1
|
Norcia AM. Development of human binocular vision: An electrophysiological perspective. Vision Res 2025; 231:108593. [PMID: 40239434 DOI: 10.1016/j.visres.2025.108593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2025] [Accepted: 03/25/2025] [Indexed: 04/18/2025]
Abstract
Vision with two eyes confers evolutionary advantages in terms of field of view, binocular summation and the sense of depth from disparity and motion. This review summarizes our current knowledge of the development of binocular vision through the lens of Visual Evoked Potentials (VEPs). The review begins with early studies of binocular summation that compared monocular to binocular VEP amplitude ratios. This is followed by a description of more definitive indices of binocular interaction afforded by studies of dichoptic masking and intermodulation. We then describe a striking immaturity of binocular motion processing - the developmental motion asymmetry - a monocular nasalward/temporalward asymmetry of motion processing that reflects the child's developmental history of normal binocular interaction. We end with a review of the development of sensitivity to the primary cue for depth - horizontal retinal disparity. Together, the available results paint a picture of early competency in some respects, combined with both quantitative and important qualitative differences from the adult that suggest the presence of distinct processing mechanisms with different developmental sequences.
Collapse
Affiliation(s)
- Anthony M Norcia
- Wu Tsai Neurosciences Institute, Department of Psychology, Stanford University, 290 Jane Stanford Way, Stanford, CA, USA.
| |
Collapse
|
2
|
Kaestner M, Chen YD, Clement C, Hodges A, Norcia AM. Two Disparity Channels in Human Visual Cortex With Different Contrast and Blur Sensitivity. Transl Vis Sci Technol 2024; 13:21. [PMID: 38411970 PMCID: PMC10910559 DOI: 10.1167/tvst.13.2.21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 01/07/2024] [Indexed: 02/28/2024] Open
Abstract
Purpose Our goal is to describe the contrast and blur sensitivity of multiple horizontal disparity subsystems and to relate them to the contrast and spatial sensitivities of their monocular inputs. Methods Steady-state visual evoked potential (SSVEP) amplitudes were recorded in response to dynamic random dot stereograms (DRDSs) alternating at 2 Hz between zero disparity and varying magnitudes of crossed disparity for disparity plane and disparity grating stimuli. Half-image contrasts ranged between 2.5% and 80% and over a range of Gaussian blurs from 1.4 to 12 arcmin. Separate experiments measured contrast and blur sensitivity for the monocular half-images. Results The first and second harmonics disparity responses were maximal for disparity gratings and for the disparity plane condition, respectively. The first harmonic of the disparity grating response was more affected by both contrast and blur than was the second harmonic of the disparity plane response, which had higher contrast sensitivity than the first harmonic. Conclusions The corrugation frequency, contrast, and blur tuning of the first harmonic suggest that it reflects activity of neurons tuned to higher luminance spatial frequencies that are selective for relative disparity, whereas the second harmonic reflects the activity of neurons sensitive to absolute disparity that are driven by low monocular spatial frequencies. Translational Relevance SSVEPs to DRDSs provide two objective neural measures of disparity processing, the first harmonic-whose stimulus preferences are similar to those of behavioral stereoacuity-and the second harmonic that represents an independent disparity-specific but not necessarily stereoscopic mechanism.
Collapse
Affiliation(s)
- Milena Kaestner
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA
- Department of Psychology, Stanford University, Stanford, CA, USA
| | - Yulan D. Chen
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA
- Department of Psychology, Stanford University, Stanford, CA, USA
| | - Caroline Clement
- Department of Psychology, Stanford University, Stanford, CA, USA
| | - Alex Hodges
- Department of Psychology, Stanford University, Stanford, CA, USA
| | - Anthony M. Norcia
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA
- Department of Psychology, Stanford University, Stanford, CA, USA
| |
Collapse
|
3
|
Waz S, Liu Z. Evidence for strictly monocular processing in visual motion opponency and Glass pattern perception. Vision Res 2021; 186:103-111. [PMID: 34082396 DOI: 10.1016/j.visres.2021.04.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 03/11/2021] [Accepted: 04/27/2021] [Indexed: 10/21/2022]
Abstract
When presented with locally paired dots moving in opposite directions, motion selective neurons in the middle temporal cortex (MT) reduce firing while neurons in V1 are unaffected. This physiological effect is known as motion opponency. The current study used psychophysics to investigate the neural circuit underlying motion opponency. We asked whether opposing motion signals could arrive from different eyes into the receptive field of a binocular neuron while still maintaining motion opponency. We took advantage of prior findings that orientation discrimination of the motion axis (along which paired dots oscillate) is harder when dots move counter-phase than in-phase, an effect associated with motion opponency. We found that such an effect disappeared when paired dots originated from different eyes. This suggests that motion opponency, at some point, involves strictly monocular processing. This does not mean that motion opponency is entirely monocular. Further, we found that the effect of a Glass pattern disappeared under similar viewing conditions, suggesting that Glass pattern perception also involves some strictly monocular processing.
Collapse
Affiliation(s)
- Sebastian Waz
- Department of Cognitive Sciences, University of California Irvine, Irvine, CA 92697, USA; Department of Psychology, University of California Los Angeles, Los Angeles, CA 90095, USA.
| | - Zili Liu
- Department of Psychology, University of California Los Angeles, Los Angeles, CA 90095, USA
| |
Collapse
|
4
|
Liang Y, Shi SH, Jin R, Qiu X, Wei J, Tan H, Jiang X, Shi X, Song S, Jiao N. Electrochemically induced nickel catalysis for oxygenation reactions with water. Nat Catal 2021. [DOI: 10.1038/s41929-020-00559-w] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
5
|
Zhang S, Gao X. The effect of visual stimuli noise and fatigue on steady-state visual evoked potentials. J Neural Eng 2019; 16:056023. [DOI: 10.1088/1741-2552/ab1f4e] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
6
|
Manning C, Kaneshiro B, Kohler PJ, Duta M, Scerif G, Norcia AM. Neural dynamics underlying coherent motion perception in children and adults. Dev Cogn Neurosci 2019; 38:100670. [PMID: 31228678 PMCID: PMC6688051 DOI: 10.1016/j.dcn.2019.100670] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 05/20/2019] [Accepted: 06/10/2019] [Indexed: 01/30/2023] Open
Abstract
Motion sensitivity increases during childhood, but little is known about the neural correlates. Most studies investigating children's evoked responses have not dissociated direction-specific and non-direction-specific responses. To isolate direction-specific responses, we presented coherently moving dot stimuli preceded by incoherent motion, to 6- to 7-year-olds (n = 34), 8- to 10-year-olds (n = 34), 10- to 12-year-olds (n = 34) and adults (n = 20). Participants reported the coherent motion direction while high-density EEG was recorded. Using a data-driven approach, we identified two stimulus-locked EEG components with distinct topographies: an early component with an occipital topography likely reflecting sensory encoding and a later, sustained positive component over centro-parietal electrodes that we attribute to decision-related processes. The component waveforms showed clear age-related differences. In the early, occipital component, all groups showed a negativity peaking at ˜300 ms, like the previously reported coherent-motion N2. However, the children, unlike adults, showed an additional positive peak at ˜200 ms, suggesting differential stimulus encoding. The later positivity in the centro-parietal component rose more steeply for adults than for the youngest children, likely reflecting age-related speeding of decision-making. We conclude that children's protracted development of coherent motion sensitivity is associated with maturation of both early sensory and later decision-related processes.
Collapse
Affiliation(s)
- Catherine Manning
- Department of Experimental Psychology, University of Oxford, Anna Watts Building, Radcliffe Observatory Quarter, Woodstock Road, Oxford, OX2 6GG, UK.
| | - Blair Kaneshiro
- Department of Otolaryngology Head and Neck Surgery, Stanford University School of Medicine, Stanford University, 2452 Watson Court, Palo Alto, CA, 94303, USA
| | - Peter J Kohler
- Department of Psychology, Stanford University, Jordan Hall, 450 Serra Mall, Stanford, CA, 94305, USA
| | - Mihaela Duta
- Department of Experimental Psychology, University of Oxford, Anna Watts Building, Radcliffe Observatory Quarter, Woodstock Road, Oxford, OX2 6GG, UK
| | - Gaia Scerif
- Department of Experimental Psychology, University of Oxford, Anna Watts Building, Radcliffe Observatory Quarter, Woodstock Road, Oxford, OX2 6GG, UK
| | - Anthony M Norcia
- Department of Psychology, Stanford University, Jordan Hall, 450 Serra Mall, Stanford, CA, 94305, USA
| |
Collapse
|
7
|
Kaestner M, Maloney RT, Wailes-Newson KH, Bloj M, Harris JM, Morland AB, Wade AR. Asymmetries between achromatic and chromatic extraction of 3D motion signals. Proc Natl Acad Sci U S A 2019; 116:13631-13640. [PMID: 31209058 PMCID: PMC6612918 DOI: 10.1073/pnas.1817202116] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Motion in depth (MID) can be cued by high-resolution changes in binocular disparity over time (CD), and low-resolution interocular velocity differences (IOVD). Computational differences between these two mechanisms suggest that they may be implemented in visual pathways with different spatial and temporal resolutions. Here, we used fMRI to examine how achromatic and S-cone signals contribute to human MID perception. Both CD and IOVD stimuli evoked responses in a widespread network that included early visual areas, parts of the dorsal and ventral streams, and motion-selective area hMT+. Crucially, however, we measured an interaction between MID type and chromaticity. fMRI CD responses were largely driven by achromatic stimuli, but IOVD responses were better driven by isoluminant S-cone inputs. In our psychophysical experiments, when S-cone and achromatic stimuli were matched for perceived contrast, participants were equally sensitive to the MID in achromatic and S-cone IOVD stimuli. In comparison, they were relatively insensitive to S-cone CD. These findings provide evidence that MID mechanisms asymmetrically draw on information in precortical pathways. An early opponent motion signal optimally conveyed by the S-cone pathway may provide a substantial contribution to the IOVD mechanism.
Collapse
Affiliation(s)
- Milena Kaestner
- Department of Psychology, University of York, YO10 5DD York, United Kingdom;
- York Neuroimaging Centre, University of York, YO10 5DD York, United Kingdom
| | - Ryan T Maloney
- Department of Psychology, University of York, YO10 5DD York, United Kingdom
- York Neuroimaging Centre, University of York, YO10 5DD York, United Kingdom
| | - Kirstie H Wailes-Newson
- Department of Psychology, University of York, YO10 5DD York, United Kingdom
- York Neuroimaging Centre, University of York, YO10 5DD York, United Kingdom
| | - Marina Bloj
- School of Optometry and Vision Sciences, University of Bradford, BD7 1DP Bradford, United Kingdom
| | - Julie M Harris
- School of Psychology and Neuroscience, University of St. Andrews, KY16 9JP St. Andrews, United Kingdom
| | - Antony B Morland
- Department of Psychology, University of York, YO10 5DD York, United Kingdom
- York Neuroimaging Centre, University of York, YO10 5DD York, United Kingdom
- York Biomedical Research Institute, University of York, YO10 5DD York, United Kingdom
| | - Alex R Wade
- Department of Psychology, University of York, YO10 5DD York, United Kingdom
- York Neuroimaging Centre, University of York, YO10 5DD York, United Kingdom
- York Biomedical Research Institute, University of York, YO10 5DD York, United Kingdom
| |
Collapse
|
8
|
Liang Y, Lin F, Adeli Y, Jin R, Jiao N. Efficient Electrocatalysis for the Preparation of (Hetero)aryl Chlorides and Vinyl Chloride with 1,2-Dichloroethane. Angew Chem Int Ed Engl 2019; 58:4566-4570. [PMID: 30664331 DOI: 10.1002/anie.201814570] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Indexed: 01/26/2023]
Abstract
Although the application of 1,2-dichloroethane (DCE) as a chlorinating reagent in organic synthesis with the concomitant release of vinyl chloride as a useful byproduct is a fantastic idea, it still presents a tremendous challenge and has not yet been achieved because of the harsh dehydrochlorination conditions and the sluggish C-H chlorination process. Here we report a bifunctional electrocatalysis strategy for the catalytic dehydrochlorination of DCE at the cathode simultaneously with anodic oxidative aromatic chlorination using the released HCl as the chloride source for the efficient synthesis of value-added (hetero)aryl chlorides. The mildness and practicality of the protocol was further demonstrated by the efficient late-stage chlorination of bioactive molecules.
Collapse
Affiliation(s)
- Yujie Liang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Xue Yuan Rd. 38, Beijing, 100191, China
| | - Fengguirong Lin
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Xue Yuan Rd. 38, Beijing, 100191, China
| | - Yeerlan Adeli
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Xue Yuan Rd. 38, Beijing, 100191, China
| | - Rui Jin
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Xue Yuan Rd. 38, Beijing, 100191, China
| | - Ning Jiao
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Xue Yuan Rd. 38, Beijing, 100191, China.,State Key Laboratory of Organometallic Chemistry, Chinese Academy of Sciences, Shanghai, 200032, China
| |
Collapse
|
9
|
Liang Y, Lin F, Adeli Y, Jin R, Jiao N. Efficient Electrocatalysis for the Preparation of (Hetero)aryl Chlorides and Vinyl Chloride with 1,2‐Dichloroethane. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201814570] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Yujie Liang
- State Key Laboratory of Natural and Biomimetic Drugs School of Pharmaceutical Sciences Peking University Xue Yuan Rd. 38 Beijing 100191 China
| | - Fengguirong Lin
- State Key Laboratory of Natural and Biomimetic Drugs School of Pharmaceutical Sciences Peking University Xue Yuan Rd. 38 Beijing 100191 China
| | - Yeerlan Adeli
- State Key Laboratory of Natural and Biomimetic Drugs School of Pharmaceutical Sciences Peking University Xue Yuan Rd. 38 Beijing 100191 China
| | - Rui Jin
- State Key Laboratory of Natural and Biomimetic Drugs School of Pharmaceutical Sciences Peking University Xue Yuan Rd. 38 Beijing 100191 China
| | - Ning Jiao
- State Key Laboratory of Natural and Biomimetic Drugs School of Pharmaceutical Sciences Peking University Xue Yuan Rd. 38 Beijing 100191 China
- State Key Laboratory of Organometallic Chemistry Chinese Academy of Sciences Shanghai 200032 China
| |
Collapse
|