1
|
Rosenblum JS, Cole Y, Dang D, Lookian PP, Alkaissi H, Patel M, Cappadona AJ, Jha A, Edwards N, Donahue DR, Munasinghe J, Wang H, Knutsen RH, Pappo AS, Lechan RM, Kozel BA, Smirniotopoulos JG, Kim HJ, Vortmeyer A, Miettinen M, Heiss JD, Zhuang Z, Pacak K. Head and neck paraganglioma in Pacak-Zhuang syndrome. JNCI Cancer Spectr 2025; 9:pkaf001. [PMID: 39821441 PMCID: PMC11790058 DOI: 10.1093/jncics/pkaf001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 11/15/2024] [Accepted: 12/31/2024] [Indexed: 01/19/2025] Open
Abstract
BACKGROUND Head and neck paragangliomas (HNPGLs) are typically slow-growing, hormonally inactive tumors of parasympathetic paraganglia. Inactivation of prolyl-hydroxylase domain-containing 2 protein causing indirect gain-of-function of hypoxia-inducible factor-2α (HIF-2α), encoded by EPAS1, was recently shown to cause carotid body hyperplasia. We previously described a syndrome with multiple sympathetic paragangliomas caused by direct gain-of-function variants in EPAS1 (Pacak-Zhuang syndrome, PZS) and developed a corresponding mouse model. METHODS We evaluated a cohort of patients with PZS (n = 9) for HNPGL by positron emission tomography, magnetic resonance imaging, and computed tomography and measured carotid body size compared to literature reference values. Resected tumors were evaluated by histologic sectioning and staining. We evaluated the corresponding mouse model at multiple developmental stages (P8 and adult) for lesions of the head and neck by high resolution ex vivo imaging and performed immunohistochemical staining on histologic sections of the identified lesions. RESULTS hree patients had imaging consistent with HNPGL, one of which warranted resection and was confirmed on histology. Three additional patients had carotid body enlargement (Z-score > 2.0), and 3 had carotid artery malformations. We found that 9 of 10 adult variant mice had carotid body tumors and 6 of 8 had a paraganglioma on the cranio-caval vein, the murine homologue of the superior vena cava; these were also found in 4 of 5 variant mice at post-natal day 8. These tumors and the one resected from a patient were positive for tyrosine hydroxylase, synaptophysin, and chromogranin A. Brown fat in a resected patient tumor carried the EPAS1 pathogenic variant. CONCLUSIONS These findings (1) suggest HNPGL as a feature of PZS and (2) show that these pathogenic variants are sufficient to cause the development of these tumors, which we believe represents a continuous spectrum of disease starting from hyperplasia.
Collapse
Affiliation(s)
- Jared S Rosenblum
- Neuro-Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Yasemin Cole
- Neuro-Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Danielle Dang
- Neuro-Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Pashayar P Lookian
- Neuro-Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Hussam Alkaissi
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Mayank Patel
- Section on Medical Neuroendocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, United States
- General Surgical Pathology Section, National Institutes of Health, Bethesda, MD, United States
| | - Anthony J Cappadona
- Neuro-Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Abhishek Jha
- Section on Medical Neuroendocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, United States
| | - Nancy Edwards
- Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, United States
| | - Danielle R Donahue
- Mouse Imaging Facility, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, United States
| | - Jeeva Munasinghe
- Mouse Imaging Facility, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, United States
| | - Herui Wang
- Neuro-Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Russell H Knutsen
- Laboratory of Vascular and Matrix Genetics, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD, United States
| | - Alberto S Pappo
- Division of Solid Tumor, St Jude Children’s Research Hospital, Memphis, TN, United States
| | - Ronald M Lechan
- Division of Endocrinology, Diabetes & Metabolism, Tufts Medical Center, Boston, MA, United States
| | - Beth A Kozel
- Laboratory of Vascular and Matrix Genetics, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD, United States
| | - James G Smirniotopoulos
- Department of Radiology, George Washington University, Washington, DC, United States
- MedPix® National Library of Medicine, Bethesda, MD, United States
| | - H Jeffrey Kim
- Department of Otolaryngology, Georgetown University School of Medicine, Washington, DC, United States
- Office of Clinical Director, National Institute on Deafness and Other Communication Disorders, Bethesda, MD, United States
| | - Alexander Vortmeyer
- Clinical Pathology & Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Markku Miettinen
- General Surgical Pathology Section, National Institutes of Health, Bethesda, MD, United States
| | - John D Heiss
- Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, United States
| | - Zhengping Zhuang
- Neuro-Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Karel Pacak
- Section on Medical Neuroendocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, United States
- Center for Adrenal Endocrine Tumors, AKESO, Prague 5, Czech Republic
| |
Collapse
|
2
|
Bechmann N, Rosenblum JS, Alzahrani AS. Current views on the role of HIF-2α in the pathogenesis and syndromic presentation of pheochromocytoma and paraganglioma. Best Pract Res Clin Endocrinol Metab 2024; 38:101955. [PMID: 39426935 DOI: 10.1016/j.beem.2024.101955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/21/2024]
Abstract
Pathogenic variants (PVs) in EPAS1, which encodes hypoxia-inducible factor-2α (HIF-2α), could be the underlying genetic cause of about 3%-6% of pheochromocytoma and paragangliomas (PPGLs). EPAS1-related PPGLs may occur as isolated tumors or as part of Pacak-Zhuang Syndrome (PZS) with two or more of a triad of PPGL, polycythemia, and somatostatinoma. HIF-2α plays a critical role in the regulation of the cellular hypoxia pathway. When a gain-of-function PV is acquired, HIF-2α evades steady-state hydroxylation by the prolyl hydroxylase type 2 (PHD2), which accelerates von Hippel-Lindau (VHL)-mediated proteasomal degradation. In this situation, HIF-2α is stabilized and can translocate to the nucleus, inducing the expression of several genes involved in tumorigenesis. This leads to the development of PPGL and other manifestations of PZS. EPAS1-related PPGLs usually occur in the second or third decade of life, more frequently in females, and are usually multiple, adrenal and extra-adrenal, and norepinephrine-secreting. In addition, these tumors carry an increased metastatic potential and have been reported with metastatic disease in up to 30% of cases. While polycythemia is fairly common in PZS, somatostatinomas are rare. It has been suggested that the character of the acquired PV in EPAS1, which affects its binding to PHD2, correlates with certain phenotypes in PZS. PVs in EPAS1 that have been found in related sporadic PPGLs have also been associated with hypoxic conditions including cyanotic congenital heart disease, hemoglobinopathies and high altitude. Understanding the hypoxia pathway and its role in the pathogenesis of PPGL may open a new avenue for developing effective therapies for these tumors. Indeed, one of these therapies is Belzutifan, a HIF-2α inhibitor that is being tested in the treatment of metastatic PPGLs.
Collapse
Affiliation(s)
- Nicole Bechmann
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital Carl Gustav Carus, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, Dresden 01307, Germany; Eunice Kennedy Shriver National Institute of Child Health and Development, Bethesda, MD 20892, United States; Department of Medicine and Department of Molecular Oncology, King Faisal Specialist Hospital & Research Center, Riyadh 11211, Saudi Arabia.
| | - Jared S Rosenblum
- Eunice Kennedy Shriver National Institute of Child Health and Development, Bethesda, MD 20892, United States.
| | - Ali S Alzahrani
- Department of Medicine and Department of Molecular Oncology, King Faisal Specialist Hospital & Research Center, Riyadh 11211, Saudi Arabia.
| |
Collapse
|
3
|
Xiong D, Qiu Y, Zhao J, Zhou Y, Lee D, Gupta S, Torres M, Lu W, Liang S, Kang JJ, Eng C, Loscalzo J, Cheng F, Yu H. A structurally informed human protein-protein interactome reveals proteome-wide perturbations caused by disease mutations. Nat Biotechnol 2024:10.1038/s41587-024-02428-4. [PMID: 39448882 DOI: 10.1038/s41587-024-02428-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 09/11/2024] [Indexed: 10/26/2024]
Abstract
To assist the translation of genetic findings to disease pathobiology and therapeutics discovery, we present an ensemble deep learning framework, termed PIONEER (Protein-protein InteractiOn iNtErfacE pRediction), that predicts protein-binding partner-specific interfaces for all known protein interactions in humans and seven other common model organisms to generate comprehensive structurally informed protein interactomes. We demonstrate that PIONEER outperforms existing state-of-the-art methods and experimentally validate its predictions. We show that disease-associated mutations are enriched in PIONEER-predicted protein-protein interfaces and explore their impact on disease prognosis and drug responses. We identify 586 significant protein-protein interactions (PPIs) enriched with PIONEER-predicted interface somatic mutations (termed oncoPPIs) from analysis of approximately 11,000 whole exomes across 33 cancer types and show significant associations of oncoPPIs with patient survival and drug responses. PIONEER, implemented as both a web server platform and a software package, identifies functional consequences of disease-associated alleles and offers a deep learning tool for precision medicine at multiscale interactome network levels.
Collapse
Grants
- R01GM124559 U.S. Department of Health & Human Services | NIH | National Institute of General Medical Sciences (NIGMS)
- R01GM125639 U.S. Department of Health & Human Services | NIH | National Institute of General Medical Sciences (NIGMS)
- R01GM130885 U.S. Department of Health & Human Services | NIH | National Institute of General Medical Sciences (NIGMS)
- RM1GM139738 U.S. Department of Health & Human Services | NIH | National Institute of General Medical Sciences (NIGMS)
- R01DK115398 U.S. Department of Health & Human Services | NIH | National Institute of Diabetes and Digestive and Kidney Diseases (National Institute of Diabetes & Digestive & Kidney Diseases)
- U01HG007691 U.S. Department of Health & Human Services | NIH | National Human Genome Research Institute (NHGRI)
- R01HL155107 U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- R01HL155096 U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- R01HL166137 U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- U54HL119145 U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- AHA957729 American Heart Association (American Heart Association, Inc.)
- 24MERIT1185447 American Heart Association (American Heart Association, Inc.)
- R01AG084250 U.S. Department of Health & Human Services | NIH | National Institute on Aging (U.S. National Institute on Aging)
- R56AG074001 U.S. Department of Health & Human Services | NIH | National Institute on Aging (U.S. National Institute on Aging)
- U01AG073323 U.S. Department of Health & Human Services | NIH | National Institute on Aging (U.S. National Institute on Aging)
- R01AG066707 U.S. Department of Health & Human Services | NIH | National Institute on Aging (U.S. National Institute on Aging)
- R01AG076448 U.S. Department of Health & Human Services | NIH | National Institute on Aging (U.S. National Institute on Aging)
- R01AG082118 U.S. Department of Health & Human Services | NIH | National Institute on Aging (U.S. National Institute on Aging)
- RF1AG082211 U.S. Department of Health & Human Services | NIH | National Institute on Aging (U.S. National Institute on Aging)
- R21AG083003 U.S. Department of Health & Human Services | NIH | National Institute on Aging (U.S. National Institute on Aging)
- RF1NS133812 U.S. Department of Health & Human Services | NIH | National Institute of Neurological Disorders and Stroke (NINDS)
Collapse
Affiliation(s)
- Dapeng Xiong
- Department of Computational Biology, Cornell University, Ithaca, NY, USA
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY, USA
- Center for Innovative Proteomics, Cornell University, Ithaca, NY, USA
| | - Yunguang Qiu
- Cleveland Clinic Genome Center, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Junfei Zhao
- Department of Systems Biology, Herbert Irving Comprehensive Center, Columbia University, New York, NY, USA
| | - Yadi Zhou
- Cleveland Clinic Genome Center, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Dongjin Lee
- Department of Computational Biology, Cornell University, Ithaca, NY, USA
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY, USA
| | - Shobhita Gupta
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY, USA
- Center for Innovative Proteomics, Cornell University, Ithaca, NY, USA
- Biophysics Program, Cornell University, Ithaca, NY, USA
| | - Mateo Torres
- Department of Computational Biology, Cornell University, Ithaca, NY, USA
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY, USA
- Center for Innovative Proteomics, Cornell University, Ithaca, NY, USA
| | - Weiqiang Lu
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Siqi Liang
- Department of Computational Biology, Cornell University, Ithaca, NY, USA
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY, USA
| | - Jin Joo Kang
- Department of Computational Biology, Cornell University, Ithaca, NY, USA
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY, USA
- Center for Innovative Proteomics, Cornell University, Ithaca, NY, USA
| | - Charis Eng
- Cleveland Clinic Genome Center, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
- Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH, USA
- Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Joseph Loscalzo
- Channing Division of Network Medicine, Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Feixiong Cheng
- Cleveland Clinic Genome Center, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA.
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA.
- Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH, USA.
- Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, OH, USA.
| | - Haiyuan Yu
- Department of Computational Biology, Cornell University, Ithaca, NY, USA.
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY, USA.
- Center for Innovative Proteomics, Cornell University, Ithaca, NY, USA.
| |
Collapse
|
4
|
He W, Gasmi-Seabrook GMC, Ikura M, Lee JE, Ohh M. Time-resolved NMR detection of prolyl-hydroxylation in intrinsically disordered region of HIF-1α. Proc Natl Acad Sci U S A 2024; 121:e2408104121. [PMID: 39231207 PMCID: PMC11406255 DOI: 10.1073/pnas.2408104121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 07/23/2024] [Indexed: 09/06/2024] Open
Abstract
Prolyl-hydroxylation is an oxygen-dependent posttranslational modification (PTM) that is known to regulate fibril formation of collagenous proteins and modulate cellular expression of hypoxia-inducible factor (HIF) α subunits. However, our understanding of this important but relatively rare PTM has remained incomplete due to the lack of biophysical methodologies that can directly measure multiple prolyl-hydroxylation events within intrinsically disordered proteins. Here, we describe a real-time 13C-direct detection NMR-based assay for studying the hydroxylation of two evolutionarily conserved prolines (P402 and P564) simultaneously in the intrinsically disordered oxygen-dependent degradation domain of hypoxic-inducible factor 1α by exploiting the "proton-less" nature of prolines. We show unambiguously that P564 is rapidly hydroxylated in a time-resolved manner while P402 hydroxylation lags significantly behind that of P564. The differential hydroxylation rate was negligibly influenced by the binding affinity to prolyl-hydroxylase enzyme, but rather by the surrounding amino acid composition, particularly the conserved tyrosine residue at the +1 position to P564. These findings support the unanticipated notion that the evolutionarily conserved P402 seemingly has a minimal impact in normal oxygen-sensing pathway.
Collapse
Affiliation(s)
- Wenguang He
- Department of Biochemistry, Temerty Faculty of Medicine, University of Toronto, Toronto, ONM5G 1M1, Canada
| | | | - Mitsuhiko Ikura
- Princess Margaret Cancer Centre, University Health Network, Toronto, ONM5G 1L7, Canada
- Department of Medical Biophysics, Temerty Faculty of Medicine, University of Toronto, Toronto, ONM5G 1L7, Canada
| | - Jeffrey E. Lee
- Department of Laboratory Medicine and Pathobiology, Temerty Faculty of Medicine, University of Toronto, Toronto, ONM5S 1A8, Canada
| | - Michael Ohh
- Department of Biochemistry, Temerty Faculty of Medicine, University of Toronto, Toronto, ONM5G 1M1, Canada
- Department of Laboratory Medicine and Pathobiology, Temerty Faculty of Medicine, University of Toronto, Toronto, ONM5S 1A8, Canada
| |
Collapse
|
5
|
张 博, 楼 梓, 王 菁, 胡 怡, 陈 正. [Advance in HIF expression and immune microenvironment in pseudohypoxic HNPGL]. LIN CHUANG ER BI YAN HOU TOU JING WAI KE ZA ZHI = JOURNAL OF CLINICAL OTORHINOLARYNGOLOGY HEAD AND NECK SURGERY 2024; 38:823-829. [PMID: 39193740 PMCID: PMC11839587 DOI: 10.13201/j.issn.2096-7993.2024.09.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Indexed: 08/29/2024]
Abstract
This article systematically reviewed the pathological features, molecular mechanisms, and tumor microenvironment of head and neck paraganglioma(HNPGL), with a focus on pseudohypoxic HNPGL. It was demonstrated that pseudohypoxic HNPGL mainly involves multiple gene mutations, such as SDHx and VHL/EPAS1, which affect the stability and activity of HIF protein and exacerbate the development of the tumor. Meanwhile, the paper also analyzed the expression patterns of HIF-1α and HIF-2α in HNPGL, and found that differences in HIF activation may have an impact on the therapeutic response of specific subtypes. In addition, the paper explored the tumor microenvironment of HNPGL and found that immune cells such as macrophages, CD4⁺T cells, and CD8⁺T cells play an important role in the tumor, and the heterogeneity of the immune microenvironment also affects the choice of therapeutic approaches and responsiveness. Through comprehensive analysis, these findings not only contribute to a deeper understanding of the pathogenesis and developmental process of HNPGL, but also provide clues for future personalized treatments for specific subtypes.
Collapse
Affiliation(s)
- 博雅 张
- 上海交通大学医学院附属第六人民医院耳鼻咽喉头颈外科(上海,200233)Department of Otorhinolaryngology Head and Neck Surgery, Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - 梓涵 楼
- 上海交通大学医学院附属第六人民医院耳鼻咽喉头颈外科(上海,200233)Department of Otorhinolaryngology Head and Neck Surgery, Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - 菁菁 王
- 上海交通大学医学院附属第六人民医院耳鼻咽喉头颈外科(上海,200233)Department of Otorhinolaryngology Head and Neck Surgery, Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - 怡冰 胡
- 上海交通大学医学院附属第六人民医院耳鼻咽喉头颈外科(上海,200233)Department of Otorhinolaryngology Head and Neck Surgery, Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - 正侬 陈
- 上海交通大学医学院附属第六人民医院耳鼻咽喉头颈外科(上海,200233)Department of Otorhinolaryngology Head and Neck Surgery, Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| |
Collapse
|
6
|
Stuart S, Tarade D, Ohh M. Cathepsins L and B target HIF1α for oxygen-independent proteolytic cleavage. Sci Rep 2024; 14:14799. [PMID: 38926538 PMCID: PMC11208597 DOI: 10.1038/s41598-024-65537-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 06/19/2024] [Indexed: 06/28/2024] Open
Abstract
The oxygen-labile transcription factor called hypoxia-inducible factor (HIF) is responsible for the cellular and organismal adaptive response to reduced oxygen availability. Deregulation of HIF is associated with the pathogenesis of major human diseases including cardiovascular disease and cancer. Under normoxia, the HIFα subunit is hydroxylated on conserved proline residues within the oxygen-dependent degradation domain (ODD) that labels HIFα for proteasome-mediated degradation. Despite similar oxygen-dependent degradation machinery acting on HIF1α and HIF2α, these two paralogs have been shown to exhibit unique kinetics under hypoxia, which suggests that other regulatory processes may be at play. Here, we characterize the protease activity found in rabbit reticulocytes that specifically cleaves the ODD of HIF1α but not HIF2α. Notably, the cleavage product is observed irrespective of the oxygen-dependent prolyl-hydroxylation potential of HIF1α, suggesting independence from oxygen. HIF1α M561T substitution, which mimics an evolutionary substitution that occurred during the duplication and divergence of HIF1α and HIF2α, diminished the cleavage of HIF1α. Protease inhibitor screening suggests that cysteine proteases cathepsins L and B preferentially cleave HIF1αODD, thereby revealing an additional layer of differential HIF regulation.
Collapse
Affiliation(s)
- Sarah Stuart
- Department of Laboratory Medicine & Pathobiology, University of Toronto, 1 King's College Circle, Toronto, ON, M5S 1A8, Canada
- Department of Biochemistry, University of Toronto, 661 University Avenue, Toronto, ON, M5G 1M1, Canada
| | - Daniel Tarade
- Department of Laboratory Medicine & Pathobiology, University of Toronto, 1 King's College Circle, Toronto, ON, M5S 1A8, Canada
| | - Michael Ohh
- Department of Laboratory Medicine & Pathobiology, University of Toronto, 1 King's College Circle, Toronto, ON, M5S 1A8, Canada.
- Department of Biochemistry, University of Toronto, 661 University Avenue, Toronto, ON, M5G 1M1, Canada.
| |
Collapse
|
7
|
Mancini M, Buffet A, Porte B, Amar L, Lussey-Lepoutre C, Crinière L, Baudin E, Meatchi T, Gimenez-Roqueplo AP, Favier J, Burnichon N. EPAS1-mutated paragangliomas associated with haemoglobin disorders. Br J Haematol 2024; 204:1054-1060. [PMID: 38195958 DOI: 10.1111/bjh.19278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 12/06/2023] [Accepted: 12/19/2023] [Indexed: 01/11/2024]
Abstract
We report a large series of 40 patients presenting EPAS1-mutated paraganglioma (PGL) in whom we investigated a cause underlying chronic hypoxia. Four patients suffered from hypoxaemic heart disease. In patients with available haemoglobin electrophoresis results, 59% presented with a haemoglobin disorder, including six with sickle cell disease, five with sickle cell trait and two with heterozygous haemoglobin C disease. Histological and transcriptomic characterization of EPAS1 tumours revealed increased angiogenesis and high similarities with pseudohypoxic PGLs caused by VHL gene mutations. Sickle haemoglobinopathy carriers could thus be at increased risk for developing EPAS1-PGLs, which should be taken into account in their management and surveillance.
Collapse
Affiliation(s)
- Maxence Mancini
- Université Paris Cité, Inserm, Paris Centre de Recherche Cardiovasculaire (PARCC), Equipe Labellisée Ligue contre le Cancer, Paris, France
| | - Alexandre Buffet
- Université Paris Cité, Inserm, Paris Centre de Recherche Cardiovasculaire (PARCC), Equipe Labellisée Ligue contre le Cancer, Paris, France
- Département de Médecine Génomique des Tumeurs et des Cancers, Fédération de Génétique et de Médecine Génomique, Assistance Publique-Hôpitaux de Paris (AP-HP) Centre, Hôpital Européen Georges Pompidou, Paris, France
| | - Baptiste Porte
- Université Paris Cité, Inserm, Paris Centre de Recherche Cardiovasculaire (PARCC), Equipe Labellisée Ligue contre le Cancer, Paris, France
| | - Laurence Amar
- Université Paris Cité, Inserm, Paris Centre de Recherche Cardiovasculaire (PARCC), Equipe Labellisée Ligue contre le Cancer, Paris, France
- Service d'Hypertension artérielle, Assistance Publique-Hôpitaux de Paris (AP-HP) Centre, Hôpital Européen Georges Pompidou, Paris, France
| | - Charlotte Lussey-Lepoutre
- Université Paris Cité, Inserm, Paris Centre de Recherche Cardiovasculaire (PARCC), Equipe Labellisée Ligue contre le Cancer, Paris, France
- Service de Médecine Nucléaire, Sorbonne Université, AP-HP, Hôpital Pitié-Salpêtrière, Paris, France
| | - Lise Crinière
- Service d'endocrinologie, CHRU Bretonneau, Tours, France
| | - Eric Baudin
- Service de Médecine Nucléaire, Gustave Roussy, Villejuif, France
| | - Tchao Meatchi
- Service d'anatomie pathologique, Assistance Publique-Hôpitaux de Paris (AP-HP) Centre, Hôpital Européen Georges Pompidou, Paris, France
| | - Anne-Paule Gimenez-Roqueplo
- Université Paris Cité, Inserm, Paris Centre de Recherche Cardiovasculaire (PARCC), Equipe Labellisée Ligue contre le Cancer, Paris, France
- Département de Médecine Génomique des Tumeurs et des Cancers, Fédération de Génétique et de Médecine Génomique, Assistance Publique-Hôpitaux de Paris (AP-HP) Centre, Hôpital Européen Georges Pompidou, Paris, France
| | - Judith Favier
- Université Paris Cité, Inserm, Paris Centre de Recherche Cardiovasculaire (PARCC), Equipe Labellisée Ligue contre le Cancer, Paris, France
| | - Nelly Burnichon
- Université Paris Cité, Inserm, Paris Centre de Recherche Cardiovasculaire (PARCC), Equipe Labellisée Ligue contre le Cancer, Paris, France
- Département de Médecine Génomique des Tumeurs et des Cancers, Fédération de Génétique et de Médecine Génomique, Assistance Publique-Hôpitaux de Paris (AP-HP) Centre, Hôpital Européen Georges Pompidou, Paris, France
| |
Collapse
|
8
|
Ferens FG, Taber CC, Stuart S, Hubert M, Tarade D, Lee JE, Ohh M. Deficiency in PHD2-mediated hydroxylation of HIF2α underlies Pacak-Zhuang syndrome. Commun Biol 2024; 7:240. [PMID: 38418569 PMCID: PMC10902354 DOI: 10.1038/s42003-024-05904-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 02/09/2024] [Indexed: 03/01/2024] Open
Abstract
Pacak-Zhuang syndrome is caused by mutations in the EPAS1 gene, which encodes for one of the three hypoxia-inducible factor alpha (HIFα) paralogs HIF2α and is associated with defined but varied phenotypic presentations including neuroendocrine tumors and polycythemia. However, the mechanisms underlying the complex genotype-phenotype correlations remain incompletely understood. Here, we devised a quantitative method for determining the dissociation constant (Kd) of the HIF2α peptides containing disease-associated mutations and the catalytic domain of prolyl-hydroxylase (PHD2) using microscale thermophoresis (MST) and showed that neuroendocrine-associated Class 1 HIF2α mutants have distinctly higher Kd than the exclusively polycythemia-associated Class 2 HIF2α mutants. Based on the co-crystal structure of PHD2/HIF2α peptide complex at 1.8 Å resolution, we showed that the Class 1 mutated residues are localized to the critical interface between HIF2α and PHD2, adjacent to the PHD2 active catalytic site, while Class 2 mutated residues are localized to the more flexible region of HIF2α that makes less contact with PHD2. Concordantly, Class 1 mutations were found to significantly increase HIF2α-mediated transcriptional activation in cellulo compared to Class 2 counterparts. These results reveal a structural mechanism in which the strength of the interaction between HIF2α and PHD2 is at the root of the general genotype-phenotype correlations observed in Pacak-Zhuang syndrome.
Collapse
Affiliation(s)
- Fraser G Ferens
- Department of Laboratory Medicine & Pathobiology, Faculty of Medicine, University of Toronto, 1 King's College Circle, Toronto, ON, M5S 1A8, Canada
- Department of Biochemistry, Faculty of Medicine, University of Toronto, 661 University Avenue, Toronto, ON, M5G 1M1, Canada
| | - Cassandra C Taber
- Department of Laboratory Medicine & Pathobiology, Faculty of Medicine, University of Toronto, 1 King's College Circle, Toronto, ON, M5S 1A8, Canada
| | - Sarah Stuart
- Department of Laboratory Medicine & Pathobiology, Faculty of Medicine, University of Toronto, 1 King's College Circle, Toronto, ON, M5S 1A8, Canada
- Department of Biochemistry, Faculty of Medicine, University of Toronto, 661 University Avenue, Toronto, ON, M5G 1M1, Canada
| | - Mia Hubert
- Department of Laboratory Medicine & Pathobiology, Faculty of Medicine, University of Toronto, 1 King's College Circle, Toronto, ON, M5S 1A8, Canada
| | - Daniel Tarade
- Department of Laboratory Medicine & Pathobiology, Faculty of Medicine, University of Toronto, 1 King's College Circle, Toronto, ON, M5S 1A8, Canada
| | - Jeffrey E Lee
- Department of Laboratory Medicine & Pathobiology, Faculty of Medicine, University of Toronto, 1 King's College Circle, Toronto, ON, M5S 1A8, Canada
| | - Michael Ohh
- Department of Laboratory Medicine & Pathobiology, Faculty of Medicine, University of Toronto, 1 King's College Circle, Toronto, ON, M5S 1A8, Canada.
- Department of Biochemistry, Faculty of Medicine, University of Toronto, 661 University Avenue, Toronto, ON, M5G 1M1, Canada.
| |
Collapse
|
9
|
Xiong D, Qiu Y, Zhao J, Zhou Y, Lee D, Gupta S, Torres M, Lu W, Liang S, Kang JJ, Eng C, Loscalzo J, Cheng F, Yu H. Structurally-informed human interactome reveals proteome-wide perturbations by disease mutations. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.04.24.538110. [PMID: 37162909 PMCID: PMC10168245 DOI: 10.1101/2023.04.24.538110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Human genome sequencing studies have identified numerous loci associated with complex diseases. However, translating human genetic and genomic findings to disease pathobiology and therapeutic discovery remains a major challenge at multiscale interactome network levels. Here, we present a deep-learning-based ensemble framework, termed PIONEER (Protein-protein InteractiOn iNtErfacE pRediction), that accurately predicts protein binding partner-specific interfaces for all known protein interactions in humans and seven other common model organisms, generating comprehensive structurally-informed protein interactomes. We demonstrate that PIONEER outperforms existing state-of-the-art methods. We further systematically validated PIONEER predictions experimentally through generating 2,395 mutations and testing their impact on 6,754 mutation-interaction pairs, confirming the high quality and validity of PIONEER predictions. We show that disease-associated mutations are enriched in PIONEER-predicted protein-protein interfaces after mapping mutations from ~60,000 germline exomes and ~36,000 somatic genomes. We identify 586 significant protein-protein interactions (PPIs) enriched with PIONEER-predicted interface somatic mutations (termed oncoPPIs) from pan-cancer analysis of ~11,000 tumor whole-exomes across 33 cancer types. We show that PIONEER-predicted oncoPPIs are significantly associated with patient survival and drug responses from both cancer cell lines and patient-derived xenograft mouse models. We identify a landscape of PPI-perturbing tumor alleles upon ubiquitination by E3 ligases, and we experimentally validate the tumorigenic KEAP1-NRF2 interface mutation p.Thr80Lys in non-small cell lung cancer. We show that PIONEER-predicted PPI-perturbing alleles alter protein abundance and correlates with drug responses and patient survival in colon and uterine cancers as demonstrated by proteogenomic data from the National Cancer Institute's Clinical Proteomic Tumor Analysis Consortium. PIONEER, implemented as both a web server platform and a software package, identifies functional consequences of disease-associated alleles and offers a deep learning tool for precision medicine at multiscale interactome network levels.
Collapse
Affiliation(s)
- Dapeng Xiong
- Department of Computational Biology, Cornell University, Ithaca, NY 14853, USA
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853, USA
- Center for Innovative Proteomics, Cornell University, Ithaca, NY 14853, USA
| | - Yunguang Qiu
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Junfei Zhao
- Department of Systems Biology, Herbert Irving Comprehensive Center, Columbia University, New York, NY 10032, USA
| | - Yadi Zhou
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Dongjin Lee
- Department of Computational Biology, Cornell University, Ithaca, NY 14853, USA
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853, USA
| | - Shobhita Gupta
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853, USA
- Center for Innovative Proteomics, Cornell University, Ithaca, NY 14853, USA
- Biophysics Program, Cornell University, Ithaca, NY 14853, USA
| | - Mateo Torres
- Department of Computational Biology, Cornell University, Ithaca, NY 14853, USA
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853, USA
- Center for Innovative Proteomics, Cornell University, Ithaca, NY 14853, USA
| | - Weiqiang Lu
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Siqi Liang
- Department of Computational Biology, Cornell University, Ithaca, NY 14853, USA
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853, USA
| | - Jin Joo Kang
- Department of Computational Biology, Cornell University, Ithaca, NY 14853, USA
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853, USA
- Center for Innovative Proteomics, Cornell University, Ithaca, NY 14853, USA
| | - Charis Eng
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
- Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH 44195, USA
- Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Joseph Loscalzo
- Channing Division of Network Medicine, Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Feixiong Cheng
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
- Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH 44195, USA
- Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Haiyuan Yu
- Department of Computational Biology, Cornell University, Ithaca, NY 14853, USA
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853, USA
- Center for Innovative Proteomics, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
10
|
Pei J, Zhang J, Cong Q. Computational analysis of protein-protein interactions of cancer drivers in renal cell carcinoma. FEBS Open Bio 2024; 14:112-126. [PMID: 37964489 PMCID: PMC10761929 DOI: 10.1002/2211-5463.13732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 10/30/2023] [Accepted: 11/06/2023] [Indexed: 11/16/2023] Open
Abstract
Renal cell carcinoma (RCC) is the most common type of kidney cancer with rising cases in recent years. Extensive research has identified various cancer driver proteins associated with different subtypes of RCC. Most RCC drivers are encoded by tumor suppressor genes and exhibit enrichment in functional categories such as protein degradation, chromatin remodeling, and transcription. To further our understanding of RCC, we utilized powerful deep-learning methods based on AlphaFold to predict protein-protein interactions (PPIs) involving RCC drivers. We predicted high-confidence complexes formed by various RCC drivers, including TCEB1, KMT2C/D and KDM6A of the COMPASS-related complexes, TSC1 of the MTOR pathway, and TRRAP. These predictions provide valuable structural insights into the interaction interfaces, some of which are promising targets for cancer drug design, such as the NRF2-MAFK interface. Cancer somatic missense mutations from large datasets of genome sequencing of RCCs were mapped to the interfaces of predicted and experimental structures of PPIs involving RCC drivers, and their effects on the binding affinity were evaluated. We observed more than 100 cancer somatic mutations affecting the binding affinity of complexes formed by key RCC drivers such as VHL and TCEB1. These findings emphasize the importance of these mutations in RCC pathogenesis and potentially offer new avenues for targeted therapies.
Collapse
Affiliation(s)
- Jimin Pei
- Eugene McDermott Center for Human Growth and DevelopmentUniversity of Texas Southwestern Medical CenterDallasTXUSA
- Department of BiophysicsUniversity of Texas Southwestern Medical CenterDallasTXUSA
- Harold C. Simmons Comprehensive Cancer CenterUniversity of Texas Southwestern Medical CenterDallasTXUSA
| | - Jing Zhang
- Eugene McDermott Center for Human Growth and DevelopmentUniversity of Texas Southwestern Medical CenterDallasTXUSA
- Department of BiophysicsUniversity of Texas Southwestern Medical CenterDallasTXUSA
- Harold C. Simmons Comprehensive Cancer CenterUniversity of Texas Southwestern Medical CenterDallasTXUSA
| | - Qian Cong
- Eugene McDermott Center for Human Growth and DevelopmentUniversity of Texas Southwestern Medical CenterDallasTXUSA
- Department of BiophysicsUniversity of Texas Southwestern Medical CenterDallasTXUSA
- Harold C. Simmons Comprehensive Cancer CenterUniversity of Texas Southwestern Medical CenterDallasTXUSA
| |
Collapse
|
11
|
White G, Nonaka D, Chung TT, Oakey RJ, Izatt L. Somatic EPAS1 Variants in Pheochromocytoma and Paraganglioma in Patients With Sickle Cell Disease. J Clin Endocrinol Metab 2023; 108:3302-3310. [PMID: 37285480 PMCID: PMC10655516 DOI: 10.1210/clinem/dgad311] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/09/2023] [Accepted: 05/26/2023] [Indexed: 06/09/2023]
Abstract
CONTEXT Somatic EPAS1 variants account for 5% to 8% of all pheochromocytoma and paragangliomas (PPGL) but are detected in over 90% of PPGL in patients with congenital cyanotic heart disease, where hypoxemia may select for EPAS1 gain-of-function variants. Sickle cell disease (SCD) is an inherited hemoglobinopathy associated with chronic hypoxia and there are isolated reports of PPGL in patients with SCD, but a genetic link between the conditions has yet to be established. OBJECTIVE To determine the phenotype and EPAS1 variant status of patients with PPGL and SCD. METHODS Records of 128 patients with PPGL under follow-up at our center from January 2017 to December 2022 were screened for SCD diagnosis. For identified patients, clinical data and biological specimens were obtained, including tumor, adjacent non-tumor tissue and peripheral blood. Sanger sequencing of exons 9 and 12 of EPAS1, followed by amplicon next-generation sequencing of identified variants was performed on all samples. RESULTS Four patients with both PPGL and SCD were identified. Median age at PPGL diagnosis was 28 years. Three tumors were abdominal paragangliomas and 1 was a pheochromocytoma. No germline pathogenic variants in PPGL-susceptibility genes were identified in the cohort. Genetic testing of tumor tissue detected unique EPAS1 variants in all 4 patients. Variants were not detected in the germline, and 1 variant was detected in lymph node tissue of a patient with metastatic disease. CONCLUSION We propose that somatic EPAS1 variants may be acquired through exposure to chronic hypoxia in SCD and drive PPGL development. Future work is needed to further characterize this association.
Collapse
Affiliation(s)
- Gemma White
- Department of Medical and Molecular Genetics, King's College London, London, SE1 9RT, UK
- Department of Clinical Genetics, Guy's and St Thomas’ NHS Foundation Trust, London, SE1 9RT, UK
| | - Daisuke Nonaka
- Department of Pathology, Guy's and St Thomas’ NHS Foundation Trust, London, SE1 7EH, UK
- Department of Cellular Pathology, King's College London, London, SE1 1UL, UK
| | - Teng-Teng Chung
- Department of Endocrinology, University College London Hospital NHS Foundation Trust, London, NW1 2BU, UK
| | - Rebecca J Oakey
- Department of Medical and Molecular Genetics, King's College London, London, SE1 9RT, UK
| | - Louise Izatt
- Department of Medical and Molecular Genetics, King's College London, London, SE1 9RT, UK
- Department of Clinical Genetics, Guy's and St Thomas’ NHS Foundation Trust, London, SE1 9RT, UK
| |
Collapse
|
12
|
Wang Y, Liu X, Wang M, Wang Y, Wang S, Jin L, Liu M, Zhou J, Chen Y. UBE3B promotes breast cancer progression by antagonizing HIF-2α degradation. Oncogene 2023; 42:3394-3406. [PMID: 37783786 DOI: 10.1038/s41388-023-02842-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 09/13/2023] [Accepted: 09/14/2023] [Indexed: 10/04/2023]
Abstract
Mutations in E3 ubiquitin ligase UBE3B have been linked to Kaufman Oculocerebrofacial Syndrome (KOS). Accumulating evidence indicates that UBE3B may play an important role in cancer. However, the precise role of UBE3B in cancer and the underlying mechanism remain largely uncharted. Here, we reported that UBE3B is an E3 ligase for hypoxia-inducible factor 2α (HIF-2α). Mechanically, UBE3B physically interacts with HIF-2α and promotes its lysine 63 (K63)-linked polyubiquitination, thereby inhibiting the Von Hippel-Lindau (VHL) E3 ligase complex-mediated HIF-2α degradation. UBE3B depletion inhibits breast cancer cell proliferation, colony formation, migration, and invasion in vitro and suppresses breast tumor growth and lung metastasis in vivo. We further identified K394, K497, and K503 of HIF-2α as key ubiquitination sites for UBE3B. K394/497/503R mutation of HIF-2α dramatically abolishes UBE3B-mediated breast cancer growth and lung metastasis. Intriguingly, the protein levels of UBE3B are upregulated and positively correlated with HIF-2α protein levels in breast cancer tissues. These findings uncover a critical mechanism underlying the role of UBE3B in HIF-2α regulation and breast cancer progression.
Collapse
Affiliation(s)
- Yijie Wang
- Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, Center for Cell Structure and Function, Institute of Biomedical Science, College of Life Sciences, Shandong Normal University, Jinan, Shandong, 250014, China
| | - Xiong Liu
- School of Medicine, Jinan University, Guangzhou, Guangdong, 510632, China
| | - Min Wang
- Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, Center for Cell Structure and Function, Institute of Biomedical Science, College of Life Sciences, Shandong Normal University, Jinan, Shandong, 250014, China
| | - Yu Wang
- Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, Center for Cell Structure and Function, Institute of Biomedical Science, College of Life Sciences, Shandong Normal University, Jinan, Shandong, 250014, China
| | - Shuo Wang
- Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, Center for Cell Structure and Function, Institute of Biomedical Science, College of Life Sciences, Shandong Normal University, Jinan, Shandong, 250014, China
| | - Lai Jin
- School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu, 211166, China
| | - Min Liu
- Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, Center for Cell Structure and Function, Institute of Biomedical Science, College of Life Sciences, Shandong Normal University, Jinan, Shandong, 250014, China
| | - Jun Zhou
- Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, Center for Cell Structure and Function, Institute of Biomedical Science, College of Life Sciences, Shandong Normal University, Jinan, Shandong, 250014, China
| | - Yan Chen
- Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, Center for Cell Structure and Function, Institute of Biomedical Science, College of Life Sciences, Shandong Normal University, Jinan, Shandong, 250014, China.
- School of Medicine, Jinan University, Guangzhou, Guangdong, 510632, China.
| |
Collapse
|
13
|
Gangat N, Szuber N, Tefferi A. JAK2 unmutated erythrocytosis: 2023 Update on diagnosis and management. Am J Hematol 2023; 98:965-981. [PMID: 36966432 DOI: 10.1002/ajh.26920] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 03/18/2023] [Accepted: 03/22/2023] [Indexed: 03/27/2023]
Abstract
DISEASE OVERVIEW JAK2 unmutated or non-polycythemia vera (PV) erythrocytosis encompasses a heterogenous spectrum of hereditary and acquired entities. DIAGNOSIS Foremost in the evaluation of erythrocytosis is the exclusion of PV through JAK2 (inclusive of exons 12-15) mutation screening. Initial assessment should also include gathering of previous records on hematocrit (Hct) and hemoglobin (Hgb) levels, in order to streamline the diagnostic process by first distinguishing longstanding from acquired erythrocytosis; subsequent subcategorization is facilitated by serum erythropoietin (Epo) measurement, germline mutation screening, and review of historical data, including comorbid conditions and medication list. Hereditary erythrocytosis constitutes the main culprit in the context of longstanding erythrocytosis, especially when associated with a positive family history. In this regard, a subnormal serum Epo level suggests EPO receptor mutation. Otherwise, considerations include those associated with decreased (high oxygen affinity Hgb variants, 2,3-bisphosphoglycerate deficiency, PIEZO1 mutations, methemoglobinemia) or normal oxygen tension at 50% Hgb saturation (P50). The latter include germline oxygen sensing pathway (HIF2A-PHD2-VHL) and other rare mutations. Acquired erythrocytosis commonly results from central (e.g., cardiopulmonary disease, high-altitude habitat) or peripheral (e.g., renal artery stenosis) hypoxia. Other noteworthy conditions associated with acquired erythrocytosis include Epo-producing tumors (e.g., renal cell carcinoma, cerebral hemangioblastoma) and drugs (e.g., testosterone, erythropoiesis stimulating agents, sodium-glucose cotransporter-2 inhibitors). Idiopathic erythrocytosis is an ill-defined terminology that presumes the existence of an increased Hgb/Hct level without an identifiable etiology. Such classification often lacks accounting for normal outliers and is marred by truncated diagnostic evaluation. MANAGEMENT Current consensus treatment guidelines are not supported by hard evidence and their value is further undermined by limited phenotypic characterization and unfounded concerns for thrombosis. We are of the opinion that cytoreductive therapy and indiscriminate use of phlebotomy should be avoided in the treatment of non-clonal erythrocytosis. However, it is reasonable to consider therapeutic phlebotomy if one were to demonstrate value in symptom control, with frequency determined by symptoms rather than Hct level. In addition, cardiovascular risk optimization and low dose aspirin is often advised. FUTURE DIRECTIONS Advances in molecular hematology might result in better characterization of "idiopathic erythrocytosis" and expansion of the repertoire for germline mutations in hereditary erythrocytosis. Prospective controlled studies are needed to clarify potential pathology from JAK2 unmutated erythrocytosis, as well as to document the therapeutic value of phlebotomy.
Collapse
Affiliation(s)
- Naseema Gangat
- Division of Hematology, Department of Internal Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Natasha Szuber
- Department of Hematology, Université de Montréal, Montréal, Quebec, Canada
| | - Ayalew Tefferi
- Division of Hematology, Department of Internal Medicine, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
14
|
Winzeler B, Tufton N, S. Lim E, Challis BG, Park S, Izatt L, Carroll PV, Velusamy A, Hulse T, Whitelaw BC, Martin E, Rodger F, Maranian M, Clark GR, A. Akker S, Maher ER, Casey RT. Investigating the role of somatic sequencing platforms for phaeochromocytoma and paraganglioma in a large UK cohort. Clin Endocrinol (Oxf) 2022; 97:448-459. [PMID: 34870338 PMCID: PMC9543043 DOI: 10.1111/cen.14639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 09/24/2021] [Accepted: 10/21/2021] [Indexed: 12/03/2022]
Abstract
OBJECTIVES Phaeochromocytomas and paragangliomas (PPGL) are rare neuroendocrine tumours with malignant potential and a hereditary basis in almost 40% of patients. Germline genetic testing has transformed the management of PPGL enabling stratification of surveillance approaches, earlier diagnosis and predictive testing of at-risk family members. Recent studies have identified somatic mutations in a further subset of patients, indicating that molecular drivers at either a germline or tumour level can be identified in up to 80% of PPGL cases. The aim of this study was to investigate the clinical utility of somatic sequencing in a large cohort of patients with PPGL in the United Kingdom. DESIGN AND PATIENTS Prospectively collected matched germline and tumour samples (development cohort) and retrospectively collected tumour samples (validation cohort) of patients with PPGL were investigated. MEASUREMENTS Clinical characteristics of patients were assessed and tumour and germline DNA was analysed using a next-generation sequencing strategy. A screen for variants within 'mutation hotspots' in 68 human cancer genes was performed. RESULTS Of 141 included patients, 45 (32%) had a germline mutation. In 37 (26%) patients one or more driver somatic variants were identified including 26 likely pathogenic or pathogenic variants and 19 variants of uncertain significance. Pathogenic somatic variants, observed in 25 (18%) patients, were most commonly identified in the VHL, NF1, HRAS and RET genes. Pathogenic somatic variants were almost exclusively identified in patients without a germline mutation (all but one), suggesting that somatic sequencing is likely to be most informative for those patients with negative germline genetic test results. CONCLUSIONS Somatic sequencing may further stratify surveillance approaches for patients without a germline genetic driver and may also inform targeted therapeutic strategies for patients with metastatic disease.
Collapse
Affiliation(s)
- Bettina Winzeler
- Department of Endocrinology, Diabetology and MetabolismUniversity Hospital BaselBaselSwitzerland
- Department of Clinical ResearchUniversity of BaselBaselSwitzerland
- Department of Medical Genetics, and Cancer Research, UK Cambridge Centre, University of CambridgeCambridge Biomedical CampusCambridgeUK
| | - Nicola Tufton
- Department of EndocrinologySt. Bartholomew's Hospital, Barts Health NHS TrustLondonUK
- Department of Endocrinology, William Harvey Research InstituteQueen Mary University of LondonLondon
| | - Eugenie S. Lim
- Department of EndocrinologySt. Bartholomew's Hospital, Barts Health NHS TrustLondonUK
- Department of Endocrinology, William Harvey Research InstituteQueen Mary University of LondonLondon
| | - Ben G. Challis
- Department of Endocrinology, Cambridge University HospitalNHS Foundation TrustCambridgeUK
| | - Soo‐Mi Park
- Department of Clinical Genetics, Cambridge University HospitalNHS Foundation TrustCambridgeUK
| | - Louise Izatt
- Department of Clinical GeneticsGuy's and St. Thomas' NHS Foundation TrustLondonUK
| | - Paul V. Carroll
- Department of EndocrinologyGuy's and St. Thomas' NHS Foundation TrustLondonUK
| | - Anand Velusamy
- Department of EndocrinologyGuy's and St. Thomas' NHS Foundation TrustLondonUK
| | - Tony Hulse
- Department of Paediatric EndocrinologyEvelina London Children's Hospital, Guy's and St. Thomas' NHS Foundation TrustLondonUK
| | | | - Ezequiel Martin
- Department of Medical Genetics, and Cancer Research, UK Cambridge Centre, University of CambridgeCambridge Biomedical CampusCambridgeUK
- Oncology Department, Cancer Molecular Diagnostics LaboratoryUniversity of CambridgeCambridgeUK
| | - Fay Rodger
- Department of Medical Genetics, and Cancer Research, UK Cambridge Centre, University of CambridgeCambridge Biomedical CampusCambridgeUK
| | - Melanie Maranian
- Department of Medical Genetics, and Cancer Research, UK Cambridge Centre, University of CambridgeCambridge Biomedical CampusCambridgeUK
| | - Graeme R. Clark
- Department of Medical Genetics, and Cancer Research, UK Cambridge Centre, University of CambridgeCambridge Biomedical CampusCambridgeUK
| | - Scott A. Akker
- Department of EndocrinologySt. Bartholomew's Hospital, Barts Health NHS TrustLondonUK
- Department of Endocrinology, William Harvey Research InstituteQueen Mary University of LondonLondon
| | - Eamonn R. Maher
- Department of Medical Genetics, and Cancer Research, UK Cambridge Centre, University of CambridgeCambridge Biomedical CampusCambridgeUK
| | - Ruth T. Casey
- Department of Medical Genetics, and Cancer Research, UK Cambridge Centre, University of CambridgeCambridge Biomedical CampusCambridgeUK
- Department of Endocrinology, Cambridge University HospitalNHS Foundation TrustCambridgeUK
| |
Collapse
|
15
|
Ohh M, Taber CC, Ferens FG, Tarade D. Hypoxia-inducible factor underlies von Hippel-Lindau disease stigmata. eLife 2022; 11:80774. [PMID: 36040300 PMCID: PMC9427099 DOI: 10.7554/elife.80774] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 08/12/2022] [Indexed: 11/13/2022] Open
Abstract
von Hippel-Lindau (VHL) disease is a rare hereditary cancer syndrome that causes a predisposition to renal clear-cell carcinoma, hemangioblastoma, pheochromocytoma, and autosomal-recessive familial polycythemia. pVHL is the substrate conferring subunit of an E3 ubiquitin ligase complex that binds to the three hypoxia-inducible factor alpha subunits (HIF1-3α) for polyubiquitylation under conditions of normoxia, targeting them for immediate degradation by the proteasome. Certain mutations in pVHL have been determined to be causative of VHL disease through the disruption of HIFα degradation. However, it remains a focus of investigation and debate whether the disruption of HIFα degradation alone is sufficient to explain the complex genotype-phenotype relationship of VHL disease or whether the other lesser or yet characterized substrates and functions of pVHL impact the development of the VHL disease stigmata; the elucidation of which would have a significant ramification to the direction of research efforts and future management and care of VHL patients and for those manifesting sporadic counterparts of VHL disease. Here, we examine the current literature including the other emergent pseudohypoxic diseases and propose that the VHL disease-phenotypic spectrum could be explained solely by the varied disruption of HIFα signaling upon the loss or mutation in pVHL.
Collapse
Affiliation(s)
- Michael Ohh
- Department of Laboratory Medicine and Pathobiology, Faculty of Medicine, University of Toronto, Toronto, Canada.,Department of Biochemistry, Faculty of Medicine, University of Toronto, Toronto, Canada
| | - Cassandra C Taber
- Department of Laboratory Medicine and Pathobiology, Faculty of Medicine, University of Toronto, Toronto, Canada
| | - Fraser G Ferens
- Department of Laboratory Medicine and Pathobiology, Faculty of Medicine, University of Toronto, Toronto, Canada.,Department of Biochemistry, Faculty of Medicine, University of Toronto, Toronto, Canada
| | - Daniel Tarade
- Department of Laboratory Medicine and Pathobiology, Faculty of Medicine, University of Toronto, Toronto, Canada
| |
Collapse
|
16
|
Krokhmal AA, Kwatra N, Drubach L, Weldon CB, Janeway KA, DuBois SG, Kamihara J, Voss SD. 68 Ga-DOTATATE PET and functional imaging in pediatric pheochromocytoma and paraganglioma. Pediatr Blood Cancer 2022; 69:e29740. [PMID: 35484995 DOI: 10.1002/pbc.29740] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 02/28/2022] [Accepted: 03/29/2022] [Indexed: 11/09/2022]
Abstract
Pheochromocytoma and paraganglioma (PPGL) are rare neuroendocrine tumors in childhood. Up to 40% of PPGL are currently thought to be associated with a hereditary predisposition. Nuclear medicine imaging modalities such as fluorodeoxyglucose positron emission tomography (18 F-FDG PET), 68 Ga-DOTATATE PET, and 123 I-metaiodobenzylguanidine (123 I-MIBG) scintigraphy play an essential role in the staging, response assessment, and determination of suitability for targeted radiotherapy in patients with PPGL. Each of these functional imaging modalities targets a different cellular characteristic and as such can be complementary to anatomic imaging and to each other. With the recent US Food and Drug Administration approval and increasing use of 68 Ga-DOTATATE for imaging in children, the purpose of this article is to use a case-based approach to highlight both the advantages and limitations of DOTATATE imaging as it is compared to current radiologic imaging techniques in the staging and response assessment of pediatric PPGL, as well as other neuroendocrine malignancies.
Collapse
Affiliation(s)
| | - Neha Kwatra
- Department of Radiology, Boston Children's Hospital, Boston, USA
| | - Laura Drubach
- Department of Radiology, Boston Children's Hospital, Boston, USA
| | - Christopher B Weldon
- Department of Surgery, Boston Children's Hospital, Boston, USA.,Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Boston, USA.,Department of Anesthesiology, Critical Care & Pain Medicine. Boston Children's Hospital, Boston, USA
| | - Katherine A Janeway
- Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Boston, USA
| | - Steven G DuBois
- Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Boston, USA
| | - Junne Kamihara
- Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Boston, USA
| | - Stephan D Voss
- Department of Radiology, Boston Children's Hospital, Boston, USA.,Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Boston, USA
| |
Collapse
|
17
|
Kristan A, Pajič T, Maver A, Režen T, Kunej T, Količ R, Vuga A, Fink M, Žula Š, Podgornik H, Anžej Doma S, Preložnik Zupan I, Rozman D, Debeljak N. Identification of Variants Associated With Rare Hematological Disorder Erythrocytosis Using Targeted Next-Generation Sequencing Analysis. Front Genet 2021; 12:689868. [PMID: 34349782 PMCID: PMC8327209 DOI: 10.3389/fgene.2021.689868] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 06/16/2021] [Indexed: 12/28/2022] Open
Abstract
An erythrocytosis is present when the red blood cell mass is increased, demonstrated as elevated hemoglobin and hematocrit in the laboratory evaluation. Congenital predispositions for erythrocytosis are rare, with germline variants in several genes involved in oxygen sensing (VHL, EGLN1, and EPAS1), signaling for hematopoietic cell maturation (EPOR and EPO), and oxygen transfer (HBB, HBA1, HBA2, and BPGM) that were already associated with the eight congenital types (ECYT1–8). Screening for variants in known congenital erythrocytosis genes with classical sequencing approach gives a correct diagnosis for only up to one-third of the patients. The genetic background of erythrocytosis is more heterogeneous, and additional genes involved in erythropoiesis and iron metabolism could have a putative effect on the development of erythrocytosis. This study aimed to detect variants in patients with yet unexplained erythrocytosis using the next-generation sequencing (NGS) approach, targeting genes associated with erythrocytosis and increased iron uptake and implementing the diagnostics of congenital erythrocytosis in Slovenia. Selected 25 patients with high hemoglobin, high hematocrit, and no acquired causes were screened for variants in the 39 candidate genes. We identified one pathogenic variant in EPAS1 gene and three novel variants with yet unknown significance in genes EPAS1, JAK2, and SH2B3. Interestingly, a high proportion of patients were heterozygous carriers for two variants in HFE gene, otherwise pathogenic for the condition of iron overload. The association between the HFE variants and the development of erythrocytosis is not clearly understood. With a targeted NGS approach, we determined an actual genetic cause for the erythrocytosis in one patient and contributed to better management of the disease for the patient and his family. The effect of variants of unknown significance on the enhanced production of red blood cells needs to be further explored with functional analysis. This study is of great significance for the improvement of diagnosis of Slovenian patients with unexplained erythrocytosis and future research on the etiology of this rare hematological disorder.
Collapse
Affiliation(s)
- Aleša Kristan
- Medical Centre for Molecular Biology, Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Tadej Pajič
- Department of Hematology, University Medical Centre Ljubljana, Ljubljana, Slovenia.,Clinical Institute of Genomic Medicine, University Medical Centre Ljubljana, Ljubljana, Slovenia.,Clinical Biochemistry, Faculty of Medicine, University of Maribor, Maribor, Slovenia
| | - Aleš Maver
- Clinical Institute of Genomic Medicine, University Medical Centre Ljubljana, Ljubljana, Slovenia
| | - Tadeja Režen
- Centre for Functional Genomics and Bio-Chips, Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Tanja Kunej
- Department of Animal Science, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Rok Količ
- Kemomed Research and Development, Kemomed Ltd., Ljubljana, Slovenia
| | - Andrej Vuga
- Kemomed Research and Development, Kemomed Ltd., Ljubljana, Slovenia
| | - Martina Fink
- Medical Centre for Molecular Biology, Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia.,Department of Hematology, University Medical Centre Ljubljana, Ljubljana, Slovenia
| | - Špela Žula
- Department of Hematology, University Medical Centre Ljubljana, Ljubljana, Slovenia
| | - Helena Podgornik
- Department of Hematology, University Medical Centre Ljubljana, Ljubljana, Slovenia.,Clinical Biochemistry, Faculty of Pharmacy, University of Ljubljana, Ljubljana, Slovenia
| | - Saša Anžej Doma
- Department of Hematology, University Medical Centre Ljubljana, Ljubljana, Slovenia.,Department of Internal Medicine, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Irena Preložnik Zupan
- Department of Hematology, University Medical Centre Ljubljana, Ljubljana, Slovenia.,Department of Internal Medicine, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Damjana Rozman
- Centre for Functional Genomics and Bio-Chips, Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Nataša Debeljak
- Medical Centre for Molecular Biology, Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
18
|
Dwight T, Kim E, Bastard K, Benn DE, Eisenhofer G, Richter S, Mannelli M, Rapizzi E, Prejbisz A, Pęczkowska M, Pacak K, Clifton-Bligh R. Functional significance of germline EPAS1 variants. Endocr Relat Cancer 2021; 28:97-109. [PMID: 33300499 PMCID: PMC7989857 DOI: 10.1530/erc-20-0280] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 12/07/2020] [Indexed: 12/20/2022]
Abstract
Mosaic or somatic EPAS1 mutations are associated with a range of phenotypes including pheochromocytoma and/or paraganglioma (PPGL), polycythemia and somatostatinoma. The pathogenic potential of germline EPAS1 variants however is not well understood. We report a number of germline EPAS1 variants occurring in patients with PPGL, including a novel variant c.739C>A (p.Arg247Ser); a previously described variant c.1121T>A (p.Phe374Tyr); several rare variants, c.581A>G (p.His194Arg), c.2353C>A (p.Pro785Thr) and c.2365A>G (p.Ile789Val); a common variant c.2296A>C (p.Thr766Pro). We performed detailed functional studies to understand their pathogenic role in PPGL. In transient transfection studies, EPAS1/HIF-2α p.Arg247Ser, p.Phe374Tyr and p.Pro785Thr were all stable in normoxia. In co-immunoprecipitation assays, only the novel variant p.Arg247Ser showed diminished interaction with pVHL. A direct interaction between HIF-2α Arg247 and pVHL was confirmed in structural models. Transactivation was assessed by means of a HRE-containing reporter gene in transiently transfected cells, and significantly higher reporter activity was only observed with EPAS1/HIF-2α p.Phe374Tyr and p.Pro785Thr. In conclusion, three germline EPAS1 variants (c.739C>A (p.Arg247Ser), c.1121T>A (p.Phe374Tyr) and c.2353C>A (p.Pro785Thr)) all have some functional features in common with somatic activating mutations. Our findings suggest that these three germline variants are hypermorphic alleles that may act as modifiers to the expression of PPGLs.
Collapse
Affiliation(s)
- Trisha Dwight
- Cancer Genetics Laboratory, Kolling Institute, Royal North Shore Hospital, St Leonards, New South Wales, Australia
- University of Sydney, Sydney, New South Wales, Australia
| | - Edward Kim
- Cancer Genetics Laboratory, Kolling Institute, Royal North Shore Hospital, St Leonards, New South Wales, Australia
- University of Sydney, Sydney, New South Wales, Australia
| | - Karine Bastard
- Cancer Genetics Laboratory, Kolling Institute, Royal North Shore Hospital, St Leonards, New South Wales, Australia
- University of Sydney, Sydney, New South Wales, Australia
| | - Diana E Benn
- Cancer Genetics Laboratory, Kolling Institute, Royal North Shore Hospital, St Leonards, New South Wales, Australia
- University of Sydney, Sydney, New South Wales, Australia
| | - Graeme Eisenhofer
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- Department of Medicine III, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Susan Richter
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Massimo Mannelli
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Elena Rapizzi
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Aleksander Prejbisz
- Department of Hypertension, National Institute of Cardiology, Warsaw, Poland
| | - Mariola Pęczkowska
- Department of Hypertension, National Institute of Cardiology, Warsaw, Poland
| | - Karel Pacak
- National Institutes of Health, Bethesda, Maryland, USA
| | - Roderick Clifton-Bligh
- Cancer Genetics Laboratory, Kolling Institute, Royal North Shore Hospital, St Leonards, New South Wales, Australia
- University of Sydney, Sydney, New South Wales, Australia
- Department of Endocrinology, Royal North Shore Hospital, St Leonards, New South Wales, Australia
- Correspondence should be addressed to R Clifton-Bligh:
| |
Collapse
|
19
|
Gangat N, Szuber N, Pardanani A, Tefferi A. JAK2 unmutated erythrocytosis: current diagnostic approach and therapeutic views. Leukemia 2021; 35:2166-2181. [PMID: 34021251 PMCID: PMC8324477 DOI: 10.1038/s41375-021-01290-6] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 04/28/2021] [Accepted: 05/06/2021] [Indexed: 02/08/2023]
Abstract
JAK2 unmutated or non-polycythemia vera (PV) erythrocytosis encompasses both hereditary and acquired conditions. A systematic diagnostic approach begins with documentation of historical hematocrit (Hct)/hemoglobin (Hgb) measurements and classification of the process as life-long/unknown duration or acquired. Further investigation in both categories is facilitated by determination of serum erythropoietin level (EPO). Workup for hereditary/congenital erythrocytosis requires documentation of family history and laboratory screening for high-oxygen affinity hemoglobin variants, 2, 3 biphosphoglycerate deficiency, and germline mutations that are known to alter cellular oxygen sensing (e.g., PHD2, HIF2A, VHL) or EPO signaling (e.g., EPOR mutations); the latter is uniquely associated with subnormal EPO. Acquired erythrocytosis is often elicited by central or peripheral hypoxia resulting from cardiopulmonary disease/high-altitude dwelling or renal artery stenosis, respectively; EPO in the former instance is often normal (compensated by negative feed-back). Other conditions associated with acquired erythrocytosis include EPO-producing tumors and the use of drugs that promote erythropoiesis (e.g., testosterone, erythropoiesis stimulating agents). "Idiopathic erythrocytosis" loosely refers to an otherwise not explained situation. Historically, management of non-PV erythrocytosis has been conflicted by unfounded concerns regarding thrombosis risk, stemming from limited phenotypic characterization, save for Chuvash polycythemia, well-known for its thrombotic tendency. In general, cytoreductive therapy should be avoided and phlebotomy is seldom warranted where frequency is determined by symptom control rather than Hct threshold. Although not supported by hard evidence, cardiovascular risk optimization and low-dose aspirin use are often advised. Application of modern genetic tests and development of controlled therapeutic intervention trials are needed to advance current clinical practice.
Collapse
Affiliation(s)
- Naseema Gangat
- grid.66875.3a0000 0004 0459 167XDivision of Hematology, Department of Internal Medicine, Mayo Clinic, Rochester, MN USA
| | - Natasha Szuber
- grid.14848.310000 0001 2292 3357Department of Hematology, Université de Montréal, Montréal, QC Canada
| | - Animesh Pardanani
- grid.66875.3a0000 0004 0459 167XDivision of Hematology, Department of Internal Medicine, Mayo Clinic, Rochester, MN USA
| | - Ayalew Tefferi
- grid.66875.3a0000 0004 0459 167XDivision of Hematology, Department of Internal Medicine, Mayo Clinic, Rochester, MN USA
| |
Collapse
|
20
|
Fields FR, Suresh N, Hiller M, Freed SD, Haldar K, Lee SW. Algorithmic assessment of missense mutation severity in the Von-Hippel Lindau protein. PLoS One 2020; 15:e0234100. [PMID: 33151962 PMCID: PMC7644048 DOI: 10.1371/journal.pone.0234100] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 10/10/2020] [Indexed: 11/19/2022] Open
Abstract
Von Hippel-Lindau disease (VHL) is an autosomal dominant rare disease that causes the formation of angiogenic tumors. When functional, pVHL acts as an E3 ubiquitin ligase that negatively regulates hypoxia inducible factor (HIF). Genetic mutations that perturb the structure of pVHL result in dysregulation of HIF, causing a wide array of tumor pathologies including retinal angioma, pheochromocytoma, central nervous system hemangioblastoma, and clear cell renal carcinoma. These VHL-related cancers occur throughout the lifetime of the patient, requiring frequent intervention procedures, such as surgery, to remove the tumors. Although VHL is classified as a rare disease (1 in 39,000 to 1 in 91,000 affected) there is a large heterogeneity in genetic mutations listed for observed pathologies. Understanding how these specific mutations correlate with the myriad of observed pathologies for VHL could provide clinicians insight into the potential severity and onset of disease. Using a select set of 285 ClinVar mutations in VHL, we developed a multiparametric scoring algorithm to evaluate the overall clinical severity of missense mutations in pVHL. The mutations were assessed according to eight weighted parameters as a comprehensive evaluation of protein misfolding and malfunction. Higher mutation scores were strongly associated with pathogenicity. Our approach establishes a novel in silico method by which VHL-specific mutations can be assessed for their severity and effect on the biophysical functions of the VHL protein.
Collapse
Affiliation(s)
- Francisco R. Fields
- Boler-Parseghian Center for Rare and Neglected Diseases, University of Notre Dame, Notre Dame, Indiana, United States of America
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, United States of America
| | - Niraja Suresh
- Boler-Parseghian Center for Rare and Neglected Diseases, University of Notre Dame, Notre Dame, Indiana, United States of America
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, United States of America
| | - Morgan Hiller
- Boler-Parseghian Center for Rare and Neglected Diseases, University of Notre Dame, Notre Dame, Indiana, United States of America
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, United States of America
| | - Stefan D. Freed
- Boler-Parseghian Center for Rare and Neglected Diseases, University of Notre Dame, Notre Dame, Indiana, United States of America
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, United States of America
- Chemistry-Biology-Biochemistry Interfaces, University of Notre Dame, Notre Dame, Indiana, United States of America
| | - Kasturi Haldar
- Boler-Parseghian Center for Rare and Neglected Diseases, University of Notre Dame, Notre Dame, Indiana, United States of America
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, United States of America
| | - Shaun W. Lee
- Boler-Parseghian Center for Rare and Neglected Diseases, University of Notre Dame, Notre Dame, Indiana, United States of America
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, United States of America
- Chemistry-Biology-Biochemistry Interfaces, University of Notre Dame, Notre Dame, Indiana, United States of America
- Eck Institute for Global Health, University of Notre Dame, Notre Dame, Indiana, United States of America
| |
Collapse
|
21
|
Li T, Mao C, Wang X, Shi Y, Tao Y. Epigenetic crosstalk between hypoxia and tumor driven by HIF regulation. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2020; 39:224. [PMID: 33109235 PMCID: PMC7592369 DOI: 10.1186/s13046-020-01733-5] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 10/13/2020] [Indexed: 02/06/2023]
Abstract
Hypoxia is the major influence factor in physiological and pathological courses which are mainly mediated by hypoxia-inducible factors (HIFs) in response to low oxygen tensions within solid tumors. Under normoxia, HIF signaling pathway is inhibited due to HIF-α subunits degradation. However, in hypoxic conditions, HIF-α is activated and stabilized, and HIF target genes are successively activated, resulting in a series of tumour-specific activities. The activation of HIFs, including HIF-1α, HIF-2α and HIF-3α, subsequently induce downstream target genes which leads to series of responses, the resulting abnormal processes or metabolites in turn affect HIFs stability. Given its functions in tumors progression, HIFs have been regarded as therapeutic targets for improved treatment efficacy. Epigenetics refers to alterations in gene expression that are stable between cell divisions, and sometimes between generations, but do not involve changes in the underlying DNA sequence of the organism. And with the development of research, epigenetic regulation has been found to play an important role in the development of tumors, which providing accumulating basic or clinical evidences for tumor treatments. Here, given how little has been reported about the overall association between hypoxic tumors and epigenetics, we made a more systematic review from epigenetic perspective in hope of helping others better understand hypoxia or HIF pathway, and providing more established and potential therapeutic strategies in tumors to facilitate epigenetic studies of tumors.
Collapse
Affiliation(s)
- Tiansheng Li
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China.,Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Chao Mao
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China.,Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Xiang Wang
- Department of Thoracic Surgery, Second Xiangya Hospital, Central South University, Changsha, 410011, China
| | - Ying Shi
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China. .,Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China.
| | - Yongguang Tao
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China. .,Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China. .,Department of Thoracic Surgery, Second Xiangya Hospital, Central South University, Changsha, 410011, China.
| |
Collapse
|
22
|
Tarade D, He S, St-Germain J, Petroff A, Murphy A, Raught B, Ohh M. The long form of pVHL is artifactually modified by serine protease inhibitor AEBSF. Protein Sci 2020; 29:1843-1850. [PMID: 32535973 DOI: 10.1002/pro.3898] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 05/29/2020] [Accepted: 06/02/2020] [Indexed: 01/17/2023]
Abstract
von Hippel-Lindau protein (pVHL) is the tumor suppressor responsible for ubiquitylating the hypoxia-inducible factor (HIF) family of transcription factors for degradation under normoxic conditions. There are two major pVHL isoforms with the shorter isoform (pVHL19 ) lacking the acidic domain present in the N-terminus of the longer isoform (pVHL30 ). Although both isoforms can degrade HIF and suppress tumor formation in experimental systems, previous research suggests that pVHL30 can undergo posttranslational modifications (PTM) and interact with unique proteins. Indeed, pVHL30 has long been observed to migrate as two species on a reducing polyacrylamide gel, indicating the presence of an uncharacterized PTM on the slower-migrating pVHL30 without an identifiable biological consequence. Thus, there has been considerable effort to elucidate the exclusive biological activity of pVHL30 , if any, by first defining the unique features of the slower-migrating species. We show here that the migration of pVHL30 , but not pVHL19 , is retarded by 4-(2-aminoethyl)benzenesulfonyl fluoride hydrochloride (AEBSF), an irreversible serine protease inhibitor commonly found in protease inhibitor cocktails.
Collapse
Affiliation(s)
- Daniel Tarade
- Department of Laboratory Medicine & Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Shelley He
- Department of Laboratory Medicine & Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Jonathan St-Germain
- Princess Margaret Cancer Centre, University Health Network and Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Avi Petroff
- Department of Laboratory Medicine & Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Anya Murphy
- Department of Laboratory Medicine & Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Brian Raught
- Princess Margaret Cancer Centre, University Health Network and Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Michael Ohh
- Department of Laboratory Medicine & Pathobiology, University of Toronto, Toronto, Ontario, Canada.,Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
23
|
Macklin PS, Yamamoto A, Browning L, Hofer M, Adam J, Pugh CW. Recent advances in the biology of tumour hypoxia with relevance to diagnostic practice and tissue-based research. J Pathol 2020; 250:593-611. [PMID: 32086807 DOI: 10.1002/path.5402] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 02/18/2020] [Indexed: 02/06/2023]
Abstract
In this review article, we examine the importance of low levels of oxygen (hypoxia) in cancer biology. We provide a brief description of how mammalian cells sense oxygen. The hypoxia-inducible factor (HIF) pathway is currently the best characterised oxygen-sensing system, but recent work has revealed that mammals also use an oxygen-sensing system found in plants to regulate the abundance of some proteins and peptides with an amino-terminal cysteine residue. We discuss how the HIF pathway is affected during the growth of solid tumours, which develop in microenvironments with gradients of oxygen availability. We then introduce the concept of 'pseudohypoxia', a state of constitutive, oxygen-independent HIF system activation that occurs due to oncogenic stimulation in a number of specific tumour types that are of immediate relevance to diagnostic histopathologists. We provide an overview of the different methods of quantifying tumour hypoxia, emphasising the importance of pre-analytic factors in interpreting the results of tissue-based studies. Finally, we review recent approaches to targeting hypoxia/HIF system activation for therapeutic benefit, the application of which may require knowledge of which hypoxia signalling components are being utilised by a given tumour. © 2020 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Philip S Macklin
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Atsushi Yamamoto
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Lisa Browning
- Department of Cellular Pathology, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Monika Hofer
- Department of Neuropathology and Ocular Pathology, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Julie Adam
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | | |
Collapse
|
24
|
Gordeuk VR, Miasnikova GY, Sergueeva AI, Lorenzo FR, Zhang X, Song J, Stockton DW, Prchal JT. Thrombotic risk in congenital erythrocytosis due to up-regulated hypoxia sensing is not associated with elevated hematocrit. Haematologica 2020; 105:e87-e90. [PMID: 31289208 PMCID: PMC7049338 DOI: 10.3324/haematol.2019.216267] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Affiliation(s)
- Victor R Gordeuk
- Department of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | | | | | - Felipe R Lorenzo
- Division of Hematology and Hematologic Malignancies, University of Utah and Huntsman Cancer Center, Salt Lake City, UT, USA
- Department of Internal Medicine, Wake Forest School of Medicine, Winston Salem, NC, USA
| | - Xu Zhang
- Department of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Jihyun Song
- Division of Hematology and Hematologic Malignancies, University of Utah and Huntsman Cancer Center, Salt Lake City, UT, USA
| | - David W Stockton
- Division of Genetic, Genomic and Metabolic Disorders, Children's Hospital of Michigan and Wayne State University, Detroit, MI, USA
| | - Josef T Prchal
- Division of Hematology and Hematologic Malignancies, University of Utah and Huntsman Cancer Center, Salt Lake City, UT, USA
| |
Collapse
|
25
|
Tarade D, Lee JE, Ohh M. Evolution of metazoan oxygen-sensing involved a conserved divergence of VHL affinity for HIF1α and HIF2α. Nat Commun 2019; 10:3293. [PMID: 31337753 PMCID: PMC6650433 DOI: 10.1038/s41467-019-11149-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 06/26/2019] [Indexed: 12/18/2022] Open
Abstract
Duplication of ancestral hypoxia-inducible factor (HIF)α coincided with the evolution of vertebrate species. Paralogs HIF1α and HIF2α are the most well-known factors for modulating the cellular transcriptional profile following hypoxia. However, how the processes of natural selection acted upon the coding region of these two genes to optimize the cellular response to hypoxia during evolution remains unclear. A key negative regulator of HIFα is von Hippel-Lindau (VHL) tumour suppressor protein. Here we show that evolutionarily-relevant substitutions can modulate a secondary contact between HIF1α Met561 and VHL Phe91. Notably, HIF1α binds more tightly than HIF2α to VHL due to a conserved Met to Thr substitution observed in the vertebrate lineage. Similarly, substitution of VHL Phe91 with Tyr, as seen in invertebrate species, decreases VHL affinity for both HIF1α and HIF2α. We propose that vertebrate evolution involved a more complex hypoxia response with fine-tuned divergence of VHL affinity for HIF1α and HIF2α. Paralogs HIF1α and HIF2α are important modulators regulating cellular transcriptional profile following hypoxia. Here, the authors investigate evolutionary substitutions that fine tune the interaction between HIFα and their regulator VHL in the vertebrate and invertebrate lineages.
Collapse
Affiliation(s)
- Daniel Tarade
- Department of Laboratory Medicine & Pathobiology, University of Toronto, 1 King's College Circle, Toronto, ON, M5S 1A8, Canada
| | - Jeffrey E Lee
- Department of Laboratory Medicine & Pathobiology, University of Toronto, 1 King's College Circle, Toronto, ON, M5S 1A8, Canada
| | - Michael Ohh
- Department of Laboratory Medicine & Pathobiology, University of Toronto, 1 King's College Circle, Toronto, ON, M5S 1A8, Canada. .,Department of Biochemistry, University of Toronto, 661 University Avenue, Toronto, ON, M5G 1M1, Canada.
| |
Collapse
|
26
|
Lappin TR, Lee FS. Update on mutations in the HIF: EPO pathway and their role in erythrocytosis. Blood Rev 2019; 37:100590. [PMID: 31350093 DOI: 10.1016/j.blre.2019.100590] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2019] [Revised: 07/02/2019] [Accepted: 07/15/2019] [Indexed: 12/20/2022]
Abstract
Identification of the underlying defects in congenital erythrocytosis has provided mechanistic insights into the regulation of erythropoiesis and oxygen homeostasis. The Hypoxia Inducible Factor (HIF) pathway plays a key role in this regard. In this pathway, an enzyme, Prolyl Hydroxylase Domain protein 2 (PHD2), constitutively prolyl hydroxylates HIF-2α, thereby targeting HIF-2α for degradation by the von Hippel Lindau (VHL) tumor suppressor protein. Under hypoxia, this modification is attenuated, resulting in the stabilization of HIF-2α and transcriptional activation of the erythropoietin (EPO) gene. Circulating EPO then binds to the EPO receptor (EPOR) on red cell progenitors in the bone marrow, leading to expansion of red cell mass. Loss of function mutations in PHD2 and VHL, as well as gain of function mutations in HIF-2α and EPOR, are well established causes of erythrocytosis. Here, we highlight recent developments that show that the study of this condition is still evolving. Specifically, novel mutations have been identified that either change amino acids in the zinc finger domain of PHD2 or alter splicing of the VHL gene. In addition, continued study of HIF-2α mutations has revealed a distinctive genotype-phenotype correlation. Finally, novel mutations have recently been identified in the EPO gene itself. Thus, the cascade of genes that at a molecular level leads to EPO action, namely PHD2 - > HIF2A - > VHL - > EPO - > EPOR, are all mutational targets in congenital erythrocytosis.
Collapse
Affiliation(s)
- Terence R Lappin
- Centre for Cancer Research and Cell Biology, Queen's University, Belfast, UK.
| | - Frank S Lee
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
27
|
Sanghani NS, Haase VH. Hypoxia-Inducible Factor Activators in Renal Anemia: Current Clinical Experience. Adv Chronic Kidney Dis 2019; 26:253-266. [PMID: 31477256 PMCID: PMC7318915 DOI: 10.1053/j.ackd.2019.04.004] [Citation(s) in RCA: 136] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 04/26/2019] [Accepted: 04/30/2019] [Indexed: 12/14/2022]
Abstract
Prolyl hydroxylase domain oxygen sensors are dioxygenases that regulate the activity of hypoxia-inducible factor (HIF), which controls renal and hepatic erythropoietin production and coordinates erythropoiesis with iron metabolism. Small molecule inhibitors of prolyl hydroxylase domain dioxygenases (HIF-PHI [prolyl hydroxylase inhibitor]) stimulate the production of endogenous erythropoietin and improve iron metabolism resulting in efficacious anemia management in patients with CKD. Three oral HIF-PHIs-daprodustat, roxadustat, and vadadustat-have now advanced to global phase III clinical development culminating in the recent licensing of roxadustat for oral anemia therapy in China. Here, we survey current clinical experience with HIF-PHIs, discuss potential therapeutic advantages, and deliberate over safety concerns regarding long-term administration in patients with renal anemia.
Collapse
Affiliation(s)
- Neil S Sanghani
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
| | - Volker H Haase
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN; Department of Medical Cell Biology, Uppsala Universitet, Uppsala, Sweden; Department of Molecular Physiology & Biophysics and Program in Cancer Biology, Vanderbilt University School of Medicine, Nashville, TN.
| |
Collapse
|
28
|
Oliveira JL. Algorithmic evaluation of hereditary erythrocytosis: Pathways and caveats. Int J Lab Hematol 2019; 41 Suppl 1:89-94. [PMID: 31069987 DOI: 10.1111/ijlh.13019] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 02/28/2019] [Accepted: 03/01/2019] [Indexed: 11/28/2022]
Abstract
Multiple algorithms have been published for the evaluation of hereditary erythrocytosis (HE). Typical entry points begin after excluding the more common acquired conditions through investigations of clinical history and assessment of cardiac, pulmonary, or vascular system disorders. Prior exclusion of JAK2 mutations, particularly the common JAK2 V617F mutation, is indicated in adults but less so in pediatric populations. Key decision trees are based on serum erythropoietin levels and p50 results. Recent data reveal some overlap in clinical presentation and laboratory findings in erythrocytosis. Caveats to consider when using algorithmic approaches are discussed.
Collapse
Affiliation(s)
- Jennifer L Oliveira
- Division of Hematopathology, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota
| |
Collapse
|