1
|
Zhang L, Zhao F, Li Y, Song Z, Hu L, Li Y, Zhang R, Yu Y, Wang G, Wang C. Molecular hydrogen reduces dermatitis-induced itch, diabetic itch and cholestatic itch by inhibiting spinal oxidative stress and synaptic plasticity via SIRT1-β-catenin pathway in mice. Redox Biol 2025; 79:103472. [PMID: 39752998 PMCID: PMC11754494 DOI: 10.1016/j.redox.2024.103472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 12/05/2024] [Accepted: 12/16/2024] [Indexed: 01/18/2025] Open
Abstract
Chronic itch which is primarily associated with dermatologic, systemic, or metabolic disorders is often refractory to most current antipruritic medications, thus highlighting the need for improved therapies. Oxidative damage is a novel determinant of spinal pruriceptive sensitization and synaptic plasticity. The resolution of oxidative insult by molecular hydrogen has been manifested. Herein, we strikingly report that both hydrogen gas (2 %) inhalation and hydrogen-rich saline (5 mL/kg, intraperitoneal) injection prevent and alleviate persistent dermatitis-induced itch, diabetic itch and cholestatic itch. Hydrogen therapy reverses the decrease of spinal SIRT1 expression and antioxidant enzymes (SOD, GPx and CAT) activity after dermatitis, diabetes and cholestasis. Furthermore, hydrogen reduces spinal ROS generation, oxidation products (MDA, 8-OHdG and 3-NT) accumulation, β-catenin acetylation and dendritic spine density in persistent itch models. Spinal SIRT1 inhibition eliminates antipruritic and antioxidative effects of hydrogen, while SIRT1 agonism attenuates chronic itch phenotype, spinal β-catenin acetylation and mitochondrial damage. β-catenin inhibitors are effective against chronic itch via reducing β-catenin acetylation, blocking ERK phosphorylation and elevating antioxidant enzymes activity. Hydrogen treatment suppressed dermatitis and cholestasis mediated spontaneous excitatory postsynaptic currents in vitro. Additionally, hydrogen impairs cholestasis-induced the enhancement of cerebral functional connectivity between the right primary cingulate cortex and bilateral sensorimotor cortex, as well as bilateral striatum. Taken together, this study uncovers that molecular hydrogen protects against chronic pruritus and spinal pruriceptive sensitization by reducing oxidative damage via up-regulation of SIRT1-dependent β-catenin deacetylation in mice, implying a promising strategy in translational development for itch control.
Collapse
Affiliation(s)
- Linlin Zhang
- Department of Anesthesiology, Tianjin Medical University General Hospital, Tianjin, 300052, China; Tianjin Research Institute of Anesthesiology, Tianjin, 300052, China.
| | - Fangshi Zhao
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging and Tianjin Institute of Radiology, Department of Medical Imaging, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Yize Li
- Department of Anesthesiology, Tianjin Medical University General Hospital, Tianjin, 300052, China; Tianjin Research Institute of Anesthesiology, Tianjin, 300052, China
| | - Zhenhua Song
- Department of Anesthesiology, Tianjin Medical University General Hospital, Tianjin, 300052, China; Tianjin Research Institute of Anesthesiology, Tianjin, 300052, China
| | - Lingyue Hu
- Department of Anesthesiology, Tianjin Medical University General Hospital, Tianjin, 300052, China; Tianjin Research Institute of Anesthesiology, Tianjin, 300052, China
| | - Yuanjie Li
- Department of Anesthesiology, Tianjin Medical University General Hospital, Tianjin, 300052, China; Tianjin Research Institute of Anesthesiology, Tianjin, 300052, China
| | - Rui Zhang
- Department of Anesthesiology, Tianjin Medical University General Hospital, Tianjin, 300052, China; Tianjin Research Institute of Anesthesiology, Tianjin, 300052, China
| | - Yonghao Yu
- Department of Anesthesiology, Tianjin Medical University General Hospital, Tianjin, 300052, China; Tianjin Research Institute of Anesthesiology, Tianjin, 300052, China
| | - Guolin Wang
- Department of Anesthesiology, Tianjin Medical University General Hospital, Tianjin, 300052, China; Tianjin Research Institute of Anesthesiology, Tianjin, 300052, China
| | - Chunyan Wang
- Department of Anesthesiology, Tianjin Medical University General Hospital, Tianjin, 300052, China; Tianjin Research Institute of Anesthesiology, Tianjin, 300052, China.
| |
Collapse
|
2
|
Neumann E, Cramer T, Acuña MA, Scheurer L, Beccarini C, Luscher B, Wildner H, Zeilhofer HU. γ1 GABA A Receptors in Spinal Nociceptive Circuits. J Neurosci 2024; 44:e0591242024. [PMID: 39137998 PMCID: PMC11466064 DOI: 10.1523/jneurosci.0591-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 07/17/2024] [Accepted: 08/02/2024] [Indexed: 08/15/2024] Open
Abstract
GABAergic neurons and GABAA receptors (GABAARs) are critical elements of almost all neuronal circuits. Most GABAARs of the CNS are heteropentameric ion channels composed of two α, two β, and one γ subunits. These receptors serve as important drug targets for benzodiazepine (BDZ) site agonists, which potentiate the action of GABA at GABAARs. Most GABAAR classifications rely on the heterogeneity of the α subunit (α1-α6) included in the receptor complex. Heterogeneity of the γ subunits (γ1-γ3), which mediate synaptic clustering of GABAARs and contribute, together with α subunits, to the benzodiazepine (BDZ) binding site, has gained less attention, mainly because γ2 subunits greatly outnumber the other γ subunits in most brain regions. Here, we have investigated a potential role of non-γ2 GABAARs in neural circuits of the spinal dorsal horn, a key site of nociceptive processing. Female and male mice were studied. We demonstrate that besides γ2 subunits, γ1 subunits are significantly expressed in the spinal dorsal horn, especially in its superficial layers. Unlike global γ2 subunit deletion, which is lethal, spinal cord-specific loss of γ2 subunits was well tolerated. GABAAR clustering in the superficial dorsal horn remained largely unaffected and antihyperalgesic actions of HZ-166, a nonsedative BDZ site agonist, were partially retained. Our results thus suggest that the superficial dorsal horn harbors functionally relevant amounts of γ1 subunits that support the synaptic clustering of GABAARs in this site. They further suggest that γ1 containing GABAARs contribute to the spinal control of nociceptive information flow.
Collapse
Affiliation(s)
- Elena Neumann
- Institute of Pharmacology and Toxicology, University of Zurich, CH-8057 Zurich, Switzerland
| | - Teresa Cramer
- Institute of Pharmacology and Toxicology, University of Zurich, CH-8057 Zurich, Switzerland
| | - Mario A Acuña
- Institute of Pharmacology and Toxicology, University of Zurich, CH-8057 Zurich, Switzerland
| | - Louis Scheurer
- Institute of Pharmacology and Toxicology, University of Zurich, CH-8057 Zurich, Switzerland
| | - Camilla Beccarini
- Institute of Pharmacology and Toxicology, University of Zurich, CH-8057 Zurich, Switzerland
| | - Bernhard Luscher
- Departments of Biology, Biochemistry and Molecular Biology, and Psychiatry and Penn State Neuroscience Institute, Pennsylvania State University, University Park, Pennsylvania 16802
| | - Hendrik Wildner
- Institute of Pharmacology and Toxicology, University of Zurich, CH-8057 Zurich, Switzerland
| | - Hanns Ulrich Zeilhofer
- Institute of Pharmacology and Toxicology, University of Zurich, CH-8057 Zurich, Switzerland
- Institute of Pharmaceutical Sciences, Swiss Federal Institute of Technology (ETH) Zurich, CH-8093 Zurich, Switzerland
| |
Collapse
|
3
|
Xu Y, Qiu Z, Gu C, Yu S, Wang S, Li C, Yao X, Li W. Propionate alleviates itch in murine models of atopic dermatitis by modulating sensory TRP channels of dorsal root ganglion. Allergy 2024; 79:1271-1290. [PMID: 38164798 DOI: 10.1111/all.15998] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 12/07/2023] [Accepted: 12/10/2023] [Indexed: 01/03/2024]
Abstract
BACKGROUND Itch is the most common symptom of atopic dermatitis (AD) and significantly decreases the quality of life. Skin microbiome is involved in AD pathogenesis, whereas its role in the regulation of itch remains elusive. In this study, we aimed to investigate the effects of skin microbial metabolite propionate on acute and chronic pruritus and to explore the mechanism. METHODS Using various mouse models of itch, the roles of propionate were explored by behavioral tests and histopathology/immunofluorescent analysis. Primary-cultured dorsal root ganglion neurons and HEK293 cells expressing recombinant human TRP channels were utilized for in vitro calcium imaging/in vivo miniature two-photon imaging in combination with electrophysiology and molecular docking approaches for investigation of the mechanism. RESULTS Propionate significantly alleviated itch and alloknesis in various mouse models of pruritus and AD and decreased the density of intraepidermal nerve fibers. Propionate reduced the responsiveness of dorsal root ganglion neurons to pruritogens in vitro, attenuated the hyper-excitability in sensory neurons in MC903-induced AD model, and inhibited capsaicin-evoked hTRPV1 currents (IC50 = 20.08 ± 1.11 μM) via interacting with the vanilloid binding site. Propionate also decreased the secretion of calcitonin gene-related peptide by nerves in MC903-induced AD mouse model, which further attenuated itch and skin inflammation. CONCLUSION Our study revealed a protective effect of propionate against persistent itch through direct modulation of sensory TRP channels and neuropeptide production in neurons. Regulation of itch via the skin microbiome might be a novel strategy for the treatment of AD.
Collapse
Affiliation(s)
- Yao Xu
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai Institute of Dermatology, Shanghai, China
| | - Zhuoqiong Qiu
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai Institute of Dermatology, Shanghai, China
| | - Chaoying Gu
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai Institute of Dermatology, Shanghai, China
| | - Su Yu
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai Institute of Dermatology, Shanghai, China
| | - Shangshang Wang
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai Institute of Dermatology, Shanghai, China
| | - Changlin Li
- Guangdong Institute of Intelligence Science and Technology, Zhuhai, China
| | - Xu Yao
- Department of Allergy and Rheumatology, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Hospital for skin diseases, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China
| | - Wei Li
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai Institute of Dermatology, Shanghai, China
| |
Collapse
|
4
|
Yang YY, Du LX, Zhu JY, Yi T, Yang YC, Qiao Z, Maoying QL, Chu YX, Wang YQ, Mi WL. Antipruritic effects of geraniol on acute and chronic itch via modulating spinal GABA/GRPR signaling. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 119:154969. [PMID: 37516088 DOI: 10.1016/j.phymed.2023.154969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 06/12/2023] [Accepted: 07/15/2023] [Indexed: 07/31/2023]
Abstract
BACKGROUND AND PURPOSE Itch (pruritus) is a common unpleasant feeling, often accompanied by the urge of scratching the skin. It is the main symptom of many systemic and skin diseases, which can seriously affect the patient's quality of life. Geraniol (GE; trans-3,7-dimethyl-2,6-octadien-1-ol) is a natural monoterpene with diverse effects, including anti-inflammatory, antioxidant, neuroprotective, anti-nociceptive, and anticancer properties. The study aims to examine the effects of GE on acute and chronic itch, and explore the underlying mechanisms. METHODS Acute itch was investigated by using Chloroquine and compound 48/80 induced model, followed by manifestation of diphenylcyclopropenone (DCP)-induced allergic contact dermatitis and the acetone-ether-water (AEW)-induced dry skin model in mice. The scratching behavior, skin thickness, c-Fos expression, and GRPR protein expression in the spinal cord were subsequently monitored and evaluated by behavioral tests as well as pharmacological and pharmacogenetic technologies. RESULTS Dose-dependent intraperitoneal injection of GE alleviated the acute itch, induced by chloroquine and compound 48/80, as well as increased the spinal c-Fos expression. Intrathecal administration of GE suppressed the GABAA receptor inhibitor bicuculline-induced itch, GRP-induced itch, and the GABAergic neuron inhibition-induced itch. Furthermore, the subeffective dose of bicuculline blocked the anti-pruritic effect of GE on the chloroquine and compound 48/80 induced acute itch. GE also attenuated DCP and AEW-induced chronic itch, as well as the increase of spinal GRPR expression in DCP mice. CONCLUSION AND IMPLICATIONS GE alleviates both acute and chronic itch via modulating the spinal GABA/GRPR signaling in mice. Findings of this study reveal that GE may provide promising therapeutic options for itch management. Also, considering the pivotal role of essential oils in aromatherapy, GE has great application potential in aromatherapy for treating skin diseases, and especially the skin with severe pruritus.
Collapse
Affiliation(s)
- Ya-Yue Yang
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Science; Institutes of Integrative Medicine, Shanghai Key Laboratory of Acupuncture Mechanism and Acupoint Function, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Li-Xia Du
- Department of Biochemistry, School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Jian-Yu Zhu
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Science; Institutes of Integrative Medicine, Shanghai Key Laboratory of Acupuncture Mechanism and Acupoint Function, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Ting Yi
- Chinese Medicine Research Institute, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Ya-Chen Yang
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Science; Institutes of Integrative Medicine, Shanghai Key Laboratory of Acupuncture Mechanism and Acupoint Function, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Zheng Qiao
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Science; Institutes of Integrative Medicine, Shanghai Key Laboratory of Acupuncture Mechanism and Acupoint Function, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Qi-Liang Maoying
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Science; Institutes of Integrative Medicine, Shanghai Key Laboratory of Acupuncture Mechanism and Acupoint Function, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Yu-Xia Chu
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Science; Institutes of Integrative Medicine, Shanghai Key Laboratory of Acupuncture Mechanism and Acupoint Function, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Yan-Qing Wang
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Science; Institutes of Integrative Medicine, Shanghai Key Laboratory of Acupuncture Mechanism and Acupoint Function, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Wen-Li Mi
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Science; Institutes of Integrative Medicine, Shanghai Key Laboratory of Acupuncture Mechanism and Acupoint Function, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Shanghai Medical College, Fudan University, Shanghai 200032, China.
| |
Collapse
|
5
|
Zhao H, Ma X, Song J, Jiang J, Fei X, Luo Y, Ru Y, Luo Y, Gao C, Kuai L, Li B. From gut to skin: exploring the potential of natural products targeting microorganisms for atopic dermatitis treatment. Food Funct 2023; 14:7825-7852. [PMID: 37599562 DOI: 10.1039/d3fo02455e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/22/2023]
Abstract
Atopic dermatitis (AD) is the most common chronic inflammatory skin disease. Recent studies have revealed that interactions between pathogenic microorganisms, which have a tendency to parasitize the skin of AD patients, play a significant role in the progression of the disease. Furthermore, specific species of commensal bacteria in the human intestinal tract can have a profound impact on the immune system by promoting inflammation and pruritogenesis in AD, while also regulating adaptive immunity. Natural products (NPs) have emerged as promising agents for the treatment of various diseases. Consequently, there is growing interest in utilizing natural products as a novel therapeutic approach for managing AD, with a focus on modulating both skin and gut microbiota. In this review, we discuss the mechanisms and interplay between the skin and gut microbiota in relation to AD. Additionally, we provide a comprehensive overview of recent clinical and fundamental research on NPs targeting the skin and gut microbiota for AD treatment. We anticipate that our work will contribute to the future development of NPs and facilitate research on microbial mechanisms, based on the efficacy of NPs in treating AD.
Collapse
Affiliation(s)
- Hang Zhao
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China
- Institute of Dermatology, Shanghai Academy of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Xin Ma
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, 200443, China
| | - Jiankun Song
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, 200443, China
| | - Jingsi Jiang
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, 200443, China
| | - Xiaoya Fei
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, 200443, China
| | - Yue Luo
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, 200443, China
| | - Yi Ru
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China
- Institute of Dermatology, Shanghai Academy of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Ying Luo
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China
- Institute of Dermatology, Shanghai Academy of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Chunjie Gao
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, 200443, China
| | - Le Kuai
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China
- Institute of Dermatology, Shanghai Academy of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Bin Li
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, 200443, China
- Institute of Dermatology, Shanghai Academy of Traditional Chinese Medicine, Shanghai, 201203, China
| |
Collapse
|
6
|
Furutani K, Chen O, McGinnis A, Wang Y, Serhan CN, Hansen TV, Ji RR. Novel proresolving lipid mediator mimetic 3-oxa-PD1n-3 docosapentaenoic acid reduces acute and chronic itch by modulating excitatory and inhibitory synaptic transmission and astroglial secretion of lipocalin-2 in mice. Pain 2023; 164:1340-1354. [PMID: 36378290 PMCID: PMC10182233 DOI: 10.1097/j.pain.0000000000002824] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 11/07/2022] [Indexed: 11/16/2022]
Abstract
ABSTRACT Specialized proresolving mediators (SPMs) have demonstrated potent analgesic actions in animal models of pathological pain. The actions of SPMs in acute and chronic itch are currently unknown. Recently, n-3 docosapentaenoic acid (DPA) was found to be a substrate for the biosynthesis of several novel families of SPMs and 3-oxa-PD1 n-3 DPA (3-oxa-PD1) is an oxidation-resistant metabolic stable analogue of the n-3 DPA-derived protectin D1 (PD1). In this article, we demonstrate that 3-oxa-PD1 effectively reduces both acute and chronic itch in mouse models. Intrathecal injection of 3-oxa-PD1 (100 ng) reduced acute itch induced by histamine, chloroquine, or morphine. Furthermore, intrathecal 3-oxa-PD1 effectively reduced chronic itch, induced by cutaneous T-cell lymphoma (CTCL), allergic contact dermatitis with dinitrofluorobenzene, and psoriasis by imiquimod. Intratumoral injection of 3-oxa-PD1 also suppressed CTCL-induced chronic itch. Strikingly, the antipruritic effect lasted for several weeks after 1-week intrathecal 3-oxa-PD1 treatment. Whole-cell recordings revealed significant increase in excitatory postsynaptic currents in spinal dorsal horn (SDH) neurons of CTCL mice, but this increase was blocked by 3-oxa-PD1. 3-oxa-PD1 further increased inhibitory postsynaptic currents in SDH neurons of CTCL mice. Cutaneous T-cell lymphoma increased the spinal levels of lipocalin-2 (LCN2), an itch mediator produced by astrocytes. 3-oxa-PD1 suppressed LCN2 production in CTCL mice and LCN2 secretion in astrocytes. Finally, CTCL-induced anxiety was alleviated by intrathecal 3-oxa-PD1. Our findings suggest that 3-oxa-PD1 potently inhibits acute and chronic itch through the regulation of excitatory or inhibitory synaptic transmission and astroglial LCN2 production. Therefore, stable SPM analogs such as 3-oxa-PD1 could be useful to treat pruritus associated with different skin injuries.
Collapse
Affiliation(s)
- Kenta Furutani
- Center for Translational Pain Medicine, Department of Anesthesiology, and Department of Neurobiology, Duke University Medical Center, Durham, NC 27710
| | - Ouyang Chen
- Center for Translational Pain Medicine, Department of Anesthesiology, and Department of Neurobiology, Duke University Medical Center, Durham, NC 27710
- Department of Cell Biology, Duke University Medical Center, Durham, NC 27710
| | - Aidan McGinnis
- Center for Translational Pain Medicine, Department of Anesthesiology, and Department of Neurobiology, Duke University Medical Center, Durham, NC 27710
| | - Yuqing Wang
- Center for Translational Pain Medicine, Department of Anesthesiology, and Department of Neurobiology, Duke University Medical Center, Durham, NC 27710
| | - Charles N Serhan
- Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative and Pain Medicine, Hale Building for Transformative Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, 02115
| | - Trond Vidar Hansen
- Department of Pharmacy, Section for Pharmaceutical Chemistry, University of Oslo, PO Box 1068 Blindern, N-0316 Oslo, Norway
| | - Ru-Rong Ji
- Center for Translational Pain Medicine, Department of Anesthesiology, and Department of Neurobiology, Duke University Medical Center, Durham, NC 27710
- Department of Cell Biology, Duke University Medical Center, Durham, NC 27710
- Department of Neurobiology, Duke University Medical Center, Durham, NC 27710
| |
Collapse
|
7
|
Cerne R, Lippa A, Poe MM, Smith JL, Jin X, Ping X, Golani LK, Cook JM, Witkin JM. GABAkines - Advances in the discovery, development, and commercialization of positive allosteric modulators of GABA A receptors. Pharmacol Ther 2022; 234:108035. [PMID: 34793859 PMCID: PMC9787737 DOI: 10.1016/j.pharmthera.2021.108035] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 11/08/2021] [Indexed: 12/25/2022]
Abstract
Positive allosteric modulators of γ-aminobutyric acid-A (GABAA) receptors or GABAkines have been widely used medicines for over 70 years for anxiety, epilepsy, sleep, and other disorders. Traditional GABAkines like diazepam have safety and tolerability concerns that include sedation, motor-impairment, respiratory depression, tolerance and dependence. Multiple GABAkines have entered clinical development but the issue of side-effects has not been fully solved. The compounds that are presently being developed and commercialized include several neuroactive steroids (an allopregnanolone formulation (brexanolone), an allopregnanolone prodrug (LYT-300), Sage-324, zuranolone, and ganaxolone), the α2/3-preferring GABAkine, KRM-II-81, and the α2/3/5-preferring GABAkine PF-06372865 (darigabat). The neuroactive steroids are in clinical development for post-partum depression, intractable epilepsy, tremor, status epilepticus, and genetic epilepsy disorders. Darigabat is in development for epilepsy and anxiety. The imidazodiazepine, KRM-II-81 is efficacious in animal models for the treatment of epilepsy and post-traumatic epilepsy, acute and chronic pain, as well as anxiety and depression. The efficacy of KRM-II-81 in models of pharmacoresistant epilepsy, preventing the development of seizure sensitization, and in brain tissue of intractable epileptic patients bodes well for improved therapeutics. Medicinal chemistry efforts are also ongoing to identify novel and improved GABAkines. The data document gaps in our understanding of the molecular pharmacology of GABAkines that drive differential pharmacological profiles, but emphasize advancements in the ability to successfully utilize GABAA receptor potentiation for therapeutic gain in neurology and psychiatry.
Collapse
Affiliation(s)
- Rok Cerne
- Laboratory of Antiepileptic Drug Discovery, Ascension St. Vincent, Indianapolis, IN USA,Faculty of Medicine, University of Ljubljana, Zaloška cesta 4, Ljubljana, Slovenia.,RespireRx Pharmaceuticals Inc, Glen Rock, NJ, USA,Department of Anatomy and Cell Biology, Indiana University/Purdue University, Indianapolis, IN, USA
| | - Arnold Lippa
- RespireRx Pharmaceuticals Inc, Glen Rock, NJ, USA
| | | | - Jodi L. Smith
- Laboratory of Antiepileptic Drug Discovery, Ascension St. Vincent, Indianapolis, IN USA
| | - Xiaoming Jin
- Department of Anatomy and Cell Biology, Indiana University/Purdue University, Indianapolis, IN, USA
| | - Xingjie Ping
- Department of Anatomy and Cell Biology, Indiana University/Purdue University, Indianapolis, IN, USA
| | - Lalit K. Golani
- Department of Chemistry and Biochemistry, Milwaukee Institute of Drug Discovery, University of Wisconsin-Milwaukee, Milwaukee, WI, USA
| | - James M. Cook
- RespireRx Pharmaceuticals Inc, Glen Rock, NJ, USA,Department of Chemistry and Biochemistry, Milwaukee Institute of Drug Discovery, University of Wisconsin-Milwaukee, Milwaukee, WI, USA
| | - Jeffrey M. Witkin
- Laboratory of Antiepileptic Drug Discovery, Ascension St. Vincent, Indianapolis, IN USA,RespireRx Pharmaceuticals Inc, Glen Rock, NJ, USA,Department of Chemistry and Biochemistry, Milwaukee Institute of Drug Discovery, University of Wisconsin-Milwaukee, Milwaukee, WI, USA
| |
Collapse
|
8
|
El Khoueiry C, Alba-Delgado C, Antri M, Gutierrez-Mecinas M, Todd AJ, Artola A, Dallel R. GABAA and Glycine Receptor-Mediated Inhibitory Synaptic Transmission onto Adult Rat Lamina IIi PKCγ-Interneurons: Pharmacological but not Anatomical Specialization. Cells 2022; 11:cells11081356. [PMID: 35456035 PMCID: PMC9033052 DOI: 10.3390/cells11081356] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 04/07/2022] [Accepted: 04/13/2022] [Indexed: 11/16/2022] Open
Abstract
Mechanical allodynia (pain to normally innocuous tactile stimuli) is a widespread symptom of inflammatory and neuropathic pain. Spinal or medullary dorsal horn (SDH or MDH) circuits mediating tactile sensation and pain need to interact in order to evoke mechanical allodynia. PKCγ-expressing (PKCγ+) interneurons and inhibitory controls within SDH/MDH inner lamina II (IIi) are pivotal in connecting touch and pain circuits. However, the relative contribution of GABA and glycine to PKCγ+ interneuron inhibition remains unknown. We characterized inhibitory inputs onto PKCγ+ interneurons by combining electrophysiology to record spontaneous and miniature IPSCs (sIPSCs, mIPSCs) and immunohistochemical detection of GABAARα2 and GlyRα1 subunits in adult rat MDH. While GlyR-only- and GABAAR-only-mediated mIPSCs/sIPSCs are predominantly recorded from PKCγ+ interneurons, immunohistochemistry reveals that ~80% of their inhibitory synapses possess both GABAARα2 and GlyRα1. Moreover, nearly all inhibitory boutons at gephyrin-expressing synapses on these cells contain glutamate decarboxylase and are therefore GABAergic, with around half possessing the neuronal glycine transporter (GlyT2) and therefore being glycinergic. Thus, while GABA and glycine are presumably co-released and GABAARs and GlyRs are present at most inhibitory synapses on PKCγ+ interneurons, these interneurons exhibit almost exclusively GABAAR-only and GlyR-only quantal postsynaptic inhibitory currents, suggesting a pharmacological specialization of their inhibitory synapses.
Collapse
Affiliation(s)
- Corinne El Khoueiry
- Neuro-Dol, Inserm, Université Clermont Auvergne, CHU Clermont-Ferrand, F-63000 Clermont-Ferrand, France; (C.E.K.); (C.A.-D.); (M.A.)
| | - Cristina Alba-Delgado
- Neuro-Dol, Inserm, Université Clermont Auvergne, CHU Clermont-Ferrand, F-63000 Clermont-Ferrand, France; (C.E.K.); (C.A.-D.); (M.A.)
| | - Myriam Antri
- Neuro-Dol, Inserm, Université Clermont Auvergne, CHU Clermont-Ferrand, F-63000 Clermont-Ferrand, France; (C.E.K.); (C.A.-D.); (M.A.)
| | - Maria Gutierrez-Mecinas
- Institute of Neuroscience and Psychology, University of Glasgow, Glasgow G12 8QQ, UK; (M.G.-M.); (A.J.T.)
| | - Andrew J. Todd
- Institute of Neuroscience and Psychology, University of Glasgow, Glasgow G12 8QQ, UK; (M.G.-M.); (A.J.T.)
| | - Alain Artola
- Neuro-Dol, Inserm, Université Clermont Auvergne, CHU Clermont-Ferrand, F-63000 Clermont-Ferrand, France; (C.E.K.); (C.A.-D.); (M.A.)
- Correspondence: (A.A.); (R.D.)
| | - Radhouane Dallel
- Neuro-Dol, Inserm, Université Clermont Auvergne, CHU Clermont-Ferrand, F-63000 Clermont-Ferrand, France; (C.E.K.); (C.A.-D.); (M.A.)
- Correspondence: (A.A.); (R.D.)
| |
Collapse
|
9
|
Saeki A, Yamanaka H, Kobayashi K, Okubo M, Noguchi K. Analgesic effect of gastrin-releasing peptide in the dorsal horn. Mol Pain 2022; 18:17448069221108965. [PMID: 35815426 PMCID: PMC9277428 DOI: 10.1177/17448069221108965] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Itch and pain are both unpleasant, but they are discrete sensations. Both of these
sensations are transmitted by C-fibers and processed in laminae I-II of the dorsal horn.
To examine whether pruriception modulates pain, we first confirmed the activation of cells
in the itch-related circuits that were positive for gastrin-releasing peptide (GRP) and
GRP receptor (GRPR) using a paw formalin injection model. This pain model with typical
biphasic pain behavior increased c-Fos but did not affect the expressions of
GRP and GRPR mRNAs in the dorsal horn. Using c-Fos
expression as a marker for activated cells, we confirmed that formalin injection increased
the number of cells double-labeled for c-Fos and GRP or GRPR in the dorsal horn. The
emergence of these neurons indicates the activation of itch-related circuits by acute pain
signals. The effect of an antagonist for a GRPR was examined in the paw formalin injection
model. Intrathecal chronic antagonization of spinal GRPR enhanced the onset of phase II of
paw formalin injection-induced pain behavior. Exogenous intrathecal GRP infusion to the
paw-formalin injection model not only showed significant reduction of pain behavior but
also increased c-Fos in the inhibitory neurons in the dorsal horn. The anti-nociceptive
effect of spinal GRP infusion was observed in the peripheral inflammation model (complete
Freund’s adjuvant injection model). In this study we suggest that painful stimuli
activated itch-related neuronal circuits and uncovered the spinal activation of the
itch-induced analgesic effect on acute and established inflammatory pain.
Collapse
Affiliation(s)
- Ayano Saeki
- Department of Anatomy and Neuroscience, Faculty of Medicine, 12818Hyogo Medical University, Nishinomiya, Hyogo, Japan.,Department of Anesthesiology and Pain Medicine, Faculty of Medicine, 12818Hyogo Medical University, Nishinomiya, Hyogo, Japan
| | - Hiroki Yamanaka
- Department of Anatomy and Neuroscience, Faculty of Medicine, 12818Hyogo Medical University, Nishinomiya, Hyogo, Japan
| | - Kimiko Kobayashi
- Department of Anatomy and Neuroscience, Faculty of Medicine, 12818Hyogo Medical University, Nishinomiya, Hyogo, Japan
| | - Masamichi Okubo
- Department of Anatomy and Neuroscience, Faculty of Medicine, 12818Hyogo Medical University, Nishinomiya, Hyogo, Japan
| | - Koichi Noguchi
- Department of Anatomy and Neuroscience, Faculty of Medicine, 12818Hyogo Medical University, Nishinomiya, Hyogo, Japan
| |
Collapse
|
10
|
Ingrasci G, Lipman ZM, Yosipovitch G. When topical therapy of atopic dermatitis fails: a guide for the clinician. Expert Rev Clin Immunol 2021; 17:1245-1256. [PMID: 34720031 DOI: 10.1080/1744666x.2021.2000390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
INTRODUCTION While topical medications are the first line of treatment for mild-to-moderate atopic dermatitis, they are ineffective in individuals with diffuse disease and moderate-to-severe atopic itch. For these individuals, as well as those who do not respond to topical treatments, systemic medicines are typically essential and helpful. AREAS COVERED We conducted a review of the literature to identify established systemic therapies, novel biologic agents, and recent advances in the pathophysiology of atopic dermatitis. The review discusses these data, which show that the majority of atopic itch medications now in development target the type 2 immune axis and brain sensitization, two main etiologies of atopic itch. We emphasize the evidence, efficacy, and side effect profiles of currently available systemic medications for atopic itch, as well as future potential for tailored therapy. EXPERT OPINION We give our professional opinion on the current state of knowledge about atopic eczema pathogenesis and the innovative targets and therapies for atopic itch that include MRGPRX2, periostin, gabaergic medicines, and JAK/STAT inhibitors. Additionally, we discuss patient populations that stand to benefit the most from targeting these molecules or utilizing these drugs, as well as those who may face a disproportionate weight of adverse effects.
Collapse
Affiliation(s)
- Giuseppe Ingrasci
- Department of Dermatology and Cutaneous Surgery Miami, University of Miami, Miami, FL, USA
| | - Zoe M Lipman
- Department of Dermatology and Cutaneous Surgery Miami, University of Miami, Miami, FL, USA
| | - Gil Yosipovitch
- Department of Dermatology and Cutaneous Surgery Miami, University of Miami, Miami, FL, USA
| |
Collapse
|
11
|
Wu ZH, Shao HY, Fu YY, Wu XB, Cao DL, Yan SX, Sha WL, Gao YJ, Zhang ZJ. Descending Modulation of Spinal Itch Transmission by Primary Somatosensory Cortex. Neurosci Bull 2021; 37:1345-1350. [PMID: 34057697 DOI: 10.1007/s12264-021-00713-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 02/19/2021] [Indexed: 11/28/2022] Open
Affiliation(s)
- Zi-Han Wu
- Department of Human Anatomy, School of Medicine, Nantong University, Nantong, 226001, China.,Institute of Pain Medicine, Institute of Nautical Medicine, Nantong University, Nantong, 226019, China
| | - Han-Yu Shao
- Department of Human Anatomy, School of Medicine, Nantong University, Nantong, 226001, China.,Institute of Pain Medicine, Institute of Nautical Medicine, Nantong University, Nantong, 226019, China
| | - Yuan-Yuan Fu
- Department of Human Anatomy, School of Medicine, Nantong University, Nantong, 226001, China.,Institute of Pain Medicine, Institute of Nautical Medicine, Nantong University, Nantong, 226019, China
| | - Xiao-Bo Wu
- Institute of Pain Medicine, Institute of Nautical Medicine, Nantong University, Nantong, 226019, China
| | - De-Li Cao
- Institute of Pain Medicine, Institute of Nautical Medicine, Nantong University, Nantong, 226019, China
| | - Sheng-Xiang Yan
- Institute of Pain Medicine, Institute of Nautical Medicine, Nantong University, Nantong, 226019, China
| | - Wei-Lin Sha
- Institute of Pain Medicine, Institute of Nautical Medicine, Nantong University, Nantong, 226019, China
| | - Yong-Jing Gao
- Institute of Pain Medicine, Institute of Nautical Medicine, Nantong University, Nantong, 226019, China. .,Co-innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, China.
| | - Zhi-Jun Zhang
- Department of Human Anatomy, School of Medicine, Nantong University, Nantong, 226001, China. .,Institute of Pain Medicine, Institute of Nautical Medicine, Nantong University, Nantong, 226019, China.
| |
Collapse
|
12
|
Neumann E, Küpfer L, Zeilhofer HU. The α2/α3GABAA receptor modulator TPA023B alleviates not only the sensory but also the tonic affective component of chronic pain in mice. Pain 2021; 162:421-431. [PMID: 32773599 PMCID: PMC7808355 DOI: 10.1097/j.pain.0000000000002030] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 07/20/2020] [Accepted: 07/27/2020] [Indexed: 12/11/2022]
Abstract
ABSTRACT Diminished synaptic inhibition in the spinal dorsal horn is a major contributor to pathological pain syndromes of neuropathic or inflammatory origin. Drugs that enhance the activity of dorsal horn α2/α3GABAARs normalize exaggerated nociceptive responses in rodents with neuropathic nerve lesions or peripheral inflammation but lack most of the typical side effects of less specific GABAergic drugs. It is however still unknown whether such drugs also reduce the clinically more relevant conscious perception of pain. Here, we investigated the effects of the α2/α3GABAAR subtype-selective modulator TPA023B on the tonic aversive component of pain in mice with peripheral inflammation or neuropathy. In neuropathic mice with a chronic constriction injury of the sciatic nerve, TPA023B not only reversed hyperalgesia to tactile and heat stimuli but also was highly effective in the conditioned place preference test. In the formalin test, TPA023B not only reduced licking of the injected paw but also reversed facial pain expression scores in the mouse grimace scale assay. Taken together, our results demonstrate that α2/α3GABAA receptor subtype-selective modulators not only reduce nociceptive withdrawal responses but also alleviate the tonic aversive components of chronic pain.
Collapse
Affiliation(s)
- Elena Neumann
- Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland
| | - Laura Küpfer
- Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland
| | - Hanns Ulrich Zeilhofer
- Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland
- Institute of Pharmaceutical Sciences, ETH Zurich, Zurich, Switzerland
- Drug Discovery Network Zurich (DDNZ), University of Zurich and ETH Zurich, Zurich, Switzerland
| |
Collapse
|
13
|
Liu P, Zhang X, He X, Jiang Z, Wang Q, Lu Y. Spinal GABAergic neurons are under feed-forward inhibitory control driven by A δ and C fibers in Gad2 td-Tomato mice. Mol Pain 2021; 17:1744806921992620. [PMID: 33586515 PMCID: PMC7890716 DOI: 10.1177/1744806921992620] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 01/10/2020] [Accepted: 01/13/2020] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Spinal GABAergic neurons act as a critical modulator in sensory transmission like pain or itch. The monosynaptic or polysynaptic primary afferent inputs onto GABAergic neurons, along with other interneurons or projection neurons make up the direct and feed-forward inhibitory neural circuits. Previous research indicates that spinal GABAergic neurons mainly receive excitatory inputs from Aδ and C fibers. However, whether they are controlled by other inhibitory sending signals is not well understood. METHODS We applied a transgenic mouse line in which neurons co-expressed the GABA-synthesizing enzyme Gad65 and the enhanced red fluorescence (td-Tomato) to characterize the features of morphology and electrophysiology of GABAergic neurons. Patch-clamp whole cell recordings were used to record the evoked postsynaptic potentials of fluorescent neurons in spinal slices in response to dorsal root stimulation. RESULTS We demonstrated that GABAergic neurons not only received excitatory drive from peripheral Aβ, Aδ and C fibers, but also received inhibitory inputs driven by Aδ and C fibers. The evoked inhibitory postsynaptic potentials (eIPSPs) mediated by C fibers were mainly Glycinergic (66.7%) as well as GABAergic mixed with Glycinergic (33.3%), whereas the inhibition mediated by Aδ fibers was predominately both GABA and Glycine-dominant (57.1%), and the rest of which was purely Glycine-dominant (42.9%). CONCLUSION These results indicated that spinal GABAergic inhibitory neurons are under feedforward inhibitory control driven by primary C and Aδ fibers, suggesting that this feed-forward inhibitory pathway may play an important role in balancing the excitability of GABAergic neurons in spinal dorsal horn.
Collapse
Affiliation(s)
- Peng Liu
- Department of Pain Medicine, Department of Anesthesiology & Perioprative Medicine, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Xiao Zhang
- Department of Pain Medicine, Department of Anesthesiology & Perioprative Medicine, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Xiaolan He
- Department of Pain Medicine, Department of Anesthesiology & Perioprative Medicine, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Zhenhua Jiang
- Department of Pain Medicine, Department of Anesthesiology & Perioprative Medicine, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Qun Wang
- Department of Pain Medicine, Department of Anesthesiology & Perioprative Medicine, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Yan Lu
- Department of Pain Medicine, Department of Anesthesiology & Perioprative Medicine, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| |
Collapse
|
14
|
Abstract
Chronic pruritus, defined as an unpleasant sensation resulting in a need to scratch that lasts more than 6 weeks, is a prevalent and bothersome symptom associated with both cutaneous and systemic conditions. Due to complex pathogenesis and profuse contributing factors, chronic pruritus therapy remains challenging. Regardless of the well-established antipruritic properties of classic pharmacotherapy (topical therapy, phototherapy and systemic therapy), these methods often provide insufficient relief for affected individuals. Owing to the growing interest in the field of pruritic research, further experimental and clinical data have emerged, continuously supporting the possibility of instigating novel therapeutic measures. This review covers the most relevant current modalities remaining under investigation that possess promising perspectives of approval in the near future, especially opioidergic drugs (mu-opioid antagonists and kappa-opioid agonists), neurokinin-1 receptor antagonists, biologic drugs, Janus kinase inhibitors, ileal bile acid transporter inhibitors, aryl hydrocarbon receptor agonists and histamine H4 receptor antagonists.
Collapse
Affiliation(s)
- Radomir Reszke
- Department of Dermatology, Venereology and Allergology, Wroclaw Medical University, 1 Chalubinskiego Street, 50-368, Wrocław, Poland
| | - Piotr Krajewski
- Department of Dermatology, Venereology and Allergology, Wroclaw Medical University, 1 Chalubinskiego Street, 50-368, Wrocław, Poland
| | - Jacek C Szepietowski
- Department of Dermatology, Venereology and Allergology, Wroclaw Medical University, 1 Chalubinskiego Street, 50-368, Wrocław, Poland.
| |
Collapse
|
15
|
Abstract
Itch, in particular chronic forms, has been widely recognized as an important clinical problem, but much less is known about the mechanisms of itch in comparison with other sensory modalities such as pain. Recently, considerable progress has been made in dissecting the circuit mechanisms of itch at both the spinal and supraspinal levels. Major components of the spinal neural circuit underlying both chemical and mechanical itch have now been identified, along with the circuits relaying ascending transmission and the descending modulation of itch. In this review, we summarize the progress in elucidating the neural circuit mechanism of itch at spinal and supraspinal levels.
Collapse
Affiliation(s)
- Xiao-Jun Chen
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Center for Excellence in Brain Science & Intelligence Technology, Chinese Academy of Sciences, 320 Yue-Yang Road, 200031, Shanghai, China
- University of Chinese Academy of Sciences, 19A Yu-quan Road, 100049, Beijing, China
| | - Yan-Gang Sun
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Center for Excellence in Brain Science & Intelligence Technology, Chinese Academy of Sciences, 320 Yue-Yang Road, 200031, Shanghai, China.
- Shanghai Center for Brain Science and Brain-Inspired Intelligence Technology, 201210, Shanghai, China.
| |
Collapse
|
16
|
Golpanian RS, Yosipovitch G. Current and emerging systemic treatments targeting the neural system for chronic pruritus. Expert Opin Pharmacother 2020; 21:1629-1636. [PMID: 32515664 DOI: 10.1080/14656566.2020.1775815] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
INTRODUCTION Pruritus is a debilitating symptom that significantly affects the quality of life of patients who suffer from it. Many current and emerging systemic treatments targeting the neural system have been successful in treating itch of various underlying etiologies. AREAS COVERED A complete search of the PUBMED and Google Scholar databases was completed and literature pertinent to current and emerging systemic anti-pruritic drugs which target the neural system was compiled. The purpose of this review is to give the reader with an overview of the current and emerging systemic therapeutic options which target the neural system for chronic pruritus. The authors then provide the reader with their expert perspectives on the future of these therapies. EXPERT OPINION Exciting new anti-pruritic therapies targeting the neural system which show promise include NK-1 inhibitors, opioid receptor modulators, and drugs targeting specific itch receptors such as Mrgpr, Nav1.7, and PAR2, as well as selective GABA modulators. Future studies should be conducted in order to fully understand these exciting therapeutic options.
Collapse
Affiliation(s)
- Rachel Shireen Golpanian
- Department of Dermatology and Cutaneous Surgery, and Itch Center, University of Miami Miller School of Medicine , Miami, FL, USA
| | - Gil Yosipovitch
- Department of Dermatology and Cutaneous Surgery, and Itch Center, University of Miami Miller School of Medicine , Miami, FL, USA
| |
Collapse
|
17
|
Meng J, Chen W, Wang J. Interventions in the B-type natriuretic peptide signalling pathway as a means of controlling chronic itch. Br J Pharmacol 2020; 177:1025-1040. [PMID: 31877230 DOI: 10.1111/bph.14952] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Revised: 11/08/2019] [Accepted: 11/19/2019] [Indexed: 12/22/2022] Open
Abstract
Chronic itch poses major health care and economic burdens worldwide. In 2013, B-type natriuretic peptide (BNP) was identified as an itch-selective neuropeptide and shown to be both necessary and sufficient to produce itch behaviour in mice. Since then, mechanistic studies of itch have increased, not only at central levels of the spinal relay of itch signalling but also in the periphery and skin. In this review, we have critically analysed recent findings from complementary pharmacological and physiological approaches, combined with genetic strategies to examine the role of BNP in itch transduction and modulation of other pruritic proteins. Additionally, potential targets and possible strategies against BNP signalling are discussed for developing novel therapeutics in itch. Overall, we aim to provide insights into drug development by altering BNP signalling to modulate disease symptoms in chronic itch, including conditions for which no approved treatment exists.
Collapse
Affiliation(s)
- Jianghui Meng
- School of Life Sciences, Henan University, Henan, China.,National Institute for Cellular Biotechnology, Dublin City University, Dublin, Ireland.,School of Biotechnology, Faculty of Science and Health, Dublin City University, Dublin, Ireland
| | - Weiwei Chen
- School of Life Sciences, Henan University, Henan, China
| | - Jiafu Wang
- School of Life Sciences, Henan University, Henan, China.,School of Biotechnology, Faculty of Science and Health, Dublin City University, Dublin, Ireland
| |
Collapse
|
18
|
Synaptic control of spinal GRPR + neurons by local and long-range inhibitory inputs. Proc Natl Acad Sci U S A 2019; 116:27011-27017. [PMID: 31806757 DOI: 10.1073/pnas.1905658116] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Spinal gastrin-releasing peptide receptor-expressing (GRPR+) neurons play an essential role in itch signal processing. However, the circuit mechanisms underlying the modulation of spinal GRPR+ neurons by direct local and long-range inhibitory inputs remain elusive. Using viral tracing and electrophysiological approaches, we dissected the neural circuits underlying the inhibitory control of spinal GRPR+ neurons. We found that spinal galanin+ GABAergic neurons form inhibitory synapses with GRPR+ neurons in the spinal cord and play an important role in gating the GRPR+ neuron-dependent itch signaling pathway. Spinal GRPR+ neurons also receive inhibitory inputs from local neurons expressing neuronal nitric oxide synthase (nNOS). Moreover, spinal GRPR+ neurons are gated by strong inhibitory inputs from the rostral ventromedial medulla. Thus, both local and long-range inhibitory inputs could play important roles in gating itch processing in the spinal cord by directly modulating the activity of spinal GRPR+ neurons.
Collapse
|
19
|
Guo J, Zhong J, Li L, Zhong T, Wang L, Song T, Zhang H. Comparative genome analyses reveal the unique genetic composition and selection signals underlying the phenotypic characteristics of three Chinese domestic goat breeds. Genet Sel Evol 2019; 51:70. [PMID: 31771503 PMCID: PMC6880376 DOI: 10.1186/s12711-019-0512-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 11/15/2019] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND As one of the important livestock species around the world, goats provide abundant meat, milk, and fiber to fulfill basic human needs. However, the genetic loci that underlie phenotypic variations in domestic goats are largely unknown, particularly for economically important traits. In this study, we sequenced the whole genome of 38 goats from three Chinese breeds (Chengdu Brown, Jintang Black, and Tibetan Cashmere) and downloaded the genome sequence data of 30 goats from five other breeds (four non-Chinese and one Chinese breed) and 21 Bezoar ibexes to investigate the genetic composition and selection signatures of the Chinese goat breeds after domestication. RESULTS Based on population structure analysis and FST values (average FST = 0.22), the genetic composition of Chengdu Brown goats differs considerably from that of Bezoar ibexes as a result of geographic isolation. Strikingly, the genes under selection that we identified in Tibetan Cashmere goats were significantly enriched in the categories hair growth and bone and nervous system development, possibly because they are involved in adaptation to high-altitude. In particular, we found a large difference in allele frequency of one novel SNP (c.-253G>A) in the 5'-UTR of FGF5 between Cashmere goats and goat breeds with short hair. The mutation at this site introduces a start codon that results in the occurrence of a premature FGF5 protein and is likely a natural causal variant that is involved in the long hair phenotype of cashmere goats. The haplotype tagged with the AGG-allele in exon 12 of DSG3, which encodes a cell adhesion molecule that is expressed mainly in the skin, was almost fixed in Tibetan Cashmere goats, whereas this locus still segregates in the lowland goat breeds. The pigmentation gene KITLG showed a strong signature of selection in Tibetan Cashmere goats. The genes ASIP and LCORL were identified as being under positive selection in Jintang Black goats. CONCLUSIONS After domestication, geographic isolation of some goat breeds has resulted in distinct genetic structures. Furthermore, our work highlights several positively selected genes that likely contributed to breed-related traits in domestic goats.
Collapse
Affiliation(s)
- Jiazhong Guo
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130 China
| | - Jie Zhong
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130 China
| | - Li Li
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130 China
| | - Tao Zhong
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130 China
| | - Linjie Wang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130 China
| | - Tianzeng Song
- Institute of Animal Science, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa, 850009 China
| | - Hongping Zhang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130 China
| |
Collapse
|
20
|
Maramai S, Benchekroun M, Ward SE, Atack JR. Subtype Selective γ-Aminobutyric Acid Type A Receptor (GABAAR) Modulators Acting at the Benzodiazepine Binding Site: An Update. J Med Chem 2019; 63:3425-3446. [DOI: 10.1021/acs.jmedchem.9b01312] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Samuele Maramai
- Sussex Drug Discovery Centre, University of Sussex, Brighton BN1 9QJ, U.K
| | - Mohamed Benchekroun
- Sussex Drug Discovery Centre, University of Sussex, Brighton BN1 9QJ, U.K
- Équipe de Chimie Moléculaire, Laboratoire de Génomique Bioinformatique et Chimie Moléculaire, GBCM, EA7528, Conservatoire National des Arts et Métiers, 2 rue Conté, 75003 Paris, France
| | - Simon E. Ward
- Medicines Discovery Institute, Cardiff University, Main Building, Park Place, Cardiff CF10 3AT, U.K
| | - John R. Atack
- Medicines Discovery Institute, Cardiff University, Main Building, Park Place, Cardiff CF10 3AT, U.K
| |
Collapse
|
21
|
Freitag FB, Ahemaiti A, Jakobsson JET, Weman HM, Lagerström MC. Spinal gastrin releasing peptide receptor expressing interneurons are controlled by local phasic and tonic inhibition. Sci Rep 2019; 9:16573. [PMID: 31719558 PMCID: PMC6851355 DOI: 10.1038/s41598-019-52642-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 10/18/2019] [Indexed: 11/09/2022] Open
Abstract
Dorsal horn gastrin-releasing peptide receptor (GRPR) neurons have a central role in itch transmission. Itch signaling has been suggested to be controlled by an inhibitory network in the spinal dorsal horn, as increased scratching behavior can be induced by pharmacological disinhibition or ablation of inhibitory interneurons, but the direct influence of the inhibitory tone on the GRPR neurons in the itch pathway have not been explored. Here we have investigated spinal GRPR neurons through in vitro and bioinformatical analysis. Electrophysiological recordings revealed that GRPR neurons receive local spontaneous excitatory inputs transmitted by glutamate and inhibitory inputs by glycine and GABA, which were transmitted either by separate glycinergic and GABAergic synapses or by glycine and GABA co-releasing synapses. Additionally, all GRPR neurons received both glycine- and GABA-induced tonic currents. The findings show a complex inhibitory network, composed of synaptic and tonic currents that gates the excitability of GRPR neurons, which provides direct evidence for the existence of an inhibitory tone controlling spontaneous discharge in an itch-related neuronal network in the spinal cord. Finally, calcium imaging revealed increased levels of neuronal activity in Grpr-Cre neurons upon application of somatostatin, which provides direct in vitro evidence for disinhibition of these dorsal horn interneurons.
Collapse
Affiliation(s)
- Fabio B Freitag
- Department of Neuroscience, Uppsala University, Uppsala, Sweden
| | | | | | - Hannah M Weman
- Department of Neuroscience, Uppsala University, Uppsala, Sweden
| | | |
Collapse
|
22
|
Meng J, Wang J, Buddenkotte J, Buhl T, Steinhoff M. Role of SNAREs in Atopic Dermatitis–Related Cytokine Secretion and Skin-Nerve Communication. J Invest Dermatol 2019; 139:2324-2333. [DOI: 10.1016/j.jid.2019.04.017] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 04/08/2019] [Accepted: 04/23/2019] [Indexed: 01/11/2023]
|
23
|
Pain Inhibits GRPR Neurons via GABAergic Signaling in the Spinal Cord. Sci Rep 2019; 9:15804. [PMID: 31676846 PMCID: PMC6825123 DOI: 10.1038/s41598-019-52316-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 10/11/2019] [Indexed: 11/30/2022] Open
Abstract
It has been known that algogens and cooling could inhibit itch sensation; however, the underlying molecular and neural mechanisms remain poorly understood. Here, we show that the spinal neurons expressing gastrin releasing peptide receptor (GRPR) primarily comprise excitatory interneurons that receive direct and indirect inputs from C and Aδ fibers and form contacts with projection neurons expressing the neurokinin 1 receptor (NK1R). Importantly, we show that noxious or cooling agents inhibit the activity of GRPR neurons via GABAergic signaling. By contrast, capsaicin, which evokes a mix of itch and pain sensations, enhances both excitatory and inhibitory spontaneous synaptic transmission onto GRPR neurons. These data strengthen the role of GRPR neurons as a key circuit for itch transmission and illustrate a spinal mechanism whereby pain inhibits itch by suppressing the function of GRPR neurons.
Collapse
|
24
|
Hofmann JI, Schwarz C, Rudolph U, Antkowiak B. Effects of Diazepam on Low-Frequency and High-Frequency Electrocortical γ-Power Mediated by α1- and α2-GABA A Receptors. Int J Mol Sci 2019; 20:E3486. [PMID: 31315211 PMCID: PMC6678188 DOI: 10.3390/ijms20143486] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Revised: 07/06/2019] [Accepted: 07/10/2019] [Indexed: 11/16/2022] Open
Abstract
Patterns of spontaneous electric activity in the cerebral cortex change upon administration of benzodiazepines. Here we are testing the hypothesis that the prototypical benzodiazepine, diazepam, affects spectral power density in the low (20-50 Hz) and high (50-90 Hz) γ-band by targeting GABAA receptors harboring α1- and α2-subunits. Local field potentials (LFPs) and action potentials were recorded in the barrel cortex of wild type mice and two mutant strains in which the drug exclusively acted via GABAA receptors containing either α1- (DZα1-mice) or α2-subunits (DZα2-mice). In wild type mice, diazepam enhanced low γ-power. This effect was also evident in DZα2-mice, while diazepam decreased low γ-power in DZα1-mice. Diazepam increased correlated local LFP-activity in wild type animals and DZα2- but not in DZα1-mice. In all genotypes, spectral power density in the high γ-range and multi-unit action potential activity declined upon diazepam administration. We conclude that diazepam modifies low γ-power in opposing ways via α1- and α2-GABAA receptors. The drug's boosting effect involves α2-receptors and an increase in local intra-cortical synchrony. Furthermore, it is important to make a distinction between high- and low γ-power when evaluating the effects of drugs that target GABAA receptors.
Collapse
Affiliation(s)
- Julian I Hofmann
- Werner Reichardt Center for Integrative Neuroscience, Eberhard-Karls-University Tübingen, 72076 Tübingen, Germany
| | - Cornelius Schwarz
- Werner Reichardt Center for Integrative Neuroscience, Eberhard-Karls-University Tübingen, 72076 Tübingen, Germany
| | - Uwe Rudolph
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois at Urbana-Champain, Urbana, IL 61802-6178 USA
| | - Bernd Antkowiak
- Werner Reichardt Center for Integrative Neuroscience, Eberhard-Karls-University Tübingen, 72076 Tübingen, Germany.
- Department of Anesthesiology and Intensive Care, Experimental Anesthesiology Section, Eberhard-Karls-University Tübingen, 72072 Tübingen, Germany.
| |
Collapse
|
25
|
Acton D, Ren X, Di Costanzo S, Dalet A, Bourane S, Bertocchi I, Eva C, Goulding M. Spinal Neuropeptide Y1 Receptor-Expressing Neurons Form an Essential Excitatory Pathway for Mechanical Itch. Cell Rep 2019; 28:625-639.e6. [PMID: 31315043 PMCID: PMC6709688 DOI: 10.1016/j.celrep.2019.06.033] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 05/20/2019] [Accepted: 06/06/2019] [Indexed: 01/08/2023] Open
Abstract
Acute itch can be generated by either chemical or mechanical stimuli, which activate separate pathways in the periphery and spinal cord. While substantial progress has been made in mapping the transmission pathway for chemical itch, the central pathway for mechanical itch remains obscure. Using complementary genetic and pharmacological manipulations, we show that excitatory neurons marked by the expression of the neuropeptide Y1 receptor (Y1Cre neurons) form an essential pathway in the dorsal spinal cord for the transmission of mechanical but not chemical itch. Ablating or silencing the Y1Cre neurons abrogates mechanical itch, while chemogenetic activation induces scratching. Moreover, using Y1 conditional knockout mice, we demonstrate that endogenous neuropeptide Y (NPY) acts via dorsal-horn Y1-expressing neurons to suppress light punctate touch and mechanical itch stimuli. NPY-Y1 signaling thus regulates the transmission of innocuous tactile information by establishing biologically relevant thresholds for touch discrimination and mechanical itch reflexes.
Collapse
Affiliation(s)
- David Acton
- Molecular Neurobiology Laboratory, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Xiangyu Ren
- Molecular Neurobiology Laboratory, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA; Biology Graduate Program, Division of Biological Sciences, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Stefania Di Costanzo
- Molecular Neurobiology Laboratory, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA; Biology Graduate Program, Division of Biological Sciences, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Antoine Dalet
- Molecular Neurobiology Laboratory, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Steeve Bourane
- Molecular Neurobiology Laboratory, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Ilaria Bertocchi
- Department of Neuroscience, University of Torino, Neuroscience Institute of the Cavalieri-Ottolenghi Foundation, Regione Gonzole 1, 10043 Orbassano, Italy
| | - Carola Eva
- Department of Neuroscience, University of Torino, Neuroscience Institute of the Cavalieri-Ottolenghi Foundation, Regione Gonzole 1, 10043 Orbassano, Italy
| | - Martyn Goulding
- Molecular Neurobiology Laboratory, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA.
| |
Collapse
|
26
|
Pagani M, Albisetti GW, Sivakumar N, Wildner H, Santello M, Johannssen HC, Zeilhofer HU. How Gastrin-Releasing Peptide Opens the Spinal Gate for Itch. Neuron 2019; 103:102-117.e5. [PMID: 31103358 PMCID: PMC6616317 DOI: 10.1016/j.neuron.2019.04.022] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 03/01/2019] [Accepted: 04/11/2019] [Indexed: 12/16/2022]
Abstract
Spinal transmission of pruritoceptive (itch) signals requires transneuronal signaling by gastrin-releasing peptide (GRP) produced by a subpopulation of dorsal horn excitatory interneurons. These neurons also express the glutamatergic marker vGluT2, raising the question of why glutamate alone is insufficient for spinal itch relay. Using optogenetics together with slice electrophysiology and mouse behavior, we demonstrate that baseline synaptic coupling between GRP and GRP receptor (GRPR) neurons is too weak for suprathreshold excitation. Only when we mimicked the endogenous firing of GRP neurons and stimulated them repetitively to fire bursts of action potentials did GRPR neurons depolarize progressively and become excitable by GRP neurons. GRPR but not glutamate receptor antagonism prevented this action. Provoking itch-like behavior by optogenetic activation of spinal GRP neurons required similar stimulation paradigms. These results establish a spinal gating mechanism for itch that requires sustained repetitive activity of presynaptic GRP neurons and postsynaptic GRP signaling to drive GRPR neuron output. Spinal itch relay requires effective communication from GRP to GRP receptor neurons Single action potentials in GRP neurons fail to release sufficient GRP Only burst firing releases enough GRP to prime GRP receptor neurons for activation GRP acts as a volume transmitter probably explaining why itch is hard to localize
Collapse
Affiliation(s)
- Martina Pagani
- Institute of Pharmacology and Toxicology, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland; Neuroscience Center Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Gioele W Albisetti
- Institute of Pharmacology and Toxicology, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland; Neuroscience Center Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Nandhini Sivakumar
- Institute of Pharmacology and Toxicology, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Hendrik Wildner
- Institute of Pharmacology and Toxicology, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Mirko Santello
- Institute of Pharmacology and Toxicology, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland; Neuroscience Center Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Helge C Johannssen
- Institute of Pharmacology and Toxicology, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Hanns Ulrich Zeilhofer
- Institute of Pharmacology and Toxicology, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland; Neuroscience Center Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland; Drug Discovery Network Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland; Institute of Pharmaceutical Sciences, Swiss Federal Institute of Technology (ETH) Zurich, Vladimir-Prelog-Weg 1-5/10, 8090 Zurich, Switzerland.
| |
Collapse
|
27
|
Witkin JM, Cerne R, Davis PG, Freeman KB, do Carmo JM, Rowlett JK, Methuku KR, Okun A, Gleason SD, Li X, Krambis MJ, Poe M, Li G, Schkeryantz JM, Jahan R, Yang L, Guo W, Golani LK, Anderson WH, Catlow JT, Jones TM, Porreca F, Smith JL, Knopp KL, Cook JM. The α2,3-selective potentiator of GABA A receptors, KRM-II-81, reduces nociceptive-associated behaviors induced by formalin and spinal nerve ligation in rats. Pharmacol Biochem Behav 2019; 180:22-31. [PMID: 30825491 PMCID: PMC6529285 DOI: 10.1016/j.pbb.2019.02.013] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 02/24/2019] [Accepted: 02/25/2019] [Indexed: 02/03/2023]
Abstract
Clinical evidence indicates that positive allosteric modulators (PAMs) of GABAA receptors have analgesic benefit in addition to efficacy in anxiety disorders. However, the utility of GABAA receptor PAMs as analgesics is compromised by the central nervous system side effects of non-selective potentiators. A selective potentiator of GABAA receptors associated with α2/3 subunits, KRM-II-81(5-(8-ethynyl-6-(pyridin-2-yl)-4H-benzo[f]imidazo[1,5-a][1,4]diazepin-3-yl)oxazole), has demonstrated anxiolytic, anticonvulsant, and antinociceptive effects in rodents with reduced motoric side effects. The present study evaluated the potential of KRM-II-81 as a novel analgesic. Oral administration of KRM-II-81 attenuated formalin-induced flinching; in contrast, diazepam was not active. KRM-II-81 attenuated nociceptive-associated behaviors engendered by chronic spinal nerve ligation (L5/L6). Diazepam decreased locomotion of rats at the dose tested in the formalin assay (10 mg/kg) whereas KRM-II-81 produced small decreases that were not dose-dependent (10-100 mg/kg). Plasma and brain levels of KRM-II-81 were used to demonstrate selectivity for α2/3- over α1-associated GABAA receptors and to define the degree of engagement of these receptors. Plasma and brain concentrations of KRM-II-81 were positively-associated with analgesic efficacy. GABA currents from isolated rat dorsal-root ganglion cultures were potentiated by KRM-II-81 with an ED50 of 32 nM. Measures of respiratory depression were reduced by alprazolam whereas KRM-II-81 was either inactive or produced effects with lower potency and efficacy. These findings add to the growing body of data supporting the idea that α2/3-selective GABAA receptor PAMs will have efficacy and tolerability as pain medications including those for neuropathic pain. Given their predicted anxiolytic effects, α2/3-selective GABAA receptor PAMs offer an additional inroad into the management of pain.
Collapse
Affiliation(s)
- J M Witkin
- The Lilly Research Labs, Eli Lilly and Company, Indianapolis, IN, USA; Department of Chemistry & Biochemistry, University of Wisconsin-Milwaukee, Milwaukee, WI, USA; Laboratory of Antiepileptic Drug Discovery, Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, IN, USA.
| | - R Cerne
- The Lilly Research Labs, Eli Lilly and Company, Indianapolis, IN, USA
| | | | - K B Freeman
- Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, MS, USA
| | - J M do Carmo
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS, USA
| | - J K Rowlett
- Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, MS, USA
| | - K R Methuku
- Department of Chemistry & Biochemistry, University of Wisconsin-Milwaukee, Milwaukee, WI, USA
| | - A Okun
- The Lilly Research Labs, Eli Lilly and Company, Indianapolis, IN, USA
| | - S D Gleason
- The Lilly Research Labs, Eli Lilly and Company, Indianapolis, IN, USA
| | - X Li
- The Lilly Research Labs, Eli Lilly and Company, Indianapolis, IN, USA
| | - M J Krambis
- The Lilly Research Labs, Eli Lilly and Company, Indianapolis, IN, USA
| | - M Poe
- Department of Chemistry & Biochemistry, University of Wisconsin-Milwaukee, Milwaukee, WI, USA
| | - G Li
- Department of Chemistry & Biochemistry, University of Wisconsin-Milwaukee, Milwaukee, WI, USA
| | - J M Schkeryantz
- The Lilly Research Labs, Eli Lilly and Company, Indianapolis, IN, USA
| | - R Jahan
- Department of Chemistry & Biochemistry, University of Wisconsin-Milwaukee, Milwaukee, WI, USA
| | - L Yang
- The Lilly Research Labs, Eli Lilly and Company, Indianapolis, IN, USA
| | - W Guo
- The Lilly Research Labs, Eli Lilly and Company, Indianapolis, IN, USA
| | - L K Golani
- Department of Chemistry & Biochemistry, University of Wisconsin-Milwaukee, Milwaukee, WI, USA
| | - W H Anderson
- The Lilly Research Labs, Eli Lilly and Company, Indianapolis, IN, USA
| | - J T Catlow
- The Lilly Research Labs, Eli Lilly and Company, Indianapolis, IN, USA
| | - T M Jones
- The Lilly Research Labs, Eli Lilly and Company, Indianapolis, IN, USA
| | - F Porreca
- Department of Pharmacology, University of Arizona, Tucson, AZ, USA
| | - J L Smith
- Laboratory of Antiepileptic Drug Discovery, Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
| | - K L Knopp
- The Lilly Research Labs, Eli Lilly and Company, Indianapolis, IN, USA
| | - J M Cook
- Department of Chemistry & Biochemistry, University of Wisconsin-Milwaukee, Milwaukee, WI, USA
| |
Collapse
|
28
|
Spinal GABA A receptors for pain control: back to the future? Br J Anaesth 2019; 123:e176-e179. [PMID: 30916021 DOI: 10.1016/j.bja.2019.01.030] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Accepted: 01/31/2019] [Indexed: 11/21/2022] Open
|