1
|
Beheshti-Marnani A, Rohani T, Kermani MA, Mohammadi SZ. A sensitive chalcogenide-based electrochemical sensor for ultra-level detection of Mospilan residues in real samples. Sci Rep 2025; 15:5966. [PMID: 39966467 PMCID: PMC11836054 DOI: 10.1038/s41598-025-89256-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Accepted: 02/04/2025] [Indexed: 02/20/2025] Open
Abstract
Addressed herein, the synthetic bismuthinite and bismuthinite@copper sulphide as two metal chalcogenides have been applied for modifying a glassy carbon electrode(GCE). The as-prepared nanomaterials were characterized using X-ray diffraction (XRD), scanning electron microscopy(SEM) and Energy-dispersive X-ray spectroscopy(EDX). By comparing the results, bismuthinite @copper sulphide hybridized with graphene oxide (GO) modified electrode exhibited superior sensitivity for detection ultra-levels of pesticide Mospilan (acetamiprid) in real samples. The dynamic concentration range of acetamiprid was found to be 80-680nM with a remarkably low detection limit about 4.1nM along with good stability and repeatability. Finally, the fabricated electrochemical sensor, bismuthinite@copper sulphide/GO, was suggested as a suitable alternative to more complex enzyme-based and aptamer-based methods for Mospilan detection.
Collapse
Affiliation(s)
| | - Tahereh Rohani
- Department of Chemistry, Payame Noor University, Tehran, 19395-4697, Iran
| | - Mahdokht Arjmand Kermani
- Agricultural Engineering Research Department, Kerman Agricultural and Natural Resources Research and Education Center, Agricultural Research, Education and Extension Organization (AREEO), Kerman, Iran
| | | |
Collapse
|
2
|
Zhao Y, Dongfang N, Huang C, Erni R, Li J, Zhao H, Pan L, Iannuzzi M, Patzke GR. Operando monitoring of the functional role of tetrahedral cobalt centers for the oxygen evolution reaction. Nat Commun 2025; 16:580. [PMID: 39794313 PMCID: PMC11723956 DOI: 10.1038/s41467-025-55857-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 12/31/2024] [Indexed: 01/13/2025] Open
Abstract
The complexity of the intrinsic oxygen evolution reaction (OER) mechanism, particularly the precise relationships between the local coordination geometry of active metal centers and the resulting OER kinetics, remains to be fully understood. Herein, we construct a series of 3 d transition metal-incorporated cobalt hydroxide-based nanobox architectures for the OER which contain tetrahedrally coordinated Co(II) centers. Combination of bulk- and surface-sensitive operando spectroelectrochemical approaches reveals that tetrahedral Co(II) centers undergo a dynamic transformation into highly active Co(IV) intermediates acting as the true OER active species which activate lattice oxygen during the OER. Such a dynamic change in the local coordination geometry of Co centers can be further facilitated by partial Fe incorporation. In comparison, the formation of such active Co(IV) species is found to be hindered in CoOOH and Co-FeOOH, which are predominantly containing [CoIIIO6] and [CoII/FeIIIO6] octahedra, respectively, but no mono-μ-oxo-bridged [CoIIO4] moieties. This study offers a comprehensive view of the dynamic role of local coordination geometry of active metal centers in the OER kinetics.
Collapse
Affiliation(s)
- Yonggui Zhao
- Department of Chemistry, University of Zurich, Zurich, Switzerland.
| | - Nanchen Dongfang
- Department of Chemistry, University of Zurich, Zurich, Switzerland
| | - Chong Huang
- Department of Chemistry, University of Zurich, Zurich, Switzerland
| | - Rolf Erni
- Electron Electron Microscopy Center, Empa, Swiss Federal Laboratories for Materials Science and Technology, Dübendorf, Switzerland
| | - Jingguo Li
- Department of Environmental Science and Engineering, CAS Key Laboratory of Urban Pollutant Conversion, University of Science and Technology of China, Hefei, China
- Department of Chemistry-Ångström Laboratory, Uppsala University, Uppsala, Sweden
| | - Han Zhao
- Department of Chemistry, University of Zurich, Zurich, Switzerland
| | - Long Pan
- Key Laboratory of Advanced Metallic Materials of Jiangsu Province, School of Materials Science and Engineering, Southeast University, Nanjing, China
| | | | - Greta R Patzke
- Department of Chemistry, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
3
|
Jiang Y, Sun H, Guo J, Liang Y, Qin P, Yang Y, Luo L, Leng L, Gong X, Wu Z. Vacancy Engineering in 2D Transition Metal Chalcogenide Photocatalyst: Structure Modulation, Function and Synergy Application. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2310396. [PMID: 38607299 DOI: 10.1002/smll.202310396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 03/08/2024] [Indexed: 04/13/2024]
Abstract
Transition metal chalcogenides (TMCs) are widely used in photocatalytic fields such as hydrogen evolution, nitrogen fixation, and pollutant degradation due to their suitable bandgaps, tunable electronic and optical properties, and strong reducing ability. The unique 2D malleability structure provides a pre-designed platform for customizable structures. The introduction of vacancy engineering makes up for the shortcomings of photocorrosion and limited light response and provides the greatest support for TMCs in terms of kinetics and thermodynamics in photocatalysis. This work reviews the effect of vacancy engineering on photocatalytic performance based on 2D semiconductor TMCs. The characteristics of vacancy introduction strategies are summarized, and the development of photocatalysis of vacancy engineering TMCs materials in energy conversion, degradation, and biological applications is reviewed. The contribution of vacancies in the optical range and charge transfer kinetics is also discussed from the perspective of structure manipulation. Vacancy engineering not only controls and optimizes the structure of the TMCs, but also improves the optical properties, charge transfer, and surface properties. The synergies between TMCs vacancy engineering and atomic doping, other vacancies, and heterojunction composite techniques are discussed in detail, followed by a summary of current trends and potential for expansion.
Collapse
Affiliation(s)
- Yi Jiang
- Key Laboratory for Rural Ecosystem Health in the Dongting Lake Area of Hunan Province, College of Environment and Ecology, Hunan Agricultural University, Changsha, 410128, P. R. China
| | - Haibo Sun
- Key Laboratory for Rural Ecosystem Health in the Dongting Lake Area of Hunan Province, College of Environment and Ecology, Hunan Agricultural University, Changsha, 410128, P. R. China
| | - Jiayin Guo
- School of Resources and Environment, Hunan University of Technology and Business, Changsha, 410205, P. R. China
| | - Yunshan Liang
- Key Laboratory for Rural Ecosystem Health in the Dongting Lake Area of Hunan Province, College of Environment and Ecology, Hunan Agricultural University, Changsha, 410128, P. R. China
| | - Pufeng Qin
- Key Laboratory for Rural Ecosystem Health in the Dongting Lake Area of Hunan Province, College of Environment and Ecology, Hunan Agricultural University, Changsha, 410128, P. R. China
| | - Yuan Yang
- Key Laboratory for Rural Ecosystem Health in the Dongting Lake Area of Hunan Province, College of Environment and Ecology, Hunan Agricultural University, Changsha, 410128, P. R. China
| | - Lin Luo
- Key Laboratory for Rural Ecosystem Health in the Dongting Lake Area of Hunan Province, College of Environment and Ecology, Hunan Agricultural University, Changsha, 410128, P. R. China
| | - Lijian Leng
- School of Energy Science and Engineering, Central South University, Changsha, 410083, P. R. China
| | - Xiaomin Gong
- Key Laboratory for Rural Ecosystem Health in the Dongting Lake Area of Hunan Province, College of Environment and Ecology, Hunan Agricultural University, Changsha, 410128, P. R. China
| | - Zhibin Wu
- Key Laboratory for Rural Ecosystem Health in the Dongting Lake Area of Hunan Province, College of Environment and Ecology, Hunan Agricultural University, Changsha, 410128, P. R. China
| |
Collapse
|
4
|
Wang B, Ma J, Yang R, Meng B, Yang X, Zhang Q, Zhang B, Zhuo S. Bridging Nickel-MOF and Copper Single Atoms/Clusters with H-Substituted Graphdiyne for the Tandem Catalysis of Nitrate to Ammonia. Angew Chem Int Ed Engl 2024; 63:e202404819. [PMID: 38728151 DOI: 10.1002/anie.202404819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 05/08/2024] [Accepted: 05/10/2024] [Indexed: 05/12/2024]
Abstract
Interfacial engineering of synergistic catalysts is one of the keys to achieving multiple proton-coupled electron transfer processes in nitrate-to-ammonia conversion. Herein, by joining ultrathin nickel-based metal-organic framework (denoted Ni-MOF) nanosheets with few-layered hydrogen-substituted graphdiyne-supported copper single atoms and clusters (denoted HsGDY@Cu), a tandem catalyst of Ni-MOFs@HsGDY@Cu with dual-active interfaces was developed for the concerted catalysis of nitrate-to-ammonia. In such a system, the sandwiched HsGDY layer could serve as a bridge to connect the coordinated unsaturated Ni2+ sites with Cu single atoms/clusters in a limited range of 0 to 3.6 nm. From Ni2+ to Cu, via the hydrogen spillover process, the hydrogen radicals (H⋅) generated at the unsaturated Ni2+ sites could migrate across HsGDY to the Cu sites to participate in the transformation of *HNO3 to NH3. From Cu to Ni2+, bypassing the higher reaction energy for *HNO3 formation on the Ni2+ sites, the NO2 - detached from the Cu sites could diffuse onto the unsaturated Ni2+ sites to form NH3 as well. The combined results make this hybrid a tandem catalyst with dual active sites for the catalysis of nitrate-to-ammonia conversion with improved Faradaic efficiency at lower overpotentials.
Collapse
Affiliation(s)
- Biwen Wang
- School of Chemistry and Chemical Engineering, Xi'an Key Laboratory of Functional Organic Porous Materials, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| | - Jiahao Ma
- School of Chemistry and Chemical Engineering, Xi'an Key Laboratory of Functional Organic Porous Materials, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
- Research & Development Institute of, Northwestern Polytechnical University in Shenzhen, Shenzhen City, 518063, P. R. China
| | - Rong Yang
- Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072, China
| | - Bocheng Meng
- School of Chemistry and Chemical Engineering, Xi'an Key Laboratory of Functional Organic Porous Materials, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| | - Xiubo Yang
- Analytical & Testing Center, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| | - Qiuyu Zhang
- School of Chemistry and Chemical Engineering, Xi'an Key Laboratory of Functional Organic Porous Materials, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| | - Bin Zhang
- Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072, China
| | - Sifei Zhuo
- School of Chemistry and Chemical Engineering, Xi'an Key Laboratory of Functional Organic Porous Materials, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
- Research & Development Institute of, Northwestern Polytechnical University in Shenzhen, Shenzhen City, 518063, P. R. China
| |
Collapse
|
5
|
Zhao Y, Wan W, Erni R, Pan L, Patzke GR. Operando Spectroscopic Monitoring of Metal Chalcogenides for Overall Water Splitting: New Views of Active Species and Sites. Angew Chem Int Ed Engl 2024; 63:e202400048. [PMID: 38587199 DOI: 10.1002/anie.202400048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 03/16/2024] [Accepted: 04/08/2024] [Indexed: 04/09/2024]
Abstract
Metal-based chalcogenides exhibit great promise for overall water splitting, yet their intrinsic catalytic reaction mechanisms remain to be fully understood. In this work, we employed operando X-ray absorption (XAS) and in situ Raman spectroscopy to elucidate the structure-activity relationships of low-crystalline cobalt sulfide (L-CoS) catalysts toward overall water splitting. The operando results for L-CoS catalyzing the alkaline hydrogen evolution reaction (HER) demonstrate that the cobalt centers in the bulk are predominantly coordinated by sulfur atoms, which undergo a kinetic structural rearrangement to generate metallic cobalt in S-Co-Co-S moieties as the true catalytically active species. In comparison, during the acidic HER, L-CoS undergoes local structural optimization of Co centers, and H2 production proceeds with adsorption/desorption of key intermediates atop the Co-S-Co configurations. Further operando characterizations highlight the crucial formation of high-valent Co4+ species in L-CoS for the alkaline oxygen evolution reaction (OER), and the formation of such active species was found to be far more facile than in crystalline Co3O4 and Co-LDH references. These insights offer a clear picture of the complexity of active species and site formation in different media, and demonstrate how their restructuring influences the catalytic activity.
Collapse
Affiliation(s)
- Yonggui Zhao
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057, Zurich, Switzerland
| | - Wenchao Wan
- Department of Heterogeneous Reactions, Max Planck Institute for Chemical Energy Conversion, D-45470, Mülheim an der Ruhr, Germany
| | - Rolf Erni
- Electron Microscopy Center, Empa, Swiss Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, CH-8600, Dübendorf, Switzerland
| | - Long Pan
- Key Laboratory of Advanced Metallic Materials of Jiangsu Province, School of Materials Science and Engineering, Southeast University, Nanjing, 211189, China
| | - Greta R Patzke
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057, Zurich, Switzerland
| |
Collapse
|
6
|
Zhu X, Yao X, Lang X, Liu J, Singh C, Song E, Zhu Y, Jiang Q. Charge Self-Regulation of Metallic Heterostructure Ni 2 P@Co 9 S 8 for Alkaline Water Electrolysis with Ultralow Overpotential at Large Current Density. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2303682. [PMID: 37867220 PMCID: PMC10667855 DOI: 10.1002/advs.202303682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 08/23/2023] [Indexed: 10/24/2023]
Abstract
Designing cost-effective alkaline water-splitting electrocatalysts is essential for large-scale hydrogen production. However, nonprecious catalysts face challenges in achieving high activity and durability at a large current density. An effective strategy for designing high-performance electrocatalysts is regulating the active electronic states near the Fermi-level, which can improve the intrinsic activity and increase the number of active sites. As a proof-of-concept, it proposes a one-step self-assembly approach to fabricate a novel metallic heterostructure based on nickel phosphide and cobalt sulfide (Ni2 P@Co9 S8 ) composite. The charge transfer between active Ni sites of Ni2 P and Co─Co bonds of Co9 S8 efficiently enhances the active electronic states of Ni sites, and consequently, Ni2 P@Co9 S8 exhibits remarkably low overpotentials of 188 and 253 mV to reach the current density of 100 mA cm-2 for the hydrogen evolution reaction and oxygen evolution reaction, respectively. This leads to the Ni2 P@Co9 S8 incorporated water electrolyzer possessing an ultralow cell voltage of 1.66 V@100 mA cm-2 with ≈100% retention over 100 h, surpassing the commercial Pt/C║RuO2 catalyst (1.9 V@100 mA cm-2 ). This work provides a promising methodology to boost the activity of overall water splitting with ultralow overpotentials at large current density by shedding light on the charge self-regulation of metallic heterostructure.
Collapse
Affiliation(s)
- Xingxing Zhu
- Key Laboratory of Automobile MaterialsMinistry of EducationSchool of Materials Science and EngineeringJilin University130022ChangchunChina
| | - Xue Yao
- Department of Materials Science and EngineeringUniversity of TorontoTorontoONM5S 3E4Canada
| | - Xingyou Lang
- Key Laboratory of Automobile MaterialsMinistry of EducationSchool of Materials Science and EngineeringJilin University130022ChangchunChina
| | - Jie Liu
- State Key Lab of High Performance Ceramics and Superfine MicrostructureShanghai Institute of CeramicsChinese Academy of SciencesShanghai200050China
| | - Chandra‐Veer Singh
- Department of Materials Science and EngineeringUniversity of TorontoTorontoONM5S 3E4Canada
- Department of Mechanical and Industrial EngineeringUniversity of TorontoTorontoONM5S 3G8Canada
| | - Erhong Song
- State Key Lab of High Performance Ceramics and Superfine MicrostructureShanghai Institute of CeramicsChinese Academy of SciencesShanghai200050China
- Center of Materials Science and Optoelectronics EngineeringUniversity of Chinese Academy of SciencesBeijing100049China
| | - Yongfu Zhu
- Key Laboratory of Automobile MaterialsMinistry of EducationSchool of Materials Science and EngineeringJilin University130022ChangchunChina
| | - Qing Jiang
- Key Laboratory of Automobile MaterialsMinistry of EducationSchool of Materials Science and EngineeringJilin University130022ChangchunChina
| |
Collapse
|
7
|
Zhang X, Hui L, Yan D, Li J, Chen X, Wu H, Li Y. Defect Rich Structure Activated 3D Palladium Catalyst for Methanol Oxidation Reaction. Angew Chem Int Ed Engl 2023; 62:e202308968. [PMID: 37581223 DOI: 10.1002/anie.202308968] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 08/04/2023] [Accepted: 08/14/2023] [Indexed: 08/16/2023]
Abstract
Controlling the structure and properties of catalysts through atomic arrangement is the source of producing a new generation of advanced catalysts. A highly active and stable catalyst in catalytic reactions strongly depends on an ideal arrangement structure of metal atoms. We demonstrated that the introduction of the defect-rich structures, low coordination number (CN), and tensile strain in three-dimensional (3D) urchin-like palladium nanoparticles through chlorine bonded with sp-C in graphdiyne (Pd-UNs/Cl-GDY) can regulate the arrangement of metal atoms in the palladium nanoparticles to form a special structure. In situ Fourier infrared spectroscopy (FTIR) and theoretical calculation results show that Pd-UNs/Cl-GDY catalyst is beneficial to the oxidation and removal of CO intermediates. The Pd-UNs/Cl-GDY for methanol oxidation reaction (MOR) that display high current density (363.6 mA cm-2 ) and mass activity (3.6 A mgPd -1 ), 12.0 and 10.9 times higher than Pd nanoparticles, respectively. The Pd-UNs/Cl-GDY catalyst also exhibited robust stability with still retained 95 % activity after 2000 cycles. A defects libraries of the face-centered cubic and hexagonal close-packed crystal catalysts (FH-NPs) were synthesized by introducing chlorine in graphdiyne. Such defect-rich structures, low CN, and tensile strain tailoring methods have opened up a new way for the catalytic reaction of MOR.
Collapse
Affiliation(s)
- Xueting Zhang
- CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Lan Hui
- CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Dengxin Yan
- Laboratory for Chemical Technology, Ghent University, Technologiepark 125, 9052, Gent, Belgium
| | - Jinze Li
- CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Xi Chen
- CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Han Wu
- CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Yuliang Li
- CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
8
|
Zhao S, Chen Z, Liu H, Qi L, Zheng Z, Luan X, Gao Y, Liu R, Yan J, Bu F, Xue Y, Li Y. Graphdiyne-Based Multiscale Catalysts for Ammonia Synthesis. CHEMSUSCHEM 2023:e202300861. [PMID: 37578808 DOI: 10.1002/cssc.202300861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 08/10/2023] [Accepted: 08/11/2023] [Indexed: 08/15/2023]
Abstract
Graphdiyne, a sp/sp2 -cohybridized two-dimensional all- carbon material, has many unique and fascinating properties of alkyne-rich structures, large π conjugated system, uniform pores, specific unevenly-distributed surface charge, and incomplete charge transfer properties provide promising potential in practical applications including catalysis, energy conversion and storage, intelligent devices, life science, photoelectric, etc. These superior advantages have made graphdiyne one of the hottest research frontiers of chemistry and materials science and produced a series of original and innovative research results in the fundamental and applied research of carbon materials. In recent years, considerable advances have been made toward the development of graphdiyne-based multiscale catalysts for nitrogen fixation and ammonia synthesis at room temperatures and ambient pressures. This review aims to provide a comprehensive update in regard to the synthesis of graphdiyne-based multiscale catalysts and their applications in the synthesis of ammonia. The unique features of graphdiyne are highlighted throughout the review. Finally, it concludes with the discussion of challenges and future perspectives relating to graphdiyne.
Collapse
Affiliation(s)
- Shuya Zhao
- Shandong Provincial Key Laboratory for Science of Material Creation and Energy Conversion, Science Center for Material Creation and Energy Conversion, School of Chemistry and Chemical Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, 250100, Jinan, China
| | - Zhaoyang Chen
- Shandong Provincial Key Laboratory for Science of Material Creation and Energy Conversion, Science Center for Material Creation and Energy Conversion, School of Chemistry and Chemical Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, 250100, Jinan, China
| | - Huimin Liu
- Shandong Provincial Key Laboratory for Science of Material Creation and Energy Conversion, Science Center for Material Creation and Energy Conversion, School of Chemistry and Chemical Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, 250100, Jinan, China
| | - Lu Qi
- Shandong Provincial Key Laboratory for Science of Material Creation and Energy Conversion, Science Center for Material Creation and Energy Conversion, School of Chemistry and Chemical Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, 250100, Jinan, China
| | - Zhiqiang Zheng
- Shandong Provincial Key Laboratory for Science of Material Creation and Energy Conversion, Science Center for Material Creation and Energy Conversion, School of Chemistry and Chemical Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, 250100, Jinan, China
| | - Xiaoyu Luan
- Shandong Provincial Key Laboratory for Science of Material Creation and Energy Conversion, Science Center for Material Creation and Energy Conversion, School of Chemistry and Chemical Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, 250100, Jinan, China
| | - Yaqi Gao
- Shandong Provincial Key Laboratory for Science of Material Creation and Energy Conversion, Science Center for Material Creation and Energy Conversion, School of Chemistry and Chemical Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, 250100, Jinan, China
| | - Runyu Liu
- Shandong Provincial Key Laboratory for Science of Material Creation and Energy Conversion, Science Center for Material Creation and Energy Conversion, School of Chemistry and Chemical Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, 250100, Jinan, China
| | - Jiayu Yan
- Shandong Provincial Key Laboratory for Science of Material Creation and Energy Conversion, Science Center for Material Creation and Energy Conversion, School of Chemistry and Chemical Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, 250100, Jinan, China
| | - Fanle Bu
- Shandong Provincial Key Laboratory for Science of Material Creation and Energy Conversion, Science Center for Material Creation and Energy Conversion, School of Chemistry and Chemical Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, 250100, Jinan, China
| | - Yurui Xue
- Shandong Provincial Key Laboratory for Science of Material Creation and Energy Conversion, Science Center for Material Creation and Energy Conversion, School of Chemistry and Chemical Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, 250100, Jinan, China
| | - Yuliang Li
- Shandong Provincial Key Laboratory for Science of Material Creation and Energy Conversion, Science Center for Material Creation and Energy Conversion, School of Chemistry and Chemical Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, 250100, Jinan, China
- CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, 100190, Beijing, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, 100049, Beijing, China
| |
Collapse
|
9
|
Wang C, Qiao Z, Tian Y, Yang H, Cao H, Cheetham AK. Alcohol imination catalyzed by carbon nanostructures synthesized by C(sp 2)-C(sp 3) free radical coupling. iScience 2023; 26:106659. [PMID: 37182103 PMCID: PMC10173739 DOI: 10.1016/j.isci.2023.106659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 01/13/2023] [Accepted: 04/07/2023] [Indexed: 05/16/2023] Open
Abstract
Imines are important intermediates for synthesizing various fine chemicals, with the disadvantage of requiring the use of expensive metal-containing catalysts. We report that the dehydrogenative cross-coupling of phenylmethanol and benzylamine (or aniline) directly forms the corresponding imine with a yield of up to 98%, and water as the sole by-product, in the presence of a stoichiometric base, using carbon nanostructures as the "green" metal-free carbon catalysts with high spin concentrations, which is synthesized by C(sp2)-C(sp3) free radical coupling reactions. The catalytic mechanism is attributed to the unpaired electrons of carbon catalysts to reduce O2 to O2·-, which triggers the oxidative coupling reaction to form imines, whereas the holes in the carbon catalysts receive electrons from the amine to restore the spin states. This is supported by density functional theory calculations. This work will open up an avenue for synthesizing carbon catalysts and offer great potential for industrial applications.
Collapse
Affiliation(s)
- Cheng Wang
- Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Zirui Qiao
- Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Yulan Tian
- Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Haijun Yang
- Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Huaqiang Cao
- Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Anthony K. Cheetham
- Materials Research Laboratory, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
| |
Collapse
|
10
|
An C, Wu S, Gao L, Lin L, Deng Q, Hu N. Core-shell NiS 2@C encased by thin carbon layer as high-rate and durable electrode for aqueous rechargeable battery. J Colloid Interface Sci 2023; 638:274-280. [PMID: 36738550 DOI: 10.1016/j.jcis.2023.01.136] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 01/19/2023] [Accepted: 01/28/2023] [Indexed: 02/04/2023]
Abstract
Nickel sulfides, as promising candidate for aqueous rechargeable battery, have aroused broad attention on account of abundant natural resources, rich phases, moderate price and high theoretical capacity. Nevertheless, tremendous volume expansion during repeated charging-discharging procedure leads to the poor rate capability and cycling stability of nickel sulfide electrodes. Therefore, in this work, core-shell NiS2@C encapsulated by thin hydrothermal carbon (HC) layer (NiS2@C/HC) has been designed and prepared without any surfactants or templates assistance, which avoid tedious process and shorten preparation cycle greatly. When matched with the treated iron powder (TIP) electrode to form NiS2@C/HC//TIP aqueous rechargeable battery, the NiS2@C/HC//TIP battery exhibits a high discharge capacity of 205.1 mAh g-1 at 1 A g-1, remarkable rate ability (176.4 mAh g-1 at 5 A g-1, about 86% capacity conversation) and superiorly durable stability (80.8 % capacity retention after 10,000 cycles at ultra-high current density of 15 A g-1). The outstanding high-rate capability and cycling stability for aqueous rechargeable battery can be ascribed to the distinct cowpea-like architecture and intrinsic properties of NiS2@C/HC. Specifically, the interior porous carbon provides a space to tolerate the volume expansion of the NiS2 nanoparticles and prevent NiS2 nanoparticles from aggregation, guaranteeing its high-rate capability. Meanwhile, the exterior HC layer is conducive to improve the electric conductivity to facilitate the electrons transfer and promote the mechanical strength of the whole active materials, ensuring its robust cycling stability.
Collapse
Affiliation(s)
- Cuihua An
- Key Laboratory of Hebei Province on Scale-span Intelligent Equipment Technology, Tianjin Key Laboratory of Power Transmission and Safety Technology for New Energy Vehicles, and School of Mechanical Engineering, Hebei University of Technology, Tianjin 300401, China
| | - Shuai Wu
- Key Laboratory of Hebei Province on Scale-span Intelligent Equipment Technology, Tianjin Key Laboratory of Power Transmission and Safety Technology for New Energy Vehicles, and School of Mechanical Engineering, Hebei University of Technology, Tianjin 300401, China
| | - Lingxiao Gao
- Key Laboratory of Hebei Province on Scale-span Intelligent Equipment Technology, Tianjin Key Laboratory of Power Transmission and Safety Technology for New Energy Vehicles, and School of Mechanical Engineering, Hebei University of Technology, Tianjin 300401, China
| | - Liyang Lin
- The Green Aerotechnics Research Institute of Chongqing Jiaotong University, Chongqing 401120, China
| | - Qibo Deng
- Key Laboratory of Hebei Province on Scale-span Intelligent Equipment Technology, Tianjin Key Laboratory of Power Transmission and Safety Technology for New Energy Vehicles, and School of Mechanical Engineering, Hebei University of Technology, Tianjin 300401, China; The Green Aerotechnics Research Institute of Chongqing Jiaotong University, Chongqing 401120, China.
| | - Ning Hu
- Key Laboratory of Hebei Province on Scale-span Intelligent Equipment Technology, Tianjin Key Laboratory of Power Transmission and Safety Technology for New Energy Vehicles, and School of Mechanical Engineering, Hebei University of Technology, Tianjin 300401, China; State Key Laboratory of Reliability and Intelligence Electrical Equipment, Hebei University of Technology, Tianjin 300130, China
| |
Collapse
|
11
|
Ma J, Zhang Y, Wang B, Jiang Z, Zhang Q, Zhuo S. Interfacial Engineering of Bimetallic Ni/Co-MOFs with H-Substituted Graphdiyne for Ammonia Electrosynthesis from Nitrate. ACS NANO 2023; 17:6687-6697. [PMID: 36930780 DOI: 10.1021/acsnano.2c12491] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The electrochemical synthesis of ammonia is highly dependent on the coupling reaction between nitrate and water, for which an electrocatalyst with a multifunctional interface is anticipated to promote the deoxygenation and hydrogenation of nitrate with water. Herein, by engineering the surface of bimetallic Ni/Co-MOFs (NiCoBDC) with hydrogen-substituted graphdiyne (HsGDY), a hybrid nanoarray of NiCoBDC@HsGDY with a multifunctional interface has been achieved toward scale-up of the nitrate-to-ammonia conversion. On the one hand, a partial electron transfers from Ni2+ to the coordinatively unsaturated Co2+ on the surface of NiCoBDC, which not only promotes the deoxygenation of *NO3 on Co2+ but also activates the water-dissociation to *H on Ni2+. On the other hand, the conformal coated HsGDY facilitates both electrons and NO3- ions gathering on the interface between NiCoBDC and HsGDY, which moves forward the rate-determining step from the deoxygenation of *NO3 to the hydrogenation of *N with both *H on Ni2+ and *H2O on Co2+. As a result, such a NiCoBDC@HsGDY nanoarray delivers high NH3 yield rates with Faradaic efficiency above 90% over both wide potential and pH windows. When assembled into a galvanic Zn-NO3- battery, a power density of 3.66 mW cm-2 is achieved, suggesting its potential in the area of aqueous Zn-based batteries.
Collapse
Affiliation(s)
- Jiahao Ma
- School of Chemistry and Chemical Engineering, Xi'an Key Laboratory of Functional Organic Porous Materials, Northwestern Polytechnical University, Xi'an 710072, People's Republic of China
- Research & Development Institute of Northwestern Polytechnical University in Shenzhen, Shenzhen City, 518063, People's Republic of China
| | - Yuting Zhang
- School of Chemistry and Chemical Engineering, Xi'an Key Laboratory of Functional Organic Porous Materials, Northwestern Polytechnical University, Xi'an 710072, People's Republic of China
| | - Biwen Wang
- School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, People's Republic of China
| | - Zixin Jiang
- Queen Mary University of London Engineering School, Northwestern Polytechnical University, Xi'an 710072, People's Republic of China
| | - Qiuyu Zhang
- School of Chemistry and Chemical Engineering, Xi'an Key Laboratory of Functional Organic Porous Materials, Northwestern Polytechnical University, Xi'an 710072, People's Republic of China
| | - Sifei Zhuo
- School of Chemistry and Chemical Engineering, Xi'an Key Laboratory of Functional Organic Porous Materials, Northwestern Polytechnical University, Xi'an 710072, People's Republic of China
- Research & Development Institute of Northwestern Polytechnical University in Shenzhen, Shenzhen City, 518063, People's Republic of China
| |
Collapse
|
12
|
Nam YT, Kang H, Chong S, Kim YJ, Lee W, Lee Y, Kim J, Cho SY, Jung HT. Rapid and Reversible Sensing Performance of Hydrogen-Substituted Graphdiyne. ACS Sens 2023; 8:1151-1160. [PMID: 36799655 DOI: 10.1021/acssensors.2c02449] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Abstract
The design of new nanomaterials for rapid and reversible detection of molecules in existence is critical for real-world sensing applications. Current nanomaterial libraries such as carbon nanotubes, graphene, MoS2, and MXene are fundamentally limited by their slow detection speed and small signals; thus, the atomic-level material design of molecular transport pathways and active binding sites must be accompanied. Herein, we fully explore the chemical and physical properties of a hydrogen-substituted graphdiyne (HsGDY) for its molecular sensing properties. This new carbon framework comprises reactive sp carbons in acetylenic linkages throughout the 16.3 Å nanopores and allows for detecting target molecules (e.g., H2) with an exceptionally high sensitivity (ΔR/Rb = 542%) and fast response/recovery time (τ90 = 8 s and τ10 = 38 s) even without any postmodification process. It possesses 2 orders of magnitude higher sensing ability than that of existing nanomaterial libraries. We demonstrate that rapid and reversible molecular binding is attributed to the cooperative interaction with adjacent double sp carbon in the layered nanoporous structure of HsGDY. This new class of carbon framework provides fundamental solutions for nanomaterials in reliable sensor applications that accelerate real-world interfacing.
Collapse
Affiliation(s)
- Yoon Tae Nam
- KAIST Institute for Nanocentury & Department of Chemical and Biomolecular Engineering (BK-21 plus), Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Hohyung Kang
- KAIST Institute for Nanocentury & Department of Chemical and Biomolecular Engineering (BK-21 plus), Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Sanggyu Chong
- KAIST Institute for Nanocentury & Department of Chemical and Biomolecular Engineering (BK-21 plus), Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Yong-Jae Kim
- LAB of System IC Development, National Nanofab Center at Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Wonmoo Lee
- KAIST Institute for Nanocentury & Department of Chemical and Biomolecular Engineering (BK-21 plus), Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Yullim Lee
- School of Chemical Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Jihan Kim
- KAIST Institute for Nanocentury & Department of Chemical and Biomolecular Engineering (BK-21 plus), Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Soo-Yeon Cho
- School of Chemical Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Hee-Tae Jung
- KAIST Institute for Nanocentury & Department of Chemical and Biomolecular Engineering (BK-21 plus), Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| |
Collapse
|
13
|
Ma J, Wang R, Wang B, Luo J, Zhang Q, Zhuo S. Hybrid nanoarrays of Cu-MOFs@H-substituted graphdiyne with various levels of Lewis acidity for nitrate electroreduction. Chem Commun (Camb) 2023; 59:4348-4351. [PMID: 36946210 DOI: 10.1039/d2cc06989j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2023]
Abstract
To mimic enzymes in nature, a set of hybrid nanoarrays of Cu-MOFs sealed in hydrogen-substituted graphdiyne has been developed in order to serve as Lewis-acid-promoted catalysts. By regulating the electron-withdrawing capability of the ligands bridging Cu2+ sites, these Cu-MOFs provided different levels of Lewis acidity toward nitrate affinity, a feature crucial for nitrate-to-ammonia conversion.
Collapse
Affiliation(s)
- Jiahao Ma
- Research & Development Institute of Northwestern Polytechnical University in Shenzhen, ShenZhen City, 518063, P. R. China
- School of Chemistry and Chemical Engineering, Xi'an Key Laboratory of Functional Organic Porous Materials, Northwestern Polytechnical University, Xi'an 710072, P. R. China.
| | - Ru Wang
- School of Chemistry and Chemical Engineering, Xi'an Key Laboratory of Functional Organic Porous Materials, Northwestern Polytechnical University, Xi'an 710072, P. R. China.
| | - Biwen Wang
- School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, P. R. China
| | - Jiaxin Luo
- Queen Mary University of London Engineering School, Northwestern Polytechnical University, Xi'an 710072, P. R. China
| | - Qiuyu Zhang
- School of Chemistry and Chemical Engineering, Xi'an Key Laboratory of Functional Organic Porous Materials, Northwestern Polytechnical University, Xi'an 710072, P. R. China.
| | - Sifei Zhuo
- Research & Development Institute of Northwestern Polytechnical University in Shenzhen, ShenZhen City, 518063, P. R. China
- School of Chemistry and Chemical Engineering, Xi'an Key Laboratory of Functional Organic Porous Materials, Northwestern Polytechnical University, Xi'an 710072, P. R. China.
| |
Collapse
|
14
|
Yin J, Liang J, Yuan C, Zheng W. Facile Synthesis of Hydrogen-Substituted Graphdiyne Powder via Dehalogenative Homocoupling Reaction. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:1018. [PMID: 36985912 PMCID: PMC10055811 DOI: 10.3390/nano13061018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 03/04/2023] [Accepted: 03/08/2023] [Indexed: 06/18/2023]
Abstract
Graphdiyne and its analogs are a series of artificial two-dimensional nanomaterials with sp hybridized carbon atoms, which can be viewed as the insertion of two acetylenic units between adjacent aromatic rings, evenly expanded on a flat surface. Although developed in recent years, new synthetic strategies for graphdiyne analogs are still required. This work proposed a new method to prepare hydrogen-substituted graphdiyne powder via a dehalogenative homocoupling reaction. The polymerization was unanticipated while the initial goal was to synthesize a γ-graphyne analog via Sonogashira cross-coupling reaction. Compared with previous synthetic strategies, the reaction time was conspicuously shortened and the Pd catalyst was inessential. The powder obtained exhibited a porous structure and high electrocatalytic activity in the hydrogen/oxygen evolution reaction, which has the potential for application in electrochemical catalysis. The reported methodology provides an efficient synthetic strategy for large-scale preparation.
Collapse
|
15
|
Yang X, Qu Z, Li S, Peng M, Li C, Hua R, Fan H, Caro J, Meng H. Ultra-Fast Preparation of Large-Area Graphdiyne-Based Membranes via Alkynylated Surface-Modification for Nanofiltration. Angew Chem Int Ed Engl 2023; 62:e202217378. [PMID: 36692831 DOI: 10.1002/anie.202217378] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 01/22/2023] [Accepted: 01/24/2023] [Indexed: 01/25/2023]
Abstract
Graphdiynes (GDYs), two-dimensional graphene-like carbon systems, are considered as potential advanced membrane material due to their unique physicochemical features. Nevertheless, the scale-up of integrated GDY membranes is technologically challenging, and most studies remain at the theoretical stage. Herein, we report a simple and efficient alkynylated surface-mediated strategy to prepare hydrogen-substituted graphdiyne (HsGDY) membranes on commercial alumina tubes. Surface alkynylation initiates an accelerated surface-confined coupling reaction in the presence of a copper catalyst and facilitates the nanoscale epitaxial lateral growth of HsGDY. A continuous and ultra-thin HsGDY membrane (∼100 nm) can be produced within 15 min. The resulting membranes exhibit outstanding molecular sieving together with excellent water permeances (ca. 1100 L m-2 h-1 MPa-1 ), and show a long-term durability in cross-flow nanofiltration, owing to the superhydrophilic surface and hydrophobic pore walls.
Collapse
Affiliation(s)
- Xingda Yang
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Zhou Qu
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Sen Li
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Manhua Peng
- Key Laboratory of Power Station Energy Transfer Conversion and System, Ministry of Education, School of Energy Power and Mechanical Engineering, North China Electric Power University, Beijing, 102206, P. R. China
| | - Chunxi Li
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Ruimao Hua
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi, 830046, P. R. China
| | - Hongwei Fan
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Jürgen Caro
- Institute of Physical Chemistry and Electrochemistry, Leibniz Universität Hannover, Callinstraße 3A, 30167, Hannover, Germany
| | - Hong Meng
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi, 830046, P. R. China
| |
Collapse
|
16
|
Liu H, Wen D, Zhu B. In-situ growth of hierarchical nickel sulfide composites on nickel foam for enhanced urea oxidation reaction and urine electrolysis. J Electroanal Chem (Lausanne) 2023. [DOI: 10.1016/j.jelechem.2022.117082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
17
|
Song Z, Gu Y, Zhang N, Fan C, Wen H, Guo C. Surface- and interface-regulated graphdiyne-based composites and their applications in the detection of small biological signaling molecules. CHINESE SCIENCE BULLETIN-CHINESE 2022. [DOI: 10.1360/tb-2022-0488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
18
|
Zhou X, Fu B, Li L, Tian Z, Xu X, Wu Z, Yang J, Zhang Z. Hydrogen-substituted graphdiyne encapsulated cuprous oxide photocathode for efficient and stable photoelectrochemical water reduction. Nat Commun 2022; 13:5770. [PMID: 36182949 PMCID: PMC9526745 DOI: 10.1038/s41467-022-33445-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 09/20/2022] [Indexed: 11/09/2022] Open
Abstract
Photoelectrochemical (PEC) water splitting is an appealing approach for “green” hydrogen generation. The natural p-type semiconductor of Cu2O is one of the most promising photocathode candidates for direct hydrogen generation. However, the Cu2O-based photocathodes still suffer severe self-photo-corrosion and fast surface electron-hole recombination issues. Herein, we propose a facile in-situ encapsulation strategy to protect Cu2O with hydrogen-substituted graphdiyne (HsGDY) and promote water reduction performance. The HsGDY encapsulated Cu2O nanowires (HsGDY@Cu2O NWs) photocathode demonstrates a high photocurrent density of −12.88 mA cm−2 at 0 V versus the reversible hydrogen electrode under 1 sun illumination, approaching to the theoretical value of Cu2O. The HsGDY@Cu2O NWs photocathode as well as presents excellent stability and contributes an impressive hydrogen generation rate of 218.2 ± 11.3 μmol h−1cm−2, which value has been further magnified to 861.1 ± 24.8 μmol h−1cm−2 under illumination of concentrated solar light. The in-situ encapsulation strategy opens an avenue for rational design photocathodes for efficient and stable PEC water reduction. Cu2O-based photocathodes for photoelectrochemical water reduction suffer severe self-photo-corrosion issue. Here the authors report an in-situ encapsulation strategy with hydrogen-substituted graphdiyne to protect Cu2O for water reduction with a photocurrent density of −12.88 mA cm-2.
Collapse
Affiliation(s)
- Xue Zhou
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 200241, Shanghai, China
| | - Baihe Fu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 200241, Shanghai, China
| | - Linjuan Li
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 200241, Shanghai, China
| | - Zheng Tian
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 200241, Shanghai, China
| | - Xiankui Xu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 200241, Shanghai, China
| | - Zihao Wu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 200241, Shanghai, China.,Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, 100871, Beijing, China
| | - Jing Yang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 200241, Shanghai, China.,Department of Chemistry, Fudan University, 200438, Shanghai, China
| | - Zhonghai Zhang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 200241, Shanghai, China.
| |
Collapse
|
19
|
Zhao Y, Wan W, Dongfang N, Triana CA, Douls L, Huang C, Erni R, Iannuzzi M, Patzke GR. Optimized NiFe-Based Coordination Polymer Catalysts: Sulfur-Tuning and Operando Monitoring of Water Oxidation. ACS NANO 2022; 16:15318-15327. [PMID: 36069492 DOI: 10.1021/acsnano.2c06890] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
In-depth insights into the structure-activity relationships and complex reaction mechanisms of oxygen evolution reaction (OER) electrocatalysts are indispensable to efficiently generate clean hydrogen through water electrolysis. We introduce a convenient and effective sulfur heteroatom tuning strategy to optimize the performance of active Ni and Fe centers embedded into coordination polymer (CP) catalysts. Operando monitoring then provided the mechanistic understanding as to how exactly our facile sulfur engineering of Ni/Fe-CPs optimizes the local electronic structure of their active centers to facilitate dioxygen formation. The high OER activity of our optimized S-R-NiFe-CPs outperforms the most recent NiFe-based OER electrocatalysts. Specifically, we start from oxygen-deprived Od-R-NiFe-CPs and transform them into highly active Ni/Fe-CPs with tailored sulfur coordination environments and anionic deficiencies. Our operando X-ray absorption spectroscopy analyses reveal that sulfur introduction into our designed S-R-NiFe-CPs facilitates the formation of crucial highly oxidized Ni4+ and Fe4+ species, which generate oxygen-bridged NiIV-O-FeIV moieties that act as the true OER active intermediates. The advantage of our sulfur-doping strategy for enhanced OER is evident from comparison with sulfur-free Od-R-NiFe-CPs, where the formation of essential high-valent OER intermediates is hindered. Moreover, we propose a dual-site mechanism pathway, which is backed up with a combination of pH-dependent performance data and DFT calculations. Computational results support the benefits of sulfur modulation, where a lower energy barrier enables O-O bond formation atop the S-NiIV-O-FeIV-O moieties. Our convenient anionic tuning strategy facilitates the formation of active oxygen-bridged metal motifs and can thus promote the design of flexible and low-cost OER electrocatalysts.
Collapse
Affiliation(s)
- Yonggui Zhao
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Wenchao Wan
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Nanchen Dongfang
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Carlos A Triana
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Lewis Douls
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Chong Huang
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Rolf Erni
- Electron Microscopy Center, Empa, Swiss Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, CH-8600 Dübendorf, Switzerland
| | - Marcella Iannuzzi
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Greta R Patzke
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| |
Collapse
|
20
|
Li C, Wang Z, Liu M, Wang E, Wang B, Xu L, Jiang K, Fan S, Sun Y, Li J, Liu K. Ultrafast self-heating synthesis of robust heterogeneous nanocarbides for high current density hydrogen evolution reaction. Nat Commun 2022; 13:3338. [PMID: 35680929 PMCID: PMC9184596 DOI: 10.1038/s41467-022-31077-x] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 05/31/2022] [Indexed: 01/22/2023] Open
Abstract
Designing cost-effective and high-efficiency catalysts to electrolyze water is an effective way of producing hydrogen. Practical applications require highly active and stable hydrogen evolution reaction catalysts working at high current densities (≥1000 mA cm-2). However, it is challenging to simultaneously enhance the catalytic activity and interface stability of these catalysts. Herein, we report a rapid, energy-saving, and self-heating method to synthesize high-efficiency Mo2C/MoC/carbon nanotube hydrogen evolution reaction catalysts by ultrafast heating and cooling. The experiments and density functional theory calculations reveal that numerous Mo2C/MoC hetero-interfaces offer abundant active sites with a moderate hydrogen adsorption free energy ΔGH* (0.02 eV), and strong chemical bonding between the Mo2C/MoC catalysts and carbon nanotube heater/electrode significantly enhances the mechanical stability owing to instantaneous high temperature. As a result, the Mo2C/MoC/carbon nanotube catalyst achieves low overpotentials of 233 and 255 mV at 1000 and 1500 mA cm-2 in 1 M KOH, respectively, and the overpotential shows only a slight change after working at 1000 mA cm-2 for 14 days, suggesting the excellent activity and stability of the high-current-density hydrogen evolution reaction catalyst. The promising activity, excellent stability, and high productivity of our catalyst can fulfil the demands of hydrogen production in various applications.
Collapse
Affiliation(s)
- Chenyu Li
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, China
| | - Zhijie Wang
- Shenzhen Geim Graphene Center and Institute of Materials Research, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| | - Mingda Liu
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, China
| | - Enze Wang
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, China
| | - Bolun Wang
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, China
| | - Longlong Xu
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, China
| | - Kaili Jiang
- Department of Physics and Tsinghua-Foxconn Nanotechnology Research Center, Tsinghua University, Beijing, 100084, China
| | - Shoushan Fan
- Department of Physics and Tsinghua-Foxconn Nanotechnology Research Center, Tsinghua University, Beijing, 100084, China
| | - Yinghui Sun
- Beijing Key Laboratory for Magneto-Photoelectrical Composite and Interface Science, School of Mathematics and Physics, University of Science and Technology Beijing, Beijing, 100083, China.
| | - Jia Li
- Shenzhen Geim Graphene Center and Institute of Materials Research, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China.
| | - Kai Liu
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
21
|
Chen X, Jiang X, Yang N. Graphdiyne Electrochemistry: Progress and Perspectives. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2201135. [PMID: 35429089 DOI: 10.1002/smll.202201135] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 03/22/2022] [Indexed: 06/14/2023]
Abstract
Graphdiyne, a carbon allotrope, was synthesized in 2010 for the first time. It consists of two acetylene bonds between adjacent benzene rings. Graphdiyne and its composites thus exhibit ultrahigh intrinsic electrochemical activities. As "star" electrode materials, they have been utilized for various electrochemical applications. With the aim of giving a full screen of graphdiyne electrochemistry, this review starts from the history of graphdiyne materials, followed by their structural and electrochemical features. Recent progress and achievements in the synthesis of graphdiyne materials and their composites are overviewed. Subsequently, various electrochemical applications of graphdiyne materials and their composites are summarized, covering those in the fields of electrochemical energy conversion, electrochemical energy storage, and electrochemical sensing. The perspectives of graphdiyne electrochemistry are also discussed and outlined.
Collapse
Affiliation(s)
- Xinyue Chen
- Institute of Materials Engineering, University of Siegen, 57076, Siegen, Germany
| | - Xin Jiang
- Institute of Materials Engineering, University of Siegen, 57076, Siegen, Germany
| | - Nianjun Yang
- Institute of Materials Engineering, University of Siegen, 57076, Siegen, Germany
| |
Collapse
|
22
|
|
23
|
Zhuo S, Huang G, Sougrat R, Guo J, Wei N, Shi L, Li R, Liang H, Shi Y, Zhang Q, Wang P, Alshareef HN. Hierarchical Nanocapsules of Cu-Doped MoS 2@H-Substituted Graphdiyne for Magnesium Storage. ACS NANO 2022; 16:3955-3964. [PMID: 35254813 PMCID: PMC8945386 DOI: 10.1021/acsnano.1c09405] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Accepted: 02/25/2022] [Indexed: 05/19/2023]
Abstract
Hierarchical nanocomposites, which integrate electroactive materials into carbonaceous species, are significant in addressing the structural stability and electrical conductivity of electrode materials in post-lithium-ion batteries. Herein, a hierarchical nanocapsule that encapsulates Cu-doped MoS2 (Cu-MoS2) nanopetals with inner added skeletons in an organic-carbon-rich nanotube of hydrogen-substituted graphdiyne (HsGDY) has been developed for rechargeable magnesium batteries (RMB). Notably, both the incorporation of Cu in MoS2 and the generation of the inner added nanoboxes are developed from a dual-template of Cu-cysteine@HsGDY hybrid nanowire; the synthesis involves two morphology/composition evolutions by CuS@HsGDY intermediates both taking place sequentially in one continuous process. These Cu-doped MoS2 nanopetals with stress-release skeletons provide abundant active sites for Mg2+ storage. The microporous HsGDY enveloped with an extended π-conjugation system offers more effective electron and ion transfer channels. These advantages work together to make this nanocapsule an effective cathode material for RMB with a large reversible capacity and superior rate and cycling performance.
Collapse
Affiliation(s)
- Sifei Zhuo
- School
of Chemistry and Chemical Engineering, Xi’an Key Laboratory
of Functional Organic Porous Materials, Northwestern Polytechnical University, Xi’an 710072, PR China
- Materials Science and Engineering, Core Labs, and Water Desalination
and Reuse Center,
Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology
(KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Gang Huang
- Materials Science and Engineering, Core Labs, and Water Desalination
and Reuse Center,
Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology
(KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Rachid Sougrat
- Materials Science and Engineering, Core Labs, and Water Desalination
and Reuse Center,
Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology
(KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Jing Guo
- Materials Science and Engineering, Core Labs, and Water Desalination
and Reuse Center,
Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology
(KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Nini Wei
- Materials Science and Engineering, Core Labs, and Water Desalination
and Reuse Center,
Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology
(KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Le Shi
- Materials Science and Engineering, Core Labs, and Water Desalination
and Reuse Center,
Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology
(KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Renyuan Li
- Materials Science and Engineering, Core Labs, and Water Desalination
and Reuse Center,
Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology
(KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Hanfeng Liang
- Materials Science and Engineering, Core Labs, and Water Desalination
and Reuse Center,
Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology
(KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Yusuf Shi
- Materials Science and Engineering, Core Labs, and Water Desalination
and Reuse Center,
Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology
(KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Qiuyu Zhang
- School
of Chemistry and Chemical Engineering, Xi’an Key Laboratory
of Functional Organic Porous Materials, Northwestern Polytechnical University, Xi’an 710072, PR China
| | - Peng Wang
- Materials Science and Engineering, Core Labs, and Water Desalination
and Reuse Center,
Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology
(KAUST), Thuwal 23955-6900, Saudi Arabia
- Department
of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hong Kong, PR China
| | - Husam N. Alshareef
- Materials Science and Engineering, Core Labs, and Water Desalination
and Reuse Center,
Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology
(KAUST), Thuwal 23955-6900, Saudi Arabia
| |
Collapse
|
24
|
Abstract
As a new member of carbon allotropes, graphdiyne (GDY) has the characteristics of being one-atom-thick with two-dimensional layers comprising sp and sp2 hybridized carbon atoms, and represents a trend in the development of carbon materials. Its unique chemical and electronic structures give GDY many unique and fascinating properties such as rich chemical bonds, highly conjugated and super-large π structures, infinitely distributed pores and high inhomogeneity of charge distribution. GDY has entered a period of rapid development, especially with the significant emergence of fundamental research and applied research achievements over the past five years. As one of the frontiers of chemistry and materials science, graphdiyne was listed in the Top 10 research areas in the 2020 Research Frontiers report and was jointly released in the Top 10 in the world by Clarivate and the Chinese Academy of Sciences. The research results have shown the great potential of GDY in the applications of energy, catalysis, environmental science, electronic devices, detectors, biomedicine and therapy, etc. Scientists are eager to explore and fully reveal the new properties, discover new scientific concepts and phenomena, discover the new conversion modes and mechanisms of GDY in photoelectricity, energy, and catalysis, etc., and build the important scientific value of new conversion devices. This review covers research on the foundation and application of GDY, such as the controlled preparation of new methods of GDY and GDY-based materials, studies on new mechanisms and properties in chemistry and physics, and the foundation and applications in energy, catalysis, photoelectric and devices.
Collapse
Affiliation(s)
- Yan Fang
- Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China. .,University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Yuxin Liu
- Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China. .,University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Lu Qi
- Science Center for Material Creation and Energy Conversion, Institute of Frontier and Interdisciplinary Science, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, P. R. China
| | - Yurui Xue
- Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China. .,Science Center for Material Creation and Energy Conversion, Institute of Frontier and Interdisciplinary Science, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, P. R. China
| | - Yuliang Li
- Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China. .,University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
25
|
Zhou H, Fan F, Yu H, Xu Y, Yuan C, Wang Y. Flower‐like Mesoporous Carbon with Cobalt Sulfide Nanocrystalline as Efficient Bifunctional Electrocatalysts for Zn‐Air Batteries. ChemCatChem 2022. [DOI: 10.1002/cctc.202101807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Haoran Zhou
- Sichuan University College of Polymer Science and Engineering CHINA
| | - Fei Fan
- Sichuan University College of Polymer Science and Engineering CHINA
| | - Hailin Yu
- Sichuan University College of Polymer Science and Engineering CHINA
| | - Yuanhao Xu
- Sichuan University College of Polymer Science and Engineering CHINA
| | - Chengyun Yuan
- Sichuan University College of Polymer Science and Engineering CHINA
| | - Yinghan Wang
- Sichuan University College of Polymer Science and Engineering No.24 South Section 1, Yihuan Road, Chengdu , China 610065 Chengdu CHINA
| |
Collapse
|
26
|
Zhao Y, Dongfang N, Triana CA, Huang C, Erni R, Wan W, Li J, Stoian D, Pan L, Zhang P, Lan J, Iannuzzi M, Patzke GR. Dynamics and control of active sites in hierarchically nanostructured cobalt phosphide/chalcogenide-based electrocatalysts for water splitting. ENERGY & ENVIRONMENTAL SCIENCE 2022; 15:727-739. [PMID: 35308298 PMCID: PMC8848331 DOI: 10.1039/d1ee02249k] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 12/03/2021] [Indexed: 06/14/2023]
Abstract
The rational design of efficient electrocatalysts for industrial water splitting is essential to generate sustainable hydrogen fuel. However, a comprehensive understanding of the complex catalytic mechanisms under harsh reaction conditions remains a major challenge. We apply a self-templated strategy to introduce hierarchically nanostructured "all-surface" Fe-doped cobalt phosphide nanoboxes (Co@CoFe-P NBs) as alternative electrocatalysts for industrial-scale applications. Operando Raman spectroscopy and X-ray absorption spectroscopy (XAS) experiments were carried out to track the dynamics of their structural reconstruction and the real catalytically active intermediates during water splitting. Our operando analyses reveal that partial Fe substitution in cobalt phosphides promotes a structural reconstruction into P-Co-O-Fe-P configurations with low-valence metal centers (M0/M+) during the hydrogen evolution reaction (HER). Results from density functional theory (DFT) demonstrate that these in situ reconstructed configurations significantly enhance the HER performance by lowering the energy barrier for water dissociation and by facilitating the adsorption/desorption of HER intermediates (H*). The competitive activity in the oxygen evolution reaction (OER) arises from the transformation of the reconstructed P-Co-O-Fe-P configurations into oxygen-bridged, high-valence CoIV-O-FeIV moieties as true active intermediates. In sharp contrast, the formation of such CoIII/IV-O-FeIII/IV moieties in Co-FeOOH is hindered under the same conditions, which outlines the key advantages of phosphide-based electrocatalysts. Ex situ studies of the as-synthesized reference cobalt sulfides (Co-S), Fe doped cobalt selenides (Co@CoFe-Se), and Fe doped cobalt tellurides (Co@CoFe-Te) further corroborate the observed structural transformations. These insights are vital to systematically exploit the intrinsic catalytic mechanisms of non-oxide, low-cost, and robust overall water splitting electrocatalysts for future energy conversion and storage.
Collapse
Affiliation(s)
- Yonggui Zhao
- Department of Chemistry, University of Zurich Winterthurerstrasse 190 CH-8057 Zurich Switzerland
| | - Nanchen Dongfang
- Department of Chemistry, University of Zurich Winterthurerstrasse 190 CH-8057 Zurich Switzerland
| | - Carlos A Triana
- Department of Chemistry, University of Zurich Winterthurerstrasse 190 CH-8057 Zurich Switzerland
| | - Chong Huang
- Department of Chemistry, University of Zurich Winterthurerstrasse 190 CH-8057 Zurich Switzerland
| | - Rolf Erni
- Electron Microscopy Center, Empa, Swiss Federal Laboratories for Materials Science and Technology Überlandstrasse 129 CH-8600 Dübendorf Switzerland
| | - Wenchao Wan
- Department of Chemistry, University of Zurich Winterthurerstrasse 190 CH-8057 Zurich Switzerland
| | - Jingguo Li
- Department of Chemistry, University of Zurich Winterthurerstrasse 190 CH-8057 Zurich Switzerland
| | - Dragos Stoian
- Swiss-Norwegian Beamlines at the European Synchrotron Radiation Facility 38000 Grenoble France
| | - Long Pan
- Key Laboratory of Advanced Metallic Materials of Jiangsu Province, School of Materials Science and Engineering, Southeast University Nanjing 211189 China
| | - Ping Zhang
- School of Electrical and Information Engineering and Key Laboratory of Advanced Ceramics and Machining Technology of Ministry of Education, Tianjin University Tianjin 300072 China
| | - Jinggang Lan
- Department of Chemistry, University of Zurich Winterthurerstrasse 190 CH-8057 Zurich Switzerland
| | - Marcella Iannuzzi
- Department of Chemistry, University of Zurich Winterthurerstrasse 190 CH-8057 Zurich Switzerland
| | - Greta R Patzke
- Department of Chemistry, University of Zurich Winterthurerstrasse 190 CH-8057 Zurich Switzerland
| |
Collapse
|
27
|
Thangasamy P, Nam S, Oh S, Randriamahazaka H, Oh IK. Boosting Oxygen Evolution Reaction on Metallocene-based Transition Metal Sulfides Integrated with N-doped Carbon Nanostructures. CHEMSUSCHEM 2021; 14:5004-5020. [PMID: 34463051 DOI: 10.1002/cssc.202101469] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 08/10/2021] [Indexed: 06/13/2023]
Abstract
In this study, utilizing metallocene and organosulfur chelating agent, an innovative synthetic route was developed towards electrochemically activated transition metal sulfides entrapped in pyridinic nitrogen-incorporated carbon nanostructures for superior oxygen evolution reaction (OER). Most importantly, the preferential electrochemical activation process, which consisted of both anodic and cathodic pre-treatment steps, strikingly enhanced OER and long-lasting cyclic stability. The substantial increase in OER electrocatalytic activity of Ni9 S8 /Ni3 S2 -NC and Co9 S8 -NC during the activation process was mainly attributed to the increase of faradaic active site density on the catalytic layer resulting from the reconstruction of catalytic interfaces. It was also found that Fe-based metallocene [ferrocene (Fc)]-incorporation in the Co9 S8 -NC and Ni9 S8 /Ni3 S2 -NC nanostructures significantly boosted the OER activity. Thus, the combined effects of Fc-incorporation and the electrochemical activation process reduced the overpotential to about 115 and 95 mV on the Ni9 S8 /Ni3 S2 -NC and Co9 S8 -NC nanostructures to derive a current density of 10 mA cm-2 , respectively. Notably, Fc-Ni9 S8 /Ni3 S2 -NC electrocatalysts required very small overpotentials of around 222, 244, and 280 mV to acquire the current densities of 10, 20, and 50 mA cm-2 , respectively. This work opens up a new avenue for superior OER electrocatalysts by the utilization of metallocene and the preferential electrochemical activation process.
Collapse
Affiliation(s)
- Pitchai Thangasamy
- National Creative Research Initiative for Functionally Antagonistic Nano-Engineering, Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Sanghee Nam
- National Creative Research Initiative for Functionally Antagonistic Nano-Engineering, Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Saewoong Oh
- National Creative Research Initiative for Functionally Antagonistic Nano-Engineering, Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | | | - Il-Kwon Oh
- National Creative Research Initiative for Functionally Antagonistic Nano-Engineering, Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| |
Collapse
|
28
|
Yao F, Wang W, Shi H, Xu Z, Zeng M, Hu Y, Liu L, Ji X. Graphynes: Electronic Properties, Synthesis, and Applications in Catalysis. ACS Catal 2021. [DOI: 10.1021/acscatal.1c04279] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Fengting Yao
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China
| | - Wei Wang
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China
| | - Haiting Shi
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China
| | - Zhiwei Xu
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China
| | - Ming Zeng
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China
| | - Yanli Hu
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China
| | - Liyan Liu
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China
| | - Xinyi Ji
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China
| |
Collapse
|
29
|
Wang Z, Qi L, Zheng Z, Xue Y, Li Y. 2D Graphdiyne: A Rising Star on the Horizon of Energy Conversion. Chem Asian J 2021; 16:3259-3271. [PMID: 34467664 DOI: 10.1002/asia.202100858] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 08/25/2021] [Indexed: 12/20/2022]
Abstract
Two-dimensional (2D) graphdiyne (GDY), a rapidly rising star on the horizon of carbon materials, is a new carbon allotrope featuring sp- and sp2 -cohybridized carbon atoms and 2D one-atom-thick network. Since the first successful synthesis of GDY by Professor Li's group in 2010, GDY has attached great interests from both scientific and industrial viewpoints based on its unique structure and physicochemical properties, which provides a fertile ground for applications in various fields including electrocatalysis, energy conversion, energy storage and optoelectronic devices. In this work, various potential properties of the GDY-based electrocatalysts and their recent advances in energy conversion are reviewed, including atomic catalysts, heterogeneous catalysts, and metal-free catalysts. The critical role of GDY in improving catalytic activity and stability is analyzed. The perspectives of the challenges and opportunities faced by GDY-based materials for energy conversion are also outlined.
Collapse
Affiliation(s)
- Zhongqiang Wang
- Science Center for Material Creation and Energy Conversion, School of Chemistry and Chemical Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, Jinan, 250100, P. R. China
| | - Lu Qi
- Science Center for Material Creation and Energy Conversion, School of Chemistry and Chemical Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, Jinan, 250100, P. R. China
| | - Zhiqiang Zheng
- Science Center for Material Creation and Energy Conversion, School of Chemistry and Chemical Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, Jinan, 250100, P. R. China
| | - Yurui Xue
- Science Center for Material Creation and Energy Conversion, School of Chemistry and Chemical Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, Jinan, 250100, P. R. China
| | - Yuliang Li
- Science Center for Material Creation and Energy Conversion, School of Chemistry and Chemical Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, Jinan, 250100, P. R. China.,Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
30
|
Yuan Z, Wang L, Chen J, Su W, Li A, Su G, Liu P, Zhou X. Electrochemical strategies for the detection of cTnI. Analyst 2021; 146:5474-5495. [PMID: 34515706 DOI: 10.1039/d1an00808k] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Acute myocardial infarction (AMI) is the main cause of death from cardiovascular diseases. Thus, early diagnosis of AMI is essential for the treatment of irreversible damage from myocardial infarction. Traditional electrocardiograms (ECG) cannot meet the specific detection of AMI. Cardiac troponin I (cTnI) is the main biomarker for the diagnosis of myocardial infarction, and the detection of cTnI content has become particularly important. In this review, we introduced and compared the advantages and disadvantages of various cTnI detection methods. We focused on the analysis and comparison of the main indicators and limitations of various cTnI biosensors, including the detection range, detection limit, specificity, repeatability, and stability. In particular, we pay more attention to the application and development of electrochemical biosensors in the diagnosis of cardiovascular diseases based on different biological components. The application of electrochemical microfluidic chips for cTnI was also briefly introduced in this review. Finally, this review also briefly discusses the unresolved challenges of electrochemical detection and the expectations for improvement in the detection of cTnI biosensing in the future.
Collapse
Affiliation(s)
- Zhipeng Yuan
- Advanced Micro and Nano-instruments Center, School of Mechanical & Automotive Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China. .,Shandong Institute of Mechanical Design and Research, Jinan 250353, China
| | - Li Wang
- Advanced Micro and Nano-instruments Center, School of Mechanical & Automotive Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China. .,Shandong Institute of Mechanical Design and Research, Jinan 250353, China
| | - Jun Chen
- Advanced Micro and Nano-instruments Center, School of Mechanical & Automotive Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China. .,Shandong Institute of Mechanical Design and Research, Jinan 250353, China
| | - Weiguang Su
- Advanced Micro and Nano-instruments Center, School of Mechanical & Automotive Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China. .,Shandong Institute of Mechanical Design and Research, Jinan 250353, China
| | - Anqing Li
- Advanced Micro and Nano-instruments Center, School of Mechanical & Automotive Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China. .,Shandong Institute of Mechanical Design and Research, Jinan 250353, China
| | - Guosheng Su
- Advanced Micro and Nano-instruments Center, School of Mechanical & Automotive Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China. .,Shandong Institute of Mechanical Design and Research, Jinan 250353, China
| | - Pengbo Liu
- Advanced Micro and Nano-instruments Center, School of Mechanical & Automotive Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China. .,Shandong Institute of Mechanical Design and Research, Jinan 250353, China
| | | |
Collapse
|
31
|
Lu H, Tournet J, Dastafkan K, Liu Y, Ng YH, Karuturi SK, Zhao C, Yin Z. Noble-Metal-Free Multicomponent Nanointegration for Sustainable Energy Conversion. Chem Rev 2021; 121:10271-10366. [PMID: 34228446 DOI: 10.1021/acs.chemrev.0c01328] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Global energy and environmental crises are among the most pressing challenges facing humankind. To overcome these challenges, recent years have seen an upsurge of interest in the development and production of renewable chemical fuels as alternatives to the nonrenewable and high-polluting fossil fuels. Photocatalysis, photoelectrocatalysis, and electrocatalysis provide promising avenues for sustainable energy conversion. Single- and dual-component catalytic systems based on nanomaterials have been intensively studied for decades, but their intrinsic weaknesses hamper their practical applications. Multicomponent nanomaterial-based systems, consisting of three or more components with at least one component in the nanoscale, have recently emerged. The multiple components are integrated together to create synergistic effects and hence overcome the limitation for outperformance. Such higher-efficiency systems based on nanomaterials will potentially bring an additional benefit in balance-of-system costs if they exclude the use of noble metals, considering the expense and sustainability. It is therefore timely to review the research in this field, providing guidance in the development of noble-metal-free multicomponent nanointegration for sustainable energy conversion. In this work, we first recall the fundamentals of catalysis by nanomaterials, multicomponent nanointegration, and reactor configuration for water splitting, CO2 reduction, and N2 reduction. We then systematically review and discuss recent advances in multicomponent-based photocatalytic, photoelectrochemical, and electrochemical systems based on nanomaterials. On the basis of these systems, we further laterally evaluate different multicomponent integration strategies and highlight their impacts on catalytic activity, performance stability, and product selectivity. Finally, we provide conclusions and future prospects for multicomponent nanointegration. This work offers comprehensive insights into the development of cost-competitive multicomponent nanomaterial-based systems for sustainable energy-conversion technologies and assists researchers working toward addressing the global challenges in energy and the environment.
Collapse
Affiliation(s)
- Haijiao Lu
- Research School of Chemistry, The Australian National University, Canberra, Australian Capital Territory 2601, Australia
| | - Julie Tournet
- Department of Electronic Materials Engineering, Research School of Physics, The Australian National University, Canberra, Australian Capital Territory 2601, Australia
| | - Kamran Dastafkan
- School of Chemistry, The University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Yun Liu
- Research School of Chemistry, The Australian National University, Canberra, Australian Capital Territory 2601, Australia
| | - Yun Hau Ng
- School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong
| | - Siva Krishna Karuturi
- Department of Electronic Materials Engineering, Research School of Physics, The Australian National University, Canberra, Australian Capital Territory 2601, Australia.,Research School of Electrical, Energy and Materials Engineering, The Australian National University, Canberra, Australian Capital Territory 2601, Australia
| | - Chuan Zhao
- School of Chemistry, The University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Zongyou Yin
- Research School of Chemistry, The Australian National University, Canberra, Australian Capital Territory 2601, Australia
| |
Collapse
|
32
|
Kumar D, Gohil S, Gokhale M, Chalke B, Ghosh S. Revisiting the problem of crystallisation and melting of selenium. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2021; 33:295402. [PMID: 33975297 DOI: 10.1088/1361-648x/ac0025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 05/11/2021] [Indexed: 06/12/2023]
Abstract
In this paper, we study the structure of the solid selenium (Se) formed by the vapor deposition method. We provide direct visual evidence that faceted crystal-like shapes obtained from vapor phase deposition are a self-assembly of linear strands that have a persistence length of 10μm. These strands are held together by weak forces and can easily be separated. These chains occasionally get entangled to form chiral structures and often meander about destroying long range orientation and translation order in a continuous manner. Moreover, it is easy for the long strands of linear chains to slide past the neighboring ones, and hence the system has a large concentration of disinclination like defects in addition to the defects caused by the entanglement of the chains. Like organic polymers, the obtained Se structures also exhibit a spread in the melting temperature. This spread is closely related to the density of the sub-structures present in the system. The infrared imaging shows that these structures heat up in an inhomogeneous manner and the cross polarized images show that the process of melting initiates in the bulk.
Collapse
Affiliation(s)
- Dinesh Kumar
- Department of Condensed Matter Physics and Materials Science, Tata Institute of Fundamental Research, Mumbai 400005, India
| | - Smita Gohil
- Department of Condensed Matter Physics and Materials Science, Tata Institute of Fundamental Research, Mumbai 400005, India
| | - Mahesh Gokhale
- Department of Condensed Matter Physics and Materials Science, Tata Institute of Fundamental Research, Mumbai 400005, India
| | - Bhagyashree Chalke
- Department of Condensed Matter Physics and Materials Science, Tata Institute of Fundamental Research, Mumbai 400005, India
| | - Shankar Ghosh
- Department of Condensed Matter Physics and Materials Science, Tata Institute of Fundamental Research, Mumbai 400005, India
| |
Collapse
|
33
|
Wu J, Liang J, Zhang Y, Zhao X, Yuan C. Synthesis of hydrogen-substituted graphdiynes via dehalogenative homocoupling reactions. Chem Commun (Camb) 2021; 57:5036-5039. [PMID: 33881054 DOI: 10.1039/d1cc00453k] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A new method is introduced to prepare hydrogen-substituted graphdiynes (HsGDYs) via the dehalogenative homocoupling of terminal alkynyl bromides. Compared with previous synthetic strategies, the reaction conditions are moderate and the time is shortened. HsGDYs exhibit porous structures and hydrogen/oxygen evolution reaction (HER/OER) catalytic activity, endowing applications in electrochemical catalysis.
Collapse
Affiliation(s)
- Jiasheng Wu
- College of Materials Science and Engineering, Tongji University, Shanghai, 201804, China.
| | | | | | | | | |
Collapse
|
34
|
Liu G, Thummavichai K, Lv X, Chen W, Lin T, Tan S, Zeng M, Chen Y, Wang N, Zhu Y. Defect-Rich Heterogeneous MoS 2/rGO/NiS Nanocomposite for Efficient pH-Universal Hydrogen Evolution. NANOMATERIALS 2021; 11:nano11030662. [PMID: 33800384 PMCID: PMC8001468 DOI: 10.3390/nano11030662] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 02/28/2021] [Accepted: 03/03/2021] [Indexed: 11/30/2022]
Abstract
Molybdenum disulfide (MoS2) has been universally demonstrated to be an effective electrocatalytic catalyst for hydrogen evolution reaction (HER). However, the low conductivity, few active sites and poor stability of MoS2-based electrocatalysts hinder its hydrogen evolution performance in a wide pH range. The introduction of other metal phases and carbon materials can create rich interfaces and defects to enhance the activity and stability of the catalyst. Herein, a new defect-rich heterogeneous ternary nanocomposite consisted of MoS2, NiS and reduced graphene oxide (rGO) are synthesized using ultrathin αNi(OH)2 nanowires as the nickel source. The MoS2/rGO/NiS-5 of optimal formulation in 0.5 M H2SO4, 1.0 M KOH and 1.0 M PBS only requires 152, 169 and 209 mV of overpotential to achieve a current density of 10 mA cm−2 (denoted as η10), respectively. The excellent HER performance of the MoS2/rGO/NiS-5 electrocatalyst can be ascribed to the synergistic effect of abundant heterogeneous interfaces in MoS2/rGO/NiS, expanded interlayer spacings, and the addition of high conductivity graphene oxide. The method reported here can provide a new idea for catalyst with Ni-Mo heterojunction, pH-universal and inexpensive hydrogen evolution reaction electrocatalyst.
Collapse
|
35
|
Zhao L, Liu Z, Chen D, Liu F, Yang Z, Li X, Yu H, Liu H, Zhou W. Laser Synthesis and Microfabrication of Micro/Nanostructured Materials Toward Energy Conversion and Storage. NANO-MICRO LETTERS 2021; 13:49. [PMID: 34138243 PMCID: PMC8187667 DOI: 10.1007/s40820-020-00577-0] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 11/19/2020] [Indexed: 05/27/2023]
Abstract
Nanomaterials are known to exhibit a number of interesting physical and chemical properties for various applications, including energy conversion and storage, nanoscale electronics, sensors and actuators, photonics devices and even for biomedical purposes. In the past decade, laser as a synthetic technique and laser as a microfabrication technique facilitated nanomaterial preparation and nanostructure construction, including the laser processing-induced carbon and non-carbon nanomaterials, hierarchical structure construction, patterning, heteroatom doping, sputtering etching, and so on. The laser-induced nanomaterials and nanostructures have extended broad applications in electronic devices, such as light-thermal conversion, batteries, supercapacitors, sensor devices, actuators and electrocatalytic electrodes. Here, the recent developments in the laser synthesis of carbon-based and non-carbon-based nanomaterials are comprehensively summarized. An extensive overview on laser-enabled electronic devices for various applications is depicted. With the rapid progress made in the research on nanomaterial preparation through laser synthesis and laser microfabrication technologies, laser synthesis and microfabrication toward energy conversion and storage will undergo fast development.
Collapse
Affiliation(s)
- Lili Zhao
- Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of Shandong, Institute for Advanced Interdisciplinary Research (iAIR), University of Jinan, Jinan, 250022, People's Republic of China
| | - Zhen Liu
- Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of Shandong, Institute for Advanced Interdisciplinary Research (iAIR), University of Jinan, Jinan, 250022, People's Republic of China
| | - Duo Chen
- Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of Shandong, Institute for Advanced Interdisciplinary Research (iAIR), University of Jinan, Jinan, 250022, People's Republic of China
| | - Fan Liu
- Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of Shandong, Institute for Advanced Interdisciplinary Research (iAIR), University of Jinan, Jinan, 250022, People's Republic of China
| | - Zhiyuan Yang
- School of Information Science and Engineering, Shandong University, 72 Binhai Road, Qingdao, 266237, People's Republic of China
| | - Xiao Li
- Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of Shandong, Institute for Advanced Interdisciplinary Research (iAIR), University of Jinan, Jinan, 250022, People's Republic of China
| | - Haohai Yu
- State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, People's Republic of China
| | - Hong Liu
- Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of Shandong, Institute for Advanced Interdisciplinary Research (iAIR), University of Jinan, Jinan, 250022, People's Republic of China.
- State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, People's Republic of China.
| | - Weijia Zhou
- Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of Shandong, Institute for Advanced Interdisciplinary Research (iAIR), University of Jinan, Jinan, 250022, People's Republic of China.
| |
Collapse
|
36
|
Wang C, Li J, Kang M, Huang X, Liu Y, Zhou N, Zhang Z. Nanodiamonds and hydrogen-substituted graphdiyne heteronanostructure for the sensitive impedimetric aptasensing of myocardial infarction and cardiac troponin I. Anal Chim Acta 2020; 1141:110-119. [PMID: 33248643 DOI: 10.1016/j.aca.2020.10.044] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 10/19/2020] [Accepted: 10/21/2020] [Indexed: 12/11/2022]
Abstract
A novel heteronanostructure of nanodiamonds (NDs) and hydrogen-substituted graphdiyne (HsGDY) (denoted as HsGDY@NDs) was prepared for the impedimetric aptasensing of biomarkers such as myoglobin (Myo) and cardiac troponin I (cTnI). Basic characterizations revealed that the HsGDY@NDs were composed of nanospheres with sizes of 200-500 nm. In these nanospheres, NDs were embedded within the HsGDY network. The HsGDY@NDs nanostructure, which integrated the good chemical stability and three-dimensional porous networks of HsGDY, and the good biocompatibility and electrochemical activity of NDs, could immobilize diverse aptamer strands and recognize target biomarkers. Compared with HsGDY- and NDs-based aptasensors, the HsGDY@NDs-based aptasensors exhibited superior sensing performances for Myo and cTnI, giving low detection limits of 6.29 and 9.04 fg mL-1 for cTnI and Myo, respectively. In addition, the HsGDY@NDs-based aptasensors exhibited high selectivity, good stability, reproducibility, and acceptable applicability in real human serum. Thus, the construction of HsGDY@NDs-based aptasensor is expected to broaden the application of porous organic frameworks in the sensing field and provide a prospective approach for the early detection of disease biomarkers.
Collapse
Affiliation(s)
- Changbao Wang
- School of Materials and Chemical Engineering, Zhengzhou University of Light Industry, No. 136, Science Avenue, Zhengzhou, 450001, PR China
| | - Jiangnan Li
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, No. 1, Jianshe East Road, Zhengzhou, 450052, PR China
| | - Mengmeng Kang
- School of Materials and Chemical Engineering, Zhengzhou University of Light Industry, No. 136, Science Avenue, Zhengzhou, 450001, PR China
| | - Xiaoyu Huang
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, No. 1, Jianshe East Road, Zhengzhou, 450052, PR China
| | - Yang Liu
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, No. 1, Jianshe East Road, Zhengzhou, 450052, PR China
| | - Nan Zhou
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, No. 1, Jianshe East Road, Zhengzhou, 450052, PR China
| | - Zhihong Zhang
- School of Materials and Chemical Engineering, Zhengzhou University of Light Industry, No. 136, Science Avenue, Zhengzhou, 450001, PR China.
| |
Collapse
|
37
|
Cao D, Kang W, Wang W, Sun K, Wang Y, Ma P, Sun D. Okra-Like Fe 7 S 8 /C@ZnS/N-C@C with Core-Double-Shelled Structures as Robust and High-Rate Sodium Anode. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e1907641. [PMID: 32734690 DOI: 10.1002/smll.201907641] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 06/09/2020] [Indexed: 06/11/2023]
Abstract
Core-multishelled structures with controlled chemical composition have attracted great interest due to their fascinating electrochemical performance. Herein, a metal-organic framework (MOF)-on-MOF self-templated strategy is used to fabricate okra-like bimetal sulfide (Fe7 S8 /C@ZnS/N-C@C) with core-double-shelled structure, in which Fe7 S8 /C is distributed in the cores, and ZnS is embedded in one of the layers. The MOF-on-MOF precursor with an MIL-53 core, a ZIF-8 shell, and a resorcinol-formaldehyde (RF) layer (MIL-53@ZIF-8@RF) is prepared through a layer-by-layer assembly method. After calcination with sulfur powder, the resultant structure has a hierarchical carbon matrix, abundant internal interface, and tiered active material distribution. It provides fast sodium-ion reaction kinetics, a superior pseudocapacitance contribution, good resistance of volume changes, and stepwise sodiation/desodiation reaction mechanism. As an anode material for sodium-ion batteries, the electrochemical performance of Fe7 S8 /C@ZnS/N-C@C is superior to that of Fe7 S8 /C@ZnS/N-C, Fe7 S8 /C, or ZnS/N-C. It delivers a high and stable capacity of 364.7 mAh g-1 at current density of 5.0 A g-1 with 10 000 cycles, and registers only 0.00135% capacity decay per cycle. This MOF-on-MOF self-templated strategy may provide a method to construct core-multishelled structures with controlled component distributions for the energy conversion and storage.
Collapse
Affiliation(s)
- Dongwei Cao
- School of Materials Science and Engineering, College of Science, China University of Petroleum (East China), Qingdao, Shandong, 266580, P. R. China
| | - Wenpei Kang
- School of Materials Science and Engineering, College of Science, China University of Petroleum (East China), Qingdao, Shandong, 266580, P. R. China
| | - Wenhong Wang
- College of Chemical Engineering, China University of Petroleum (East China), Qingdao, Shandong, 266580, P. R. China
| | - Kaian Sun
- College of Chemical Engineering, China University of Petroleum (East China), Qingdao, Shandong, 266580, P. R. China
| | - Yuyu Wang
- School of Materials Science and Engineering, College of Science, China University of Petroleum (East China), Qingdao, Shandong, 266580, P. R. China
| | - Ping Ma
- School of Materials Science and Engineering, College of Science, China University of Petroleum (East China), Qingdao, Shandong, 266580, P. R. China
| | - Daofeng Sun
- School of Materials Science and Engineering, College of Science, China University of Petroleum (East China), Qingdao, Shandong, 266580, P. R. China
| |
Collapse
|
38
|
Zhu C, Wang H, Guan C. Recent progress on hollow array architectures and their applications in electrochemical energy storage. NANOSCALE HORIZONS 2020; 5:1188-1199. [PMID: 32661545 DOI: 10.1039/d0nh00332h] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The structural design of electrode materials is one of the most important factors that determines the electrochemical performance of energy storage devices. In recent years, hollow micro-/nanoarray structures have been widely explored for energy applications due to their unique structural advantages. Their complex hollow interior and shell arrays enable fast ion diffusion/transport, provide abundant active sites and accommodate volume changes. Moreover, the direct contact of hollow arrays with substrates enhances the mechanical stability during long-term cycling. To date, huge progress has been achieved in the rational design of various hollow array architectures. However, a review on this topic has been rarely reported. Herein, the multifunctional merits and typical synthetic strategies for hollow array structures are analyzed in detail. Furthermore, their applications in electrochemical energy storage (such as supercapacitors and batteries) are summarized. The development and challenges of hollow arrays in terms of substrates, technique improvement and material innovation are discussed. Finally, their applications for energy storage and conversion are prospected.
Collapse
Affiliation(s)
- Chenyu Zhu
- Frontiers Science Center for Flexible Electronics, Institute of Flexible Electronics, Northwestern Polytechnical University, Xi'an, 710129, P. R. China.
| | | | | |
Collapse
|
39
|
Zakaria MB, Guo Y, Na J, Tahawy R, Chikyow T, El-Said WA, El-Hady DA, Alshitari W, Yamauchi Y, Lin J. Layer-by-Layer Motif Heteroarchitecturing of N,S-Codoped Reduced Graphene Oxide-Wrapped Ni/NiS Nanoparticles for the Electrochemical Oxidation of Water. CHEMSUSCHEM 2020; 13:3269-3276. [PMID: 32133787 DOI: 10.1002/cssc.202000159] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Revised: 02/21/2020] [Indexed: 06/10/2023]
Abstract
A new heterostructured material is synthesized with lamellar arrangements in nanoscale precision through an innovative synthetic approach. The self-assembled Ni-based cyano-bridged coordination polymer flakes (Ni-CP) and graphene oxide (GO) nanosheets with a layered morphology (Ni-CP/GO) are used as precursors for the synthesis of multicomponent hybrid materials. Annealing of Ni-CP/GO in nitrogen at 450 °C allows the formation of Ni3 C/rGO nanocomposites. Grinding Ni-CP/GO and thiourea and annealing under the same conditions produces N,S-codoped reduced GO-wrapped NiS2 flakes (NiS2 /NS-rGO). Interestingly, further heating up to 550 °C allows the phase transformation of NiS2 into NiS accompanied by the formation of a face-centered cubic (FCC-Ni) metal phase between NS-rGO layers (FCC-Ni-NiS/NS-rGO). Among all the materials, the resulting FCC-Ni-NiS/NS-rGO exhibits good electrocatalytic activity and stability toward the oxygen evolution reaction (OER) owing to the synergistic effect of multiphases, the well-designed alternating layered structures on the nanoscale with abundant active sites.
Collapse
Affiliation(s)
- Mohamed Barakat Zakaria
- Key Laboratory of Eco-chemical Engineering, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology (QUST), Qingdao, 266042, China
- Department of Chemistry, Faculty of Science, Tanta University, Tanta, Gharbeya, 31527, Egypt
- International Research Center for Materials Nanoarchitechtonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan
- School of Chemical Engineering and Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Yanna Guo
- International Research Center for Materials Nanoarchitechtonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan
| | - Jongbeom Na
- Key Laboratory of Eco-chemical Engineering, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology (QUST), Qingdao, 266042, China
- School of Chemical Engineering and Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Rafat Tahawy
- International Research Center for Materials Nanoarchitechtonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan
| | - Toyohiro Chikyow
- Materials Data & Integrated System (MaDIS), National Institute for Materials Science (NIMS), 1-2-1 Sengen, Tsukuba, Ibaraki, 305-0047, Japan
| | - Waleed A El-Said
- Department of Chemistry, College of Science, University of Jeddah, P.O. 80327, Jeddah, 21589, Saudi Arabia
| | - Deia A El-Hady
- Department of Chemistry, College of Science, University of Jeddah, P.O. 80327, Jeddah, 21589, Saudi Arabia
| | - Wael Alshitari
- Department of Chemistry, College of Science, University of Jeddah, P.O. 80327, Jeddah, 21589, Saudi Arabia
| | - Yusuke Yamauchi
- Key Laboratory of Eco-chemical Engineering, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology (QUST), Qingdao, 266042, China
- International Research Center for Materials Nanoarchitechtonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan
- School of Chemical Engineering and Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD, 4072, Australia
- Department of Plant & Environmental New Resources, Kyung Hee University, 1732 Deogyeong-daero, Giheung-gu, Yongin-si, Gyeonggi-do, 446-701, South Korea
| | - Jianjian Lin
- Key Laboratory of Eco-chemical Engineering, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology (QUST), Qingdao, 266042, China
| |
Collapse
|
40
|
Yang Q, Guo Y, Yan B, Wang C, Liu Z, Huang Z, Wang Y, Li Y, Li H, Song L, Fan J, Zhi C. Hydrogen-Substituted Graphdiyne Ion Tunnels Directing Concentration Redistribution for Commercial-Grade Dendrite-Free Zinc Anodes. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e2001755. [PMID: 32406976 DOI: 10.1002/adma.202001755] [Citation(s) in RCA: 135] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 04/17/2020] [Accepted: 04/20/2020] [Indexed: 06/11/2023]
Abstract
Current aqueous Zn batteries (ZBs) seriously suffer from dendrite issues caused by rough electrode surfaces. Despite significant efforts in prolonging lifespan of these batteries, little effort has been devoted to dendrite elimination in commercial-grade cathode loading mass. Instead, demonstrations have only been done at the laboratory level (≤2 mg cm-2 ). Additionally, new dilemmas regarding change of the proton-storage behavior and interface pulverization have emerged in turn. Herein, hydrogen-substituted graphdiyne (HsGDY), with sub-ångström level ion tunnels and robust chemical stability, is designed as an artificial interface layer to address these issues. This strategy prolongs the symmetric cell lifespan to >2400 h (100 days), which is 37 times larger than without protection (63 h). The simulation of dual fields reveals that HsGDY can redistribute the Zn2+ concentration field by spatially forcing Zn2+ to deviate from the irregular electric field. During practical use, the as-assembled full batteries deliver a long lifespan 50 000 cycles and remain stable even at a commercial-grade cathode loading mass of up to 22.95 mg cm-2 . This HsGDY-protection methodology represents great progress in Zn dendrite protection and demonstrates enormous potential in metal batteries.
Collapse
Affiliation(s)
- Qi Yang
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, 999077, China
| | - Ying Guo
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, 999077, China
| | - Boxun Yan
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, 999077, China
| | - Changda Wang
- National Synchrotron Radiation Laboratory CAS Center for Excellence in Nanoscience, University of Science and Technology of China, Hefei, 230029, China
| | - Zhuoxin Liu
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, 999077, China
| | - Zhaodong Huang
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, 999077, China
| | - Yukun Wang
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, 999077, China
| | - Yiran Li
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, 999077, China
| | - Hongfei Li
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, 999077, China
| | - Li Song
- National Synchrotron Radiation Laboratory CAS Center for Excellence in Nanoscience, University of Science and Technology of China, Hefei, 230029, China
| | - Jun Fan
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, 999077, China
| | - Chunyi Zhi
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, 999077, China
- Center for Advanced Nuclear Safety and Sustainable Development, City University of Hong Kong, Kowloon, 999077, Hong Kong
| |
Collapse
|
41
|
Liu XX, He Q, Wang Y, Wang J, Xiang Y, Blackwood DJ, Wu R, Chen JS. MOF-reinforced Co9S8 self-supported nanowire arrays for highly durable and flexible supercapacitor. Electrochim Acta 2020. [DOI: 10.1016/j.electacta.2020.136201] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
42
|
Li X, Shao S, Yang Y, Mei Y, Qing W, Guo H, Peng LE, Wang P, Tang CY. Engineering Interface with a One-Dimensional RuO 2/TiO 2 Heteronanostructure in an Electrocatalytic Membrane Electrode: Toward Highly Efficient Micropollutant Decomposition. ACS APPLIED MATERIALS & INTERFACES 2020; 12:21596-21604. [PMID: 32297729 DOI: 10.1021/acsami.0c02552] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Decomposition of micropollutants using an electrocatalytic membrane reactor is a promising alternative to traditional advanced oxidation processes due to its high efficiency and environmental compatibility. Rational interface design of electrocatalysts in the membrane electrode is critical to the performance of the reactor. We herein developed a three-dimensional porous membrane electrode via in situ growth of one-dimensional RuO2/TiO2 heterojunction nanorods on a carbon nanofiber membrane by a facile hydrothermal and subsequent thermal treatment approach. The membrane electrode was used as the anode in a gravity-driven electrocatalytic membrane reactor, exhibiting a high degradation efficiency of over 98% toward bisphenol-A and sulfadiazine. The superior electrocatalytic performance was attributed to the 1D RuO2/TiO2 heterointerfacial structure, which provided the fast electron transfer, high generation rate of the hydroxyl radical, and large effective surface area. Our work paves a novel way for the fundamental understanding and designing of novel highly effective and low-consumptive electrocatalytic membranes for wastewater treatment.
Collapse
Affiliation(s)
- Xianhui Li
- Department of Civil Engineering, The University of Hong Kong, Pokfulam, Hong Kong 999077, P. R. China
| | - Senlin Shao
- Department of Civil Engineering, The University of Hong Kong, Pokfulam, Hong Kong 999077, P. R. China
- School of Civil Engineering, Wuhan University, Wuhan 430072, P. R. China
| | - Yang Yang
- Department of Chemical Engineering, Imperial College London, London SW7 2AZ, UK
| | - Ying Mei
- Department of Civil Engineering, The University of Hong Kong, Pokfulam, Hong Kong 999077, P. R. China
| | - Weihua Qing
- Department of Civil Engineering, The University of Hong Kong, Pokfulam, Hong Kong 999077, P. R. China
| | - Hao Guo
- Department of Civil Engineering, The University of Hong Kong, Pokfulam, Hong Kong 999077, P. R. China
| | - Lu Elfa Peng
- Department of Civil Engineering, The University of Hong Kong, Pokfulam, Hong Kong 999077, P. R. China
| | - Peng Wang
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong 999077, P. R. China
| | - Chuyang Y Tang
- Department of Civil Engineering, The University of Hong Kong, Pokfulam, Hong Kong 999077, P. R. China
| |
Collapse
|
43
|
Liao W, Zhu Z, Chen N, Su T, Deng C, Zhao Y, Ren W, Lü H. Highly active bifunctional Pd-Co9S8/S-CNT catalysts for selective hydrogenolysis of 5-hydroxymethylfurfural to 2,5-dimethylfuran. MOLECULAR CATALYSIS 2020. [DOI: 10.1016/j.mcat.2019.110756] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
44
|
Li Y, Sun L, Zhu T. Various morphologies of hydrogen-substituted graphynes: The importance of reaction solvents. J Mol Liq 2019. [DOI: 10.1016/j.molliq.2019.111958] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
45
|
Kim J, Jun M, Choi S, Jo J, Lee K. Reactive nanotemplates for synthesis of highly efficient electrocatalysts: beyond simple morphology transfer. NANOSCALE 2019; 11:20392-20410. [PMID: 31651011 DOI: 10.1039/c9nr05750a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Efficient electrocatalysts for energy conversion in general, and fuel cell operation and water electrolysis in particular, are pivotal for carbon-free hydrogen production. While the requirements of successful electrocatalysts include a high number density of catalytically active sites, high surface-to-volume ratio, inherently high catalytic activity, and robustness of the catalyst surface structure under harsh operating conditions, it is extremely difficult to synthesize nanocatalysts that could possess all these structural characteristics. Nanotemplate-mediated synthesis, namely, the coating or filling of a template with a desired material phase followed by the removal of the template, has captured the interest of researchers because of the ease of creating hollow-structured nanocatalysts with a high surface to volume ratio. Recent studies, however, have revealed that nanotemplates could be more than just passive supports because they greatly affect catalytic performance by creating an unusual synergy between the substrate and catalyst and by providing dopants to the actual catalyst phase owing to their reactive nature. In this review, we discuss the most notable recent advances in the nanotemplate-based synthesis of electrocatalysts as well as the unusual effects of nanotemplates on the performance of nanocatalysts. We also provide an outlook for this fledgling field so that future research efforts could be focused on the development of practically useful electrocatalysts that could shape the future of energy technologies.
Collapse
Affiliation(s)
- Jun Kim
- Department of Chemistry and Research Institute for Natural Sciences, Korea University, Seoul 02841, Republic of Korea.
| | - Minki Jun
- Department of Chemistry and Research Institute for Natural Sciences, Korea University, Seoul 02841, Republic of Korea.
| | - Songa Choi
- Department of Chemistry and Research Institute for Natural Sciences, Korea University, Seoul 02841, Republic of Korea.
| | - Jinhyoung Jo
- Department of Chemistry and Research Institute for Natural Sciences, Korea University, Seoul 02841, Republic of Korea.
| | - Kwangyeol Lee
- Department of Chemistry and Research Institute for Natural Sciences, Korea University, Seoul 02841, Republic of Korea.
| |
Collapse
|
46
|
Li H, Fu W, Xu K, Wang C, Li Y, Zhang J, Jiang W, Zhu W, Li H. The electronic structure and physicochemical property of boron nitridene. J Mol Graph Model 2019; 94:107475. [PMID: 31634722 DOI: 10.1016/j.jmgm.2019.107475] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 09/26/2019] [Accepted: 10/03/2019] [Indexed: 10/25/2022]
Abstract
Inspired by searching new forms of Boron Nitride (BN) compounds, the electronic structure and physicochemical property of a graphyne-like BN compound was explored by density functional theory with cluster models as well as periodic models. This graphyne-like BN compound is named Boron Nitridene in this work, based on geometry and bond order analysis as its B-N linking units take on double bond characteristics. Different cluster models of Boron Nitridene-x (x = 1-5) were constructed. Results show that the geometric parameters and molecular orbitals are similar for these models. The chemical stability of Boron Nitridene was estimated by the concept of heats of formation, vibrational frequency, and ab initio molecular dynamics. In addition, the IR and Raman spectra were predicted and the unique stretching modes were assigned to give a reference with experimental synthesis. Last, the adsorption strength of small molecules was calculated, and the results show the boron nitridene interacts stronger than hexagonal boron nitride (h-BN).
Collapse
Affiliation(s)
- Hongping Li
- Institute for Energy Research, Jiangsu University, Zhenjiang, 212013, PR China
| | - Wendi Fu
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, PR China
| | - Ke Xu
- Hubei Key Laboratory of Low Dimensional Optoelectronic Materials and Devices, Hubei University of Arts and Science, Xiangyang, 441053, People's Republic of China
| | - Chao Wang
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, PR China
| | - Yujun Li
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, PR China
| | - Jinrui Zhang
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, PR China
| | - Wei Jiang
- Institute for Energy Research, Jiangsu University, Zhenjiang, 212013, PR China
| | - Wenshuai Zhu
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, PR China.
| | - Huaming Li
- Institute for Energy Research, Jiangsu University, Zhenjiang, 212013, PR China.
| |
Collapse
|
47
|
Wang N, He J, Wang K, Zhao Y, Jiu T, Huang C, Li Y. Graphdiyne-Based Materials: Preparation and Application for Electrochemical Energy Storage. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1803202. [PMID: 31448452 DOI: 10.1002/adma.201803202] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2018] [Revised: 06/27/2019] [Indexed: 05/08/2023]
Abstract
Graphdiyne (GDY) has drawn much attention for its 2D chemical structure, extraordinary intrinsic properties, and wide application potential in a variety of research fields. In particular, some structural features and basic physical properties including expanded in-plane pores, regular nanostructuring, and good transporting properties make GDY a promising candidate for an electrode material in energy-storage devices, including batteries and supercapacitors. The chemical structure, synthetic strategy, basic chemical-physical properties of GDY, and related theoretical analysis on its energy-storage mechanism are summarized here. Moreover, through a view of the mutual promotion between the structure modification of GDY and the corresponding electrochemical performance improvement, research progress on the application of GDY for electrochemical energy storage is systematically explored and discussed. Furthermore, the development trends of GDY in energy-storage devices are also comprehensively assessed. GDY-based materials represent a bright future in the field of electrochemical energy storage.
Collapse
Affiliation(s)
- Ning Wang
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, No. 189 Songling Road, Qingdao, 266101, P. R. China
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, P. R. China
| | - Jianjiang He
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, No. 189 Songling Road, Qingdao, 266101, P. R. China
| | - Kun Wang
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, No. 189 Songling Road, Qingdao, 266101, P. R. China
| | - Yingjie Zhao
- School of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
| | - Tonggang Jiu
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, No. 189 Songling Road, Qingdao, 266101, P. R. China
| | - Changshui Huang
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, No. 189 Songling Road, Qingdao, 266101, P. R. China
| | - Yuliang Li
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Zhongguancun North First Street 2, Beijing, 100190, P. R. China
| |
Collapse
|
48
|
Xing C, Xue Y, Huang B, Yu H, Hui L, Fang Y, Liu Y, Zhao Y, Li Z, Li Y. Fluorographdiyne: A Metal‐Free Catalyst for Applications in Water Reduction and Oxidation. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201905729] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Chengyu Xing
- College of Polymer Science and EngineeringQingdao University of Science and Technology Qingdao 266042 P. R. China
| | - Yurui Xue
- Institute of ChemistryChinese Academy of Sciences Beijing 100190 P. R. China
| | - Bolong Huang
- Department of Applied Biology and Chemical TechnologyThe Hong Kong Polytechnic University, Hung Hom, Kowloon Hong Kong SAR 999077 P. R. China
| | - Huidi Yu
- Institute of ChemistryChinese Academy of Sciences Beijing 100190 P. R. China
| | - Lan Hui
- Institute of ChemistryChinese Academy of Sciences Beijing 100190 P. R. China
| | - Yan Fang
- Institute of ChemistryChinese Academy of Sciences Beijing 100190 P. R. China
| | - Yuxin Liu
- Institute of ChemistryChinese Academy of Sciences Beijing 100190 P. R. China
| | - Yingjie Zhao
- College of Polymer Science and EngineeringQingdao University of Science and Technology Qingdao 266042 P. R. China
| | - Zhibo Li
- College of Polymer Science and EngineeringQingdao University of Science and Technology Qingdao 266042 P. R. China
| | - Yuliang Li
- Institute of ChemistryChinese Academy of Sciences Beijing 100190 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| |
Collapse
|
49
|
Xing C, Xue Y, Huang B, Yu H, Hui L, Fang Y, Liu Y, Zhao Y, Li Z, Li Y. Fluorographdiyne: A Metal-Free Catalyst for Applications in Water Reduction and Oxidation. Angew Chem Int Ed Engl 2019; 58:13897-13903. [PMID: 31309671 DOI: 10.1002/anie.201905729] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Indexed: 12/27/2022]
Abstract
A highly efficient bifunctional metal-free catalyst was prepared by growth of three-dimensional porous fluorographdiyne networks on carbon cloth (p-FGDY/CC). Our experiments and density functional theory (DFT) calculations show the 3D p-FGDY/CC network is highly active and it is a high potential metal-free catalyst for the hydrogen evolution reaction (HER) and oxygen evolution reaction (OER), as well as overall water splitting (OWS) under both acidic and alkaline conditions. The experimental and theoretical results show very good consistency; for example, in the HER process, p-FGDY/CC exhibits small overpotentials of 82 and 92 mV to achieve 10 mA cm-2 under alkaline and acidic conditions, respectively. This ensures an even higher selectivity for the adsorption/desorption of various O/H intermediate species. The essential key promotion accomplishes a bifunctional H2 O redox performance application under pH-universal electrochemical conditions.
Collapse
Affiliation(s)
- Chengyu Xing
- College of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
| | - Yurui Xue
- Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Bolong Huang
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, 999077, P. R. China
| | - Huidi Yu
- Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Lan Hui
- Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Yan Fang
- Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Yuxin Liu
- Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Yingjie Zhao
- College of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
| | - Zhibo Li
- College of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
| | - Yuliang Li
- Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
50
|
Unveiling of the energy storage mechanisms of multi -modified (Nb2O5@C)/rGO nanoarrays as anode for high voltage supercapacitors with formulated ionic liquid electrolytes. Electrochim Acta 2019. [DOI: 10.1016/j.electacta.2019.04.160] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|