1
|
Dok AR, Radhakrishnan S, de Jong F, Becquevort E, Deschaume O, Chandran CV, de Coene Y, Bartic C, Van der Auweraer M, Thielemans W, Kirschhock C, van der Veen MA, Verbiest T, Breynaert E, Van Cleuvenbergen S. Amorphous-to-Crystalline Transformation: How Cluster Aggregation Drives the Multistep Nucleation of ZIF-8. J Am Chem Soc 2025. [PMID: 40032833 DOI: 10.1021/jacs.4c16615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
Nucleation, the pivotal first step of crystallization, governs the essential characteristics of crystallization products, including size distribution, morphology, and polymorphism. While understanding this process is paramount to the design of chemical, pharmaceutical, and industrial production processes, major knowledge gaps remain, especially with respect to the crystallization of porous solids. Also for nanocrystalline ZIF-8, one of the most widely studied metal-organic frameworks, questions regarding the species involved in the nucleation pathway and their structural and chemical transformations remain unanswered. By combining harmonic light scattering, inherently sensitive to structural changes, with NMR spectroscopy, which reveals molecular exchanges between particles and solution, we were able to capture the crystallization mechanism of ZIF-8 in unprecedented detail. This dual approach provides concurrent structural and chemical insights, revealing key processes not previously observed in ZIF crystallization. Upon mixing, small charged prenucleation clusters (PNCs) are formed, exhibiting an excess of ligands and net positive charge. We show that nucleation is initiated by aggregation of PNCs, through the release of ligands and associated protons to the liquid. This leads to the formation of charge neutral amorphous precursor particles (APPs), which incorporate neutral monomers from the solution and crystallized ZIF-8. Our work highlights chemical dynamics as a vital, yet often overlooked, dimension in the multistage structural evolution of MOFs. By establishing the critical role of PNCs in the nucleation of ZIF-8, new pathways open up for controlling crystallization of metal-organic frameworks through targeted chemical interactions with these species.
Collapse
Affiliation(s)
- Ahmet Rafet Dok
- Department of Chemistry, Molecular Imaging and Photonics, KU Leuven, campus Kulak Kortrijk, E. Sabbelaan 53, Kortrijk 8500, Belgium
| | - Sambhu Radhakrishnan
- NMR-Xray Platform for Convergence Research (NMRCoRe), KU Leuven, Leuven 3001, Belgium
- Center for Surface Chemistry and Catalysis - Characterisation and Application Team (COK-KAT), KU Leuven, Leuven 3001, Belgium
| | - Flip de Jong
- Department of Chemistry, Molecular Imaging and Photonics, KU Leuven, Leuven Chem&Tech, Celestijnenlaan 200F, Leuven 3001, Belgium
| | - Estelle Becquevort
- Center for Surface Chemistry and Catalysis - Characterisation and Application Team (COK-KAT), KU Leuven, Leuven 3001, Belgium
| | - Olivier Deschaume
- Department of Physics and Astronomy, Soft Matter Physics and Biophysics Section, KU Leuven, Celestijnenlaan 200 D - box 2416, Leuven 3001, Belgium
| | - C Vinod Chandran
- NMR-Xray Platform for Convergence Research (NMRCoRe), KU Leuven, Leuven 3001, Belgium
- Center for Surface Chemistry and Catalysis - Characterisation and Application Team (COK-KAT), KU Leuven, Leuven 3001, Belgium
| | - Yovan de Coene
- Department of Chemistry, Molecular Imaging and Photonics, KU Leuven, Celestijnenlaan 200D, Heverlee 3001, Belgium
| | - Carmen Bartic
- Department of Physics and Astronomy, Soft Matter Physics and Biophysics Section, KU Leuven, Celestijnenlaan 200 D - box 2416, Leuven 3001, Belgium
| | - Mark Van der Auweraer
- Department of Chemistry, Molecular Imaging and Photonics, KU Leuven, Leuven Chem&Tech, Celestijnenlaan 200F, Leuven 3001, Belgium
| | - Wim Thielemans
- Department of Chemical Engineering, Sustainable Materials Lab, KU Leuven, campus Kulak Kortrijk, Etienne Sabbelaan 53, Kortrijk 8500, Belgium
| | - Christine Kirschhock
- Center for Surface Chemistry and Catalysis - Characterisation and Application Team (COK-KAT), KU Leuven, Leuven 3001, Belgium
| | - Monique A van der Veen
- Catalysis Engineering, Department of Chemical Engineering, Delft University of Technology, Delft 2629HZ, The Netherlands
| | - Thierry Verbiest
- Department of Chemistry, Molecular Imaging and Photonics, KU Leuven, Celestijnenlaan 200D, Heverlee 3001, Belgium
| | - Eric Breynaert
- NMR-Xray Platform for Convergence Research (NMRCoRe), KU Leuven, Leuven 3001, Belgium
- Center for Surface Chemistry and Catalysis - Characterisation and Application Team (COK-KAT), KU Leuven, Leuven 3001, Belgium
| | - Stijn Van Cleuvenbergen
- Department of Chemistry, Molecular Imaging and Photonics, KU Leuven, campus Kulak Kortrijk, E. Sabbelaan 53, Kortrijk 8500, Belgium
| |
Collapse
|
2
|
Polash SA, Poddar A, Pyreddy S, Carraro F, D'Angelo AM, Bryant G, Falcaro P, Shukla R. Phase Characterization and Bioactivity Evaluation of Nucleic Acid-Encapsulated Biomimetically Mineralized ZIF-8. ACS APPLIED MATERIALS & INTERFACES 2025; 17:3002-3012. [PMID: 39761101 DOI: 10.1021/acsami.4c17664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2025]
Abstract
Metal-organic frameworks (MOFs) provide diverse applications across a wide range of scientific disciplines, including drug/nucleic acid (NA) delivery. In the subclass of MOFs, zeolitic imidazolate framework-8 (ZIF-8) is well regarded due to its exceptional physicochemical properties. Biomolecules can be encapsulated and released under precise conditions within ZIF, making it an important material for materials science and biomedical applications. Different solvents and synthesis methods influence the ZIF's topologies and framework structures. The physicochemical properties of plasmid-encapsulated ZIF (plasmid@ZIF) can be controlled by tuning the precursors and biomolecular concentration. Using plasmid@ZIF, this study demonstrated that nucleic acids can be loaded precisely and released with a controlled bioactivity within cells. It was found that the ZIF phases substantially influenced both NA delivery into the cell and physicochemical properties. As a result of this study, we better understand MOFs' potential in NA delivery, and it emphasizes the importance of precisely controlling their physicochemical properties.
Collapse
Affiliation(s)
- Shakil Ahmed Polash
- Ian Potter NanoBiosensing Facility, NanoBiotechnology Research Laboratory, School of Science, RMIT University, Melbourne, Victoria 3000, Australia
- Centre for Advance Materials & Industrial Chemistry, RMIT University, Melbourne, Victoria 3000, Australia
| | - Arpita Poddar
- Ian Potter NanoBiosensing Facility, NanoBiotechnology Research Laboratory, School of Science, RMIT University, Melbourne, Victoria 3000, Australia
- Fiona Elsey Cancer Research Institute, Ballarat, Victoria 3350, Australia
| | - Suneela Pyreddy
- Ian Potter NanoBiosensing Facility, NanoBiotechnology Research Laboratory, School of Science, RMIT University, Melbourne, Victoria 3000, Australia
| | - Francesco Carraro
- Institute of Physical and Theoretical Chemistry, Graz University of Technology, Graz 8010, Austria
| | - Anita M D'Angelo
- Australian Nuclear Science and Technology Organization (ANSTO), Australian Synchrotron, Clayton, Victoria 3168, Australia
| | - Gary Bryant
- School of Science, STEM College, RMIT University, Melbourne, Victoria 3000, Australia
| | - Paolo Falcaro
- Institute of Physical and Theoretical Chemistry, Graz University of Technology, Graz 8010, Austria
| | - Ravi Shukla
- Ian Potter NanoBiosensing Facility, NanoBiotechnology Research Laboratory, School of Science, RMIT University, Melbourne, Victoria 3000, Australia
- Centre for Advance Materials & Industrial Chemistry, RMIT University, Melbourne, Victoria 3000, Australia
- School of Science, STEM College, RMIT University, Melbourne, Victoria 3000, Australia
| |
Collapse
|
3
|
Xiao G, Guo J, Zheng M, Zhang J, Chen L, Dai M, Afewerki S, Chen X, Zhang X. Tea/Coffee Sustainable Nanoarchitectures Purify Wastewater. NANO LETTERS 2024; 24:15509-15516. [PMID: 39601212 DOI: 10.1021/acs.nanolett.4c03070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Transforming spent coffee grounds and tea residues into valuable hierarchical porous materials presents a sustainable solution for environmental remediation due to the low cost, extensive availability, and versatile functionalized interface. Here, we systematically investigated tea polyphenol-mediated morphological transformation of spent coffee grounds to the synthesis of three-dimensional (3D) mesoporous metal-organic framework (MOF)-derived nanoarchitectured carbon composites. We adopted the sustainable cost-effective tea-coffee derivative to remove typical marine micropollutants, such as antibiotic wastewater, radioactive pollutants, and microplastics. This innovative adsorbent shows remarkable efficiency in antibiotic adsorption, achieving up to 99.62% removal of tetracycline (TC), with an impressive maximum adsorption capacity of 373.1 mg/g. It also demonstrates a remarkable ability to remove marine microplastics and radioactive pollutants with immediate nuclear threats and global sanitation and health crisis posed by Fukushima nuclear waste toward the world. The innovative strategy of treating waste with waste highlights economic potential in wastewater treatment.
Collapse
Affiliation(s)
- Gao Xiao
- College of Environment and Safety Engineering, Fuzhou University, Fuzhou 350108, Fujian, P. R. China
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
- Division of Health Sciences & Technology, Harvard-Massachusetts Institute of Tcchnology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Junling Guo
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
- BMI Center for Biomass Materials and Nanointerfaces, College of Biomass Science and Engineering, Sichuan University, Chengdu, Sichuan 610065, China
| | - Mingzhu Zheng
- College of Environment and Safety Engineering, Fuzhou University, Fuzhou 350108, Fujian, P. R. China
| | - Jun Zhang
- College of Environment and Safety Engineering, Fuzhou University, Fuzhou 350108, Fujian, P. R. China
| | - Liyin Chen
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Manna Dai
- Computing & Intelligence Department, Institute of High Performance Computing, Agency for Science, Technology and Research (A*STAR), 138632, Singapore
| | - Samson Afewerki
- Division of Health Sciences & Technology, Harvard-Massachusetts Institute of Tcchnology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Xing Chen
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Xingcai Zhang
- Department of Materials Science and Engineering, Stanford University, Stanford, California 94305, United States
| |
Collapse
|
4
|
Ahsin A, Qamar A, Muthu S, Vetrivelan V, Cao J, Bian W. Superalkali nature of the Si 9M 5 (M = Li, Na, and K) Zintl clusters: a theoretical study on electronic structure and dynamic nonlinear optical properties. RSC Adv 2024; 14:17091-17101. [PMID: 38808233 PMCID: PMC11130639 DOI: 10.1039/d4ra02396j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 05/21/2024] [Indexed: 05/30/2024] Open
Abstract
Zintl clusters have attracted widespread attention because of their intriguing bonding and unusual physical properties. We explore the Si9 and Si9M5 (where M = Li, Na, and K) Zintl clusters using the density functional theory combined with other methods. The exothermic nature of the Si9M5 cluster formation is disclosed, and the interactions of alkali metals with pristine Si9 are shown to be noncovalent. The reduced density gradient analysis is performed, in which increased van der Waals interactions are observed with the enlargement of the size of alkali metals. The influence of the implicit solvent model is considered, where the hyperpolarizability (βo) in the solvent is found to be about 83 times larger than that in the gas phase for Si9K5. The frequency-dependent nonlinear optical (NLO) response for the dc-Kerr effect is observed up to 1.3 × 1011 au, indicating an excellent change in refractive index by an externally applied electric field. In addition, natural bonding orbitals obtained from the second-order perturbation analysis show the charge transfer with the donor-acceptor orbitals. Electron localization function and localized orbital locator analyses are also performed to better understand the bonding electrons in designed clusters. The studied Zintl clusters demonstrate the superalkali character in addition to their remarkable optical and nonlinear optical properties.
Collapse
Affiliation(s)
- Atazaz Ahsin
- Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences Beijing 100190 China
- School of Chemical Sciences, University of Chinese Academy of Sciences Beijing 100049 China
| | - Aamna Qamar
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Polymer Physics and Chemistry, Chinese Academy of Sciences Beijing 100190 China
- School of Chemical Sciences, University of Chinese Academy of Sciences Beijing 100049 China
| | - S Muthu
- Department of Physics, Arignar Anna Government Arts College Cheyyar 604407 Tamil Nadu India
| | - V Vetrivelan
- Department of Physics, Government College of Engineering Srirangam Thiruchirappalli 620012 Tamil Nadu India
| | - Jianwei Cao
- Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences Beijing 100190 China
| | - Wensheng Bian
- Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences Beijing 100190 China
- School of Chemical Sciences, University of Chinese Academy of Sciences Beijing 100049 China
| |
Collapse
|
5
|
Mapile AN, LeRoy MA, Fabrizio K, Scatena LF, Brozek CK. The Surface of Colloidal Metal-Organic Framework Nanoparticles Revealed by Vibrational Sum Frequency Scattering Spectroscopy. ACS NANO 2024; 18:13406-13414. [PMID: 38722052 DOI: 10.1021/acsnano.4c03758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Solvation shells strongly influence the interfacial chemistry of colloidal systems, from the activity of proteins to the colloidal stability and catalysis of nanoparticles. Despite their fundamental and practical importance, solvation shells have remained largely undetected by spectroscopy. Furthermore, their ability to assemble at complex but realistic interfaces with heterogeneous and rough surfaces remains an open question. Here, we apply vibrational sum frequency scattering spectroscopy (VSFSS), an interface-specific technique, to colloidal nanocrystals with porous metal-organic frameworks (MOFs) as a case study. Due to the porous nature of the solvent-particle boundary, MOF particles challenge conventional models of colloidal and interfacial chemistry. Their multiweek colloidal stability in the absence of conventional surface ligands suggests that stability may arise in part from solvation forces. Spectra of colloidally stable Zn(2-methylimidazolate)2 (ZIF-8) in polar solvents indicate the presence of ordered solvation shells, solvent-metal binding, and spontaneous ordering of organic bridging linkers within the MOF. These findings help explain the unexpected colloidal stability of MOF colloids, while providing a roadmap for applying VSFSS to wide-ranging colloidal nanocrystals in general.
Collapse
Affiliation(s)
- Ashley N Mapile
- Department of Chemistry and Biochemistry, Materials Science Institute, University of Oregon, Eugene, Oregon 97403, United States
| | - Michael A LeRoy
- Department of Chemistry and Biochemistry, Materials Science Institute, University of Oregon, Eugene, Oregon 97403, United States
| | - Kevin Fabrizio
- Department of Chemistry and Biochemistry, Materials Science Institute, University of Oregon, Eugene, Oregon 97403, United States
| | - Lawrence F Scatena
- Department of Chemistry and Biochemistry, Materials Science Institute, University of Oregon, Eugene, Oregon 97403, United States
| | - Carl K Brozek
- Department of Chemistry and Biochemistry, Materials Science Institute, University of Oregon, Eugene, Oregon 97403, United States
| |
Collapse
|
6
|
Chen L, Lu J, Li X, Luan N, Song Y, Yang S, Yuan M, Qin H, Zhu H, Dong X, Li K, Zhang D, Chen L, Dai X, Wang Y, Wang Y, Xu C, Chai Z, Wang S. Isotope Effect-Enabled Crystal Enlargement in Metal-Organic Frameworks. J Am Chem Soc 2024; 146:6697-6705. [PMID: 38419157 DOI: 10.1021/jacs.3c12866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
Synthesizing large metal-organic framework (MOF) single crystals has garnered significant research interest, although it is hindered by the fast nucleation kinetics that gives rise to numerous small nuclei. Given the different chemical origins inherent in various types of MOFs, the development of a general approach to enhancing their crystal sizes presents a formidable challenge. Here, we propose a simple isotopic substitution strategy to promote size growth in MOFs by inhibiting nucleation, resulting in a substantial increase in the crystal volume ranging from 1.7- to 165-fold. Impressively, the crystals prepared under optimized conditions by normal approaches can be further enlarged by the isotope effect, yielding the largest MOF single crystal (2.9 cm × 0.48 cm × 0.23 cm) among the one-pot synthesis method. Detailed in situ characterizations reveal that the isotope effect can retard crystallization kinetics, establish a higher nucleation energy barrier, and consequently generate fewer nuclei that eventually grow larger. Compared with the smaller crystals, the isotope effect-enlarged crystal shows 33% improvement in the X-ray dose rate detection limit. This work enriches the understanding of the isotope effect on regulating the crystallization process and provides inspiration for exploring potential applications of large MOF single crystals.
Collapse
Affiliation(s)
- Lixi Chen
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Junhao Lu
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Xiaoqi Li
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Ni Luan
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Yiting Song
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Shenghai Yang
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Mengjia Yuan
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Haoming Qin
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Huifang Zhu
- Analysis and Testing Center, Soochow University, Suzhou 215123, China
| | - Xue Dong
- Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084, China
| | - Kai Li
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Duo Zhang
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Long Chen
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Xing Dai
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Yanlong Wang
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Yaxing Wang
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Chao Xu
- Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084, China
| | - Zhifang Chai
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Shuao Wang
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| |
Collapse
|
7
|
Dhaini A, Alfadel Raad F, Thill A, Prelot B, Martin-Gassin G, Gassin PM. Hydrophobic dye solubilization via hybrid imogolite nanotubes probed using second harmonic scattering. Phys Chem Chem Phys 2023; 25:22913-22919. [PMID: 37591824 DOI: 10.1039/d3cp02780e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/19/2023]
Abstract
This article explores the organization and interactions of Disperse Orange 3 (DO3) hydrophobic dye molecules within hybrid organic-inorganic imogolite nanotubes. In pure water, the DO3 dye molecules self assemble into large insoluble 2D nanosheets whose structure is also explored by molecular dynamics simulations. The dye molecules are however efficiently solubilized in the presence of hybrid imogolite nanotubes. The filling of the internal hydrophobic cavity of the nanotubes is quantified. The organization of the molecules inside the nanotube is probed using the polarization resolved second harmonic scattering (SHS) technique coupled with simulation. At the highest loading, the dyes fill the nanotube with their principal axis parallel to the nanotube walls showing a strong SHS signal due to this encapsulation.
Collapse
Affiliation(s)
- Ali Dhaini
- ICGM, Univ. Montpellier, ENSCM, CNRS, Montpellier, France.
| | - Fadwa Alfadel Raad
- LIONS, NIMBE, CEA, CNRS, Université Paris-Saclay, Gif sur Yvette 91191, France
| | - Antoine Thill
- LIONS, NIMBE, CEA, CNRS, Université Paris-Saclay, Gif sur Yvette 91191, France
| | | | | | | |
Collapse
|
8
|
Balestra SRG, Semino R. Computer simulation of the early stages of self-assembly and thermal decomposition of ZIF-8. J Chem Phys 2022; 157:184502. [DOI: 10.1063/5.0128656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
We employ all-atom well-tempered metadynamics simulations to study the mechanistic details of both the early stages of nucleation and crystal decomposition for the benchmark metal–organic framework (MOF) ZIF-8. To do so, we developed and validated a force field that reliably models the modes of coordination bonds via a Morse potential functional form and employs cationic and anionic dummy atoms to capture coordination symmetry. We also explored a set of physically relevant collective variables and carefully selected an appropriate subset for our problem at hand. After a rapid increase of the Zn–N connectivity, we observe the evaporation of small clusters in favor of a few large clusters, which leads to the formation of an amorphous highly connected aggregate. [Formula: see text] and [Formula: see text] complexes are observed with lifetimes in the order of a few picoseconds, while larger structures, such as four-, five-, and six-membered rings, have substantially longer lifetimes of a few nanoseconds. The free ligands act as “templating agents” for the formation of sodalite cages. ZIF-8 crystal decomposition results in the formation of a vitreous phase. Our findings contribute to a fundamental understanding of MOF’s synthesis that paves the way to controlling synthesis products. Furthermore, our developed force field and methodology can be applied to model solution processes that require coordination bond reactivity for other ZIFs besides ZIF-8.
Collapse
Affiliation(s)
- S. R. G. Balestra
- ICGM, Univ. Montpellier, CNRS, ENSCM, Montpellier, France
- Departamento de Sistemas Físicos, Químicos y Naturales, Universidad Pablo de Olavide, Ctra. Utrera km 1, Seville ES-41013, Spain
- Instituto de Ciencia de Materiales de Madrid, Consejo Superior de Investigaciones Científicas (ICMM-CSIC), c/ Sor Juana Inés de la Cruz 3, Madrid ES-28049, Spain
| | - R. Semino
- ICGM, Univ. Montpellier, CNRS, ENSCM, Montpellier, France
- Sorbonne Université, CNRS, Physico-chimie des Electrolytes et Nanosystèmes Interfaciaux, PHENIX, F-75005 Paris, France
| |
Collapse
|
9
|
Dantelle G, Beauquis S, Le Dantec R, Monnier V, Galez C, Mugnier Y. Solution-Based Synthesis Routes for the Preparation of Noncentrosymmetric 0-D Oxide Nanocrystals with Perovskite and Nonperovskite Structures. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2200992. [PMID: 35691941 DOI: 10.1002/smll.202200992] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 05/21/2022] [Indexed: 06/15/2023]
Abstract
With the miniaturization of electronic-based devices, the foreseen potential of new optical nanoprobes and the assessment of eventual size and shape effects, elaboration of multifunctional noncentrosymmetric nanocrystals with ferroelectric, pyroelectric, piezoelectric, and nonlinear optical properties are the subject of an increasing research interest. Here, the recent achievements from the solution-based methods (coprecipitation in homogeneous and nanostructured media, sol-gel processes including various chemistries and hydro/solvothermal techniques) to prepare 0-D perovskite and nonperovskite oxides in the 5-500 nm size range are critically reviewed. To cover a representative list of covalent- and ionic-type materials, BaTiO3 and its derivatives, niobate compounds (i.e., K/Na/LiNbO3 ), multiferroic BiFeO3, and crystals of lower symmetry including KTiOPO4 and some iodate compounds such as Fe(IO3 )3 and La(IO3 )3 are systematically in focus. The resulting size, morphology, and aggregation state are discussed in light of the proposed formation mechanisms. Because of a higher complexity related to their chemical composition and crystalline structures, improving the rational design of these multifunctional oxides in terms of finely-tuned compositions, crystalline hosts and structure-property relationships still need in the future a special attention of the research community to the detailed understanding of the reaction pathways and crystallization mechanisms.
Collapse
Affiliation(s)
- Géraldine Dantelle
- Université Grenoble Alpes, CNRS, Grenoble INP, Institut Néel, Grenoble, 38000, France
| | | | - Ronan Le Dantec
- Université Savoie Mont Blanc, SYMME, Annecy, F-74000, France
| | - Virginie Monnier
- Univ Lyon, Ecole Centrale de Lyon, CNRS, INSA Lyon, Université Claude Bernard Lyon 1, CPE Lyon, CNRS, INL, UMR5270, Ecully, 69130, France
| | - Christine Galez
- Université Savoie Mont Blanc, SYMME, Annecy, F-74000, France
| | - Yannick Mugnier
- Université Savoie Mont Blanc, SYMME, Annecy, F-74000, France
| |
Collapse
|
10
|
Assaf M, Martin-Gassin G, Prelot B, Gassin PM. Driving Forces of Cationic Dye Adsorption, Confinement, and Long-Range Correlation in Zeolitic Materials. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:1296-1303. [PMID: 35026117 DOI: 10.1021/acs.langmuir.1c03280] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Zeolitic materials are commonly used to capture emergent contaminants in water or complex aqueous effluents. The efficiency of this adsorption depends strongly on the guest-host interactions and on the surrounding environment with possible coadsorption of the solvent. Only a few experimental techniques are available to probe in situ the sequestration processes at the solid/liquid interface. We propose in the present work to combine the second harmonic scattering technique with isothermal titration calorimetry in order to investigate the adsorption and the confinement of a hemicyanine dye adsorbed inside faujasite materials. The methodology described here permits the quantification of the correlations between the confined dyes in the material and thus gives local information about the organization at the nanometer scale. Various impacts, such as the effect of the solvent type and the silicon to aluminum ratio of the zeolitic adsorbent, are quantitatively estimated and discussed. This work highlights that the most correlated system matches the higher adsorption capacity associated with the lower entropic contribution.
Collapse
Affiliation(s)
- Marwa Assaf
- ICGM, Université de Montpellier, ENSCM, CNRS, 34095 Montpellier, France
| | | | - Benedicte Prelot
- ICGM, Université de Montpellier, ENSCM, CNRS, 34095 Montpellier, France
| | | |
Collapse
|
11
|
Abstract
Many of the proposed applications of metal-organic framework (MOF) materials may fail to materialize if the community does not fully address the difficult fundamental work needed to map out the 'time gap' in the literature - that is, the lack of investigation into the time-dependent behaviours of MOFs as opposed to equilibrium or steady-state properties. Although there are a range of excellent investigations into MOF dynamics and time-dependent phenomena, these works represent only a tiny fraction of the vast number of MOF studies. This Review provides an overview of current research into the temporal evolution of MOF structures and properties by analysing the time-resolved experimental techniques that can be used to monitor such behaviours. We focus on innovative techniques, while also discussing older methods often used in other chemical systems. Four areas are examined: MOF formation, guest motion, electron motion and framework motion. In each area, we highlight the disparity between the relatively small amount of (published) research on key time-dependent phenomena and the enormous scope for acquiring the wider and deeper understanding that is essential for the future of the field.
Collapse
|
12
|
Li X, Wang D, Ning H, Xin Y, He Z, Su F, Wang Y, Zhang J, Wang H, Qian L, Zheng Y, Yao D, Li M. An electrostatic repulsion strategy construct ZIFs based liquids with permanent porosity for efficient CO2 capture. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.119305] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
13
|
Kujawa J, Al-Gharabli S, Muzioł TM, Knozowska K, Li G, Dumée LF, Kujawski W. Crystalline porous frameworks as nano-enhancers for membrane liquid separation – Recent developments. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.213969] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
14
|
Shearan SJI, Jacobsen J, Costantino F, D'Amato R, Novikov D, Stock N, Andreoli E, Taddei M. In Situ X-ray Diffraction Investigation of the Crystallisation of Perfluorinated Ce IV -Based Metal-Organic Frameworks with UiO-66 and MIL-140 Architectures*. Chemistry 2021; 27:6579-6592. [PMID: 33480453 DOI: 10.1002/chem.202005085] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 01/20/2021] [Indexed: 11/08/2022]
Abstract
We report on the results of an in situ synchrotron powder X-ray diffraction study of the crystallisation in aqueous medium of two recently discovered perfluorinated CeIV -based metal-organic frameworks (MOFs), analogues of the already well investigated ZrIV -based UiO-66 and MIL-140A, namely, F4_UiO-66(Ce) and F4_MIL-140A(Ce). The two MOFs were originally obtained in pure form in similar conditions, using ammonium cerium nitrate and tetrafluoroterephthalic acid as reagents, and small variations of the reaction parameters were found to yield mixed phases. Here, we investigate the crystallisation of these compounds, varying parameters such as temperature, amount of the protonation modulator nitric acid and amount of the coordination modulator acetic acid. When only HNO3 is present in the reaction environment, only F4_MIL-140A(Ce) is obtained. Heating preferentially accelerates nucleation, which becomes rate determining below 57 °C. Upon addition of AcOH to the system, alongside HNO3 , mixed-phased products are obtained. F4_UiO-66(Ce) is always formed faster, and no interconversion between the two phases occurs. In the case of F4_UiO-66(Ce), crystal growth is always the rate-determining step. A higher amount of HNO3 favours the formation of F4_MIL-140A(Ce), whereas increasing the amount of AcOH favours the formation of F4_UiO-66(Ce). Based on the in situ results, a new optimised route to achieving a pure, high-quality F4_MIL-140A(Ce) phase in mild conditions (60 °C, 1 h) is also identified.
Collapse
Affiliation(s)
- Stephen J I Shearan
- Energy Safety Research Institute, Swansea University, Fabian Way, Swansea, SA1 8EN, UK
| | - Jannick Jacobsen
- Institute of Inorganic Chemistry, Christian-Albrechts-University, Max-Eyth-Str. 2, 24118, Kiel, Germany
| | - Ferdinando Costantino
- Department of Chemistry, Biology and Biotechnologies, University of Perugia, Via Elce di Sotto n. 8, 06123, Perugia, Italy
| | - Roberto D'Amato
- Department of Chemistry, Biology and Biotechnologies, University of Perugia, Via Elce di Sotto n. 8, 06123, Perugia, Italy
| | - Dmitri Novikov
- Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, 22607, Hamburg, Germany
| | - Norbert Stock
- Institute of Inorganic Chemistry, Christian-Albrechts-University, Max-Eyth-Str. 2, 24118, Kiel, Germany
| | - Enrico Andreoli
- Energy Safety Research Institute, Swansea University, Fabian Way, Swansea, SA1 8EN, UK
| | - Marco Taddei
- Energy Safety Research Institute, Swansea University, Fabian Way, Swansea, SA1 8EN, UK.,Department of Chemistry and Industrial Chemistry, University of Pisa, Via Giuseppe Moruzzi 13, 56124, Pisa, Italy
| |
Collapse
|
15
|
Moris M, Van Den Eede MP, Koeckelberghs G, Deschaume O, Bartic C, Clays K, Van Cleuvenbergen S, Verbiest T. Solvent Role in the Self-Assembly of Poly(3-alkylthiophene): A Harmonic Light Scattering Study. Macromolecules 2021. [DOI: 10.1021/acs.macromol.0c02544] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Michèle Moris
- Department of Chemistry, Molecular Imaging and Photonics, KU Leuven, Celestijnenlaan 200D, 3001 Heverlee, Belgium
| | - Marie-Paule Van Den Eede
- Department of Chemistry, Polymer Chemistry and Materials, KU Leuven, Celestijnenlaan 200F, 3001 Heverlee, Belgium
| | - Guy Koeckelberghs
- Department of Chemistry, Polymer Chemistry and Materials, KU Leuven, Celestijnenlaan 200F, 3001 Heverlee, Belgium
| | - Olivier Deschaume
- Department of Physics and Astronomy, Soft-Matter Physics and Biophysics Section, KU Leuven, Celestijnenlaan 200D, 3001 Heverlee, Belgium
| | - Carmen Bartic
- Department of Physics and Astronomy, Soft-Matter Physics and Biophysics Section, KU Leuven, Celestijnenlaan 200D, 3001 Heverlee, Belgium
| | - Koen Clays
- Department of Chemistry, Molecular Imaging and Photonics, KU Leuven, Celestijnenlaan 200D, 3001 Heverlee, Belgium
| | - Stijn Van Cleuvenbergen
- Department of Chemistry, Physical Chemistry, KU Leuven−KULAK, Etienne Sabbelaan 53, 8500 Kortrijk, Belgium
| | - Thierry Verbiest
- Department of Chemistry, Molecular Imaging and Photonics, KU Leuven, Celestijnenlaan 200D, 3001 Heverlee, Belgium
| |
Collapse
|
16
|
Tran VA, Lee SW. pH-triggered degradation and release of doxorubicin from zeolitic imidazolate framework-8 (ZIF8) decorated with polyacrylic acid. RSC Adv 2021; 11:9222-9234. [PMID: 35423461 PMCID: PMC8695245 DOI: 10.1039/d0ra10423j] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 01/26/2021] [Indexed: 02/02/2023] Open
Abstract
Zeolite imidazolate framework-8 (ZIF8) represents a class of highly porous materials with a very high surface area, large pore volume, thermal stability, and biocompatibility. In this study, ZIF8-based nanostructures demonstrated a high loading capacity for doxorubicin (62 mg Dox per g ZIF8) through the combination of π-π stacking, hydrogen bonding, and electrostatic interactions. Dox-loaded ZIF8 was subsequently decorated with polyacrylic acid (PAA) (ZIF8-Dox@PAA) that showed good dispersity, fluorescent imaging capability, and pH-responsive drug release. The stable localization and association of Dox in ZIF8@PAA were investigated by C13 nuclear magnetic resonance (NMR) and Fourier transform infrared spectroscopy. The NMR chemical shifts suggest the formation of hydrogen bonding interactions and π-π stacking interactions between the imidazole ring of ZIF8 and the benzene ring of Dox that can significantly improve the storage of Dox in the ZIF8 nanostructure. Additionally, the release mechanism of ZIF8-Dox@PAA was discussed based on the detachment of the PAA layer, enhanced solubility of Dox, and destruction of ZIF8 at different pH conditions. In vitro release test of ZIF8-Dox@PAA at pH 7.4 showed the low release rate of 24.7% even after 100 h. However, ZIF8-Dox@PAA at pH 4.0 exhibited four stages of release profiles, significantly enhanced release rate of 84.7% at the final release stage after 30 h. The release kinetics of ZIF8-Dox@PAA was analyzed by the sigmoidal Hill, exponential Weibull, and two-stage BiDoseResp models. The ZIF8-Dox@PAA nanocarrier demonstrated a promising theranostic nanoplatform equipped with fluorescent bioimaging, pH-responsive controlled drug release, and high drug loading capacity.
Collapse
Affiliation(s)
- Vy Anh Tran
- Department of Chemical and Biological Engineering, Gachon University 1342 Seongnamdaero, Sujeong-gu Seongnam-si 13120 Republic of Korea
- Institute of Research and Development, Duy Tan University Danang 550000 Vietnam
| | - Sang-Wha Lee
- Department of Chemical and Biological Engineering, Gachon University 1342 Seongnamdaero, Sujeong-gu Seongnam-si 13120 Republic of Korea
| |
Collapse
|
17
|
Boudjema L, Aarrass H, Assaf M, Morille M, Martin-Gassin G, Gassin PM. PySHS: Python Open Source Software for Second Harmonic Scattering. J Chem Inf Model 2020; 60:5912-5917. [PMID: 33085456 DOI: 10.1021/acs.jcim.0c00789] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The PySHS package is a new python open source software tool which simulates the second harmonic scattering (SHS) of different kinds of colloidal nano-objects in various experimental configurations. This package is able to compute polarizations resolved at a fixed scattered angle or angular distribution for different polarization configurations. This article presents the model implemented in the PySHS software and gives some computational examples. A comparison between computational results and experimental data concerning molecular dye intercalated inside liposomes membrane is presented to illustrate the possibilities with PySHS.
Collapse
Affiliation(s)
- Lotfi Boudjema
- ICGM, ENSCM, CNRS, Univ. Montpellier, 34095 Montpellier Cedex 5, France
| | - Hanna Aarrass
- ICGM, ENSCM, CNRS, Univ. Montpellier, 34095 Montpellier Cedex 5, France
| | - Marwa Assaf
- ICGM, ENSCM, CNRS, Univ. Montpellier, 34095 Montpellier Cedex 5, France
| | - Marie Morille
- ICGM, ENSCM, CNRS, Univ. Montpellier, 34095 Montpellier Cedex 5, France
| | | | | |
Collapse
|
18
|
Moris M, Van Den Eede MP, Koeckelberghs G, Deschaume O, Bartic C, Clays K, Van Cleuvenbergen S, Verbiest T. Unraveling the Supramolecular Organization Mechanism of Chiral Star-Shaped Poly(3-alkylthiophene). Macromolecules 2020. [DOI: 10.1021/acs.macromol.0c01232] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Michèle Moris
- Department of Chemistry, Molecular Imaging and Photonics, KU Leuven, Celestijnenlaan 200D, 3001 Heverlee, Belgium
| | - Marie-Paule Van Den Eede
- Department of Chemistry, Polymer Chemistry and Materials, KU Leuven, Celestijnenlaan 200F, 3001 Heverlee, Belgium
| | - Guy Koeckelberghs
- Department of Chemistry, Polymer Chemistry and Materials, KU Leuven, Celestijnenlaan 200F, 3001 Heverlee, Belgium
| | - Olivier Deschaume
- Department of Physics and Astronomy, Soft-Matter Physics and Biophysics Section, KU Leuven, Celestijnenlaan 200D, 3001 Heverlee, Belgium
| | - Carmen Bartic
- Department of Physics and Astronomy, Soft-Matter Physics and Biophysics Section, KU Leuven, Celestijnenlaan 200D, 3001 Heverlee, Belgium
| | - Koen Clays
- Department of Chemistry, Polymer Chemistry and Materials, KU Leuven, Celestijnenlaan 200F, 3001 Heverlee, Belgium
| | - Stijn Van Cleuvenbergen
- Department of Chemistry, Physical Chemistry, KU Leuven-KULAK, Etienne Sabbelaan 53, 8500 Kortrijk, Belgium
| | - Thierry Verbiest
- Department of Chemistry, Molecular Imaging and Photonics, KU Leuven, Celestijnenlaan 200D, 3001 Heverlee, Belgium
| |
Collapse
|
19
|
Zhang Y, Jiang J, Zhang Z, Yu H, Rong S, Gao H, Pan H, Chang D. Electrochemical strategy with zeolitic imidazolate framework-8 and ordered mesoporous carbon for detection of xanthine. IET Nanobiotechnol 2020; 14:120-125. [PMID: 32433028 DOI: 10.1049/iet-nbt.2018.5342] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
An accurate, safe, environmentally friendly, fast and sensitive electrochemical biosensors were developed to detect xanthine in serum. The metal-organic framework ZIF-8 was synthesised and elemental gold was supported on the surface of ZIF-8 by reduction method to synthesise Ag-ZIF-8. The mesoporous carbon material and the synthesised Ag-ZIF-8 were, respectively, applied to a glassy carbon electrode to construct biosensors. The constructed biosensor has a good linear relation in the range of 1-280 μmol l-1 of xanthine and the detection limit is 0.167 μmol l-1. The relative standard deviation value in serum samples was <5%, and the recoveries were 96-106%, indicating the good selectivity, stability and reproducibility of this electrochemical biosensor.
Collapse
Affiliation(s)
- Yingcong Zhang
- Department of Clinical Laboratory, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai 201399, People's Republic of China
| | - Jinghui Jiang
- The First Affiliated Hospital of the Harbin Medical University, Heilongjiang Province 150001, People's Republic of China
| | - Ze Zhang
- Department of Clinical Laboratory, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai 201399, People's Republic of China
| | - Hongwei Yu
- Department of Clinical Laboratory, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai 201399, People's Republic of China
| | - Shengzhong Rong
- Public Health School, Mudanjiang Medical University, Mudanjiang, Heilongjiang 157011, People's Republic of China
| | - Hongmin Gao
- School of Public Health, Wuhan University of Science and Technology, HuBei Province 430065, People's Republic of China
| | - Hongzhi Pan
- Collaborative Research Center, Shanghai University of Medicine and Health Sciences, Shanghai 201399, People's Republic of China
| | - Dong Chang
- Department of Clinical Laboratory, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai 201399, People's Republic of China.
| |
Collapse
|
20
|
Rivera-Torrente M, Mandemaker LDB, Filez M, Delen G, Seoane B, Meirer F, Weckhuysen BM. Spectroscopy, microscopy, diffraction and scattering of archetypal MOFs: formation, metal sites in catalysis and thin films. Chem Soc Rev 2020; 49:6694-6732. [DOI: 10.1039/d0cs00635a] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
A comprehensive overview of characterization tools for the analysis of well-known metal–organic frameworks and physico-chemical phenomena associated to their applications.
Collapse
Affiliation(s)
- Miguel Rivera-Torrente
- Inorganic Chemistry and Catalysis
- Debye Institute for Nanomaterials Science
- Utrecht University
- 3584 CG Utrecht
- The Netherlands
| | - Laurens D. B. Mandemaker
- Inorganic Chemistry and Catalysis
- Debye Institute for Nanomaterials Science
- Utrecht University
- 3584 CG Utrecht
- The Netherlands
| | - Matthias Filez
- Inorganic Chemistry and Catalysis
- Debye Institute for Nanomaterials Science
- Utrecht University
- 3584 CG Utrecht
- The Netherlands
| | - Guusje Delen
- Inorganic Chemistry and Catalysis
- Debye Institute for Nanomaterials Science
- Utrecht University
- 3584 CG Utrecht
- The Netherlands
| | - Beatriz Seoane
- Inorganic Chemistry and Catalysis
- Debye Institute for Nanomaterials Science
- Utrecht University
- 3584 CG Utrecht
- The Netherlands
| | - Florian Meirer
- Inorganic Chemistry and Catalysis
- Debye Institute for Nanomaterials Science
- Utrecht University
- 3584 CG Utrecht
- The Netherlands
| | - Bert M. Weckhuysen
- Inorganic Chemistry and Catalysis
- Debye Institute for Nanomaterials Science
- Utrecht University
- 3584 CG Utrecht
- The Netherlands
| |
Collapse
|
21
|
Lidor-Shalev O, Yemini R, Leifer N, Nanda R, Tibi A, Perelshtein I, Avraham ES, Mastai Y, Noked M. Growth of Hybrid Inorganic/Organic Chiral Thin Films by Sequenced Vapor Deposition. ACS NANO 2019; 13:10397-10404. [PMID: 31509374 DOI: 10.1021/acsnano.9b04180] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
One of the many challenges in the study of chiral nanosurfaces and nanofilms is the design of accurate and controlled nanoscale films with enantioselective activity. Controlled design of chiral nanofilms creates the opportunity to develop chiral materials with nanostructured architecture. Molecular layer deposition (MLD) is an advanced surface-engineering strategy for the preparation of hybrid inorganic-organic thin films, with a desired embedded property; in our study this is chirality. Previous attempts to grow enantioselective thin films were mostly focused on self-assembled monolayers or template-assisted synthesis, followed by removal of the chiral template. Here, we report a method to prepare chiral hybrid inorganic-organic nanoscale thin films with controlled thickness and impressive enantioselective properties. We present the use of an MLD reactor for sequenced vapor deposition to produce enantioselective thin films, by embedding the chirality of chiral building blocks into thin films. The prepared thin films demonstrate enantioselectivity of ∼20% and enantiomeric excess of up to 50%. We show that our controlled synthesis of chiral thin films generates opportunities for enantioselective coatings over various templates and 3D membranes.
Collapse
Affiliation(s)
- Ortal Lidor-Shalev
- Department of Chemistry and the Institute for Nanotechnology and Advanced Materials , Bar-Ilan University , Ramat Gan 5290002 , Israel
| | - Reut Yemini
- Department of Chemistry and the Institute for Nanotechnology and Advanced Materials , Bar-Ilan University , Ramat Gan 5290002 , Israel
| | - Nicole Leifer
- Department of Chemistry and the Institute for Nanotechnology and Advanced Materials , Bar-Ilan University , Ramat Gan 5290002 , Israel
| | - Raju Nanda
- Department of Chemistry and the Institute for Nanotechnology and Advanced Materials , Bar-Ilan University , Ramat Gan 5290002 , Israel
| | - Aviv Tibi
- Department of Chemistry and the Institute for Nanotechnology and Advanced Materials , Bar-Ilan University , Ramat Gan 5290002 , Israel
| | - Ilana Perelshtein
- Department of Chemistry and the Institute for Nanotechnology and Advanced Materials , Bar-Ilan University , Ramat Gan 5290002 , Israel
| | - Efrat Shawat Avraham
- Department of Chemistry and the Institute for Nanotechnology and Advanced Materials , Bar-Ilan University , Ramat Gan 5290002 , Israel
| | - Yitzhak Mastai
- Department of Chemistry and the Institute for Nanotechnology and Advanced Materials , Bar-Ilan University , Ramat Gan 5290002 , Israel
| | - Malachi Noked
- Department of Chemistry and the Institute for Nanotechnology and Advanced Materials , Bar-Ilan University , Ramat Gan 5290002 , Israel
| |
Collapse
|
22
|
Influences of Ga Doping on Crystal Structure and Polarimetric Pattern of SHG in ZnO Nanofilms. NANOMATERIALS 2019; 9:nano9060905. [PMID: 31234399 PMCID: PMC6630969 DOI: 10.3390/nano9060905] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 06/06/2019] [Accepted: 06/07/2019] [Indexed: 12/02/2022]
Abstract
The second-harmonic generation (SHG) in gallium doped ZnO (GZO) nanofilms was studied. The Ga doping in GZO nanofilms influenced the crystal structure of the films, which affected SHG characteristics of the nanofilms. In our experiments, a strong SHG response was obtained in GZO nanofilms, which was excited by 790 nm femtosecond laser. It was observed that the Ga doping concentrations affected, not only the intensity, but also the polarimetric pattern of SHG in GZO nanofilms. For 5.0% doped GZO films, the SHG intensity increased about 70%. The intensity ratio of SHG between the incident light polarization angle of 90° and 0°changed with the Ga doping concentrations. It showed the most significant increase for 7.3% doped GZO films, with an increased ratio of c/a crystal constants. This result was attributed to the differences of the ratios of d33/d31 (the second-order nonlinear susceptibility components) induced by the crystal distortion. The results are helpful to investigate nanofilms doping levels and crystal distortion by SHG microscopy, which is a non-destructive and sensitive method.
Collapse
|