1
|
Yan R, Hu X, Zhang N, Liu W, Wang W, Tang Y. Novel self-assembled fluorescent tripeptide nanoparticle for sensitive detection of sulfadiazine. Talanta 2025; 294:128168. [PMID: 40288190 DOI: 10.1016/j.talanta.2025.128168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2025] [Revised: 04/13/2025] [Accepted: 04/15/2025] [Indexed: 04/29/2025]
Abstract
Fluorescent tripeptide nanoparticles (PNPs) emitting cyan fluorescence were first synthesized using a Trp-Phe-Phe/Zn(II)-based self-assemble method. Molecular docking and dynamics simulations were employed to elucidated the self-assembly process of PNPs, the underlying driving forces, and their influence on the fluorescence properties of PNPs. The resultant PNPs were functionalized with an aptamer specific to sulfadiazine (SDZ), thereby creating a highly sensitive fluorescent probe. This probe demonstrated exceptional sensitivity and selectivity for SDZ detection, leveraging the inner filter effect to induce significant fluorescence quenching. The method demonstrated a wide linear range (0-200 ng/mL) and a low detection limit (0.4 ng/mL). Validation in spiked real samples (tap water, beef, chicken, and fish muscle) yielded recoveries of 83.20-114.08 % with relative standard deviations of <7 %, confirming its accuracy and reliability. This study provides insights into the assembly mechanism of tripeptide nanoparticles and offers a practical tool for food safety monitoring.
Collapse
Affiliation(s)
- Rongfang Yan
- College of Food Science and Technology, Hebei Agricultural University, Baoding, 071001, China
| | - Xuelian Hu
- College of Food Science and Technology, Hebei Agricultural University, Baoding, 071001, China
| | - Ning Zhang
- College of Food Science and Technology, Hebei Agricultural University, Baoding, 071001, China
| | - Weihua Liu
- College of Food Science and Technology, Hebei Agricultural University, Baoding, 071001, China
| | - Wenxiu Wang
- College of Food Science and Technology, Hebei Agricultural University, Baoding, 071001, China
| | - Yiwei Tang
- College of Food Science and Technology, Hebei Agricultural University, Baoding, 071001, China.
| |
Collapse
|
2
|
Kazim S, Haris MPU, Ahmad S. Peptide-Perovskite Based Bio-Inspired Materials for Optoelectronics Applications. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2408919. [PMID: 39873288 PMCID: PMC11884524 DOI: 10.1002/advs.202408919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 10/18/2024] [Indexed: 01/30/2025]
Abstract
The growing demand for environmentally friendly semiconductors that can be tailored and developed easily is compelling researchers and technologists to design inherently bio-compatible, self-assembling nanostructures with tunable semiconducting characteristics. Peptide-based bioinspired materials exhibit a variety of supramolecular morphologies and have the potential to function as organic semiconductors. Such biologically or naturally derived peptides with intrinsic semiconducting characteristics create new opportunities for sustainable biomolecule-based optoelectronics devices. Affably, halide perovskite nanocrystals are emerging as potentially attractive nano-electronic analogs, in this vein creating synergies and probing peptide-perovskite-based bio-electronics are of paramount interest. The physical properties and inherent aromatic short-peptide assemblies that can stabilize, and passivate the defects at surfaces assist in improving the charge transport in halide perovskite devices. This review sheds light on how these peptide-perovskite nano-assemblies can be developed for optical sensing, optoelectronics, and imaging for biomedical and healthcare applications. The charge transfer mechanism in peptides along with as an outlook the electron transfer mechanism between perovskite and short peptide chains, which is paramount to facilitate their entry into molecular electronics is discussed. Future aspects, prevailing challenges, and research directions in the field of perovskite-peptides are also presented.
Collapse
Affiliation(s)
- Samrana Kazim
- Materials Physics CenterCSIC‐UPV/EHUPaseo Manuel de Lardizabal 5Donostia‐San Sebastian20018Spain
- BCMaterialsBasque Center for MaterialsApplications, and NanostructuresUPV/EHU Science ParkLeioa48940Spain
- IKERBASQUEBasque Foundation for ScienceBilbao48009Spain
| | - M. P. U. Haris
- BCMaterialsBasque Center for MaterialsApplications, and NanostructuresUPV/EHU Science ParkLeioa48940Spain
- Interdisciplinary Research Center for Sustainable Energy Systems (IRC‐SES)King Fahd University of Petroleum and Minerals (KFUPM)Dhahran31261Saudi Arabia
| | - Shahzada Ahmad
- BCMaterialsBasque Center for MaterialsApplications, and NanostructuresUPV/EHU Science ParkLeioa48940Spain
- IKERBASQUEBasque Foundation for ScienceBilbao48009Spain
| |
Collapse
|
3
|
Liu Z, Gao L, Han S, Zhang Z, Jiang H, Liu R, Zhang Y, Xu H, Mei D, Tao K. Bioinspired Supramolecular Dressing of Adaptable Programmability and Multifunctionality for Wound Healing. ACS APPLIED MATERIALS & INTERFACES 2025. [PMID: 39966183 DOI: 10.1021/acsami.4c22919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2025]
Abstract
As the largest organ in the human body, the skin plays a crucial role in protecting tissues from external threats. Damage in the skin can not only lead to bleeding and increase the risk of infection and inflammation but also result in tissue necrosis and scar formations. Therefore, wound dressings of high efficiency and intrinsic biocompatibility are essential for defending the wound sites and promoting healing. However, the state-of-the-art wound dressings have intrinsic shortcomings in curing, which would exudate due to limited water absorption capacity and the adhesion side effect, which may cause secondary damages. There remains a gap in the availability of wound dressings that simultaneously integrate antibacterial, self-healing, biodegradable, and temperature-sensitive properties. Herein, a bioinspired supramolecular hydrogel-based wound dressing composed of a KYD (KYDYKYDYKK) self-assembly peptide-agar double-network is developed with the assistance of 3D printing. The reversible self-assembling dynamics of the KYD along with the existence of lysine residues endow the double-networks with the ability of self-healing and antibacterial properties, while the introduction of agar allows the bioinspired system to be temperature sensitive. In addition, the grid size of the bioinspired dressing is light-stimulated and adaptable, allowing for real-time control of air permeability. Combined with intrinsic biodegradability, the multifunctional supramolecular wound dressing enables sustainable drug releases. Consequently, the programmability of strength, flexibility, and performances in this design ensures customizability in a variety of wound conditions of the bioinspired supramolecular wound dressing, thus showing promising potential in enhancing clinical wound management and improving patient lifecare.
Collapse
Affiliation(s)
- Zixuan Liu
- Future Science Research Institute, ZJU-Hangzhou Global Scientific and Technological Innovation Centre, Hangzhou 311200, China
- Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, Hangzhou 311200, China
- Zhejiang-Ireland Joint Laboratory of Bio-Organic Dielectrics & Devices, Hangzhou 310058, China
| | - Lujing Gao
- Future Science Research Institute, ZJU-Hangzhou Global Scientific and Technological Innovation Centre, Hangzhou 311200, China
- Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, Hangzhou 311200, China
- State Key Laboratory of Heavy Oil Processing and Centre for Bioengineering and Biotechnology, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, China
- Zhejiang-Ireland Joint Laboratory of Bio-Organic Dielectrics & Devices, Hangzhou 310058, China
| | - Shuyi Han
- China Petroleum Engineering & Construction Corporation Southwest Company, Chengdu 610041, China
| | - Zaimei Zhang
- State Key Laboratory of Heavy Oil Processing and Centre for Bioengineering and Biotechnology, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Haoye Jiang
- Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, Hangzhou 311200, China
- State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou 310058, China
- Zhejiang Key Laboratory of Advanced Equipment Manufacturing and Measurement Technology, School of Mechanical Engineering, Zhejiang University, Hangzhou 310058, China
- Zhejiang-Ireland Joint Laboratory of Bio-Organic Dielectrics & Devices, Hangzhou 310058, China
| | - Ruiqi Liu
- Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, Hangzhou 311200, China
- State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou 310058, China
- Zhejiang Key Laboratory of Advanced Equipment Manufacturing and Measurement Technology, School of Mechanical Engineering, Zhejiang University, Hangzhou 310058, China
| | - Yu Zhang
- Future Science Research Institute, ZJU-Hangzhou Global Scientific and Technological Innovation Centre, Hangzhou 311200, China
- Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, Hangzhou 311200, China
- Zhejiang-Ireland Joint Laboratory of Bio-Organic Dielectrics & Devices, Hangzhou 310058, China
| | - Hai Xu
- State Key Laboratory of Heavy Oil Processing and Centre for Bioengineering and Biotechnology, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Deqing Mei
- State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou 310058, China
- Zhejiang Key Laboratory of Advanced Equipment Manufacturing and Measurement Technology, School of Mechanical Engineering, Zhejiang University, Hangzhou 310058, China
| | - Kai Tao
- Future Science Research Institute, ZJU-Hangzhou Global Scientific and Technological Innovation Centre, Hangzhou 311200, China
- Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, Hangzhou 311200, China
- State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou 310058, China
- Zhejiang Key Laboratory of Advanced Equipment Manufacturing and Measurement Technology, School of Mechanical Engineering, Zhejiang University, Hangzhou 310058, China
- Zhejiang-Ireland Joint Laboratory of Bio-Organic Dielectrics & Devices, Hangzhou 310058, China
| |
Collapse
|
4
|
Baptista RMF, Santos D, Cunha NF, Castro MCR, Rodrigues PV, Machado AV, Belsley MS, de Matos Gomes E. Novel Benzothiazole Boc-Phe-Phe-Bz Derivative Dipeptide Forming Fluorescent and Nonlinear Optical Self-Assembled Structures. Molecules 2025; 30:942. [PMID: 40005252 PMCID: PMC11858552 DOI: 10.3390/molecules30040942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 02/09/2025] [Accepted: 02/16/2025] [Indexed: 02/27/2025] Open
Abstract
This work explores the self-assembly and optical properties of a novel chiral, aromatic-rich Boc-Phe-Phe dipeptide derivative functionalized with a benzothiazole bicyclic ring that forms supramolecular structures. Leveraging the well-known self-assembling capabilities of diphenylalanine dipeptides, this modified derivative introduces a heterocyclic benzothiazole unit that significantly enhances the fluorescence of the resulting nanostructures. The derivative's rich aromatic character drives the formation of supramolecular structures through self-organization mechanisms influenced by quantum confinement. By adjusting the solvent system, the nanostructures exhibit tunable morphologies, ranging from nanospheres to nanobelts. The nonlinear optical properties of these self-assembled structures were studied and an estimated deff of ~0.9 pm/V was obtained, which is comparable to that reported for the highly aromatic triphenylalanine peptide.
Collapse
Affiliation(s)
- Rosa M. F. Baptista
- Centre of Physics of Minho and Porto Universities (CF-UM-UP), Laboratory for Physics of Materials and Emergent Technologies (LaPMET), University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; (D.S.); (N.F.C.); (M.S.B.)
| | - Daniela Santos
- Centre of Physics of Minho and Porto Universities (CF-UM-UP), Laboratory for Physics of Materials and Emergent Technologies (LaPMET), University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; (D.S.); (N.F.C.); (M.S.B.)
| | - N. F. Cunha
- Centre of Physics of Minho and Porto Universities (CF-UM-UP), Laboratory for Physics of Materials and Emergent Technologies (LaPMET), University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; (D.S.); (N.F.C.); (M.S.B.)
| | - Maria Cidália R. Castro
- Institute for Polymers and Composites, University of Minho, Campus de Azurém, 4800-058 Guimarães, Portugal; (M.C.R.C.); (P.V.R.); (A.V.M.)
| | - Pedro V. Rodrigues
- Institute for Polymers and Composites, University of Minho, Campus de Azurém, 4800-058 Guimarães, Portugal; (M.C.R.C.); (P.V.R.); (A.V.M.)
| | - Ana V. Machado
- Institute for Polymers and Composites, University of Minho, Campus de Azurém, 4800-058 Guimarães, Portugal; (M.C.R.C.); (P.V.R.); (A.V.M.)
| | - Michael S. Belsley
- Centre of Physics of Minho and Porto Universities (CF-UM-UP), Laboratory for Physics of Materials and Emergent Technologies (LaPMET), University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; (D.S.); (N.F.C.); (M.S.B.)
| | - Etelvina de Matos Gomes
- Centre of Physics of Minho and Porto Universities (CF-UM-UP), Laboratory for Physics of Materials and Emergent Technologies (LaPMET), University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; (D.S.); (N.F.C.); (M.S.B.)
| |
Collapse
|
5
|
Yuan C, Fan W, Zhou P, Xing R, Cao S, Yan X. High-entropy non-covalent cyclic peptide glass. NATURE NANOTECHNOLOGY 2024; 19:1840-1848. [PMID: 39187585 DOI: 10.1038/s41565-024-01766-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 07/19/2024] [Indexed: 08/28/2024]
Abstract
Biomolecule-based non-covalent glasses are biocompatible and biodegradable, and offer a sustainable alternative to conventional glass. Cyclic peptides (CPs) can serve as promising glass formers owing to their structural rigidity and resistance to enzymatic degradation. However, their potent crystallization tendency hinders their potential in glass construction. Here we engineered a series of CP glasses with tunable glass transition behaviours by modulating the conformational complexity of CP clusters. By incorporating multicomponent CPs, the formation of high-entropy CP glass is facilitated, which-in turn-inhibits the crystallization of individual CPs. The high-entropy CP glass demonstrates enhanced mechanical properties and enzyme tolerance compared with individual CP glass and a unique biorecycling capability that is unattainable by traditional glasses. These findings provide a promising paradigm for the design and development of stable non-covalent glasses based on naturally derived biomolecules, and advance their application in pharmaceutical formulations and smart functional materials.
Collapse
Affiliation(s)
- Chengqian Yuan
- State Key Laboratory of Biochemical Engineering, Key Laboratory of Biopharmaceutical Preparation and Delivery, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, China
| | - Wei Fan
- State Key Laboratory of Biochemical Engineering, Key Laboratory of Biopharmaceutical Preparation and Delivery, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, China
| | - Peng Zhou
- State Key Laboratory of Biochemical Engineering, Key Laboratory of Biopharmaceutical Preparation and Delivery, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, China
| | - Ruirui Xing
- State Key Laboratory of Biochemical Engineering, Key Laboratory of Biopharmaceutical Preparation and Delivery, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, China
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing, China
| | - Shuai Cao
- State Key Laboratory of Biochemical Engineering, Key Laboratory of Biopharmaceutical Preparation and Delivery, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, China
| | - Xuehai Yan
- State Key Laboratory of Biochemical Engineering, Key Laboratory of Biopharmaceutical Preparation and Delivery, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, China.
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing, China.
- Center for Mesoscience, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
6
|
Tkachenko DV, Larionov RA, Ziganshina SA, Khayarov KR, Klimovitskii AE, Babaeva OB, Gorbatchuk VV, Ziganshin MA. Cyclization of alanyl-valine dipeptides in the solid state. The effects of molecular radiator and heat capacity. Phys Chem Chem Phys 2024; 26:27338-27347. [PMID: 39440569 DOI: 10.1039/d4cp02795g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Heating of linear dipeptides above a critical temperature initiates their cyclization even in the solid state. This method of obtaining cyclic dipeptides meets the requirements of "green chemistry", provides a high yield of the main product and releases only water as a by-product of the reaction, and does not require solvents. However, to date, the cyclization of only a small number of dipeptides in the solid state has been studied, and some correlations of the process were discovered. The influence of the structure of dipeptide molecules and their crystal packing on the kinetics of solid-state cyclization is still not fully understood. In this work, the cyclization of L-alanyl-L-valine in the solid state upon heating was studied. Using non-isothermal kinetic approaches, the kinetic parameters of this reaction and the optimal kinetic model describing this process were determined. The effect of the features of the crystal packing of dipeptides and their heat capacity on the temperature of the cyclization in the solid state was analyzed. This study expands our knowledge about solid-state reactions involving dipeptides and the ability to control such reactions.
Collapse
Affiliation(s)
- Daria V Tkachenko
- Alexander Butlerov Institute of Chemistry, Kazan (Volga Region) Federal University, 18 ul. Kremlyovskaya, 420008 Kazan, Russian Federation.
| | - Radik A Larionov
- Alexander Butlerov Institute of Chemistry, Kazan (Volga Region) Federal University, 18 ul. Kremlyovskaya, 420008 Kazan, Russian Federation.
| | - Sufia A Ziganshina
- Alexander Butlerov Institute of Chemistry, Kazan (Volga Region) Federal University, 18 ul. Kremlyovskaya, 420008 Kazan, Russian Federation.
| | - Khasan R Khayarov
- Alexander Butlerov Institute of Chemistry, Kazan (Volga Region) Federal University, 18 ul. Kremlyovskaya, 420008 Kazan, Russian Federation.
| | - Aleksandr E Klimovitskii
- Alexander Butlerov Institute of Chemistry, Kazan (Volga Region) Federal University, 18 ul. Kremlyovskaya, 420008 Kazan, Russian Federation.
| | - Olga B Babaeva
- A.E. Arbuzov Institute of Organic and Physical Chemistry, RAS, Kazan, 420088, Russia
| | - Valery V Gorbatchuk
- Alexander Butlerov Institute of Chemistry, Kazan (Volga Region) Federal University, 18 ul. Kremlyovskaya, 420008 Kazan, Russian Federation.
| | - Marat A Ziganshin
- Alexander Butlerov Institute of Chemistry, Kazan (Volga Region) Federal University, 18 ul. Kremlyovskaya, 420008 Kazan, Russian Federation.
- Academy of Sciences of the Republic of Tatarstan, Kazan, 420111, Russia
| |
Collapse
|
7
|
Schäfer V, Pianowski ZL. Heterocyclic Hemipiperazines: Multistimuli-Responsive Switches and Sensors for Zinc or Cadmium Ions. Chemistry 2024; 30:e202402005. [PMID: 38980960 DOI: 10.1002/chem.202402005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 07/05/2024] [Accepted: 07/08/2024] [Indexed: 07/11/2024]
Abstract
Advance in the design of molecular photoswitches - adapters that convert light into changes at molecular level - opens up exciting possibilities in preparing smart polymers, drugs photoactivated inside humans, or light-fueled nanomachines that might in the future operate in our bloodstream. Hemipiperazines are recently reported biocompatible molecular photoswitches based on cyclic dipeptides. Here we report a multistimuli-responsive hemipiperazine-based switch that reacts on light, solvents, acidity, or metal ions. Its photoequilibration is controlled by the intramolecular hydrogen bonding pattern. The compound can be used as a mid-nanomolar photoswitchable fluorescent sensor for zinc and cadmium ions, applicable to monitor environmental pollution in real time.
Collapse
Affiliation(s)
- Valentin Schäfer
- Institute of Organic Chemistry IOC KIT, Karlsruhe Institute of Technology, Kaiserstrasse 12, 76131, Karlsruhe, Germany
| | - Zbigniew L Pianowski
- Institute of Biological and Chemical Systems - Functional Molecular Systems IBCS-FMS KIT, Karlsruhe Institute of Technology, Kaiserstrasse 12, 76131, Karlsruhe, Germany
- Institute of Organic Chemistry IOC KIT, Karlsruhe Institute of Technology, Kaiserstrasse 12, 76131, Karlsruhe, Germany
| |
Collapse
|
8
|
Yan R, Zhang N, Liu W, Hu X, Wang W, Tang Y, Wang S, Wang X, Sheng Q. Novel Eu-dipeptide assemblies for a fluorescence sensing strategy to ultrasensitive determine trace sulfamethazine. Food Chem 2024; 448:139089. [PMID: 38518446 DOI: 10.1016/j.foodchem.2024.139089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 03/11/2024] [Accepted: 03/18/2024] [Indexed: 03/24/2024]
Abstract
Self-assembled Eu-dipeptide (tryptophan-phenylalanine) microparticles with multi-emission fluorescence was prepared and modified with a single-stranded DNA corresponding to the sulfamethazine (SMZ) adapter (Eu-PMPs@cDNA). Aptamer-functionalized magnetic Fe3O4 (MNPs@aptamer) was used to specifically bind the target SMZ. Using Eu-PMPs@cDNA as fluorescent signal probe and MNPs@aptamer as catcher, a noncompetitive fluorescence sensing strategy was developed for determination of SMZ with good sensitivity, accuracy, selectivity, and stability. Under the optimized conditions, fluorescence increases linearly in the 0-20 ng/mL SMZ concentration range, and the detection limit is 0.014 ng/mL. The fluorescence sensing method was applied to analysis of water and fish muscle samples, and recoveries ranged from 81.78 to 119.46 % with relative standard deviations below 4.2 %. This study offered a reliable and sensitive fluorescence sensing strategy for SMZ determination in food samples, which owns great potential for wide-ranging application in harmful compounds assay by simply changing the type of aptamer and its complementary single-stranded DNA.
Collapse
Affiliation(s)
- Rongfang Yan
- College of Food Science and Technology, Hebei Agricultural University, Baoding 071001, China
| | - Ning Zhang
- College of Food Science and Technology, Hebei Agricultural University, Baoding 071001, China
| | - Weihua Liu
- College of Food Science and Technology, Hebei Agricultural University, Baoding 071001, China
| | - Xuelian Hu
- College of Food Science and Technology, Hebei Agricultural University, Baoding 071001, China
| | - Wenxiu Wang
- College of Food Science and Technology, Hebei Agricultural University, Baoding 071001, China
| | - Yiwei Tang
- College of Food Science and Technology, Hebei Agricultural University, Baoding 071001, China.
| | - Shuo Wang
- College of Food Science and Technology, Hebei Agricultural University, Baoding 071001, China; Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China
| | - Xianghong Wang
- College of Food Science and Technology, Hebei Agricultural University, Baoding 071001, China
| | - Qinghai Sheng
- College of Food Science and Technology, Hebei Agricultural University, Baoding 071001, China
| |
Collapse
|
9
|
Chen H, Liu Z, Li L, Cai X, Xiang L, Wang S. Peptide Supramolecular Self-Assembly: Regulatory Mechanism, Functional Properties, and Its Application in Foods. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:5526-5541. [PMID: 38457666 DOI: 10.1021/acs.jafc.3c09237] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/10/2024]
Abstract
Peptide self-assembly, due to its diverse supramolecular nanostructures, excellent biocompatibility, and bright application prospects, has received wide interest from researchers in the fields of biomedicine and green life technology and the food industry. Driven by thermodynamics and regulated by dynamics, peptides spontaneously assemble into supramolecular structures with different functional properties. According to the functional properties derived from peptide self-assembly, applications and development directions in foods can be found and explored. Therefore, in this review, the regulatory mechanism is elucidated from the perspective of self-assembly thermodynamics and dynamics, and the functional properties and application progress of peptide self-assembly in foods are summarized, with a view to more adaptive application scenarios of peptide self-assembly in the food industry.
Collapse
Affiliation(s)
- Huimin Chen
- College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108, P. R. China
- School of Food and Bioengineering, Fujian Polytechnic Normal University, Fuzhou 350300, P. R. China
| | - Zhiyu Liu
- College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108, P. R. China
| | - Liheng Li
- College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108, P. R. China
| | - Xixi Cai
- College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108, P. R. China
- Qingyuan Innovation Laboratory, Quanzhou 362801, P. R. China
| | - Leiwen Xiang
- School of Food and Bioengineering, Fujian Polytechnic Normal University, Fuzhou 350300, P. R. China
| | - Shaoyun Wang
- College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108, P. R. China
| |
Collapse
|
10
|
Zhang Y, Zhang D, Liu H, Sun B. Photostimulus-Responsive Peptide Dot-Centered Covalent Organic Polymers: Effective Pesticide Sensing via Enhancing Accessibility. ACS APPLIED MATERIALS & INTERFACES 2024; 16:14208-14217. [PMID: 38445958 DOI: 10.1021/acsami.4c01072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/07/2024]
Abstract
Pesticide detection and monitoring are necessary for human health as the overapplication has serious consequences for environmental pollution. Herein, a proper modulation strategy was implemented to construct the photostimulus-responsive peptide-dot-centered covalent organic polymer (P-PCOP) nanoarchitecture for selective sensing of pesticides. The as-constructed P-PCOP was prepared at room temperature by using amino-containing peptide dots as a building block instead of common organic molecules, and the merits of P-PCOP enable it to reduce the steric hindrance of recognition, enhance the interfacial contact of the target, and facilitate the accessibility of sites, which promises to improve the sensitivity. The P-PCOF exhibited a low detection limit of 0.38 μg L-1 to cartap over the range of 1-80 μg L-1 (R2 = 0.9845), and the recoveries percentage in real samples was estimated to be 93.39-105.82%. More importantly, the DFT calculation confirmed the selective recognition ability of P-PCOP on chemical pesticides. In conjunction with a smartphone-integrated portable reading device, on-site chemical sensing is achieved. The proper modulation strategy of fixing a functional guest on the COP system contributes to the advanced structure-chemical properties that are conducive to their applications in chemical sensing.
Collapse
Affiliation(s)
- Ying Zhang
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing Technology and Business University, No. 11 Fucheng Road, Beijing 100048, People's Republic of China
| | - Dianwei Zhang
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing Technology and Business University, No. 11 Fucheng Road, Beijing 100048, People's Republic of China
| | - Huilin Liu
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing Technology and Business University, No. 11 Fucheng Road, Beijing 100048, People's Republic of China
| | - Baoguo Sun
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing Technology and Business University, No. 11 Fucheng Road, Beijing 100048, People's Republic of China
| |
Collapse
|
11
|
Chen S, Xia Y, Zeng R, Luo Z, Wu X, Hu X, Lu J, Gazit E, Pan H, Hong Z, Yan M, Tao K, Jiang Y. Ordered planar plating/stripping enables deep cycling zinc metal batteries. SCIENCE ADVANCES 2024; 10:eadn2265. [PMID: 38446894 PMCID: PMC10917354 DOI: 10.1126/sciadv.adn2265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 01/30/2024] [Indexed: 03/08/2024]
Abstract
Metal anodes are emerging as culminating solutions for the development of energy-dense batteries in either aprotic, aqueous, or solid battery configurations. However, unlike traditional intercalation electrodes, the low utilization of "hostless" metal anodes due to the intrinsically disordered plating/stripping impedes their practical applications. Herein, we report ordered planar plating/stripping in a bulk zinc (Zn) anode to achieve an extremely high depth of discharge exceeding 90% with negligible thickness fluctuation and long-term stable cycling. The Zn can be plated/stripped with (0001)Zn preferential orientation throughout the consecutive charge/discharge process, assisted by a self-assembled supramolecular bilayer at the Zn anode-electrolyte interface. Through real-time tracking of the Zn atoms migration, we reveal that the ordered planar plating/stripping is driven by the construction of in-plane Zn─N bindings and the gradient energy landscape at the reaction fronts. The breakthrough results provide alternative insights into the ordered plating/stripping of metal anodes toward rechargeable energy-dense batteries.
Collapse
Affiliation(s)
- Shuang Chen
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
- Future Science Research Institute, Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311215, China
| | - Yufan Xia
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
- Future Science Research Institute, Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311215, China
| | - Ran Zeng
- Future Science Research Institute, Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311215, China
- State Key Laboratory of Fluid Power and Mechatronic Systems, Key Laboratory of Advanced Manufacturing Technology of Zhejiang Province, School of Mechanical Engineering, Zhejiang University, Hangzhou 310027, China
| | - Zhen Luo
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
- Future Science Research Institute, Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311215, China
| | - Xingxing Wu
- Future Science Research Institute, Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311215, China
| | - Xuzhi Hu
- Biological Physics Laboratory, School of Physics and Astronomy, University of Manchester, Oxford Road, Manchester M13 9PL, UK
| | - Jian Lu
- Biological Physics Laboratory, School of Physics and Astronomy, University of Manchester, Oxford Road, Manchester M13 9PL, UK
| | - Ehud Gazit
- Future Science Research Institute, Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311215, China
- The Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, 6997801, Tel Aviv, Israel
- Department of Materials Science and Engineering, Iby and Aladar Fleischman, Tel Aviv University, 6997801 Tel Aviv, Israel
| | - Hongge Pan
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
- Institute of Science and Technology for New Energy, Xi'an Technological University, Xi'an 710021, China
| | - Zijian Hong
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Mi Yan
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
- State Key Laboratory of Baiyunobo Rare Earth Resource Researches and Comprehensive Utilization, Baotou Research Institute of Rare Earths, Baotou 014030 China
| | - Kai Tao
- Future Science Research Institute, Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311215, China
- State Key Laboratory of Fluid Power and Mechatronic Systems, Key Laboratory of Advanced Manufacturing Technology of Zhejiang Province, School of Mechanical Engineering, Zhejiang University, Hangzhou 310027, China
| | - Yinzhu Jiang
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
- Future Science Research Institute, Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311215, China
- State Key Laboratory of Baiyunobo Rare Earth Resource Researches and Comprehensive Utilization, Baotou Research Institute of Rare Earths, Baotou 014030 China
| |
Collapse
|
12
|
Liu Y, Li Z, Xu Y, Xu X, Zhao J, Cui W, Li J. Ion-Induced Nanoarchitectonics for Anthraquinone Single Crystals with Enhanced Fluorescence Properties. ACS APPLIED MATERIALS & INTERFACES 2024; 16:9436-9442. [PMID: 38320754 DOI: 10.1021/acsami.3c16293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
Recently, bioinspired fluorescent materials have drawn ever-increasing attention due to their ecofriendliness and easy accessibility. Herein, we demonstrate that anthraquinone/metal ion coordination complexes can form well-defined crystals and possess obvious fluorescence enhancement properties. The fluorescence quantum yields of anthraquinone/metal ion assemblies are more than 2 orders of magnitude compared to those of anthraquinone assemblies. The electronic structures of the first excited singlet states of anthraquinone/metal ion molecules are obtained, and the mechanism of the fluorescence enhancement is elucidated. Such photoluminescent anthraquinone/metal ion crystals can be considered as efficient phosphors in fabricating light-emitting diodes. This work provides a simple route for the development of highly efficient natural fluorescent materials.
Collapse
Affiliation(s)
- Yilin Liu
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Lab of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, 100190 Beijing, China
- University of Chinese Academy of Sciences, 100049 Beijing, China
| | - Zibo Li
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Lab of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, 100190 Beijing, China
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Yang Xu
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Lab of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, 100190 Beijing, China
- University of Chinese Academy of Sciences, 100049 Beijing, China
| | - Xia Xu
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Lab of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, 100190 Beijing, China
- University of Chinese Academy of Sciences, 100049 Beijing, China
| | - Jie Zhao
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Lab of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, 100190 Beijing, China
| | - Wei Cui
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Lab of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, 100190 Beijing, China
| | - Junbai Li
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Lab of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, 100190 Beijing, China
- University of Chinese Academy of Sciences, 100049 Beijing, China
| |
Collapse
|
13
|
Tian Y, Li J, Wang A, Li Q, Jian H, Bai S. Peptide-Based Optical/Electronic Materials: Assembly and Recent Applications in Biomedicine, Sensing, and Energy Storage. Macromol Biosci 2023; 23:e2300171. [PMID: 37466295 DOI: 10.1002/mabi.202300171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 07/10/2023] [Accepted: 07/16/2023] [Indexed: 07/20/2023]
Abstract
The unique optical and electronic properties of living systems are impressive. Peptide-based supramolecular self-assembly systems attempt to mimic these properties by preparation optical/electronic function materials with specific structure through simple building blocks, rational molecular design, and specific kinetic stimulation. From the perspective of building blocks and assembly strategies, the unique optical and electronic properties of peptide-based nanostructures, including peptides self-assembly and peptides regulate the assembly of external function subunits, are systematically reviewed. Additionally, their applications in biomedicine, sensing, and energy storage are also highlighted. This bioinspired peptide-based function material is one of the hot candidates for the new generation of green intellect materials, with many advantages such as biocompatibility, environmental friendliness, and adjustable morphology.
Collapse
Affiliation(s)
- Yajie Tian
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Jieling Li
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Anhe Wang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Qi Li
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Honglei Jian
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Shuo Bai
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| |
Collapse
|
14
|
Wang J, Liu Z, Zhao S, Xu T, Wang H, Li SZ, Li W. Deep Learning Empowers the Discovery of Self-Assembling Peptides with Over 10 Trillion Sequences. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2301544. [PMID: 37749875 PMCID: PMC10625107 DOI: 10.1002/advs.202301544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 08/03/2023] [Indexed: 09/27/2023]
Abstract
Self-assembling of peptides is essential for a variety of biological and medical applications. However, it is challenging to investigate the self-assembling properties of peptides within the complete sequence space due to the enormous sequence quantities. Here, it is demonstrated that a transformer-based deep learning model is effective in predicting the aggregation propensity (AP) of peptide systems, even for decapeptide and mixed-pentapeptide systems with over 10 trillion sequence quantities. Based on the predicted AP values, not only the aggregation laws for designing self-assembling peptides are derived, but the transferability relation among the APs of pentapeptides, decapeptides, and mixed pentapeptides is also revealed, leading to discoveries of self-assembling peptides by concatenating or mixing, as consolidated by experiments. This deep learning approach enables speedy, accurate, and thorough search and design of self-assembling peptides within the complete sequence space of oligopeptides, advancing peptide science by inspiring new biological and medical applications.
Collapse
Affiliation(s)
- Jiaqi Wang
- Research Center for Industries of the FutureWestlake UniversityHangzhou310030China
- School of EngineeringWestlake UniversityHangzhou310030China
| | - Zihan Liu
- AI LabResearch Center for Industries of the FutureWestlake UniversityHangzhou310030China
| | - Shuang Zhao
- Research Center for Industries of the FutureWestlake UniversityHangzhou310030China
- School of EngineeringWestlake UniversityHangzhou310030China
| | - Tengyan Xu
- Department of ChemistrySchool of ScienceWestlake UniversityHangzhou310030China
- Institute of Natural SciencesWestlake Institute for Advanced Study18 Shilongshan RoadHangzhouZhejiang Province310024China
| | - Huaimin Wang
- Department of ChemistrySchool of ScienceWestlake UniversityHangzhou310030China
- Institute of Natural SciencesWestlake Institute for Advanced Study18 Shilongshan RoadHangzhouZhejiang Province310024China
| | - Stan Z. Li
- AI LabResearch Center for Industries of the FutureWestlake UniversityHangzhou310030China
| | - Wenbin Li
- Research Center for Industries of the FutureWestlake UniversityHangzhou310030China
- School of EngineeringWestlake UniversityHangzhou310030China
| |
Collapse
|
15
|
Basu S, Perić Bakulić M, Sanader Maršić Ž, Bonačić-Koutecký V, Amdursky N. Excitation-Dependent Fluorescence with Excitation-Selective Circularly Polarized Luminescence from Hierarchically Organized Atomic Nanoclusters. ACS NANO 2023; 17:16644-16655. [PMID: 37638669 DOI: 10.1021/acsnano.3c02846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/29/2023]
Abstract
Nanometer-scaled objects are known to have dimension-related properties, but sometimes the assembly of such objects can lead to the emergence of other properties. Here, we show the assembly of atomically precise gold nanoclusters into large fibrillar structures that are featuring excitation-dependent luminescence with an excitation-selective circularly polarized luminescence (CPL), even though all components are achiral. The origin of CPL in the assembly of atomic clusters has been attributed to the hierarchical organization of atomic clusters into fibrillar structures, mediated via a hydrogen bonding interaction with a surfactant. We follow the assembly process both experimentally and computationally showing the advance in the structural formation along with its chiroptical electronic properties, i.e., circular dichroism (CD) and CPL. Our study here can assist in the rational design of materials featuring chiroptical properties, thus leading to a controlled CPL activity.
Collapse
Affiliation(s)
- Srestha Basu
- Schulich Faculty of Chemistry, Technion─Israel Institute of Technology, Haifa 3200003, Israel
| | - Martina Perić Bakulić
- Faculty of Chemistry and Technology, University of Split, Ruđera Boškovića 35, 21000 Split, Croatia
- Center of Excellence for Science and Technology-Integration of Mediterranean Region (STIM) at Interdisciplinary Center for Advanced Sciences and Technology (ICAST), University of Split, Poljička cesta 35, 21000 Split, Croatia
| | - Željka Sanader Maršić
- Center of Excellence for Science and Technology-Integration of Mediterranean Region (STIM) at Interdisciplinary Center for Advanced Sciences and Technology (ICAST), University of Split, Poljička cesta 35, 21000 Split, Croatia
- Faculty of Science, University of Split, Ruđera Boškovića 33, 21000 Split, Croatia
| | - Vlasta Bonačić-Koutecký
- Center of Excellence for Science and Technology-Integration of Mediterranean Region (STIM) at Interdisciplinary Center for Advanced Sciences and Technology (ICAST), University of Split, Poljička cesta 35, 21000 Split, Croatia
- Chemistry Department, Humboldt University of Berlin, Brook-Taylor-Strasse 2, 12489 Berlin, Germany
| | - Nadav Amdursky
- Schulich Faculty of Chemistry, Technion─Israel Institute of Technology, Haifa 3200003, Israel
| |
Collapse
|
16
|
Li S, Chang R, Zhao L, Xing R, van Hest JCM, Yan X. Two-photon nanoprobes based on bioorganic nanoarchitectonics with a photo-oxidation enhanced emission mechanism. Nat Commun 2023; 14:5227. [PMID: 37633974 PMCID: PMC10460436 DOI: 10.1038/s41467-023-40897-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 08/15/2023] [Indexed: 08/28/2023] Open
Abstract
Two-photon absorption (TPA) fluorescence imaging holds great promise in diagnostics and biomedicine owing to its unparalleled spatiotemporal resolution. However, the adaptability and applicability of currently available TPA probes, which act as a critical element for determining the imaging contrast effect, is severely challenged by limited photo-luminescence in vivo. This is particularly a result of uncontrollable aggregation that causes fluorescence quenching, and inevitable photo-oxidation in harsh physiological milieu, which normally leads to bleaching of the dye. Herein, we describe the remarkably enhanced TPA fluorescence imaging capacity of self-assembling near-infrared (NIR) cyanine dye-based nanoprobes (NPs), which can be explained by a photo-oxidation enhanced emission mechanism. Singlet oxygen generated during photo-oxidation enables chromophore dimerization to form TPA intermediates responsible for enhanced TPA fluorescence emission. The resulting NPs possess uniform size distribution, excellent stability, more favorable TPA cross-section and anti-bleaching ability than a popular TPA probe rhodamine B (RhB). These properties of cyanine dye-based TPA NPs promote their applications in visualizing blood circulation and tumoral accumulation in real-time, even to cellular imaging in vivo. The photo-oxidation enhanced emission mechanism observed in these near-infrared cyanine dye-based nanoaggregates opens an avenue for design and development of more advanced TPA fluorescence probes.
Collapse
Affiliation(s)
- Shukun Li
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Beijing, 100190, China
- Bio-Organic Chemistry, Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, MB, Eindhoven, The Netherlands
| | - Rui Chang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Beijing, 100190, China
| | - Luyang Zhao
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Beijing, 100190, China
| | - Ruirui Xing
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Beijing, 100190, China.
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Jan C M van Hest
- Bio-Organic Chemistry, Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, MB, Eindhoven, The Netherlands
| | - Xuehai Yan
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Beijing, 100190, China.
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China.
- Center for Mesoscience, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China.
| |
Collapse
|
17
|
Deng D, Chang Y, Liu W, Ren M, Xia N, Hao Y. Advancements in Biosensors Based on the Assembles of Small Organic Molecules and Peptides. BIOSENSORS 2023; 13:773. [PMID: 37622859 PMCID: PMC10452798 DOI: 10.3390/bios13080773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 07/21/2023] [Accepted: 07/27/2023] [Indexed: 08/26/2023]
Abstract
Over the past few decades, molecular self-assembly has witnessed tremendous progress in a variety of biosensing and biomedical applications. In particular, self-assembled nanostructures of small organic molecules and peptides with intriguing characteristics (e.g., structure tailoring, facile processability, and excellent biocompatibility) have shown outstanding potential in the development of various biosensors. In this review, we introduced the unique properties of self-assembled nanostructures with small organic molecules and peptides for biosensing applications. We first discussed the applications of such nanostructures in electrochemical biosensors as electrode supports for enzymes and cells and as signal labels with a large number of electroactive units for signal amplification. Secondly, the utilization of fluorescent nanomaterials by self-assembled dyes or peptides was introduced. Thereinto, typical examples based on target-responsive aggregation-induced emission and decomposition-induced fluorescent enhancement were discussed. Finally, the applications of self-assembled nanomaterials in the colorimetric assays were summarized. We also briefly addressed the challenges and future prospects of biosensors based on self-assembled nanostructures.
Collapse
Affiliation(s)
- Dehua Deng
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, China
| | - Yong Chang
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, China
| | - Wenjing Liu
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, China
| | - Mingwei Ren
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, China
| | - Ning Xia
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, China
| | - Yuanqiang Hao
- School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan 411201, China
| |
Collapse
|
18
|
Li L, Xu Z, Cao R, Li J, Wu CJ, Wang Y, Zhu H. Effects of hydroxyl group in cyclo(Pro-Tyr)-like cyclic dipeptides on their anti-QS activity and self-assembly. iScience 2023; 26:107048. [PMID: 37360689 PMCID: PMC10285644 DOI: 10.1016/j.isci.2023.107048] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 05/08/2023] [Accepted: 06/01/2023] [Indexed: 06/28/2023] Open
Abstract
We investigated the influence of hydroxyl groups on the anti-quorum-sensing (anti-QS) and anti-biofilm activity of structurally similar cyclic dipeptides, namely cyclo(L-Pro-L-Tyr), cyclo(L-Hyp-L-Tyr), and cyclo(L-Pro-L-Phe), against Pseudomonas aeruginosa PAO1. Cyclo(L-Pro-L-Phe), lacking hydroxyl groups, displayed higher virulence factor inhibition and cytotoxicity, but showed less inhibitory ability in biofilm formation. Cyclo(L-Pro-L-Tyr) and cyclo(L-Hyp-L-Tyr) suppressed genes in both the las and rhl systems, whereas cyclo(L-Pro-L-Phe) mainly downregulated rhlI and pqsR expression. These cyclic dipeptides interacted with the QS-related protein LasR, with similar binding efficiency to the autoinducer 3OC12-HSL, except for cyclo(L-Pro-L-Phe) which had lower affinity. In addition, the introduction of hydroxyl groups significantly improved the self-assembly ability of these peptides. Both cyclo(L-Pro-L-Tyr) and cyclo(L-Hyp-L-Tyr) formed assembly particles at the highest tested concentration. The findings revealed the structure-function relationship of this kind of cyclic dipeptides and provided basis for our follow-up research in the design and modification of anti-QS compounds.
Collapse
Affiliation(s)
- Li Li
- Fujian-Taiwan Science and Technology Cooperation Base of Biomedical Materials and Tissue Engineering, Engineering Research Center of Industrial Biocatalysis, Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou 350007, China
| | - Zuxian Xu
- Fujian-Taiwan Science and Technology Cooperation Base of Biomedical Materials and Tissue Engineering, Engineering Research Center of Industrial Biocatalysis, Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou 350007, China
| | - Ruipin Cao
- Fujian-Taiwan Science and Technology Cooperation Base of Biomedical Materials and Tissue Engineering, Engineering Research Center of Industrial Biocatalysis, Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou 350007, China
| | - Jiaxin Li
- Fujian-Taiwan Science and Technology Cooperation Base of Biomedical Materials and Tissue Engineering, Engineering Research Center of Industrial Biocatalysis, Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou 350007, China
| | - Chang-Jer Wu
- Department of Food Science, National Taiwan Ocean University, Keelung 20224, Taiwan
| | - Yinglu Wang
- Fujian-Taiwan Science and Technology Cooperation Base of Biomedical Materials and Tissue Engineering, Engineering Research Center of Industrial Biocatalysis, Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou 350007, China
| | - Hu Zhu
- Fujian-Taiwan Science and Technology Cooperation Base of Biomedical Materials and Tissue Engineering, Engineering Research Center of Industrial Biocatalysis, Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou 350007, China
- College of Chemical Engineering and Materials Science, Quanzhou Normal University, Quanzhou 362000, China
| |
Collapse
|
19
|
Santos D, Baptista RMF, Handa A, Almeida B, Rodrigues PV, Castro C, Machado A, Rodrigues MJLF, Belsley M, de Matos Gomes E. Nanostructured Electrospun Fibers with Self-Assembled Cyclo-L-Tryptophan-L-Tyrosine Dipeptide as Piezoelectric Materials and Optical Second Harmonic Generators. MATERIALS (BASEL, SWITZERLAND) 2023; 16:4993. [PMID: 37512272 PMCID: PMC10384039 DOI: 10.3390/ma16144993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/07/2023] [Accepted: 07/11/2023] [Indexed: 07/30/2023]
Abstract
The potential use of nanostructured dipeptide self-assemblies in materials science for energy harvesting devices is a highly sought-after area of research. Specifically, aromatic cyclo-dipeptides containing tryptophan have garnered attention due to their wide-bandgap semiconductor properties, high mechanical rigidity, photoluminescence, and nonlinear optical behavior. In this study, we present the development of a hybrid system comprising biopolymer electrospun fibers incorporated with the chiral cyclo-dipeptide L-Tryptophan-L-Tyrosine. The resulting nanofibers are wide-bandgap semiconductors (bandgap energy 4.0 eV) consisting of self-assembled nanotubes embedded within a polymer matrix, exhibiting intense blue photoluminescence. Moreover, the cyclo-dipeptide L-Tryptophan-L-Tyrosine incorporated into polycaprolactone nanofibers displays a strong effective second harmonic generation signal of 0.36 pm/V and shows notable piezoelectric properties with a high effective coefficient of 22 pCN-1, a piezoelectric voltage coefficient of geff=1.2 VmN-1 and a peak power density delivered by the nanofiber mat of 0.16μWcm-2. These hybrid systems hold great promise for applications in the field of nanoenergy harvesting and nanophotonics.
Collapse
Affiliation(s)
- Daniela Santos
- Laboratory for Materials and Emergent Technologies (LAPMET), Centre of Physics of Minho and Porto Universities (CF-UM-UP), University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Rosa M F Baptista
- Laboratory for Materials and Emergent Technologies (LAPMET), Centre of Physics of Minho and Porto Universities (CF-UM-UP), University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Adelino Handa
- Laboratory for Materials and Emergent Technologies (LAPMET), Centre of Physics of Minho and Porto Universities (CF-UM-UP), University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Bernardo Almeida
- Laboratory for Materials and Emergent Technologies (LAPMET), Centre of Physics of Minho and Porto Universities (CF-UM-UP), University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Pedro V Rodrigues
- Institute for Polymers and Composites, University of Minho, Campus de Gualtar, 4800-058 Guimarães, Portugal
| | - Cidália Castro
- Institute for Polymers and Composites, University of Minho, Campus de Gualtar, 4800-058 Guimarães, Portugal
| | - Ana Machado
- Institute for Polymers and Composites, University of Minho, Campus de Gualtar, 4800-058 Guimarães, Portugal
| | - Manuel J L F Rodrigues
- Laboratory for Materials and Emergent Technologies (LAPMET), Centre of Physics of Minho and Porto Universities (CF-UM-UP), University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Michael Belsley
- Laboratory for Materials and Emergent Technologies (LAPMET), Centre of Physics of Minho and Porto Universities (CF-UM-UP), University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Etelvina de Matos Gomes
- Laboratory for Materials and Emergent Technologies (LAPMET), Centre of Physics of Minho and Porto Universities (CF-UM-UP), University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| |
Collapse
|
20
|
Balasco N, Diaferia C, Rosa E, Monti A, Ruvo M, Doti N, Vitagliano L. A Comprehensive Analysis of the Intrinsic Visible Fluorescence Emitted by Peptide/Protein Amyloid-like Assemblies. Int J Mol Sci 2023; 24:8372. [PMID: 37176084 PMCID: PMC10178990 DOI: 10.3390/ijms24098372] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/03/2023] [Accepted: 05/04/2023] [Indexed: 05/15/2023] Open
Abstract
Amyloid aggregation is a widespread process that involves proteins and peptides with different molecular complexity and amino acid composition. The structural motif (cross-β) underlying this supramolecular organization generates aggregates endowed with special mechanical and spectroscopic properties with huge implications in biomedical and technological fields, including emerging precision medicine. The puzzling ability of these assemblies to emit intrinsic and label-free fluorescence in regions of the electromagnetic spectrum, such as visible and even infrared, usually considered to be forbidden in the polypeptide chain, has attracted interest for its many implications in both basic and applied science. Despite the interest in this phenomenon, the physical basis of its origin is still poorly understood. To gain a global view of the available information on this phenomenon, we here provide an exhaustive survey of the current literature in which original data on this fluorescence have been reported. The emitting systems have been classified in terms of their molecular complexity, amino acid composition, and physical state. Information about the wavelength of the radiation used for the excitation as well as the emission range/peak has also been retrieved. The data collected here provide a picture of the complexity of this multifaceted phenomenon that could be helpful for future studies aimed at defining its structural and electronic basis and/or stimulating new applications.
Collapse
Affiliation(s)
- Nicole Balasco
- Institute of Molecular Biology and Pathology, National Research Council (CNR), Department of Chemistry, University of Rome Sapienza, Piazzale Aldo Moro 5, 00185 Rome, Italy;
| | - Carlo Diaferia
- Department of Pharmacy and CIRPeB, Research Centre on Bioactive Peptides “Carlo Pedone”, University of Naples “Federico II”, Via Montesano 49, 80131 Naples, Italy; (C.D.); (E.R.)
| | - Elisabetta Rosa
- Department of Pharmacy and CIRPeB, Research Centre on Bioactive Peptides “Carlo Pedone”, University of Naples “Federico II”, Via Montesano 49, 80131 Naples, Italy; (C.D.); (E.R.)
| | - Alessandra Monti
- Institute of Biostructures and Bioimaging (IBB), National Research Council (CNR), 80131 Napoli, Italy; (A.M.); (M.R.)
| | - Menotti Ruvo
- Institute of Biostructures and Bioimaging (IBB), National Research Council (CNR), 80131 Napoli, Italy; (A.M.); (M.R.)
| | - Nunzianna Doti
- Institute of Biostructures and Bioimaging (IBB), National Research Council (CNR), 80131 Napoli, Italy; (A.M.); (M.R.)
| | - Luigi Vitagliano
- Institute of Biostructures and Bioimaging (IBB), National Research Council (CNR), 80131 Napoli, Italy; (A.M.); (M.R.)
| |
Collapse
|
21
|
Zhu X, Su H, Liu H, Sun B. A selectivity-enhanced fluorescence imprinted sensor based on yellow-emission peptide nanodots for sensitive and visual smart detection of λ-cyhalothrin. Anal Chim Acta 2023; 1255:341124. [PMID: 37032054 DOI: 10.1016/j.aca.2023.341124] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 03/17/2023] [Accepted: 03/18/2023] [Indexed: 03/28/2023]
Abstract
The development of precise and efficient detection technologies to recognize λ-cyhalothrin (LC) in agricultural products has attracted attention worldwide due to its widespread use and notable toxic effects on humans. Herein, a novel fluorescence biomimetic nanosensor was elaborately designed based on Zn(II)-doped cyclo-ditryptophan (c-WW)-type peptide nanodots and incorporating molecularly imprinted polymer (c-WW/Zn-PNs@MIP) for LC assays. C-WW/Zn-PNs obtained by self-assembly with aromatic cyclic dipeptides as basic building blocks and coordination with Zn(II) have low-toxicity, photostability, and bright yellow fluorescence emission, as a sensitive signal transducer. High-affinity imprinting sites further endow c-WW/Zn-PNs@MIP with superior selectivity and reusability. Based on prominent merits, c-WW/Zn-PNs@MIP demonstrated a good linear range (1-360 μg/L) with a low limit of detection (LOD) (0.93 μg/L), fast kinetics in target capture (10 min), and strong practicability in the capture of LC from real samples (spiked recovery of 81.0-107.7%). Additionally, to attain onsite profiling of LC, a visual platform was developed by integrating c-WW/Zn-PNs@MIP with a smartphone-assisted optical device. This smart evaluation system can capture concentration-dependent fluorescent images and accurately digitize them, enabling quantitative analysis of LC. This study developed a fluorescent c-WW/Zn-PNs@MIP-based smart evaluation system as a novel platform for LC monitoring applications, which not only has enormous economic value but also great environmental health significance.
Collapse
|
22
|
Yuan XY, Meng C, Liu H, Sun B. Magnetically driven nanorobots based on peptides nanodots with tunable photoluminescence for rapid scavenging reactive α-dicarbonyl species and effective blocking of advanced glycation end products. Food Chem 2023; 422:136252. [PMID: 37146353 DOI: 10.1016/j.foodchem.2023.136252] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 04/02/2023] [Accepted: 04/25/2023] [Indexed: 05/07/2023]
Abstract
The present work constructed magnetically driven nanorobots by conjugating the photoluminescent β-alanine-histidine (β-AH) nanodots to superparamagnetic nanoparticles (SPNPs) for simultaneously sensitive determination and fast trapping RDS in food processing, achieving efficient regulation of advanced glycation end products (AGEs) risk. Bio-derivative β-AH nanodots with orderly self-assembly nanostructure and tunable photoluminescent properties served as both biorecognition elements to effectively bind and scavenge the reactive α-dicarbonyl species (RDS), as well as the indicator with sensitive fluorescence response in the food matrix. The magnetically driven nanorobots with excellent biosafety of endogenous dipeptides displayed a high binding capacity of 80.12 mg g-1 with ultrafast equilibrium time. Furthermore, the magnetically driven nanorobots achieved rapid removal of the RDS with the manipulation of the external magnetic field, which enabled intercepting AGEs generation without byproducts residual as well as ease-of-operation. This work provided a promising strategy with biosafety and versatility for both accurate determination and efficient removal of hazards.
Collapse
Affiliation(s)
- Xin-Yue Yuan
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, School of Food and Health, Beijing Technology and Business University (BTBU), Beijing 100048, China
| | - Chen Meng
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, School of Food and Health, Beijing Technology and Business University (BTBU), Beijing 100048, China
| | - Huilin Liu
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, School of Food and Health, Beijing Technology and Business University (BTBU), Beijing 100048, China.
| | - Baoguo Sun
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, School of Food and Health, Beijing Technology and Business University (BTBU), Beijing 100048, China
| |
Collapse
|
23
|
Wang Y, Geng Q, Zhang Y, Adler-Abramovich L, Fan X, Mei D, Gazit E, Tao K. Fmoc-diphenylalanine gelating nanoarchitectonics: A simplistic peptide self-assembly to meet complex applications. J Colloid Interface Sci 2023; 636:113-133. [PMID: 36623365 DOI: 10.1016/j.jcis.2022.12.166] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/19/2022] [Accepted: 12/30/2022] [Indexed: 01/05/2023]
Abstract
9-fluorenylmethoxycarbonyl-diphenylalanine (Fmoc-FF), has been has been extensively explored due to its ultrafast self-assembly kinetics, inherent biocompatibility, tunable physicochemical properties, and especially, the capability of forming self-sustained gels under physiological conditions. Consequently, various methodologies to develop Fmoc-FF gels and their corresponding applications in biomedical and industrial fields have been extensively studied. Herein, we systemically summarize the mechanisms underlying Fmoc-FF self-assembly, discuss the preparation methodologies of Fmoc-FF hydrogels, and then deliberate the properties as well as the diverse applications of Fmoc-FF self-assemblies. Finally, the contemporary shortcomings which limit the development of Fmoc-FF self-assembly are raised and the alternative solutions are proposed, along with future research perspectives.
Collapse
Affiliation(s)
- Yunxiao Wang
- State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou 310027, China; Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311200, China; Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, Hangzhou 311200, China
| | - Qiang Geng
- State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou 310027, China; Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311200, China
| | - Yan Zhang
- Centre for Bioengineering and Biotechnology, College of Chemical Engineering, China University of Petroleum (East China), 66 Changjiang West Road, Qingdao 266580, China
| | - Lihi Adler-Abramovich
- Department of Oral Biology, The Goldschleger School of Dental Medicine, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel; The Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv 6997801, Israel; Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, Hangzhou 311200, China.
| | - Xinyuan Fan
- State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou 310027, China; Key Laboratory of Advanced Manufacturing Technology of Zhejiang Province, School of Mechanical Engineering, Zhejiang University, Hangzhou 310027, China; Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, Hangzhou 311200, China
| | - Deqing Mei
- State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou 310027, China; Key Laboratory of Advanced Manufacturing Technology of Zhejiang Province, School of Mechanical Engineering, Zhejiang University, Hangzhou 310027, China
| | - Ehud Gazit
- The Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, 6997801 Tel Aviv, Israel; Department of Materials Science and Engineering, Iby and Aladar Fleischman, Tel Aviv University, 6997801 Tel Aviv, Israel; Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, Hangzhou 311200, China.
| | - Kai Tao
- State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou 310027, China; Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311200, China; Key Laboratory of Advanced Manufacturing Technology of Zhejiang Province, School of Mechanical Engineering, Zhejiang University, Hangzhou 310027, China; Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, Hangzhou 311200, China.
| |
Collapse
|
24
|
Yuan XY, He J, Su H, Liu H, Sun B. Magnetically Controlled Nanorobots Based on Red Emissive Peptide Dots and Artificial Antibodies for Specific Recognition and Smart Scavenging of Nε-(Carboxymethyl)lysine in Dairy Products. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:4970-4981. [PMID: 36897289 DOI: 10.1021/acs.jafc.2c08777] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Food-borne advanced glycation end products (AGEs) are highly related to various irreversible diseases, and Nε-(carboxymethyl)lysine (CML) is the typical hazardous AGE. The development of feasible strategies to monitor and reduce CML exposure has become desirable to address the problems. In this work, we proposed magnetically controlled nanorobots by integrating an optosensing platform with specific recognition and binding capability, realizing specific anchoring and accurate determination as well as efficient scavenging of CML in dairy products. The artificial antibodies offered CML imprinted cavities for highly selective absorption, and the optosensing strategy was designed based on electron transfer from red emissive self-assembling peptide dots (r-SAPDs) to CML, which was responsible for the identity, response, and loading process. The r-SAPDs overcame the interference from autofluorescence, and the limit of detection was 0.29 μg L-1, which bestowed accuracy and reliability for in situ monitoring. The selective binding process was accomplished within 20 min with an adsorption capacity of 23.2 mg g-1. Through an external magnetic field, CML-loaded nanorobots were oriented, moved, and separated from the matrix, which enabled their scavenging effects and reusability. The fast stimuli-responsive performance and recyclability of the nanorobots provided a versatility strategy for effective detection and control of hazards in food.
Collapse
Affiliation(s)
- Xin-Yue Yuan
- School of Food and Health, Beijing Technology & Business University (BTBU), Beijing 100048, China
| | - Jingbo He
- School of Food and Health, Beijing Technology & Business University (BTBU), Beijing 100048, China
| | - Hongfei Su
- School of Food and Health, Beijing Technology & Business University (BTBU), Beijing 100048, China
| | - Huilin Liu
- School of Food and Health, Beijing Technology & Business University (BTBU), Beijing 100048, China
| | - Baoguo Sun
- School of Food and Health, Beijing Technology & Business University (BTBU), Beijing 100048, China
| |
Collapse
|
25
|
Santos D, Baptista RMF, Handa A, Almeida B, Rodrigues PV, Torres AR, Machado A, Belsley M, de Matos Gomes E. Bioinspired Cyclic Dipeptide Functionalized Nanofibers for Thermal Sensing and Energy Harvesting. MATERIALS (BASEL, SWITZERLAND) 2023; 16:2477. [PMID: 36984357 PMCID: PMC10055687 DOI: 10.3390/ma16062477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 03/09/2023] [Accepted: 03/17/2023] [Indexed: 06/18/2023]
Abstract
Nanostructured dipeptide self-assemblies exhibiting quantum confinement are of great interest due to their potential applications in the field of materials science as optoelectronic materials for energy harvesting devices. Cyclic dipeptides are an emerging outstanding group of ring-shaped dipeptides, which, because of multiple interactions, self-assemble in supramolecular structures with different morphologies showing quantum confinement and photoluminescence. Chiral cyclic dipeptides may also display piezoelectricity and pyroelectricity properties with potential applications in new sources of nano energy. Among those, aromatic cyclo-dipeptides containing the amino acid tryptophan are wide-band gap semiconductors displaying the high mechanical rigidity, photoluminescence and piezoelectric properties to be used in power generation. In this work, we report the fabrication of hybrid systems based on chiral cyclo-dipeptide L-Tryptophan-L-Tryptophan incorporated into biopolymer electrospun fibers. The micro/nanofibers contain self-assembled nano-spheres embedded into the polymer matrix, are wide-band gap semiconductors with 4.0 eV band gap energy, and display blue photoluminescence as well as relevant piezoelectric and pyroelectric properties with coefficients as high as 57 CN-1 and 35×10-6 Cm-2K-1, respectively. Therefore, the fabricated hybrid mats are promising systems for future thermal sensing and energy harvesting applications.
Collapse
Affiliation(s)
- Daniela Santos
- Laboratory for materials and Emergent Technologies (LAPMET), Centre of Physics of Minho and Porto Universities (CF-UM-UP), University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Rosa M. F. Baptista
- Laboratory for materials and Emergent Technologies (LAPMET), Centre of Physics of Minho and Porto Universities (CF-UM-UP), University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Adelino Handa
- Laboratory for materials and Emergent Technologies (LAPMET), Centre of Physics of Minho and Porto Universities (CF-UM-UP), University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Bernardo Almeida
- Laboratory for materials and Emergent Technologies (LAPMET), Centre of Physics of Minho and Porto Universities (CF-UM-UP), University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Pedro V. Rodrigues
- Institute for Polymers and Composites, University of Minho, Campus de Azurém, 4800-058 Guimaraes, Portugal
| | - Ana R. Torres
- Institute for Polymers and Composites, University of Minho, Campus de Azurém, 4800-058 Guimaraes, Portugal
| | - Ana Machado
- Institute for Polymers and Composites, University of Minho, Campus de Azurém, 4800-058 Guimaraes, Portugal
| | - Michael Belsley
- Laboratory for materials and Emergent Technologies (LAPMET), Centre of Physics of Minho and Porto Universities (CF-UM-UP), University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Etelvina de Matos Gomes
- Laboratory for materials and Emergent Technologies (LAPMET), Centre of Physics of Minho and Porto Universities (CF-UM-UP), University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| |
Collapse
|
26
|
Kong J, Zhao S, Han X, Li W, Zhang J, Wang Y, Shen X, Xia Y, Li Z. Quantitative Ratiometric Biosensors Based on Fluorescent Ferrocene-Modified Histidine Dipeptide Nanoassemblies. Anal Chem 2023; 95:5053-5060. [PMID: 36892972 DOI: 10.1021/acs.analchem.2c05609] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/10/2023]
Abstract
Fluorescent proteins (FPs) provide a ratiometric readout for quantitative assessment of the destination of internalized biomolecules. FP-inspired peptide nanostructures that can compete with FPs in their capacity are the most preferred building blocks for the synthesis of fluorescent soft matter. However, realizing a ratiometric emission from a single peptide fluorophore remains exclusive since multicolor emission is a rare property in peptide nanostructures. Here, we describe a bioinspired peptidyl platform for ratiometric intracellular quantitation by employing a single ferrocene-modified histidine dipeptide. The intensiometric ratio of green to blue fluorescence correlates linearly with the concentration of the peptide by three orders of magnitude. The ratiometric fluorescence of the peptide is an assembly-induced emission originating from hydrogen bonds and aromatic interactions. Additionally, modular design enables ferrocene-modified histidine dipeptides to use as a general platform for the construction of intricate peptides that retain the ratiometric fluorescent properties. The ratiometric peptide technique promises flexibility in the design of a wide spectrum of stoichiometric biosensors for quantitatively understanding the trafficking and subcellular fate of biomolecules.
Collapse
Affiliation(s)
- Jia Kong
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, P. R. China
| | - Shixuan Zhao
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, P. R. China
| | - Xue Han
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, P. R. China
| | - Wenxin Li
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, P. R. China
| | - Jiaxing Zhang
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China
| | - Yuefei Wang
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China
| | - Xihui Shen
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, P. R. China
| | - Yinqiang Xia
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, P. R. China
| | - Zhonghong Li
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, P. R. China
| |
Collapse
|
27
|
Kumar V, Ozguney B, Vlachou A, Chen Y, Gazit E, Tamamis P. Peptide Self-Assembled Nanocarriers for Cancer Drug Delivery. J Phys Chem B 2023; 127:1857-1871. [PMID: 36812392 PMCID: PMC10848270 DOI: 10.1021/acs.jpcb.2c06751] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 12/24/2022] [Indexed: 02/24/2023]
Abstract
The design of novel cancer drug nanocarriers is critical in the framework of cancer therapeutics. Nanomaterials are gaining increased interest as cancer drug delivery systems. Self-assembling peptides constitute an emerging novel class of highly attractive nanomaterials with highly promising applications in drug delivery, as they can be used to facilitate drug release and/or stability while reducing side effects. Here, we provide a perspective on peptide self-assembled nanocarriers for cancer drug delivery and highlight the aspects of metal coordination, structure stabilization, and cyclization, as well as minimalism. We review particular challenges in nanomedicine design criteria and, finally, provide future perspectives on addressing a portion of the challenges via self-assembling peptide systems. We consider that the intrinsic advantages of such systems, along with the increasing progress in computational and experimental approaches for their study and design, could possibly lead to novel classes of single or multicomponent systems incorporating such materials for cancer drug delivery.
Collapse
Affiliation(s)
- Vijay
Bhooshan Kumar
- The
Shmunis School of Biomedicine and Cancer Research, George S. Wise
Faculty of Life Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Busra Ozguney
- Artie
McFerrin Department of Chemical Engineering, Texas A&M University, College Station, Texas 77843-3122, United States
| | - Anastasia Vlachou
- Artie
McFerrin Department of Chemical Engineering, Texas A&M University, College Station, Texas 77843-3122, United States
| | - Yu Chen
- The
Shmunis School of Biomedicine and Cancer Research, George S. Wise
Faculty of Life Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Ehud Gazit
- The
Shmunis School of Biomedicine and Cancer Research, George S. Wise
Faculty of Life Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
- Department
of Materials Science and Engineering, Iby and Aladar Fleischman Faculty
of Engineering, Tel Aviv University, Tel Aviv 6997801, Israel
- Sagol
School of Neuroscience, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Phanourios Tamamis
- Artie
McFerrin Department of Chemical Engineering, Texas A&M University, College Station, Texas 77843-3122, United States
- Department
of Materials Science and Engineering, Texas
A&M University, College
Station, Texas 77843-3003, United States
| |
Collapse
|
28
|
Han A, Zhang L, Zhang M, Liu C, Wu R, Wei Y, Dan R, Chen X, Hu E, Zhang Y, Tong Y, Liu L. Amyloid-Gold Nanoparticle Hybrids for Biocompatible Memristive Devices. MATERIALS (BASEL, SWITZERLAND) 2023; 16:1884. [PMID: 36902996 PMCID: PMC10004345 DOI: 10.3390/ma16051884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 02/18/2023] [Accepted: 02/21/2023] [Indexed: 06/18/2023]
Abstract
Biomolecular materials offer tremendous potential for the development of memristive devices due to their low cost of production, environmental friendliness, and, most notably, biocompatibility. Herein, biocompatible memristive devices based on amyloid-gold nanoparticle hybrids have been investigated. These memristors demonstrate excellent electrical performance, featuring an ultrahigh Roff/Ron ratio (>107), a low switching voltage (<0.8 V), and reliable reproducibility. Additionally, the reversible transition from threshold switching to resistive switching mode was achieved in this work. The arrangement of peptides in amyloid fibrils endows the surface polarity and phenylalanine packing, which provides channels for the migration of Ag ions in the memristors. By modulating voltage pulse signals, the study successfully imitates the synaptic behavior of excitatory postsynaptic current (EPSC), paired-pulse facilitation (PPF), and the transition from short-term plasticity (STP) to long-term plasticity (LTP). More interestingly, Boolean logic standard cells were designed and simulated using the memristive devices. The fundamental and experimental results of this study thus offer insights into the utilization of biomolecular materials for advanced memristive devices.
Collapse
Affiliation(s)
- Aoze Han
- College of Integrated Circuit Science and Engineering, Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| | - Liwei Zhang
- Institute for Advanced Materials, Jiangsu University, Zhenjiang 212013, China
| | - Miaocheng Zhang
- College of Integrated Circuit Science and Engineering, Nanjing University of Posts and Telecommunications, Nanjing 210023, China
- College of Electronic and Optical Engineering & College of Flexible Electronics (Future Technology), Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| | - Cheng Liu
- College of Electronic and Optical Engineering & College of Flexible Electronics (Future Technology), Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| | - Rongrong Wu
- Institute for Advanced Materials, Jiangsu University, Zhenjiang 212013, China
| | - Yixin Wei
- College of Integrated Circuit Science and Engineering, Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| | - Ronghui Dan
- College of Integrated Circuit Science and Engineering, Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| | - Xingyu Chen
- College of Integrated Circuit Science and Engineering, Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| | - Ertao Hu
- College of Electronic and Optical Engineering & College of Flexible Electronics (Future Technology), Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| | - Yerong Zhang
- College of Electronic and Optical Engineering & College of Flexible Electronics (Future Technology), Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| | - Yi Tong
- College of Integrated Circuit Science and Engineering, Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| | - Lei Liu
- Institute for Advanced Materials, Jiangsu University, Zhenjiang 212013, China
| |
Collapse
|
29
|
Zhu X, Chuai Q, Zhang D, Liu H, Sun B. A Robust Ratiometric Fluorescent Sensor Based on Covalent Assembly of Dipeptides and Biomolecules for the High-Sensitive and Optosmart Detection of Pyrethroids. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:3040-3049. [PMID: 36716129 DOI: 10.1021/acs.jafc.2c07397] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
In this study, two ultrashort dipeptides, diphenylalanine (FF) or C-terminal amidated diphenylalanine (DPA), were covalently self-assembled with genipin to obtain two well-defined supramolecular peptide nanoparticles for the detection of pyrethroids. DPA-genipin nanoparticles (PNPs) demonstrated excellent dual-emission fluorescence characteristics, tunable particle size, and robust photostability. Parallel to this, PNPs showed a ratiometric fluorescence response to λ-cyhalothrin (LC) with a distinct green-to-red color transition. The satisfactory self-calibration capability of the ratiometric system enabled PNPs to respond sensitively to LC in a wide range (5-800 μg/L) with a lower limit of detection of 0.034 μg/L. The introduction of a smartphone application made it easy to develop an intelligent evaluation platform based on PNPs, which had been proven to be applicable for on-site visualization of LC in agricultural products. The platform proposed here may be a new application of peptide self-assembly in sensing, with both important food safety implications and great economic value.
Collapse
Affiliation(s)
- Xuecheng Zhu
- School of Food and Health, Beijing Technology and Business University (BTBU), No. 11 Fucheng Road, Beijing100048, People's Republic of China
| | - Qingxin Chuai
- School of Food and Health, Beijing Technology and Business University (BTBU), No. 11 Fucheng Road, Beijing100048, People's Republic of China
| | - Dianwei Zhang
- School of Food and Health, Beijing Technology and Business University (BTBU), No. 11 Fucheng Road, Beijing100048, People's Republic of China
| | - Huilin Liu
- School of Food and Health, Beijing Technology and Business University (BTBU), No. 11 Fucheng Road, Beijing100048, People's Republic of China
| | - Baoguo Sun
- School of Food and Health, Beijing Technology and Business University (BTBU), No. 11 Fucheng Road, Beijing100048, People's Republic of China
| |
Collapse
|
30
|
Huo Y, Hu J, Yin Y, Liu P, Cai K, Ji W. Self-Assembling Peptide-Based Functional Biomaterials. Chembiochem 2023; 24:e202200582. [PMID: 36346708 DOI: 10.1002/cbic.202200582] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 11/08/2022] [Indexed: 11/11/2022]
Abstract
Peptides can self-assemble into various hierarchical nanostructures through noncovalent interactions and form functional materials exhibiting excellent chemical and physical properties, which have broad applications in bio-/nanotechnology. The self-assembly mechanism, self-assembly morphology of peptide supramolecular architecture and their various applications, have been widely explored which have the merit of biocompatibility, easy preparation, and controllable functionality. Herein, we introduce the latest research progress of self-assembling peptide-based nanomaterials and review their applications in biomedicine and optoelectronics, including tissue engineering, anticancer therapy, biomimetic catalysis, energy harvesting. We believe that this review will inspire the rational design and development of novel peptide-based functional bio-inspired materials in the future.
Collapse
Affiliation(s)
- Yehong Huo
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, P. R. China
| | - Jian Hu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, P. R. China
| | - Yuanyuan Yin
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Stomatological Hospital of Chongqing Medical University, Chongqing, 401147, P. R. China
| | - Peng Liu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, P. R. China
| | - Kaiyong Cai
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, P. R. China
| | - Wei Ji
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, P. R. China
| |
Collapse
|
31
|
Tian Y, Li J, Wang A, Shang Z, Jian H, Li Q, Bai S, Yan X. Long-range ordered amino acid assemblies exhibit effective optical-to-electrical transduction and stable photoluminescence. Acta Biomater 2022; 154:135-144. [PMID: 36216126 DOI: 10.1016/j.actbio.2022.09.073] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 09/07/2022] [Accepted: 09/29/2022] [Indexed: 12/14/2022]
Abstract
Bio-endogenous peptide molecules are ideal components for fabrication of biocompatible and environmentally friendly semiconductors materials. However, to date, their applications have been limited due to the difficulty in obtaining stable, high-performance devices. Herein, simple amino acid derivatives fluorenylmethoxycarbonyl-leucine (Fmoc-L) and fluorenylmethoxycarbonyl-tryptophan (Fmoc-W) are utilized to form long-range ordered supramolecular nanostructures by tight aromatic stacking and extensive hydrogen bonding with mechanical, electrical and optical properties. For the first time, without addition of any photosensitizers, pure Fmoc-L microbelts and Fmoc-W microwires exhibit Young's modulus up to 28.79 and 26.96 GPa, and unprecedently high values of photocurrent responses up to 2.2 and 2.3 μA/cm2, respectively. Meanwhile, Fmoc-W microwires with stable blue fluorescent emission under continuous excitation are successfully used as LED phosphors. Mechanism analysis shows that these two amino acids derivatives firstly formed dimers to reduce the bandgap, then further assemble into bioinspired semiconductor materials using the dimers as the building blocks. In this process, aromatic residues of amino acids are more conducive to the formation of semiconducting characteristics than fluorenyl groups. STATEMENT OF SIGNIFICANCE: Long-range ordered amino acid derivative assemblies with mechanical, electrical and optical properties were fabricated by a green and facile biomimetic strategy. These amino acid assemblies have Young's modulus comparable to that of concrete and exhibit typical semiconducting characteristics. Even without the addition of any photosensitizer, pure amino acid assemblies can still produce a strong photocurrent response and an unusually stable photoluminescence. The results suggest that amino acid structures with hydrophilic C-terminal and aromatic residues are more conducive to the formation of semiconducting characteristics. This work unlocks the potential for amino acid molecules to self-assemble into high-performance bioinspired semiconductors, providing a reference for customized development of biocompatible and environmentally friendly semiconductor materials through rational molecular design.
Collapse
Affiliation(s)
- Yajie Tian
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Jieling Li
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China.
| | - Anhe Wang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Zhixin Shang
- College of Textile and Clothing, Dezhou University, Dezhou 253023, China
| | - Honglei Jian
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Qi Li
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Shuo Bai
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China.
| | - Xuehai Yan
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China.
| |
Collapse
|
32
|
Tetrapeptide self-assembled multicolor fluorescent nanoparticles for bioimaging applications. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.107915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
33
|
Zhang J, Wang Y, Rodriguez BJ, Yang R, Yu B, Mei D, Li J, Tao K, Gazit E. Microfabrication of peptide self-assemblies: inspired by nature towards applications. Chem Soc Rev 2022; 51:6936-6947. [PMID: 35861374 DOI: 10.1039/d2cs00122e] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Peptide self-assemblies show intriguing and tunable physicochemical properties, and thus have been attracting increasing interest over the last two decades. However, the micro/nano-scale dimensions of the self-assemblies severely restrict their extensive applications. Inspired by nature, to genuinely realize the practical utilization of the bio-organic super-architectures, it is beneficial to further organize the peptide self-assemblies to integrate the properties of the individual supermolecules and fabricate higher-level organizations for smart functional devices. Therefore, cumulative studies have been reported on peptide microfabrication giving rise to diverse properties. This review summarizes the recent development of the microfabrication of peptide self-assemblies, discussing each methodology along with the diverse properties and practical applications of the engineered peptide large-scale, highly-ordered organizations. Finally, the current limitations of the state-of-the-art microfabrication strategies are critically assessed and alternative solutions are suggested.
Collapse
Affiliation(s)
- Jiahao Zhang
- State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou 310027, China. .,Future Science Research Institute, Hangzhou Global Scientific and Technological Innovation Centre, Hangzhou 311200, China
| | - Yancheng Wang
- State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou 310027, China. .,Key Laboratory of Advanced Manufacturing Technology of Zhejiang Province, School of Mechanical Engineering, Zhejiang University, Hangzhou 310027, China
| | - Brian J Rodriguez
- School of Physics and Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin D04 V1W8, Ireland
| | - Rusen Yang
- School of Advanced Materials and Nanotechnology, Xidian University, Xi'an 710126, China
| | - Bin Yu
- Future Science Research Institute, Hangzhou Global Scientific and Technological Innovation Centre, Hangzhou 311200, China
| | - Deqing Mei
- State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou 310027, China. .,Key Laboratory of Advanced Manufacturing Technology of Zhejiang Province, School of Mechanical Engineering, Zhejiang University, Hangzhou 310027, China
| | - Junbai Li
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Lab of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China. .,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Kai Tao
- State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou 310027, China. .,Future Science Research Institute, Hangzhou Global Scientific and Technological Innovation Centre, Hangzhou 311200, China.,Key Laboratory of Advanced Manufacturing Technology of Zhejiang Province, School of Mechanical Engineering, Zhejiang University, Hangzhou 310027, China
| | - Ehud Gazit
- School of Molecular Cell Biology and Biotechnology, George S. Wise Faculty of Life Sciences, Tel Aviv University, 6997801, Tel Aviv, Israel. .,School of Molecular Cell Biology and Biotechnology, George S. Wise Faculty of Life Sciences, Tel Aviv University, 6997801, Tel Aviv, Israel
| |
Collapse
|
34
|
Ozawa H, Miyazawa T, Burdeos GC, Miyazawa T. Biological Functions of Antioxidant Dipeptides. J Nutr Sci Vitaminol (Tokyo) 2022; 68:162-171. [PMID: 35768247 DOI: 10.3177/jnsv.68.162] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In the history of modern nutritional science, understanding antioxidants is one of the major topics. In many cases, food-derived antioxidants have π conjugate or thiol group in their molecular structures because π conjugate stabilizes radical by its delocalization and two thiol groups form a disulfide bond in its antioxidative process. In recent years, antioxidant peptides have received much attention because for their ability to scavenge free radicals, inhibition of lipid peroxidation, chelation of transition metal ions, as well as their additional nutritional value. Among them, dipeptides are attracting much interest as post-amino acids, which have residues in common with amino acids, but also have different physiological properties and functions from those of amino acids. Especially, dipeptides containing moieties of several amino acid (tryptophan, tyrosine, histidine, cysteine, and methionine) possess potent antioxidant activity. This review summarizes previous details of structural property, radical scavenging activity, and biological activity of antioxidant dipeptide. Hopefully, this review will help provide a new insight into the study of the biological functions of antioxidant dipeptides.
Collapse
Affiliation(s)
- Hitoshi Ozawa
- New Industry Creation Hatchery Center (NICHe), Tohoku University
| | - Taiki Miyazawa
- New Industry Creation Hatchery Center (NICHe), Tohoku University
| | | | - Teruo Miyazawa
- New Industry Creation Hatchery Center (NICHe), Tohoku University
| |
Collapse
|
35
|
Kumar S. Meet the Editorial Board Member. Curr Pharm Biotechnol 2022. [DOI: 10.2174/138920102309220331155203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
36
|
Ren Z, Xie L, Okyere SK, Wen J, Ran Y, Nong X, Hu Y. Antibacterial Activity of Two Metabolites Isolated From Endophytic Bacteria Bacillus velezensis Ea73 in Ageratina adenophora. Front Microbiol 2022; 13:860009. [PMID: 35602058 PMCID: PMC9121010 DOI: 10.3389/fmicb.2022.860009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Accepted: 04/06/2022] [Indexed: 12/02/2022] Open
Abstract
Ageratina adenophora, as an invasive and poisonous weed, seriously affects the ecological diversity and development of animal husbandry. Weed management practitioners have reported that it is very difficult to control A. adenophora invasion. In recent years, many researchers have focused on harnessing the endophytes of the plant as a useful resource for the development of pharmacological products for human and animal use. This study was performed to identify endophytes with antibacterial properties from A. adenophora. Agar well diffusion method and 16S rRNA gene sequencing technique were used to screen and identify endophytes with antibacterial activity. The response surface methodology and prep- high-performance liquid chromatography were used to determine the optimizing fermentation conditions and isolate secondary metabolites, respectively. UV-visible spectroscopy, infrared spectroscopy, nuclear magnetic resonance, and high-resolution mass spectrum were used to determine the structures of the isolated metabolites. From the experiment, we isolated a strain of Bacillus velezensis Ea73 (GenBank no. MZ540895) with broad-spectrum antibacterial activity. We also observed that the zone of inhibition of B. velezensis Ea73 against Staphylococcus aureus was the largest when fermentation broth contained 6.55 g/L yeast extract, 6.61 g/L peptone, 20.00 g/L NaCl at broth conditions of 7.95 pH, 51.04 h harvest time, and a temperature of 27.97°C. Two antibacterial peptides, Cyclo (L-Pro-L-Val) and Cyclo (L-Leu-L-Pro), were successfully extracted from B. velezensis Ea73. These two peptides exhibited mild inhibition against S. aureus and Escherichia coli. Therefore, we isolated B. velezensis Ea73 with antibacterial activity from A. adenophora. Hence, its metabolites, Cyclo (L-Pro-L-Val) and Cyclo (L-Leu-L-Pro), could further be developed as a substitute for human and animal antibiotics.
Collapse
Affiliation(s)
- Zhihua Ren
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Yaan, China
| | - Lei Xie
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Yaan, China
| | - Samuel Kumi Okyere
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Yaan, China
| | - Juan Wen
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Yaan, China
| | - Yinan Ran
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Yaan, China
| | - Xiang Nong
- College of Life Science, Leshan Normal University, Leshan, China
| | - Yanchun Hu
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Yaan, China
- *Correspondence: Yanchun Hu
| |
Collapse
|
37
|
Li T, Lu XM, Zhang MR, Hu K, Li Z. Peptide-based nanomaterials: Self-assembly, properties and applications. Bioact Mater 2022; 11:268-282. [PMID: 34977431 PMCID: PMC8668426 DOI: 10.1016/j.bioactmat.2021.09.029] [Citation(s) in RCA: 136] [Impact Index Per Article: 45.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 09/21/2021] [Accepted: 09/24/2021] [Indexed: 11/24/2022] Open
Abstract
Peptide-based materials that have diverse structures and functionalities are an important type of biomaterials. In former times, peptide-based nanomaterials with excellent stability were constructed through self-assembly. Compared with individual peptides, peptide-based self-assembly nanomaterials that form well-ordered superstructures possess many advantages such as good thermo- and mechanical stability, semiconductivity, piezoelectricity and optical properties. Moreover, due to their excellent biocompatibility and biological activity, peptide-based self-assembly nanomaterials have been vastly used in different fields. In this review, we provide the advances of peptide-based self-assembly nanostructures, focusing on the driving forces that dominate peptide self-assembly and assembly mechanisms of peptides. After that, we outline the synthesis and properties of peptide-based nanomaterials, followed by the applications of functional peptide nanomaterials. Finally, we provide perspectives on the challenges and future of peptide-based nanomaterials.
Collapse
Affiliation(s)
- Tong Li
- College of Chemistry and Chemical Engineering, Center of Nanoenergy Research, Guangxi University, Nanning, 530004, China
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, China
| | - Xian-Mao Lu
- College of Chemistry and Chemical Engineering, Center of Nanoenergy Research, Guangxi University, Nanning, 530004, China
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 101400, China
| | - Ming-Rong Zhang
- Department of Advanced Nuclear Medicine Sciences, The National Institute of Radiological Sciences, The National Institutes for Quantum and Radiological Science and Technology, Chiba, 263-8555, Japan
| | - Kuan Hu
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, China
- Department of Advanced Nuclear Medicine Sciences, The National Institute of Radiological Sciences, The National Institutes for Quantum and Radiological Science and Technology, Chiba, 263-8555, Japan
| | - Zhou Li
- College of Chemistry and Chemical Engineering, Center of Nanoenergy Research, Guangxi University, Nanning, 530004, China
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 101400, China
| |
Collapse
|
38
|
Zhu X, Zhang Y, Han L, Liu H, Sun B. Quantum confined peptide assemblies in a visual photoluminescent hydrogel platform and smartphone-assisted sample-to-answer analyzer for detecting trace pyrethroids. Biosens Bioelectron 2022; 210:114265. [PMID: 35447398 DOI: 10.1016/j.bios.2022.114265] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 03/29/2022] [Accepted: 04/06/2022] [Indexed: 11/24/2022]
Abstract
Quantum confinement (QC) effect-related materials have been extensively studied as photoluminescent probes for agricultural, food, and environmental analyses, with the advantage of simple-to-synthesize, reusable, nontoxic, and environmentally friendly. Herein, we propose a strategy to dimerize aromatic cyclo-dipeptides, namely cyclo-ditryptophan (cyclo-WW), cyclo-diphenylalanine (cyclo-FF), and cyclo-dihistidine (cyclo-HH), into quantum dots as basic building blocks for the self-assembly of QC supramolecular structures with excellent photoluminescent properties in aqueous solutions. In particular, through coordination with Zn(II), the bandgap can be tuned to change the photo-absorption and luminescence properties of the cyclo-dipeptide-based QC assemblies. The fluorescence quantum yield of cyclo-WW+Zn(II) was 16.9%. Such a good luminous effect makes it applicable to the detection of LC. A good linear relationship between fluorescence response of cyclo-WW+Zn(II) and LC concentration was observed in the range of 5-350 μg/L, with a low limit of detection of 2.9 μg/L and good spiked recovery of 90.72%-104.3%. A visual platform using the cyclo-WW+Zn(II)-based photoluminescent hydrogel and smartphone-assisted sample-to-answer analyzer were developed, which showed good responsiveness to LC. The developed fluorescence method, validated using traditional HPLC, is a biocompatible alternative for the rapid detection of trace pollutants with the advantages of portability and simple operation.
Collapse
Affiliation(s)
- Xuecheng Zhu
- Beijing Technology and Business University, 11 Fucheng Road, Beijing, 100048, China
| | - Ying Zhang
- Beijing Technology and Business University, 11 Fucheng Road, Beijing, 100048, China
| | - Luxuan Han
- Beijing Technology and Business University, 11 Fucheng Road, Beijing, 100048, China
| | - Huilin Liu
- Beijing Technology and Business University, 11 Fucheng Road, Beijing, 100048, China.
| | - Baoguo Sun
- Beijing Technology and Business University, 11 Fucheng Road, Beijing, 100048, China
| |
Collapse
|
39
|
Modulating vectored non-covalent interactions for layered assembly with engineerable properties. Biodes Manuf 2022. [DOI: 10.1007/s42242-022-00186-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
40
|
Jin Y, Yan R, Wang S, Wang X, Zhang X, Tang Y. Dipeptide nanoparticle and aptamer-based hybrid fluorescence platform for enrofloxacin determination. Mikrochim Acta 2022; 189:96. [PMID: 35147788 DOI: 10.1007/s00604-022-05182-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 01/10/2022] [Indexed: 11/25/2022]
Abstract
A novel fluorescence platform was fabricated for enrofloxacin determination by using cDNA-modified dipeptide fluorescence nanoparticles (FDNP-cDNA) and aptamer-modified magnetic Fe3O4 nanoparticles (Fe3O4-Apt). The FDNP were prepared via tryptophan-phenylalanine self-assembling. When magnetic Fe3O4-Apt incubated with standard solution or sample extracts, the target enrofloxacin was selectively captured by the aptamer on the surface of the Fe3O4 nanoparticles. After removing interference by washing with phosphate-buffered saline, the FDNP-cDNA was added, which can bind to the aptamer on the surface of the Fe3O4 nanoparticles not occupied by the analyte. The higher the concentration of the target enrofloxacin in the standard or sample solution is, the less the FDNP-cDNA can be bound with the Fe3O4 nanoparticles, and the more the FDNP-cDNA can be observed in the supernatant. Fluorescence intensity (Ex/Em = 310/380 nm) increased linearly in the enrofloxacin concentration range 0.70 to 10.0 ng/mL with a detection limit of 0.26 ng/mL (S/N = 3). Good recoveries (88.17-99.30%) were obtained in spiked lake water, chicken, and eel samples with relative standard deviation of 2.7-6.2% (n = 3).
Collapse
Affiliation(s)
- Yuting Jin
- College of Food Science and Technology, Hebei Agricultural University, Baoding, 071001, China.,College of Food Science & Project Engineering, Bohai University, Jinzhou, 121013, China
| | - Rongfang Yan
- College of Food Science and Technology, Hebei Agricultural University, Baoding, 071001, China
| | - Shuo Wang
- College of Food Science and Technology, Hebei Agricultural University, Baoding, 071001, China.,Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin, 300071, People's Republic of China
| | - Xianghong Wang
- College of Food Science and Technology, Hebei Agricultural University, Baoding, 071001, China
| | - Xuemei Zhang
- College of Forestry, Hebei Agricultural University, Baoding, 071001, China
| | - Yiwei Tang
- College of Food Science and Technology, Hebei Agricultural University, Baoding, 071001, China.
| |
Collapse
|
41
|
Zhu X, Duan R, Chan SY, Han L, Liu H, Sun B. Structural and photoactive properties of self-assembled peptide-based nanostructures and their optical bioapplication in food analysis. J Adv Res 2022; 43:27-44. [PMID: 36585113 PMCID: PMC9811376 DOI: 10.1016/j.jare.2022.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 01/23/2022] [Accepted: 02/02/2022] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Food processing plays an important role in the modern industry because food quality and security directly affect human health, life safety, and social and economic development. Accurate, efficient, and sensitive detection technology is the basis for ensuring food quality and security. Optosensor-based technology with the advantage of fast and visual real-time detection can be used to detect pesticides, metal ions, antibiotics, and nutrients in food. As excellent optical centres, self-assembled peptide-based nanostructures possess attractive advantages, such as simple preparation methods, controllable morphology, tunable functionality, and inherent biocompatibility. AIM OF REVIEW Self-assembled peptide nanostructures with good fabrication yield, stability, dispersity in a complex sample matrix, biocompatibility, and environmental friendliness are ideal development goals in the future. Owing to its flexible and unique optical properties, some short peptide self-assemblies can possibly be used to achieve the purpose of rapid and sensitive detection of composition in food, agriculture, and the environment, expanding the understanding and application of peptide-based optics in analytical chemistry. KEY SCIENTIFIC CONCEPT OF REVIEW The self-assembly process of peptides is driven by noncovalent interactions, including hydrogen bonding, electrostatic interactions, hydrophobic interactions, and π-π stacking, which are the key factors for obtaining stable self-assembled peptide nanostructures with peptides serving as assembly units. Controllable morphology of self-assembled peptide nanostructures can be achieved through adjustment in the type, concentration, and pH of organic solvents and peptides. The highly ordered nanostructures formed by the self-assembly of peptides have been proven to be novel biological structures and can be used for the construction of optosensing platforms in biological or other systems. Optosensing platforms make use of signal changes, including optical signals and electrical signals caused by specific reactions between analytes and active substances, to determine the content or concentration of an analyte.
Collapse
Affiliation(s)
- Xuecheng Zhu
- Beijing Technology and Business University, 11 Fucheng Road, Beijing 100048, China
| | - Ruixue Duan
- Department of Chemistry, National University of Singapore, Singapore 117543, Singapore
| | - Siew Yin Chan
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research, 2 Fusionopolis Way, #08-03 Innovis, Singapore 138634, Singapore
| | - Luxuan Han
- Beijing Technology and Business University, 11 Fucheng Road, Beijing 100048, China
| | - Huilin Liu
- Beijing Technology and Business University, 11 Fucheng Road, Beijing 100048, China,Corresponding author.
| | - Baoguo Sun
- Beijing Technology and Business University, 11 Fucheng Road, Beijing 100048, China
| |
Collapse
|
42
|
Sun L. Meet the Editorial Board Member. Curr Pharm Biotechnol 2022. [DOI: 10.2174/138920102301211124143140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Leming Sun
- School of Life Sciences, Northwestern Polytechnical University, Xi’an-710072,China
| |
Collapse
|
43
|
Orr AA, Chen Y, Gazit E, Tamamis P. Computational and Experimental Protocols to Study Cyclo-dihistidine Self- and Co-assembly: Minimalistic Bio-assemblies with Enhanced Fluorescence and Drug Encapsulation Properties. Methods Mol Biol 2022; 2405:179-203. [PMID: 35298815 DOI: 10.1007/978-1-0716-1855-4_10] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Our published studies on the self- and co-assembly of cyclo-HH peptides demonstrated their capacity to coordinate with Zn(II), their enhanced photoluminescence and their ability to self-encapsulate epirubicin, a chemotherapy drug. Here, we provide a detailed description of computational and experimental methodology for the study of cyclo-HH self- and co-assembling mechanisms, photoluminescence, and drug encapsulation properties. We outline the experimental protocols, which involve fluorescence spectroscopy, transmission electron microscopy, and atomic force microscopy protocols, as well as the computational protocols, which involve structural and energetic analysis of the assembled nanostructures. We suggest that the computational and experimental methods presented here can be generalizable, and thus can be applied in the investigation of self- and co-assembly systems involving other short peptides, encapsulating compounds and binding to ions, beyond the particular ones presented here.
Collapse
Affiliation(s)
- Asuka A Orr
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, TX, USA
| | - Yu Chen
- Department of Molecular Microbiology and Biotechnology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Ehud Gazit
- Department of Molecular Microbiology and Biotechnology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Phanourios Tamamis
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, TX, USA.
- Department of Materials Science and Engineering, Texas A&M University, College Station, TX, USA.
| |
Collapse
|
44
|
Molteni E, Mattioli G, Alippi P, Avaldi L, Bolognesi P, Carlini L, Vismarra F, Wu Y, Varillas RB, Nisoli M, Singh M, Valadan M, Altucci C, Richter R, Sangalli D. A systematic study of the valence electronic structure of cyclo(Gly-Phe), cyclo(Trp-Tyr) and cyclo(Trp-Trp) dipeptides in the gas phase. Phys Chem Chem Phys 2021; 23:26793-26805. [PMID: 34816853 DOI: 10.1039/d1cp04050b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The electronic energy levels of cyclo(glycine-phenylalanine), cyclo(tryptophan-tyrosine) and cyclo(tryptophan-tryptophan) dipeptides are investigated with a joint experimental and theoretical approach. Experimentally, valence photoelectron spectra in the gas phase are measured using VUV radiation. Theoretically, we first obtain low-energy conformers through an automated conformer-rotamer ensemble sampling scheme based on tight-binding simulations. Then, different first principles computational schemes are considered to simulate the spectra: Hartree-Fock (HF), density functional theory (DFT) within the B3LYP approximation, the quasi-particle GW correction, and the quantum-chemistry CCSD method. Theory allows assignment of the main features of the spectra. A discussion on the role of electronic correlation is provided, by comparing computationally cheaper DFT scheme (and GW) results with the accurate CCSD method.
Collapse
Affiliation(s)
- Elena Molteni
- Istituto di Struttura della Materia-CNR (ISM-CNR), Area della Ricerca di Roma 1, Via Salaria km 29.300, CP 10, Monterotondo Scalo, Roma, Italy. .,Dipartimento di Fisica, Universita' degli Studi di Milano, via Celoria 16, I-20133 Milano, Italy
| | - Giuseppe Mattioli
- Istituto di Struttura della Materia-CNR (ISM-CNR), Area della Ricerca di Roma 1, Via Salaria km 29.300, CP 10, Monterotondo Scalo, Roma, Italy.
| | - Paola Alippi
- Istituto di Struttura della Materia-CNR (ISM-CNR), Area della Ricerca di Roma 1, Via Salaria km 29.300, CP 10, Monterotondo Scalo, Roma, Italy.
| | - Lorenzo Avaldi
- Istituto di Struttura della Materia-CNR (ISM-CNR), Area della Ricerca di Roma 1, Via Salaria km 29.300, CP 10, Monterotondo Scalo, Roma, Italy.
| | - Paola Bolognesi
- Istituto di Struttura della Materia-CNR (ISM-CNR), Area della Ricerca di Roma 1, Via Salaria km 29.300, CP 10, Monterotondo Scalo, Roma, Italy.
| | - Laura Carlini
- Istituto di Struttura della Materia-CNR (ISM-CNR), Area della Ricerca di Roma 1, Via Salaria km 29.300, CP 10, Monterotondo Scalo, Roma, Italy.
| | - Federico Vismarra
- Dipartimento di Fisica, Politecnico di Milano, Piazza Leonardo da Vinci, 32, Milano, Italy.,CNR-Istituto di Fotonica e Nanotecnologie, Piazza Leonardo da Vinci, 32, Milano, Italy
| | - Yingxuan Wu
- Dipartimento di Fisica, Politecnico di Milano, Piazza Leonardo da Vinci, 32, Milano, Italy.,CNR-Istituto di Fotonica e Nanotecnologie, Piazza Leonardo da Vinci, 32, Milano, Italy
| | | | - Mauro Nisoli
- Dipartimento di Fisica, Politecnico di Milano, Piazza Leonardo da Vinci, 32, Milano, Italy.,CNR-Istituto di Fotonica e Nanotecnologie, Piazza Leonardo da Vinci, 32, Milano, Italy
| | - Manjot Singh
- Dipartimento di Scienze Biomediche Avanzate, Universita' degli Studi di Napoli Federico II, via Pansini 5, I-80131, Napoli, Italy
| | - Mohammadhassan Valadan
- Dipartimento di Scienze Biomediche Avanzate, Universita' degli Studi di Napoli Federico II, via Pansini 5, I-80131, Napoli, Italy.,Istituto Nazionale Fisica Nucleare (INFN), Sezione di Napoli, Napoli, Italy
| | - Carlo Altucci
- Dipartimento di Scienze Biomediche Avanzate, Universita' degli Studi di Napoli Federico II, via Pansini 5, I-80131, Napoli, Italy.,Istituto Nazionale Fisica Nucleare (INFN), Sezione di Napoli, Napoli, Italy
| | - Robert Richter
- Sincrotrone Trieste, Area Science Park, Basovizza, Trieste, Italy
| | - Davide Sangalli
- Istituto di Struttura della Materia-CNR (ISM-CNR), Area della Ricerca di Roma 1, Via Salaria km 29.300, CP 10, Monterotondo Scalo, Roma, Italy. .,Dipartimento di Fisica, Universita' degli Studi di Milano, via Celoria 16, I-20133 Milano, Italy
| |
Collapse
|
45
|
Bagchi D, Maity A, De SK, Chakraborty A. Effect of Metal Ions on the Intrinsic Blue Fluorescence Property and Morphology of Aromatic Amino Acid Self-Assembly. J Phys Chem B 2021; 125:12436-12445. [PMID: 34734524 DOI: 10.1021/acs.jpcb.1c07392] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Metal ions are known to strongly bind with different proteins and peptides, resulting in alteration of their different physicochemical properties. In this work, we investigate the effect of metal ions of different nuclear charges and sizes on the intrinsic blue luminescence of the self-assembled structures formed by aromatic amino acids, namely, phenylalanine and tryptophan, using spectroscopic and imaging techniques. The study reveals that the intrinsic blue fluorescence of amino acid assemblies is influenced by metal ions and the pH of the medium. The metal ions with a higher charge to radius ratio promote clusterization which results in the enhancement of the intrinsic fluorescence, an effect known as "clusteroluminescence" of the amino acids aggregates. The imaging study reveals that metal ions with a higher charge to size ratio inhibit the large fibrillation of aromatic amino acids by promoting the formation of small nonfibrillar aggregates through increased hydrophobicity in the medium. The nanoaggregates are assumed to be responsible for the enhancement in the blue "clusteroluminescence".
Collapse
Affiliation(s)
- Debanjan Bagchi
- Indian Institute of Technology Indore, Discipline of Chemistry, Indore 453552, Madhya Pradesh, India
| | - Avijit Maity
- Indian Institute of Technology Indore, Discipline of Chemistry, Indore 453552, Madhya Pradesh, India
| | - Soumya Kanti De
- Indian Institute of Technology Indore, Discipline of Chemistry, Indore 453552, Madhya Pradesh, India
| | - Anjan Chakraborty
- Indian Institute of Technology Indore, Discipline of Chemistry, Indore 453552, Madhya Pradesh, India
| |
Collapse
|
46
|
Sheehan F, Sementa D, Jain A, Kumar M, Tayarani-Najjaran M, Kroiss D, Ulijn RV. Peptide-Based Supramolecular Systems Chemistry. Chem Rev 2021; 121:13869-13914. [PMID: 34519481 DOI: 10.1021/acs.chemrev.1c00089] [Citation(s) in RCA: 177] [Impact Index Per Article: 44.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Peptide-based supramolecular systems chemistry seeks to mimic the ability of life forms to use conserved sets of building blocks and chemical reactions to achieve a bewildering array of functions. Building on the design principles for short peptide-based nanomaterials with properties, such as self-assembly, recognition, catalysis, and actuation, are increasingly available. Peptide-based supramolecular systems chemistry is starting to address the far greater challenge of systems-level design to access complex functions that emerge when multiple reactions and interactions are coordinated and integrated. We discuss key features relevant to systems-level design, including regulating supramolecular order and disorder, development of active and adaptive systems by considering kinetic and thermodynamic design aspects and combinatorial dynamic covalent and noncovalent interactions. Finally, we discuss how structural and dynamic design concepts, including preorganization and induced fit, are critical to the ability to develop adaptive materials with adaptive and tunable photonic, electronic, and catalytic properties. Finally, we highlight examples where multiple features are combined, resulting in chemical systems and materials that display adaptive properties that cannot be achieved without this level of integration.
Collapse
Affiliation(s)
- Fahmeed Sheehan
- Advanced Science Research Center (ASRC) at the Graduate Center City University of New York 85 St. Nicholas Terrace New York, New York 10031, United States.,Department of Chemistry, Hunter College City University of New York 695 Park Avenue, New York, New York 10065, United States.,Ph.D. Program in Chemistry The Graduate Center of the City University of New York 365 fifth Avenue, New York, New York 10016, United States
| | - Deborah Sementa
- Advanced Science Research Center (ASRC) at the Graduate Center City University of New York 85 St. Nicholas Terrace New York, New York 10031, United States
| | - Ankit Jain
- Advanced Science Research Center (ASRC) at the Graduate Center City University of New York 85 St. Nicholas Terrace New York, New York 10031, United States
| | - Mohit Kumar
- Advanced Science Research Center (ASRC) at the Graduate Center City University of New York 85 St. Nicholas Terrace New York, New York 10031, United States.,Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Baldiri i Reixac 10-12, Barcelona 08028, Spain
| | - Mona Tayarani-Najjaran
- Advanced Science Research Center (ASRC) at the Graduate Center City University of New York 85 St. Nicholas Terrace New York, New York 10031, United States.,Department of Chemistry, Hunter College City University of New York 695 Park Avenue, New York, New York 10065, United States.,Ph.D. Program in Chemistry The Graduate Center of the City University of New York 365 fifth Avenue, New York, New York 10016, United States
| | - Daniela Kroiss
- Advanced Science Research Center (ASRC) at the Graduate Center City University of New York 85 St. Nicholas Terrace New York, New York 10031, United States.,Department of Chemistry, Hunter College City University of New York 695 Park Avenue, New York, New York 10065, United States.,Ph.D. Program in Biochemistry The Graduate Center of the City University of New York 365 5th Avenue, New York, New York 10016, United States
| | - Rein V Ulijn
- Advanced Science Research Center (ASRC) at the Graduate Center City University of New York 85 St. Nicholas Terrace New York, New York 10031, United States.,Department of Chemistry, Hunter College City University of New York 695 Park Avenue, New York, New York 10065, United States.,Ph.D. Program in Chemistry The Graduate Center of the City University of New York 365 fifth Avenue, New York, New York 10016, United States.,Ph.D. Program in Biochemistry The Graduate Center of the City University of New York 365 5th Avenue, New York, New York 10016, United States
| |
Collapse
|
47
|
Tian Y, Li J, Zhang X, Wang A, Jian H, Li Q, Bai S. Bioinspired self-assembled nanoparticles with stable fluorescent properties in wide visible light region. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.126962] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
48
|
Li Q, Zhang J, Wang Y, Zhang G, Qi W, You S, Su R, He Z. Self-Assembly of Peptide Hierarchical Helical Arrays with Sequence-Encoded Circularly Polarized Luminescence. NANO LETTERS 2021; 21:6406-6415. [PMID: 34014681 DOI: 10.1021/acs.nanolett.1c00697] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Self-assembled peptide materials with sequence-encoded properties have attracted great interest. Despite their intrinsic chirality, the generation of circularly polarized luminescence (CPL) based on the self-assembly of simple peptides has been rarely reported. Here, we report the self-assembly of peptides into hierarchical helical arrays (HHAs) with controlled supramolecular handedness. The HHAs can emit full-color CPL signals after the incorporation of various achiral fluorescent molecules, and the glum value is 40 times higher than that of the CPL signal from the solutions. By simply changing the amino acid sequence of the peptides, CPL signals with opposite handedness can be generated within the HHAs. The peptide HHAs can provide hydrophobic pockets to accommodate the fluorescent molecules with helical arrangement through strong aromatic stacking interactions, which are responsible for the CPL signals. This work provides a pathway to construct highly ordered chiral materials, which have broad applications in the chiroptical field.
Collapse
Affiliation(s)
- Qing Li
- School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin 300072, P.R. China
| | - Jiaxing Zhang
- School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin 300072, P.R. China
| | - Yuefei Wang
- School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin 300072, P.R. China
- Tianjin Key Laboratory of Membrane Science and Desalination Technology, Tianjin University, Tianjin 300072, P.R. China
| | - Gong Zhang
- School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin 300072, P.R. China
| | - Wei Qi
- School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin 300072, P.R. China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, P.R. China
- Tianjin Key Laboratory of Membrane Science and Desalination Technology, Tianjin University, Tianjin 300072, P.R. China
| | - Shengping You
- School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin 300072, P.R. China
- Tianjin Key Laboratory of Membrane Science and Desalination Technology, Tianjin University, Tianjin 300072, P.R. China
| | - Rongxin Su
- School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin 300072, P.R. China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, P.R. China
- Tianjin Key Laboratory of Membrane Science and Desalination Technology, Tianjin University, Tianjin 300072, P.R. China
| | - Zhimin He
- School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin 300072, P.R. China
| |
Collapse
|
49
|
Lin W, Yang Y, Lei Y, An F, Sun L, Qin Y, Zhang L. Self-Assembly of an Antitumor Dipeptide Induced Near-Infrared Fluorescence and Improved Stability for Theranostic Applications. ACS APPLIED MATERIALS & INTERFACES 2021; 13:32799-32809. [PMID: 34227796 DOI: 10.1021/acsami.1c07983] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
It has been found that the self-assembly of nonfluorescent peptides can generate fluorescent peptide nanoparticles (f-PNPs) to perform multiple functions, including drug delivery and imaging and tracking therapeutic agents. Both pharmacologically inactive peptides and tumor-targeting peptides have been explored to construct biocompatible f-PNPs; however, the application of this technology in delivering antitumor peptides has never been reported. Herein, the self-assembly of an antitumor dipeptide, carnosine, into fluorescent carnosine nanoparticles (f-Car NPs) in the presence of zinc ions is demonstrated. The generated f-Car NPs exhibit fluorescence in the visible and near-infrared (NIR) ranges for fluorescence tracing in vitro and in vivo. On the other hand, the f-Car NPs minimize the contact between the dipeptide and the serum, which overcomes the dipeptide instability resulted from inefficient antitumor activity. In addition, the preparation of f-Car NPs does not introduce extra carrier materials, so the f-Car NPs exhibit biocompatibility to normal fibroblast cells in vitro and negligible toxicity against major organs in vivo. This study provides a new peptide drug delivery strategy with NIR fluorescence tracing ability.
Collapse
Affiliation(s)
- Weifeng Lin
- School of Life Sciences, Key Laboratory of Space Bioscience & Biotechnology, Northwestern Polytechnical University, Xi'an 710072, China
| | - Yingchun Yang
- School of Life Sciences, Key Laboratory of Space Bioscience & Biotechnology, Northwestern Polytechnical University, Xi'an 710072, China
| | - Yang Lei
- School of Life Sciences, Key Laboratory of Space Bioscience & Biotechnology, Northwestern Polytechnical University, Xi'an 710072, China
| | - Feifei An
- Institute of Medical Engineering, Department of Biophysics, School of Basic Medical Science, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China
| | - Leming Sun
- School of Life Sciences, Key Laboratory of Space Bioscience & Biotechnology, Northwestern Polytechnical University, Xi'an 710072, China
| | - Yong Qin
- School of Life Sciences, Key Laboratory of Space Bioscience & Biotechnology, Northwestern Polytechnical University, Xi'an 710072, China
| | - Lianbing Zhang
- School of Life Sciences, Key Laboratory of Space Bioscience & Biotechnology, Northwestern Polytechnical University, Xi'an 710072, China
| |
Collapse
|
50
|
Guo J, Li X, Lian J, Gao F, Zhao R, Song B, Zhang F. Green Fluorescent Tripeptide Nanostructures: Synergetic Effects of Oxidation and Hierarchical Assembly. ACS Macro Lett 2021; 10:825-830. [PMID: 35549192 DOI: 10.1021/acsmacrolett.1c00251] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Peptide-based fluorescent materials hold promise for applications in energy harvesting and biomedicine. One remaining challenge is to overcome the barrier of fluorescence red shift, especially for peptide probes merely made of natural amino acids. Here we demonstrated an about 100 nm fluorescence red shift using a tripeptide GYK. Under UV illumination or in Fenton reactions, the hydroxyl free radical-based oxidation crosslinks GYK tripeptides into dimers, which can further act as building blocks to hierarchically assemble into nanostructures of different sizes and finally can shift the fluorescence from blue to green color (∼510 nm). Such assemblies can form core-shell-like nanostructures through further crosslinking of their surface with additional GYK monomers, which can not only make the nanostructures more robust but also efficiently improve their quantum yields. This research will deepen our understanding of bioluminescence, which sheds light on various biomedical applications of peptide-based fluorescent probes.
Collapse
Affiliation(s)
- Jun Guo
- Terahertz Technology Innovation Research Institute, Shanghai Key Laboratory of Modern Optical Systems, Terahertz Science Cooperative Innovation Center, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai 200093, China
| | - Xiaofang Li
- Wenzhou Institute, University of Chinese Academy of Sciences, 1 Jinlian Road, Wenzhou 325001, China.,Oujiang Laboratory, Wenzhou, Zhejiang 325000, China.,Biomedical Nanocenter, School of Life Sciences, Inner Mongolia Agricultural University, 29 East Erdos Street, Hohhot 010011, China
| | - Jiaqi Lian
- Wenzhou Institute, University of Chinese Academy of Sciences, 1 Jinlian Road, Wenzhou 325001, China.,Oujiang Laboratory, Wenzhou, Zhejiang 325000, China
| | - Feng Gao
- Wenzhou Institute, University of Chinese Academy of Sciences, 1 Jinlian Road, Wenzhou 325001, China.,Oujiang Laboratory, Wenzhou, Zhejiang 325000, China.,Biomedical Nanocenter, School of Life Sciences, Inner Mongolia Agricultural University, 29 East Erdos Street, Hohhot 010011, China
| | - Ruoyang Zhao
- Wenzhou Institute, University of Chinese Academy of Sciences, 1 Jinlian Road, Wenzhou 325001, China.,Oujiang Laboratory, Wenzhou, Zhejiang 325000, China
| | - Bo Song
- Terahertz Technology Innovation Research Institute, Shanghai Key Laboratory of Modern Optical Systems, Terahertz Science Cooperative Innovation Center, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai 200093, China
| | - Feng Zhang
- Terahertz Technology Innovation Research Institute, Shanghai Key Laboratory of Modern Optical Systems, Terahertz Science Cooperative Innovation Center, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai 200093, China.,Wenzhou Institute, University of Chinese Academy of Sciences, 1 Jinlian Road, Wenzhou 325001, China.,Oujiang Laboratory, Wenzhou, Zhejiang 325000, China.,Biomedical Nanocenter, School of Life Sciences, Inner Mongolia Agricultural University, 29 East Erdos Street, Hohhot 010011, China.,State Key Laboratory of Respiratory Disease, Guangzhou Institute of Oral Disease, Stomatology Hospital, Department of Biomedical Engineering, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou 511436, China
| |
Collapse
|