New York University School of MedicineNew YorkUnited States
- Department of Biology, New York UniversityNew YorkUnited States
| |
Collapse
|
3
|
Peterson RE, Choudhri A, Mitelut C, Tanelus A, Capo-Battaglia A, Williams AH, Schneider DM, Sanes DH. Unsupervised discovery of family specific vocal usage in the Mongolian gerbil. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.03.11.532197. [PMID: 39282260 PMCID: PMC11398318 DOI: 10.1101/2023.03.11.532197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 09/21/2024]
Abstract
In nature, animal vocalizations can provide crucial information about identity, including kinship and hierarchy. However, lab-based vocal behavior is typically studied during brief interactions between animals with no prior social relationship, and under environmental conditions with limited ethological relevance. Here, we address this gap by establishing long-term acoustic recordings from Mongolian gerbil families, a core social group that uses an array of sonic and ultrasonic vocalizations. Three separate gerbil families were transferred to an enlarged environment and continuous 20-day audio recordings were obtained. Using a variational autoencoder (VAE) to quantify 583,237 vocalizations, we show that gerbils exhibit a more elaborate vocal repertoire than has been previously reported and that vocal repertoire usage differs significantly by family. By performing gaussian mixture model clustering on the VAE latent space, we show that families preferentially use characteristic sets of vocal clusters and that these usage preferences remain stable over weeks. Furthermore, gerbils displayed family-specific transitions between vocal clusters. Since gerbils live naturally as extended families in complex underground burrows that are adjacent to other families, these results suggest the presence of a vocal dialect which could be exploited by animals to represent kinship. These findings position the Mongolian gerbil as a compelling animal model to study the neural basis of vocal communication and demonstrates the potential for using unsupervised machine learning with uninterrupted acoustic recordings to gain insights into naturalistic animal behavior.
Collapse
Affiliation(s)
- Ralph E. Peterson
- Center for Neural Science, New York University, New York, NY
- Center for Computational Neuroscience, Flatiron Institute, New York, NY
| | | | - Catalin Mitelut
- Center for Neural Science, New York University, New York, NY
| | - Aramis Tanelus
- Center for Neural Science, New York University, New York, NY
- Center for Computational Neuroscience, Flatiron Institute, New York, NY
| | | | - Alex H. Williams
- Center for Neural Science, New York University, New York, NY
- Center for Computational Neuroscience, Flatiron Institute, New York, NY
| | | | - Dan H. Sanes
- Center for Neural Science, New York University, New York, NY
- Department of Psychology, New York University, New York, NY
- Department of Biology, New York University, New York, NY
- Neuroscience Institute, New York University School of Medicine, New York, NY
| |
Collapse
|
4
|
Paraouty N, Yao JD, Varnet L, Chou CN, Chung S, Sanes DH. Sensory cortex plasticity supports auditory social learning. Nat Commun 2023; 14:5828. [PMID: 37730696 PMCID: PMC10511464 DOI: 10.1038/s41467-023-41641-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 09/11/2023] [Indexed: 09/22/2023] Open
Abstract
Social learning (SL) through experience with conspecifics can facilitate the acquisition of many behaviors. Thus, when Mongolian gerbils are exposed to a demonstrator performing an auditory discrimination task, their subsequent task acquisition is facilitated, even in the absence of visual cues. Here, we show that transient inactivation of auditory cortex (AC) during exposure caused a significant delay in task acquisition during the subsequent practice phase, suggesting that AC activity is necessary for SL. Moreover, social exposure induced an improvement in AC neuron sensitivity to auditory task cues. The magnitude of neural change during exposure correlated with task acquisition during practice. In contrast, exposure to only auditory task cues led to poorer neurometric and behavioral outcomes. Finally, social information during exposure was encoded in the AC of observer animals. Together, our results suggest that auditory SL is supported by AC neuron plasticity occurring during social exposure and prior to behavioral performance.
Collapse
Affiliation(s)
- Nihaad Paraouty
- Center for Neural Science New York University, New York, NY, 10003, USA.
| | - Justin D Yao
- Department of Otolaryngology, Rutgers University, New Brunswick, NJ, 08901, USA
| | - Léo Varnet
- Laboratoire des Systèmes Perceptifs, UMR 8248, Ecole Normale Supérieure, PSL University, Paris, 75005, France
| | - Chi-Ning Chou
- Center for Computational Neuroscience, Flatiron Institute, Simons Foundation, New York, NY, USA
- School of Engineering & Applied Sciences, Harvard University, Cambridge, MA, 02138, USA
| | - SueYeon Chung
- Center for Neural Science New York University, New York, NY, 10003, USA
- Center for Computational Neuroscience, Flatiron Institute, Simons Foundation, New York, NY, USA
| | - Dan H Sanes
- Center for Neural Science New York University, New York, NY, 10003, USA
- Department of Psychology, New York University, New York, NY, 10003, USA
- Department of Biology, New York University, New York, NY, 10003, USA
- Neuroscience Institute, NYU Langone Medical Center, New York, NY, 10003, USA
| |
Collapse
|
5
|
Suwandschieff E, Mundry R, Kull K, Kreuzer L, Schwing R. 'Do I know you?' Categorizing individuals on the basis of familiarity in kea ( Nestor notabilis). ROYAL SOCIETY OPEN SCIENCE 2023; 10:230228. [PMID: 37351495 PMCID: PMC10282571 DOI: 10.1098/rsos.230228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 05/30/2023] [Indexed: 06/24/2023]
Abstract
Categorizing individuals on the basis of familiarity is an adaptive way of dealing with the complexity of the social environment. It requires the use of conceptual familiarity and is considered higher order learning. Although, it is common among many species, ecological need might require and facilitate individual differentiation among heterospecifics. This may be true for laboratory populations just as much as for domesticated species and those that live in urban contexts. However, with the exception of a few studies, populations of laboratory animals have generally been given less attention. The study at hand, therefore, addressed the question whether a laboratory population of kea parrots (Nestor notabilis) were able to apply the concept of familiarity to differentiate between human faces in a two-choice discrimination task on the touchscreen. The results illustrated that the laboratory population of kea were indeed able to differentiate between familiar and unfamiliar human faces in a two-choice discrimination task. The results provide novel empirical evidence on abstract categorization capacities in parrots while at the same time providing further evidence of representational insight in kea.
Collapse
Affiliation(s)
- Elisabeth Suwandschieff
- Research Station Haidlhof, Comparative Cognition, Messerli Research Institute, University of Veterinary Medicine, Vienna, Austria
| | - Roger Mundry
- Research Station Haidlhof, Comparative Cognition, Messerli Research Institute, University of Veterinary Medicine, Vienna, Austria
- Platform Bioinformatics and Biostatistics, University of Veterinary Medicine, Vienna, Austria
- Cognitive Ethology Laboratory, German Primate Center, Leibniz Institute for Primate Research, Göttingen, Germany
- Department for Primate Cognition, Georg-August-University Göttingen, Göttingen, Germany
- Leibniz-ScienceCampus Primate Cognition, Göttingen, Germany
| | - Kristina Kull
- Research Station Haidlhof, Comparative Cognition, Messerli Research Institute, University of Veterinary Medicine, Vienna, Austria
- Division of Livestock Sciences, Department of Sustainable Agricultural Systems, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Lena Kreuzer
- Research Station Haidlhof, Comparative Cognition, Messerli Research Institute, University of Veterinary Medicine, Vienna, Austria
| | - Raoul Schwing
- Research Station Haidlhof, Comparative Cognition, Messerli Research Institute, University of Veterinary Medicine, Vienna, Austria
| |
Collapse
|
6
|
Paraouty N, Rizzuto CR, Sanes DH. Dopaminergic signaling supports auditory social learning. Sci Rep 2021; 11:13117. [PMID: 34162951 PMCID: PMC8222360 DOI: 10.1038/s41598-021-92524-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 06/08/2021] [Indexed: 01/24/2023] Open
Abstract
Explicit rewards are commonly used to reinforce a behavior, a form of learning that engages the dopaminergic neuromodulatory system. In contrast, skill acquisition can display dramatic improvements from a social learning experience, even though the observer receives no explicit reward. Here, we test whether a dopaminergic signal contributes to social learning in naïve gerbils that are exposed to, and learn from, a skilled demonstrator performing an auditory discrimination task. Following five exposure sessions, naïve observer gerbils were allowed to practice the auditory task and their performance was assessed across days. We first tested the effect of an explicit food reward in the observer's compartment that was yoked to the demonstrator's performance during exposure sessions. Naïve observer gerbils with the yoked reward learned the discrimination task significantly faster, as compared to unrewarded observers. The effect of this explicit reward was abolished by administration of a D1/D5 dopamine receptor antagonist during the exposure sessions. Similarly, the D1/D5 antagonist reduced the rate of learning in unrewarded observers. To test whether a dopaminergic signal was sufficient to enhance social learning, we administered a D1/D5 receptor agonist during the exposure sessions in which no reward was present and found that the rate of learning occurred significantly faster. Finally, a quantitative analysis of vocalizations during the exposure sessions suggests one behavioral strategy that contributes to social learning. Together, these results are consistent with a dopamine-dependent reward signal during social learning.
Collapse
Affiliation(s)
- Nihaad Paraouty
- Center for Neural Science, New York University, 4 Washington Place, New York, NY, 10003, USA.
| | - Catherine R Rizzuto
- Center for Neural Science, New York University, 4 Washington Place, New York, NY, 10003, USA
| | - Dan H Sanes
- Center for Neural Science, New York University, 4 Washington Place, New York, NY, 10003, USA.,Department of Psychology, New York University, New York, NY, 10003, USA.,Department of Biology, New York University, New York, NY, 10003, USA.,Neuroscience Institute, NYU Langone Medical Center, New York University, New York, NY, 10003, USA
| |
Collapse
|
7
|
Cooke EK, White SA. Learning in the time of COVID: insights from the zebra finch - a social vocal-learner. Curr Opin Neurobiol 2021; 68:84-90. [PMID: 33571938 PMCID: PMC8800479 DOI: 10.1016/j.conb.2021.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Revised: 01/06/2021] [Accepted: 01/08/2021] [Indexed: 11/26/2022]
Affiliation(s)
- Elizabeth K Cooke
- Interdepartmental Program in Neuroscience, University of California, Los Angeles, 90095, USA
| | - Stephanie A White
- Interdepartmental Program in Neuroscience, University of California, Los Angeles, 90095, USA; Department of Integrative Biology & Physiology, University of California, Los Angeles, 90095, USA.
| |
Collapse
|
8
|
Abstract
Animal vocalizations serve a wide range of functions including territorial defense, courtship, social cohesion, begging, and vocal learning. Whereas many insights have been gained from observational studies and experiments using auditory stimulation, there is currently no technology available for the selective control of vocal communication in small animal groups. We developed a system for real-time control of vocal interactions among separately housed animals. The system is implemented on a field-programmable gate array (FPGA) and it allows imposing arbitrary communication networks among up to four animals. To minimize undesired transitive sound leakage, we adopted echo attenuation and sound squelching algorithms. In groups of three zebra finches, we restrict vocal communication in circular and in hierarchical networks and thereby mimic complex eavesdropping and middleman situations.
Collapse
|
9
|
Songbirds are excellent auditory discriminators, irrespective of age and experience. Anim Behav 2021. [DOI: 10.1016/j.anbehav.2021.02.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
10
|
Social learning exploits the available auditory or visual cues. Sci Rep 2020; 10:14117. [PMID: 32839492 PMCID: PMC7445250 DOI: 10.1038/s41598-020-71005-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 08/06/2020] [Indexed: 12/20/2022] Open
Abstract
The ability to acquire a behavior can be facilitated by exposure to a conspecific demonstrator. Such social learning occurs under a range of conditions in nature. Here, we tested the idea that social learning can benefit from any available sensory cue, thereby permitting learning under different natural conditions. The ability of naïve gerbils to learn a sound discrimination task following 5 days of exposure adjacent to a demonstrator gerbil was tested in the presence or absence of visual cues. Naïve gerbils acquired the task significantly faster in either condition, as compared to controls. We also found that exposure to a demonstrator was more potent in facilitating learning, as compared to exposure to the sounds used to perform the discrimination task. Therefore, social learning was found to be flexible and equally efficient in the auditory or visual domains.
Collapse
|
11
|
Levi-Aharoni H, Shriki O, Tishby N. Surprise response as a probe for compressed memory states. PLoS Comput Biol 2020; 16:e1007065. [PMID: 32012146 PMCID: PMC7018098 DOI: 10.1371/journal.pcbi.1007065] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 02/13/2020] [Accepted: 11/18/2019] [Indexed: 11/18/2022] Open
Abstract
The limited capacity of recent memory inevitably leads to partial memory of past stimuli. There is also evidence that behavioral and neural responses to novel or rare stimuli are dependent on one’s memory of past stimuli. Thus, these responses may serve as a probe of different individuals’ remembering and forgetting characteristics. Here, we utilize two lossy compression models of stimulus sequences that inherently involve forgetting, which in addition to being a necessity under many conditions, also has theoretical and behavioral advantages. One model is based on a simple stimulus counter and the other on the Information Bottleneck (IB) framework which suggests a more general, theoretically justifiable principle for biological and cognitive phenomena. These models are applied to analyze a novelty-detection event-related potential commonly known as the P300. The trial-by-trial variations of the P300 response, recorded in an auditory oddball paradigm, were subjected to each model to extract two stimulus-compression parameters for each subject: memory length and representation accuracy. These parameters were then utilized to estimate the subjects’ recent memory capacity limit under the task conditions. The results, along with recently published findings on single neurons and the IB model, underscore how a lossy compression framework can be utilized to account for trial-by-trial variability of neural responses at different spatial scales and in different individuals, while at the same time providing estimates of individual memory characteristics at different levels of representation using a theoretically-based parsimonious model. Surprise responses reflect expectations based on preceding stimuli representations, and hence can be used to infer the characteristics of memory utilized for a task. We suggest a quantitative method for extracting an individual estimate of effective memory capacity dedicated for a task based on the correspondence between a theoretical surprise model and electrophysiological single-trial surprise responses. We demonstrate this method on EEG responses recorded while participants were performing a simple auditory task; we show the correspondence between the theoretical and physiological surprise, and calculate an estimate of the utilized memory. The generality of this framework allows it to be applied to different EEG features that reflect different modes and levels of the processing hierarchy, as well as other physiological measures of surprise responses. Future studies may use this framework to construct a handy diagnostic tool for a quantitative, individualized characterization of memory-related disorders.
Collapse
Affiliation(s)
- Hadar Levi-Aharoni
- The Edmond and Lilly Safra Center for Brain Sciences, Hebrew University of Jerusalem, Jerusalem, Israel
- * E-mail:
| | - Oren Shriki
- Department of Cognitive and Brain Sciences, Department of Computer Science, Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beersheba, Israel
| | - Naftali Tishby
- The Edmond and Lilly Safra Center for Brain Sciences, Hebrew University of Jerusalem, Jerusalem, Israel
- School of Engineering and Computer Science, Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|