1
|
Adam N, Yang Y, Djamshidi M, Seifan S, Ting NSY, Glover J, Touret N, Gordon PMK, Vineetha Warriyar KV, Krowicki H, Garcia CK, Savage SA, Goodarzi AA, Baird DM, Beattie TL, Riabowol K. hTERT Increases TRF2 to Induce Telomere Compaction and Extend Cell Replicative Lifespan. Aging Cell 2025:e70105. [PMID: 40371663 DOI: 10.1111/acel.70105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 04/22/2025] [Accepted: 04/29/2025] [Indexed: 05/16/2025] Open
Abstract
Replicative senescence occurs in response to shortened telomeres and is triggered by ATM and TP53-mediated DNA damage signaling that blocks replication. hTERT lengthens telomeres, which is thought to block damage signaling and the onset of senescence. We find that normal diploid fibroblasts expressing hTERT mutants unable to maintain telomere length do not initiate DNA damage signaling and continue to replicate, despite having telomeres shorter than senescent cells. The TRF1 and TRF2 DNA binding proteins of the shelterin complex stabilize telomeres, and we find that expression of different mutant hTERT proteins decreases levels of the Siah1 E3 ubiquitin ligase that targets TRF2 to the proteasome, by increasing levels of the CDC20 and FBXO5 E3 ligases that target Siah1. This restores the TRF2:TRF1 ratio to block the activation of ATM and subsequent activation of TP53 that is usually associated with DNA damage-induced senescence signaling. All hTERT variants reduce DNA damage signaling, and this occurs concomitantly with telomeres assuming a more compact, denser conformation than senescent cells as measured by super-resolution microscopy. This indicates that hTERT variants induce TRF2-mediated telomere compaction that is independent of telomere length, and it plays a dominant role in regulating the DNA damage signaling that induces senescence and blocks replication of human fibroblasts. These observations support the idea that very short telomeres often seen in cancer cells may fail to induce senescence due to selective stabilization of components of the shelterin complex, increasing telomere density, rather than maintaining telomere length via the reverse transcriptase activity of hTERT.
Collapse
Affiliation(s)
- Nancy Adam
- Robson DNA Science Centre, Arnie Charbonneau Cancer Institute, Departments of Biochemistry & Molecular Biology and/or Oncology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Yang Yang
- Robson DNA Science Centre, Arnie Charbonneau Cancer Institute, Departments of Biochemistry & Molecular Biology and/or Oncology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Mahbod Djamshidi
- Robson DNA Science Centre, Arnie Charbonneau Cancer Institute, Departments of Biochemistry & Molecular Biology and/or Oncology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Sara Seifan
- Division of Cancer and Genetics, School of Medicine, Cardiff University, Cardiff, UK
| | - Nicholas S Y Ting
- Robson DNA Science Centre, Arnie Charbonneau Cancer Institute, Departments of Biochemistry & Molecular Biology and/or Oncology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Joel Glover
- Live Cell Imaging Laboratory, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Nicolas Touret
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada
| | - Paul M K Gordon
- Centre for Health Genomics and Informatics, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - K V Vineetha Warriyar
- Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Hokan Krowicki
- Robson DNA Science Centre, Arnie Charbonneau Cancer Institute, Departments of Biochemistry & Molecular Biology and/or Oncology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | | | - Sharon A Savage
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland, USA
| | - Aaron A Goodarzi
- Robson DNA Science Centre, Arnie Charbonneau Cancer Institute, Departments of Biochemistry & Molecular Biology and/or Oncology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Duncan M Baird
- Division of Cancer and Genetics, School of Medicine, Cardiff University, Cardiff, UK
| | - Tara L Beattie
- Robson DNA Science Centre, Arnie Charbonneau Cancer Institute, Departments of Biochemistry & Molecular Biology and/or Oncology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Karl Riabowol
- Robson DNA Science Centre, Arnie Charbonneau Cancer Institute, Departments of Biochemistry & Molecular Biology and/or Oncology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
2
|
Hovet O, Nahali N, Halaburkova A, Haugen LH, Paulsen J, Progida C. Nuclear mechano-confinement induces geometry-dependent HP1α condensate alterations. Commun Biol 2025; 8:308. [PMID: 40000755 PMCID: PMC11862009 DOI: 10.1038/s42003-025-07732-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 02/12/2025] [Indexed: 02/27/2025] Open
Abstract
Cells sense external physical cues through complex processes involving signaling pathways, cytoskeletal dynamics, and transcriptional regulation to coordinate a cellular response. A key emerging principle underlying such mechanoresponses is the interplay between nuclear morphology, chromatin organization, and the dynamic behavior of nuclear bodies such as HP1α condensates. Here, applying Airyscan super-resolution live cell imaging, we report a hitherto undescribed level of mechanoresponse triggered by cell confinement below their resting nuclear diameter, which elicits changes in the number, size and dynamics of HP1α nuclear condensates. Utilizing biophysical polymer models, we observe radial redistribution of HP1α condensates within the nucleus, influenced by changes in nuclear geometry. These insights shed new light on the complex relationship between external forces and changes in nuclear shape and chromatin organization in cell mechanoreception.
Collapse
Affiliation(s)
- Oda Hovet
- Department of Biosciences, Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo, Norway
| | - Negar Nahali
- Centre for Bioinformatics, Department of Informatics, University of Oslo, Oslo, Norway
| | - Andrea Halaburkova
- Department of Biosciences, Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo, Norway
| | - Linda Hofstad Haugen
- Department of Biosciences, Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo, Norway
| | - Jonas Paulsen
- Department of Biosciences, Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo, Norway.
- Centre for Bioinformatics, Department of Informatics, University of Oslo, Oslo, Norway.
| | - Cinzia Progida
- Department of Biosciences, Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo, Norway.
| |
Collapse
|
3
|
Keller D, Stinus S, Umlauf D, Gourbeyre E, Biot E, Olivier N, Mahou P, Beaurepaire E, Andrey P, Crabbe L. Non-random spatial organization of telomeres varies during the cell cycle and requires LAP2 and BAF. iScience 2024; 27:109343. [PMID: 38510147 PMCID: PMC10951912 DOI: 10.1016/j.isci.2024.109343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 11/30/2023] [Accepted: 02/22/2024] [Indexed: 03/22/2024] Open
Abstract
Spatial genome organization within the nucleus influences major biological processes and is impacted by the configuration of linear chromosomes. Here, we applied 3D spatial statistics and modeling on high-resolution telomere and centromere 3D-structured illumination microscopy images in cancer cells. We found a multi-scale organization of telomeres that dynamically evolved from a mixed clustered-and-regular distribution in early G1 to a purely regular distribution as cells progressed through the cell cycle. In parallel, our analysis revealed two pools of peripheral and internal telomeres, the proportions of which were inverted during the cell cycle. We then conducted a targeted screen using MadID to identify the molecular pathways driving or maintaining telomere anchoring to the nuclear envelope observed in early G1. Lamina-associated polypeptide (LAP) proteins were found transiently localized to telomeres in anaphase, a stage where LAP2α initiates the reformation of the nuclear envelope, and impacted telomere redistribution in the next interphase together with their partner barrier-to-autointegration factor (BAF).
Collapse
Affiliation(s)
- Debora Keller
- Molecular, Cellular and Developmental Biology Department (MCD), Centre de Biologie Intégrative (CBI), University of Toulouse, CNRS, UPS, 31062 Toulouse, France
- Laboratory for Optics and Biosciences, École polytechnique, CNRS, INSERM, IP Paris, 91128 Palaiseau, France
| | - Sonia Stinus
- Molecular, Cellular and Developmental Biology Department (MCD), Centre de Biologie Intégrative (CBI), University of Toulouse, CNRS, UPS, 31062 Toulouse, France
| | - David Umlauf
- Molecular, Cellular and Developmental Biology Department (MCD), Centre de Biologie Intégrative (CBI), University of Toulouse, CNRS, UPS, 31062 Toulouse, France
| | - Edith Gourbeyre
- Molecular, Cellular and Developmental Biology Department (MCD), Centre de Biologie Intégrative (CBI), University of Toulouse, CNRS, UPS, 31062 Toulouse, France
| | - Eric Biot
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), 78000 Versailles, France
| | - Nicolas Olivier
- Laboratory for Optics and Biosciences, École polytechnique, CNRS, INSERM, IP Paris, 91128 Palaiseau, France
| | - Pierre Mahou
- Laboratory for Optics and Biosciences, École polytechnique, CNRS, INSERM, IP Paris, 91128 Palaiseau, France
| | - Emmanuel Beaurepaire
- Laboratory for Optics and Biosciences, École polytechnique, CNRS, INSERM, IP Paris, 91128 Palaiseau, France
| | - Philippe Andrey
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), 78000 Versailles, France
| | - Laure Crabbe
- Molecular, Cellular and Developmental Biology Department (MCD), Centre de Biologie Intégrative (CBI), University of Toulouse, CNRS, UPS, 31062 Toulouse, France
| |
Collapse
|
4
|
Telomerase in Cancer: Function, Regulation, and Clinical Translation. Cancers (Basel) 2022; 14:cancers14030808. [PMID: 35159075 PMCID: PMC8834434 DOI: 10.3390/cancers14030808] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 01/29/2022] [Accepted: 02/02/2022] [Indexed: 02/04/2023] Open
Abstract
Simple Summary Cells undergoing malignant transformation must circumvent replicative senescence and eventual cell death associated with progressive telomere shortening that occurs through successive cell division. To do so, malignant cells reactivate telomerase to extend their telomeres and achieve cellular immortality, which is a “Hallmark of Cancer”. Here we review the telomere-dependent and -independent functions of telomerase in cancer, as well as its potential as a biomarker and therapeutic target to diagnose and treat cancer patients. Abstract During the process of malignant transformation, cells undergo a series of genetic, epigenetic, and phenotypic alterations, including the acquisition and propagation of genomic aberrations that impart survival and proliferative advantages. These changes are mediated in part by the induction of replicative immortality that is accompanied by active telomere elongation. Indeed, telomeres undergo dynamic changes to their lengths and higher-order structures throughout tumor formation and progression, processes overseen in most cancers by telomerase. Telomerase is a multimeric enzyme whose function is exquisitely regulated through diverse transcriptional, post-transcriptional, and post-translational mechanisms to facilitate telomere extension. In turn, telomerase function depends not only on its core components, but also on a suite of binding partners, transcription factors, and intra- and extracellular signaling effectors. Additionally, telomerase exhibits telomere-independent regulation of cancer cell growth by participating directly in cellular metabolism, signal transduction, and the regulation of gene expression in ways that are critical for tumorigenesis. In this review, we summarize the complex mechanisms underlying telomere maintenance, with a particular focus on both the telomeric and extratelomeric functions of telomerase. We also explore the clinical utility of telomeres and telomerase in the diagnosis, prognosis, and development of targeted therapies for primary, metastatic, and recurrent cancers.
Collapse
|
5
|
Telomeres and Cancer. Life (Basel) 2021; 11:life11121405. [PMID: 34947936 PMCID: PMC8704776 DOI: 10.3390/life11121405] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 12/01/2021] [Accepted: 12/06/2021] [Indexed: 12/18/2022] Open
Abstract
Telomeres cap the ends of eukaryotic chromosomes and are indispensable chromatin structures for genome protection and replication. Telomere length maintenance has been attributed to several functional modulators, including telomerase, the shelterin complex, and the CST complex, synergizing with DNA replication, repair, and the RNA metabolism pathway components. As dysfunctional telomere maintenance and telomerase activation are associated with several human diseases, including cancer, the molecular mechanisms behind telomere length regulation and protection need particular emphasis. Cancer cells exhibit telomerase activation, enabling replicative immortality. Telomerase reverse transcriptase (TERT) activation is involved in cancer development through diverse activities other than mediating telomere elongation. This review describes the telomere functions, the role of functional modulators, the implications in cancer development, and the future therapeutic opportunities.
Collapse
|
6
|
Lee KH, Kim DY, Kim W. Regulation of Gene Expression by Telomere Position Effect. Int J Mol Sci 2021; 22:ijms222312807. [PMID: 34884608 PMCID: PMC8657463 DOI: 10.3390/ijms222312807] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 11/23/2021] [Accepted: 11/24/2021] [Indexed: 11/16/2022] Open
Abstract
Many diseases that involve malignant tumors in the elderly affect the quality of human life; therefore, the relationship between aging and pathogenesis in geriatric diseases must be under-stood to develop appropriate treatments for these diseases. Recent reports have shown that epigenetic regulation caused by changes in the local chromatin structure plays an essential role in aging. This review provides an overview of the roles of telomere shortening on genomic structural changes during an age-dependent shift in gene expression. Telomere shortening is one of the most prominent events that is involved in cellular aging and it affects global gene expression through genome rearrangement. This review provides novel insights into the roles of telomere shortening in disease-affected cells during pathogenesis and suggests novel therapeutic approaches.
Collapse
Affiliation(s)
- Kyung-Ha Lee
- Division of Cosmetic Science and Technology, Daegu Haany University, Gyeongsan 38610, Korea;
| | - Do-Yeon Kim
- Department of Pharmacology, School of Dentistry, Kyungpook National University, Daegu 41940, Korea
- Correspondence: (D.-Y.K.); (W.K.)
| | - Wanil Kim
- Department of Biochemistry, Department of Convergence Medical Science, Institute of Health Sciences, School of Medicine, Gyeongsang National University, Jinju 52727, Korea
- Correspondence: (D.-Y.K.); (W.K.)
| |
Collapse
|
7
|
Forsyth RG, Krenács T, Athanasou N, Hogendoorn PCW. Cell Biology of Giant Cell Tumour of Bone: Crosstalk between m/wt Nucleosome H3.3, Telomeres and Osteoclastogenesis. Cancers (Basel) 2021; 13:5119. [PMID: 34680268 PMCID: PMC8534144 DOI: 10.3390/cancers13205119] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 10/06/2021] [Accepted: 10/08/2021] [Indexed: 12/14/2022] Open
Abstract
Giant cell tumour of bone (GCTB) is a rare and intriguing primary bone neoplasm. Worrisome clinical features are its local destructive behaviour, its high tendency to recur after surgical therapy and its ability to create so-called benign lung metastases (lung 'plugs'). GCTB displays a complex and difficult-to-understand cell biological behaviour because of its heterogenous morphology. Recently, a driver mutation in histone H3.3 was found. This mutation is highly conserved in GCTB but can also be detected in glioblastoma. Denosumab was recently introduced as an extra option of medical treatment next to traditional surgical and in rare cases, radiotherapy. Despite these new insights, many 'old' questions about the key features of GCTB remain unanswered, such as the presence of telomeric associations (TAs), the reactivation of hTERT, and its slight genomic instability. This review summarises the recent relevant literature of histone H3.3 in relation to the GCTB-specific G34W mutation and pays specific attention to the G34W mutation in relation to the development of TAs, genomic instability, and the characteristic morphology of GCTB. As pieces of an etiogenetic puzzle, this review tries fitting all these molecular features and the unique H3.3 G34W mutation together in GCTB.
Collapse
Affiliation(s)
- Ramses G. Forsyth
- Department of Pathology, University Hospital Brussels (UZB), Laarbeeklaan 101, 1090 Brussels, Belgium;
- Labaratorium for Experimental Pathology (EXPA), Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, 1090 Brussels, Belgium
| | - Tibor Krenács
- 1st Department of Pathology and Experimental Cancer Research, Semmelweis University, Üllöi ut 26, 1085 Budapest, Hungary;
| | - Nicholas Athanasou
- Department of Histopathology, Nuffield Orthopaedic Centre, University of Oxford, NDORMS, Oxford OX3 7HE, UK;
| | - Pancras C. W. Hogendoorn
- Department of Pathology, University Hospital Brussels (UZB), Laarbeeklaan 101, 1090 Brussels, Belgium;
- Labaratorium for Experimental Pathology (EXPA), Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, 1090 Brussels, Belgium
- 1st Department of Pathology and Experimental Cancer Research, Semmelweis University, Üllöi ut 26, 1085 Budapest, Hungary;
- Department of Histopathology, Nuffield Orthopaedic Centre, University of Oxford, NDORMS, Oxford OX3 7HE, UK;
- Department of Pathology, Leiden University Medical Center (LUMC), Albinusdreef 2, 2300 RC Leiden, The Netherlands
| |
Collapse
|
8
|
Adam N, Beattie TL, Riabowol K. Fluorescence microscopy methods for examining telomeres during cell aging. Ageing Res Rev 2021; 68:101320. [PMID: 33744488 DOI: 10.1016/j.arr.2021.101320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 02/24/2021] [Accepted: 03/08/2021] [Indexed: 10/21/2022]
Abstract
Telomeres are protective structures, composed of nucleic acids and a complex protein mixture, located at the end of the chromosomes. They play an important role in preventing genomic instability and ensuring cell health. Defects in telomere integrity result in cell dysfunction and the development of diseases, including neurodegenerative disorders, cancer and premature aging syndromes, among others. Loss of telomere integrity during normal cell aging also initiates DNA damage signals that culminate in the senescence phenotype. Fluorescence microscopy has allowed researchers to study the dynamics, shape, localization, and co-distribution of telomeres with proteins of interest. The microscopy tools to investigate these structures have evolved, making it possible to understand in greater detail the molecular mechanisms affecting telomeres that contribute to cell aging and the development of age-related diseases. Using human fibroblasts as an example, we will highlight several characteristics of telomeres that can be investigated using three different microscopy systems, including wide-field microscopy, and the two super-resolution techniques called 3D Structured Illumination Microscopy (3D-SIM) and direct Stochastic Optical Reconstruction Microscopy (dSTORM). In this review, we will also discuss their limitations and highlight their importance in answering telomere-related scientific questions.
Collapse
|
9
|
Casale AM, Cappucci U, Piacentini L. Unravelling HP1 functions: post-transcriptional regulation of stem cell fate. Chromosoma 2021; 130:103-111. [PMID: 34128099 PMCID: PMC8426308 DOI: 10.1007/s00412-021-00760-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 05/17/2021] [Accepted: 06/01/2021] [Indexed: 12/20/2022]
Abstract
Heterochromatin protein 1 (HP1) is a non-histone chromosomal protein first identified in Drosophila as a major component of constitutive heterochromatin, required for stable epigenetic gene silencing in many species including humans. Over the years, several studies have highlighted additional roles of HP1 in different cellular processes including telomere maintenance, DNA replication and repair, chromosome segregation and, surprisingly, positive regulation of gene expression. In this review, we briefly summarize past research and recent results supporting the unexpected and emerging role of HP1 in activating gene expression. In particular, we discuss the role of HP1 in post-transcriptional regulation of mRNA processing because it has proved decisive in the control of germline stem cells homeostasis in Drosophila and has certainly added a new dimension to our understanding on HP1 targeting and functions in epigenetic regulation of stem cell behaviour.
Collapse
Affiliation(s)
- Assunta Maria Casale
- Department of Biology and Biotechnology "C. Darwin", Sapienza University of Rome, Rome, Italy.
| | - Ugo Cappucci
- Department of Biology and Biotechnology "C. Darwin", Sapienza University of Rome, Rome, Italy
| | - Lucia Piacentini
- Department of Biology and Biotechnology "C. Darwin", Sapienza University of Rome, Rome, Italy.
| |
Collapse
|
10
|
Sharma S, Mukherjee AK, Roy SS, Bagri S, Lier S, Verma M, Sengupta A, Kumar M, Nesse G, Pandey DP, Chowdhury S. Human telomerase is directly regulated by non-telomeric TRF2-G-quadruplex interaction. Cell Rep 2021; 35:109154. [PMID: 34010660 PMCID: PMC7611063 DOI: 10.1016/j.celrep.2021.109154] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 02/15/2021] [Accepted: 04/28/2021] [Indexed: 12/16/2022] Open
Abstract
Human telomerase reverse transcriptase (hTERT) remains suppressed in most normal somatic cells. Resulting erosion of telomeres leads eventually to replicative senescence. Reactivation of hTERT maintains telomeres and triggers progression of >90% of cancers. However, any direct causal link between telomeres and telomerase regulation remains unclear. Here, we show that the telomere-repeat-binding-factor 2 (TRF2) binds hTERT promoter G-quadruplexes and recruits the polycomb-repressor EZH2/PRC2 complex. This is causal for H3K27 trimethylation at the hTERT promoter and represses hTERT in cancer as well as normal cells. Two highly recurrent hTERT promoter mutations found in many cancers, including ∼83% glioblastoma multiforme, that are known to destabilize hTERT promoter G-quadruplexes, showed loss of TRF2 binding in patient-derived primary glioblastoma multiforme cells. Ligand-induced G-quadruplex stabilization restored TRF2 binding, H3K27-trimethylation, and hTERT re-suppression. These results uncover a mechanism of hTERT regulation through a telomeric factor, implicating telomere-telomerase molecular links important in neoplastic transformation, aging, and regenerative therapy.
Collapse
Affiliation(s)
- Shalu Sharma
- Integrative and Functional Biology Unit, CSIR-Institute of Genomics and Integrative Biology, New Delhi 110025, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India; CSIR-Institute of Genomics and Integrative Biology, New Delhi 110025, India
| | - Ananda Kishore Mukherjee
- Integrative and Functional Biology Unit, CSIR-Institute of Genomics and Integrative Biology, New Delhi 110025, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India; CSIR-Institute of Genomics and Integrative Biology, New Delhi 110025, India
| | - Shuvra Shekhar Roy
- Integrative and Functional Biology Unit, CSIR-Institute of Genomics and Integrative Biology, New Delhi 110025, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India; CSIR-Institute of Genomics and Integrative Biology, New Delhi 110025, India
| | - Sulochana Bagri
- Integrative and Functional Biology Unit, CSIR-Institute of Genomics and Integrative Biology, New Delhi 110025, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India; CSIR-Institute of Genomics and Integrative Biology, New Delhi 110025, India
| | - Silje Lier
- Department of Microbiology, Oslo University Hospital, Oslo, Norway; Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Meenakshi Verma
- Integrative and Functional Biology Unit, CSIR-Institute of Genomics and Integrative Biology, New Delhi 110025, India; CSIR-Institute of Genomics and Integrative Biology, New Delhi 110025, India
| | - Antara Sengupta
- Integrative and Functional Biology Unit, CSIR-Institute of Genomics and Integrative Biology, New Delhi 110025, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India; CSIR-Institute of Genomics and Integrative Biology, New Delhi 110025, India
| | - Manish Kumar
- Imaging Facility, CSIR-Institute of Genomics and Integrative Biology, New Delhi 110025, India; CSIR-Institute of Genomics and Integrative Biology, New Delhi 110025, India
| | - Gaute Nesse
- Department of Microbiology, Oslo University Hospital, Oslo, Norway
| | | | - Shantanu Chowdhury
- Integrative and Functional Biology Unit, CSIR-Institute of Genomics and Integrative Biology, New Delhi 110025, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India; GNR Knowledge Centre for Genome and Informatics, CSIR-Institute of Genomics and Integrative Biology, New Delhi 110025, India; CSIR-Institute of Genomics and Integrative Biology, New Delhi 110025, India.
| |
Collapse
|
11
|
Miriklis EL, Rozario AM, Rothenberg E, Bell TDM, Whelan DR. Understanding DNA organization, damage, and repair with super-resolution fluorescence microscopy. Methods Appl Fluoresc 2021; 9. [PMID: 33765677 DOI: 10.1088/2050-6120/abf239] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Accepted: 03/25/2021] [Indexed: 11/12/2022]
Abstract
Super-resolution microscopy (SRM) comprises a suite of techniques well-suited to probing the nanoscale landscape of genomic function and dysfunction. Offering the specificity and sensitivity that has made conventional fluorescence microscopy a cornerstone technique of biological research, SRM allows for spatial resolutions as good as 10 nanometers. Moreover, single molecule localization microscopies (SMLMs) enable examination of individual molecular targets and nanofoci allowing for the characterization of subpopulations within a single cell. This review describes how key advances in both SRM techniques and sample preparation have enabled unprecedented insights into DNA structure and function, and highlights many of these new discoveries. Ongoing development and application of these novel, highly interdisciplinary SRM assays will continue to expand the toolbox available for research into the nanoscale genomic landscape.
Collapse
Affiliation(s)
| | | | - Eli Rothenberg
- Department of Biochemistry and Molecular Pharmacology, Perlmutter Cancer Center, New York University School of Medicine, New York, NY, United States of America
| | - Toby D M Bell
- School of Chemistry, Monash University, Clayton, VIC, Australia
| | - Donna R Whelan
- Department of Pharmacy and Biomedical Sciences, La Trobe Institute for Molecular Science, La Trobe University, Bendigo, VIC, Australia
| |
Collapse
|
12
|
Le R, Huang Y, Zhang Y, Wang H, Lin J, Dong Y, Li Z, Guo M, Kou X, Zhao Y, Chen M, Zhu Q, Zhao A, Yin J, Sun J, Su Z, Shi K, Gao Y, Chen J, Liu W, Kang L, Wang Y, Li C, Liu X, Gao R, Wang H, Ju Z, Gao S. Dcaf11 activates Zscan4-mediated alternative telomere lengthening in early embryos and embryonic stem cells. Cell Stem Cell 2020; 28:732-747.e9. [PMID: 33357405 DOI: 10.1016/j.stem.2020.11.018] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 05/21/2020] [Accepted: 11/24/2020] [Indexed: 02/07/2023]
Abstract
Telomeres play vital roles in ensuring chromosome stability and are thus closely linked with the onset of aging and human disease. Telomeres undergo extensive lengthening during early embryogenesis. However, the detailed molecular mechanism of telomere resetting in early embryos remains unknown. Here, we show that Dcaf11 (Ddb1- and Cul4-associated factor 11) participates in telomere elongation in early embryos and 2-cell-like embryonic stem cells (ESCs). The deletion of Dcaf11 in embryos and ESCs leads to reduced telomere sister-chromatid exchange (T-SCE) and impairs telomere lengthening. Importantly, Dcaf11-deficient mice exhibit gradual telomere erosion with successive generations, and hematopoietic stem cell (HSC) activity is also greatly compromised. Mechanistically, Dcaf11 targets Kap1 (KRAB-associated protein 1) for ubiquitination-mediated degradation, leading to the activation of Zscan4 downstream enhancer and the removal of heterochromatic H3K9me3 at telomere/subtelomere regions. Our study therefore demonstrates that Dcaf11 plays important roles in telomere elongation in early embryos and ESCs through activating Zscan4.
Collapse
Affiliation(s)
- Rongrong Le
- Clinical and Translational Research Center of Shanghai First Maternity & Infant Hospital, Frontier Science Center for Stem Cells, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China.
| | - Yixin Huang
- Clinical and Translational Research Center of Shanghai First Maternity & Infant Hospital, Frontier Science Center for Stem Cells, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Yanping Zhang
- Clinical and Translational Research Center of Shanghai First Maternity & Infant Hospital, Frontier Science Center for Stem Cells, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Hu Wang
- Key Laboratory of Regenerative Medicine of Ministry of Education, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Institute of Aging and Regenerative Medicine, Jinan University, Guangzhou, 510632 Guangdong, China
| | - Jiaming Lin
- Clinical and Translational Research Center of Shanghai First Maternity & Infant Hospital, Frontier Science Center for Stem Cells, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Yu Dong
- Clinical and Translational Research Center of Shanghai First Maternity & Infant Hospital, Frontier Science Center for Stem Cells, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Ziyi Li
- Clinical and Translational Research Center of Shanghai First Maternity & Infant Hospital, Frontier Science Center for Stem Cells, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Mingyue Guo
- Clinical and Translational Research Center of Shanghai First Maternity & Infant Hospital, Frontier Science Center for Stem Cells, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Xiaochen Kou
- Clinical and Translational Research Center of Shanghai First Maternity & Infant Hospital, Frontier Science Center for Stem Cells, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Yanhong Zhao
- Clinical and Translational Research Center of Shanghai First Maternity & Infant Hospital, Frontier Science Center for Stem Cells, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Mo Chen
- Clinical and Translational Research Center of Shanghai First Maternity & Infant Hospital, Frontier Science Center for Stem Cells, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Qianshu Zhu
- Clinical and Translational Research Center of Shanghai First Maternity & Infant Hospital, Frontier Science Center for Stem Cells, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Anqi Zhao
- Clinical and Translational Research Center of Shanghai First Maternity & Infant Hospital, Frontier Science Center for Stem Cells, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Jiqing Yin
- Clinical and Translational Research Center of Shanghai First Maternity & Infant Hospital, Frontier Science Center for Stem Cells, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Jiatong Sun
- College of Animal Science and Technology, Shandong Key Laboratory of Animal Bioengineering and Disease Prevention, Shandong Agricultural University, Taian, Shandong 271018, China
| | - Zhongqu Su
- College of Animal Science and Technology, Shandong Key Laboratory of Animal Bioengineering and Disease Prevention, Shandong Agricultural University, Taian, Shandong 271018, China
| | - Kerong Shi
- College of Animal Science and Technology, Shandong Key Laboratory of Animal Bioengineering and Disease Prevention, Shandong Agricultural University, Taian, Shandong 271018, China
| | - Yawei Gao
- Clinical and Translational Research Center of Shanghai First Maternity & Infant Hospital, Frontier Science Center for Stem Cells, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Jiayu Chen
- Clinical and Translational Research Center of Shanghai First Maternity & Infant Hospital, Frontier Science Center for Stem Cells, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Wenqiang Liu
- Clinical and Translational Research Center of Shanghai First Maternity & Infant Hospital, Frontier Science Center for Stem Cells, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Lan Kang
- Clinical and Translational Research Center of Shanghai First Maternity & Infant Hospital, Frontier Science Center for Stem Cells, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Yixuan Wang
- Clinical and Translational Research Center of Shanghai First Maternity & Infant Hospital, Frontier Science Center for Stem Cells, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Chong Li
- Clinical and Translational Research Center of Shanghai First Maternity & Infant Hospital, Frontier Science Center for Stem Cells, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Xiaoyu Liu
- Clinical and Translational Research Center of Shanghai First Maternity & Infant Hospital, Frontier Science Center for Stem Cells, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Rui Gao
- Clinical and Translational Research Center of Shanghai First Maternity & Infant Hospital, Frontier Science Center for Stem Cells, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Hong Wang
- Clinical and Translational Research Center of Shanghai First Maternity & Infant Hospital, Frontier Science Center for Stem Cells, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Zhenyu Ju
- Key Laboratory of Regenerative Medicine of Ministry of Education, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Institute of Aging and Regenerative Medicine, Jinan University, Guangzhou, 510632 Guangdong, China.
| | - Shaorong Gao
- Clinical and Translational Research Center of Shanghai First Maternity & Infant Hospital, Frontier Science Center for Stem Cells, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China; Tsingtao Advanced Research Institute, Tongji University, Qingdao 266071, China.
| |
Collapse
|
13
|
Nikitaki Z, Pariset E, Sudar D, Costes SV, Georgakilas AG. In Situ Detection of Complex DNA Damage Using Microscopy: A Rough Road Ahead. Cancers (Basel) 2020; 12:E3288. [PMID: 33172046 PMCID: PMC7694657 DOI: 10.3390/cancers12113288] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 10/29/2020] [Accepted: 11/03/2020] [Indexed: 12/12/2022] Open
Abstract
Complexity of DNA damage is considered currently one if not the primary instigator of biological responses and determinant of short and long-term effects in organisms and their offspring. In this review, we focus on the detection of complex (clustered) DNA damage (CDD) induced for example by ionizing radiation (IR) and in some cases by high oxidative stress. We perform a short historical perspective in the field, emphasizing the microscopy-based techniques and methodologies for the detection of CDD at the cellular level. We extend this analysis on the pertaining methodology of surrogate protein markers of CDD (foci) colocalization and provide a unique synthesis of imaging parameters, software, and different types of microscopy used. Last but not least, we critically discuss the main advances and necessary future direction for the better detection of CDD, with important outcomes in biological and clinical setups.
Collapse
Affiliation(s)
- Zacharenia Nikitaki
- Physics Department, School of Applied Mathematical and Physical Sciences, DNA Damage Laboratory, National Technical University of Athens (NTUA), 15780 Zografou, Athens, Greece
| | - Eloise Pariset
- Space Biosciences Division, Radiation Biophysics Laboratory, NASA Ames Research Center, Moffett Field, CA 94035, USA; (E.P.); (S.V.C.)
- Universities Space Research Association (USRA), Mountain View, CA 94043, USA
| | - Damir Sudar
- Life Sciences Department, Quantitative Imaging Systems LLC, Portland, OR 97209, USA;
| | - Sylvain V. Costes
- Space Biosciences Division, Radiation Biophysics Laboratory, NASA Ames Research Center, Moffett Field, CA 94035, USA; (E.P.); (S.V.C.)
| | - Alexandros G. Georgakilas
- Physics Department, School of Applied Mathematical and Physical Sciences, DNA Damage Laboratory, National Technical University of Athens (NTUA), 15780 Zografou, Athens, Greece
| |
Collapse
|
14
|
Feng JX, Riddle NC. Epigenetics and genome stability. Mamm Genome 2020; 31:181-195. [PMID: 32296924 DOI: 10.1007/s00335-020-09836-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Accepted: 04/07/2020] [Indexed: 12/19/2022]
Abstract
Maintaining genome stability is essential to an organism's health and survival. Breakdown of the mechanisms protecting the genome and the resulting genome instability are an important aspect of the aging process and have been linked to diseases such as cancer. Thus, a large network of interconnected pathways is responsible for ensuring genome integrity in the face of the continuous challenges that induce DNA damage. While these pathways are diverse, epigenetic mechanisms play a central role in many of them. DNA modifications, histone variants and modifications, chromatin structure, and non-coding RNAs all carry out a variety of functions to ensure that genome stability is maintained. Epigenetic mechanisms ensure the functions of centromeres and telomeres that are essential for genome stability. Epigenetic mechanisms also protect the genome from the invasion by transposable elements and contribute to various DNA repair pathways. In this review, we highlight the integral role of epigenetic mechanisms in the maintenance of genome stability and draw attention to issues in need of further study.
Collapse
Affiliation(s)
- Justina X Feng
- Department of Biology, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Nicole C Riddle
- Department of Biology, The University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
15
|
Kumar A, Kono H. Heterochromatin protein 1 (HP1): interactions with itself and chromatin components. Biophys Rev 2020; 12:387-400. [PMID: 32144738 PMCID: PMC7242596 DOI: 10.1007/s12551-020-00663-y] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 02/23/2020] [Indexed: 12/12/2022] Open
Abstract
Isoforms of heterochromatin protein 1 (HP1) have been known to perform a multitude of functions ranging from gene silencing, gene activation to cell cycle regulation, and cell differentiation. This functional diversity arises from the dissimilarities coded in protein sequence which confers different biophysical and biochemical properties to individual structural elements of HP1 and thereby different behavior and interaction patterns. Hence, an understanding of various interactions of the structural elements of HP1 will be of utmost importance to better elucidate chromatin dynamics in its presence. In this review, we have gathered available information about interactions of HP1 both within and with itself as well as with chromatin elements. Also, the possible implications of these interactions are discussed.
Collapse
Affiliation(s)
- Amarjeet Kumar
- Molecular Modelling and Simulation (MMS) Group, Institute for Quantum Life Science (iQLS), National Institutes for Quantum and Radiological Science and Technology (QST), Kizugawa, Kyoto, 619-0215, Japan
| | - Hidetoshi Kono
- Molecular Modelling and Simulation (MMS) Group, Institute for Quantum Life Science (iQLS), National Institutes for Quantum and Radiological Science and Technology (QST), Kizugawa, Kyoto, 619-0215, Japan.
| |
Collapse
|
16
|
Hocher A, Taddei A. Subtelomeres as Specialized Chromatin Domains. Bioessays 2020; 42:e1900205. [PMID: 32181520 DOI: 10.1002/bies.201900205] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 02/19/2020] [Indexed: 12/26/2022]
Abstract
Specificities associated with chromosomal linearity are not restricted to telomeres. Here, recent results obtained on fission and budding yeast are summarized and an attempt is made to define subtelomeres using chromatin features extending beyond the heterochromatin emanating from telomeres. Subtelomeres, the chromosome domains adjacent to telomeres, differ from the rest of the genome by their gene content, rapid evolution, and chromatin features that together contribute to organism adaptation. However, current definitions of subtelomeres are generally based on synteny and are largely gene-centered. Taking into consideration both the peculiar gene content and dynamics as well as the chromatin properties of those domains, it is discussed how chromatin features can contribute to subtelomeric properties and functions, and play a pivotal role in the emergence of subtelomeres.
Collapse
Affiliation(s)
- Antoine Hocher
- MRC London Institute of Medical Sciences (LMS), Du Cane Road, London, W12 0NN, UK.,Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, Du Cane Road, London, W12 0NN, UK
| | - Angela Taddei
- Institut Curie, PSL Research University, CNRS, UMR3664, Paris, F-75005, France.,Sorbonne Université, UPMC University Paris 06, CNRS, UMR3664, Paris, F-75005, France
| |
Collapse
|
17
|
Srinivas N, Rachakonda S, Kumar R. Telomeres and Telomere Length: A General Overview. Cancers (Basel) 2020; 12:E558. [PMID: 32121056 PMCID: PMC7139734 DOI: 10.3390/cancers12030558] [Citation(s) in RCA: 172] [Impact Index Per Article: 34.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 02/24/2020] [Accepted: 02/26/2020] [Indexed: 02/06/2023] Open
Abstract
Telomeres are highly conserved tandem nucleotide repeats that include proximal double-stranded and distal single-stranded regions that in complex with shelterin proteins afford protection at chromosomal ends to maintain genomic integrity. Due to the inherent limitations of DNA replication and telomerase suppression in most somatic cells, telomeres undergo age-dependent incremental attrition. Short or dysfunctional telomeres are recognized as DNA double-stranded breaks, triggering cells to undergo replicative senescence. Telomere shortening, therefore, acts as a counting mechanism that drives replicative senescence by limiting the mitotic potential of cells. Telomere length, a complex hereditary trait, is associated with aging and age-related diseases. Epidemiological data, in general, support an association with varying magnitudes between constitutive telomere length and several disorders, including cancers. Telomere attrition is also influenced by oxidative damage and replicative stress caused by genetic, epigenetic, and environmental factors. Several single nucleotide polymorphisms at different loci, identified through genome-wide association studies, influence inter-individual variation in telomere length. In addition to genetic factors, environmental factors also influence telomere length during growth and development. Telomeres hold potential as biomarkers that reflect the genetic predisposition together with the impact of environmental conditions and as targets for anti-cancer therapies.
Collapse
Affiliation(s)
| | | | - Rajiv Kumar
- Division of Functional Genome Analysis, German Cancer Research Center, Im Neunheimer Feld 580, 69120 Heidelberg, Germany; (N.S.); (S.R.)
| |
Collapse
|
18
|
Mavragani IV, Nikitaki Z, Kalospyros SA, Georgakilas AG. Ionizing Radiation and Complex DNA Damage: From Prediction to Detection Challenges and Biological Significance. Cancers (Basel) 2019; 11:E1789. [PMID: 31739493 PMCID: PMC6895987 DOI: 10.3390/cancers11111789] [Citation(s) in RCA: 111] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 11/07/2019] [Accepted: 11/11/2019] [Indexed: 12/12/2022] Open
Abstract
Biological responses to ionizing radiation (IR) have been studied for many years, generally showing the dependence of these responses on the quality of radiation, i.e., the radiation particle type and energy, types of DNA damage, dose and dose rate, type of cells, etc. There is accumulating evidence on the pivotal role of complex (clustered) DNA damage towards the determination of the final biological or even clinical outcome after exposure to IR. In this review, we provide literature evidence about the significant role of damage clustering and advancements that have been made through the years in its detection and prediction using Monte Carlo (MC) simulations. We conclude that in the future, emphasis should be given to a better understanding of the mechanistic links between the induction of complex DNA damage, its processing, and systemic effects at the organism level, like genomic instability and immune responses.
Collapse
Affiliation(s)
| | | | | | - Alexandros G. Georgakilas
- DNA Damage Laboratory, Department of Physics, School of Applied Mathematical and Physical Sciences, National Technical University of Athens (NTUA), 15780 Athens, Greece
| |
Collapse
|
19
|
Jezek M, Green EM. Histone Modifications and the Maintenance of Telomere Integrity. Cells 2019; 8:E199. [PMID: 30823596 PMCID: PMC6407025 DOI: 10.3390/cells8020199] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2019] [Revised: 02/09/2019] [Accepted: 02/20/2019] [Indexed: 12/20/2022] Open
Abstract
Telomeres, the nucleoprotein structures at the ends of eukaryotic chromosomes, play an integral role in protecting linear DNA from degradation. Dysregulation of telomeres can result in genomic instability and has been implicated in increased rates of cellular senescence and many diseases, including cancer. The integrity of telomeres is maintained by a coordinated network of proteins and RNAs, such as the telomerase holoenzyme and protective proteins that prevent the recognition of the telomere ends as a DNA double-strand breaks. The structure of chromatin at telomeres and within adjacent subtelomeres has been implicated in telomere maintenance pathways in model systems and humans. Specific post-translational modifications of histones, including methylation, acetylation, and ubiquitination, have been shown to be necessary for maintaining a chromatin environment that promotes telomere integrity. Here we review the current knowledge regarding the role of histone modifications in maintaining telomeric and subtelomeric chromatin, discuss the implications of histone modification marks as they relate to human disease, and highlight key areas for future research.
Collapse
Affiliation(s)
- Meagan Jezek
- Department of Biological Sciences, University of Maryland Baltimore County, Baltimore, MD 21250, USA.
| | - Erin M Green
- Department of Biological Sciences, University of Maryland Baltimore County, Baltimore, MD 21250, USA.
| |
Collapse
|
20
|
Targeting Cancer through the Epigenetic Features of Telomeric Regions. Trends Cell Biol 2019; 29:281-290. [PMID: 30660503 DOI: 10.1016/j.tcb.2018.12.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 12/18/2018] [Accepted: 12/20/2018] [Indexed: 12/16/2022]
Abstract
The integrity of the chromatin associated with telomeric regions, which include telomeres and subtelomeres, is essential for telomeres function and cell viability. Whereas human subtelomeres are heterochromatic, telomeres are labeled with euchromatic marks like H4K20me1 and H3K27ac in most commonly studied human cell lines. The epigenetic marks of human telomeric regions influence oncogenic processes. Indeed, different drugs that decrease their genome-wide levels are currently being used or tested in specific cancer therapies. These drugs can challenge cancer by altering the function of key cellular proteins. However, they should also compromise oncogenic processes by modifying the epigenetic landscape of telomeric regions. We believe that studies of telomeric chromatin structure and telomeres dysfunction should help to design epigenetic therapies for cancer treatment.
Collapse
|