1
|
Torimoto A, Ishibashi D, Yamashita A, Uemura T, Hosono N. High-Precision Separation and Refinement of Fatty Acid Derivatives by Metal-Organic Frameworks. J Am Chem Soc 2025; 147:17228-17238. [PMID: 40347173 DOI: 10.1021/jacs.5c03316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2025]
Abstract
High-precision separation of fatty acid (FA) derivatives is essential for differentiating between structural variations such as E/Z isomerism and unsaturated bond (C═C) positions, which determine their properties and physiological functions. However, current separation and purification methods lack the necessary resolution, efficiency, and scalability. Herein, we report that metal-organic frameworks (MOFs) with configured nanopores enable the precise separation of long-chain FA derivatives. Two pillared-layer-type isoreticular MOFs featuring sub-nanometer channels were employed as adsorbents and stationary phases in liquid chromatography (LC). The MOF-packed LC columns demonstrated high-resolution separation of C18 fatty acid methyl esters (FAMEs), effectively distinguishing E/Z isomers and C═C positional isomers through a nanopore insertion-based recognition mechanism. Thermodynamic analysis and molecular dynamics simulations revealed an unprecedented recognition mechanism for C═C positional isomers, driven by specific multi-site interactions between the functional groups on the FAME chains and the regularly arranged organic ligands within the MOF nanopores. Moreover, MOFs enable the purification of fats and oils (triacylglycerols) by effectively separating them from associated process contaminants that may pose carcinogenic risks to humans. This approach facilitates the scalable and efficient refinement of edible oils, achieving contaminant elimination efficiencies exceeding 99%.
Collapse
Affiliation(s)
- Akihiro Torimoto
- Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Daiki Ishibashi
- Food Development Laboratory, ADEKA Corporation, 7-2-34 Higashi-ogu, Arakawa-ku, Tokyo 116-8553, Japan
| | - Atsushi Yamashita
- Food Development Laboratory, ADEKA Corporation, 7-2-34 Higashi-ogu, Arakawa-ku, Tokyo 116-8553, Japan
| | - Takashi Uemura
- Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Nobuhiko Hosono
- Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo, Bunkyo-ku, Tokyo 113-8656, Japan
| |
Collapse
|
2
|
Das C, Dutta A, Coltuneac D, Stoleriu L, Chakraborty P. Tailoring zero-point energies in nanocrystalline 3D Hofmann-type spin-crossover networks {Fe 1-xM x(pz)[Pd(CN) 4]}: impact of size, composition, and surrounding matrices. Dalton Trans 2025; 54:7923-7940. [PMID: 40289701 DOI: 10.1039/d5dt00565e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/30/2025]
Abstract
We report the variation in zero-point energies, and their distribution, investigated through changes in thermal spin relaxation behavior and cooperativity, in the 3D Hofmann-type guest-free, different-sized nanocrystalline spin-crossover coordination networks, {Fe1-xMx(pz)[Pd(CN)4]}, 0 ≤ x ≤ 1, where M(II) = Zn(II), Co(II), and Ni(II). Additionally, we synthesize the [Fe(pz)Pd(CN)4] nanocrystals embedded in different polymeric matrices, including Poly(methyl methacrylate) (PMMA), Polyethylene glycol 6000 (PEG-6000), and Polyvinylpyrrolidone K-30 (PVP K-30). The resulting nanostructures are phase-pure, well-crystallized and exhibit a tetragonal phase. High-resolution transmission electron microscopy (HRTEM) confirms that the nanostructures are nearly square-shaped, with well-defined sizes. The abrupt, incomplete, and gradual nature of the thermal spin relaxation behavior observed from the magnetic data for pure, doped, and polymer-embedded nanocrystals is collectively explained by the local and long-range fluctuations in the crystal fields experienced by the Fe(II) spin-crossover centers, variation in nucleation barrier energy influencing elastic properties, kinetic effects linked to modification in nucleation preferential sites during spin-state switching, as well as chemical pressure, lattice-strains and imperfections, thus altering the in-plane and out-of-plane interactions that influence the cooperativity variation and are responsible for the relative stabilization of the high-spin or low-spin states by modifying the . A 3D mechanoelastic model is employed to interpret the observed magnetic behavior of pure, doped, and polymer-embedded nanocrystals, offering deeper insights into the underlying mechanisms governing spin-state transitions at the nanoscale.
Collapse
Affiliation(s)
- Chinmoy Das
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur-721302, India.
| | - Ajana Dutta
- Department of Physics, Indian Institute of Technology Kharagpur, Kharagpur-721302, India
| | - Denisa Coltuneac
- Faculty of Physics, Al. I. Cuza University, 700506 Iasi, Romania
| | | | - Pradip Chakraborty
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur-721302, India.
| |
Collapse
|
3
|
Zizzari IG, Gigli V, Gentili T, Tortolini C, Latini A, Rughetti A, di Gregorio MC, Isidori A, Nuti M, Antiochia R. An ecofriendly iron MOF-based immunosensor for sensitive detection of vascular endothelial growth factor in the serum of cancer patients. NANOSCALE 2025; 17:8790-8802. [PMID: 40091657 DOI: 10.1039/d5nr00471c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
This work demonstrates the potential of an iron-based metal-organic framework, MIL-100(Fe), to effectively modify a multi-wall carbon nanotube (MWCNT) screen-printed electrode (SPE) for enhanced electrochemical immunosensing of vascular endothelial growth factor (VEGF), which has been recently considered a promising tumor biomarker. MIL-100(Fe) has been synthesized using an ecofriendly, sustainable, heatless water-based technique at various synthesis reaction times. The morphological, structural and electrochemical properties of the different samples of MIL-100(Fe) were evaluated using several physical and electrochemical techniques. MIL-100(Fe) after 48 h has a crystalline microporous-mesoporous structure, with superior properties, that is a larger BET surface area of 1082 ± 18 m2 g-1, a larger pore volume of 0.696 cm3 g-1 and better electroconductivity. After optimizing the experimental conditions, the MIL-100(Fe) 48 h/MWCNTs/SPE-based immunosensor showed a linear range between 100 and 480 pg mL-1, a LOD of 50 pg mL-1 (3σ/S), a sensitivity of 0.017 mA mL pg-1, good reproducibility and high selectivity. In addition, the developed immunosensor was used to satisfactorily detect VEGF in human serum samples of cancer patients, compared to the traditional ELISA method. Considering the sustainable and easy fabrication of the proposed platform, it may provide a promising application as a point-of-care (PoC) device for VEGF detection for diagnosis of cancer.
Collapse
Affiliation(s)
| | - Valeria Gigli
- Department of Experimental Medicine, Sapienza University of Rome, Italy.
| | | | - Cristina Tortolini
- Department of Experimental Medicine, Sapienza University of Rome, Italy.
| | | | - Aurelia Rughetti
- Department of Experimental Medicine, Sapienza University of Rome, Italy.
| | | | - Andrea Isidori
- Department of Experimental Medicine, Sapienza University of Rome, Italy.
| | - Marianna Nuti
- Department of Experimental Medicine, Sapienza University of Rome, Italy.
| | - Riccarda Antiochia
- Department of Chemistry and Drug Technologies, Sapienza University of Rome, Italy
| |
Collapse
|
4
|
Chen W, Chen Q, Yu Y, Gao H, Ma B. Hydrophilic Ultra-Fine SiC Nanowires Enhance the Performance of Hydrated Salt Phase-Change Energy Storage Materials. Chempluschem 2025; 90:e202400542. [PMID: 39392216 DOI: 10.1002/cplu.202400542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 10/11/2024] [Accepted: 10/11/2024] [Indexed: 10/12/2024]
Abstract
In this study, ultrafine linear nanostructured SiC with high wettability and large specific surface area were synthesized via the carbothermal reduction method. These nanowires were impregnated with Na2SO4 ⋅ 10H2O, CaCl2 ⋅ 6H2O, MgCl2 ⋅ 6H2O, and CaMg2Cl6 ⋅ 12H2O to obtain composite phase change materials (CPCMs), which demonstrated improved phase separation and significantly reduced supercooling. In particular, the supercooling degree of CaCl2 ⋅ 6H2O was minimized to 0.1 °C. The SiC nanowires effectively prevented issues of dehydration and deliquescence in hydrated salts. The thermal storage capacities of the CPCMs exceeded 90 %, with Na2SO4 ⋅ 10H2O and MgCl2 ⋅ 6H2O reaching 107.10 % and 103.35 %, respectively. Furthermore, the CPCMs exhibited greater sensitivity to changes in temperature compared with the pure hydrated salt phase change materials (PCMs). These results indicate that ultra-fine SiC nanowires can act as a versatile carrier for hydrated salt PCMs at low and intermediate temperatures.
Collapse
Affiliation(s)
- Wenchao Chen
- school of Mechanical Engineering, Qinghai University, Xining, 810016, PR China
| | - Qi Chen
- school of Mechanical Engineering, Qinghai University, Xining, 810016, PR China
| | - Yajie Yu
- school of Mechanical Engineering, Qinghai University, Xining, 810016, PR China
| | - Huabo Gao
- school of Mechanical Engineering, Qinghai University, Xining, 810016, PR China
| | - Bin Ma
- school of Mechanical Engineering, Qinghai University, Xining, 810016, PR China
| |
Collapse
|
5
|
Gong H, Sakaguchi Y, Suzuki T, Yanagisawa M, Aida T. Near-identical macromolecules spontaneously partition into concentric circles. Nature 2024; 636:92-99. [PMID: 39633194 DOI: 10.1038/s41586-024-08203-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Accepted: 10/11/2024] [Indexed: 12/07/2024]
Abstract
Although separation is entropically unfavourable, it is often essential for our life1,2. The separation of very similar macromolecules such as deoxyribonucleic acids (DNAs) and their single nucleotide variants is difficult but holds great advantage for the progress of life science3. Here we report that a particular liquid-liquid phase separation (LLPS) at a solid-liquid interface led to the partitioning of DNAs with nearly identical structures. We found this intriguing phenomenon when we did drop-casting onto a glass plate an aqueous ammonium sulfate dispersion of phase-separated droplets comprising a homogeneous mixture of poly(ethylene glycol) (PEG) samples with different termini. Even when the molecular weights of their PEG parts were identical to each other, terminally different PEGs spread competitively at the solid-liquid interface and partitioned into micrometre-scale concentric circles. We found that this competitive spreading was induced by an ammonium sulfate layer spontaneously formed on the glass surface. We successfully extended the above mechanism to partitioning a mixture of nearly identical DNAs into concentric circles followed by their selective extraction using the salting-in effect. We could isolate a human cancer-causing single nucleotide variant in 97% purity from its 1:1 mixture with the original DNA.
Collapse
Affiliation(s)
- Hao Gong
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, Tokyo, Japan.
| | - Yuriko Sakaguchi
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, Tokyo, Japan
| | - Tsutomu Suzuki
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, Tokyo, Japan
| | - Miho Yanagisawa
- Komaba Institute for Science, The University of Tokyo, Tokyo, Japan
- Department of Basic Science, The University of Tokyo, Tokyo, Japan
| | - Takuzo Aida
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, Tokyo, Japan.
- RIKEN Center for Emergent Matter Science, Wakō, Japan.
| |
Collapse
|
6
|
Huang Y, Ren Z, Fan Z, Zhang H, Wu Y, Wang Y, Hu Z, Quan X, Wang Z, Niu Z. Isolation of Polyethylene Glycol with Larger Molecular Weights via Metal-Organic Frameworks. Macromol Rapid Commun 2024; 45:e2400535. [PMID: 39078658 DOI: 10.1002/marc.202400535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Indexed: 07/31/2024]
Abstract
Polymer products typically present as mixtures with a range of molecular weights, which notably influence the expression of their properties. In this study, a technique is proposed to separate polyethylene glycol (PEG) mixtures of varying molecular weights using metal-organic frameworks (MOFs), thereby narrowing down their molecular weight distribution. Due to the hydrogen bond interactions between PEG and -OH groups in the pores of NU-1000, NU-1000 can selectively adsorb PEG with larger molecular weights from PEG mixture. This separation method consistently yields with narrower molecular weight distribution across multiple cycles. This is the first application of MOFs in regulating the dispersity (Ð) of polymers in solution, providing a novel approach for separating and purifying mixed molecular weight polymers.
Collapse
Affiliation(s)
- Yali Huang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu, 215127, China
| | - Ziye Ren
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu, 215127, China
| | - Ziwen Fan
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu, 215127, China
| | - Hanwen Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu, 215127, China
| | - Yueyue Wu
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu, 215127, China
| | - Yue Wang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu, 215127, China
| | - Zhuoyi Hu
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu, 215127, China
| | - Xueheng Quan
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu, 215127, China
| | - Zhao Wang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu, 215127, China
| | - Zheng Niu
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu, 215127, China
| |
Collapse
|
7
|
Yang M, Xiao L, Chen WT, Deng X, Hu G. Recent advances on metal-organic framework-based electrochemical sensors for determination of organic small molecules. Talanta 2024; 280:126744. [PMID: 39186861 DOI: 10.1016/j.talanta.2024.126744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 07/30/2024] [Accepted: 08/20/2024] [Indexed: 08/28/2024]
Abstract
Metal-organic frameworks (MOFs) are an extraordinarily versatile class of porous materials renowned for their intricate three-dimensional skeletal architectures and exceptional chemical properties. These extraordinary attributes have pushed MOFs into the vanguard of diverse disciplines such as microporous conduction, catalysis, separation, biomedical engineering, and electrochemical sensing. The focus of this review is to offer a comprehensive summary of recent advancements in designing MOF-based electrochemical sensors for detecting organic small molecules. offer a comprehensive survey of the recent progress in the methodologies adopted for the construction of MOF composites, covering template-assisted synthesis, Modification in synthesis, and post-synthesis modification. In addition, we discuss the practical application of MOF-based electrochemical sensors in the detection of organic small molecules. Our findings highlight the superior electrochemical sensing capabilities of these novel composites compared to those of their pristine counterparts. In conclusion, we provide a condensed perspective on the potential future trajectories in this domain, underscoring the impetus for continued enquiry and enhancement of MOF composite assemblies. With sustained investigation, the horizon appears bright for electrochemical sensing of small organic molecules and their myriad applications.
Collapse
Affiliation(s)
- Mengxia Yang
- Qilu Lake Field Scientific Observation and Research Station for Plateau Shallow Lake in Yunnan Province, Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming, 650504, China
| | - Linfeng Xiao
- Qilu Lake Field Scientific Observation and Research Station for Plateau Shallow Lake in Yunnan Province, Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming, 650504, China
| | - Wen-Tong Chen
- Key Laboratory of Coordination Chemistry of Jiangxi Province, School of Chemistry and Chemical Engineering, Jinggangshan University, Ji'an, 343009, China
| | - Xiujun Deng
- Yunnan Key Laboratory of Metal-Organic Molecular Materials and Device, School of Chemistry and Chemical Engineering, Kunming University, Kunming, 650214, China; Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Nankai University, Tianjin, 300071, China
| | - Guangzhi Hu
- Qilu Lake Field Scientific Observation and Research Station for Plateau Shallow Lake in Yunnan Province, Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming, 650504, China.
| |
Collapse
|
8
|
Tashiro S, Kuwabara K, Otsuru K, Shionoya M. Porous Supramolecular Crystalline Probe that Detects Non-Covalent Interactions Involved in Molecular Recognition of Furanic Compounds. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2405507. [PMID: 39076053 PMCID: PMC11618713 DOI: 10.1002/smll.202405507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Indexed: 07/31/2024]
Abstract
Selective separation and conversion of furan-based biomass-derived compounds, which are closely related to biorefineries, is currently an important issue. To improve their performance, it is important to deepen the understanding of non-covalent interactions that act on the molecular recognition of furanic compounds on separation or catalyst matrices. Here, a new method is reported to comprehensively visualize such intermolecular interactions using a porous supramolecular crystalline probe with polar and non-polar binding sites within a low-symmetric nanochannel consisting of four isomeric PdII 3-macrocycles. Single-crystal X-ray diffraction analysis of the crystals including 5-hydroxymethylfurfural, furfural, furfuryl alcohol, or 2-acetylfuran reveals a variety of interactions involving their furan rings and polar substituents. It is also found that cooperative and competitive effects between guest and solvent molecules significantly change their recognition mode.
Collapse
Affiliation(s)
- Shohei Tashiro
- Department of ChemistryGraduate School of ScienceThe University of Tokyo7‐3‐1 Hongo, Bunkyo‐kuTokyo113‐0033Japan
| | - Kyohei Kuwabara
- Department of ChemistryGraduate School of ScienceThe University of Tokyo7‐3‐1 Hongo, Bunkyo‐kuTokyo113‐0033Japan
| | - Kosei Otsuru
- Department of ChemistryGraduate School of ScienceThe University of Tokyo7‐3‐1 Hongo, Bunkyo‐kuTokyo113‐0033Japan
| | - Mitsuhiko Shionoya
- Department of ChemistryGraduate School of ScienceThe University of Tokyo7‐3‐1 Hongo, Bunkyo‐kuTokyo113‐0033Japan
- Research Institute for Science and TechnologyTokyo University of Science2641 YamazakiNodaChiba278‐8510Japan
| |
Collapse
|
9
|
Hosono N, Kono Y, Mizutani N, Koga D, Uemura T. Detecting single-point isomeric differences in polymer chains by MOF column chromatography. Chem Commun (Camb) 2024; 60:13690-13693. [PMID: 39495197 DOI: 10.1039/d4cc04902k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2024]
Abstract
Liquid chromatography with a metal-organic framework (MOF) as the stationary phase enables nanopore threading-based recognition of polymers and identification of single-point isomeric structural differences in the polymer main chain. The polymer adsorption affinity to the MOF and transient kinetics of polymer insertion into the nanopores play crucial roles in the recognition process.
Collapse
Affiliation(s)
- Nobuhiko Hosono
- Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.
| | - Yu Kono
- Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.
| | - Nagi Mizutani
- Department of Advanced Materials Science, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8561, Japan
| | - Daichi Koga
- Department of Advanced Materials Science, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8561, Japan
| | - Takashi Uemura
- Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.
| |
Collapse
|
10
|
Heng JZX, Tan TTY, Li X, Loh WW, Chen Y, Xing Z, Lim Z, Ong JLY, Lin KS, Nishiyama Y, Yoshida T, Zhang L, Otake KI, Kitagawa S, Loh XJ, Ye E, Lim JYC. Pyrolytic Depolymerization of Polyolefins Catalysed by Zirconium-based UiO-66 Metal-Organic Frameworks. Angew Chem Int Ed Engl 2024; 63:e202408718. [PMID: 39088314 DOI: 10.1002/anie.202408718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 07/29/2024] [Accepted: 07/29/2024] [Indexed: 08/03/2024]
Abstract
Polyolefins such as polyethylenes and polypropylenes are the most-produced plastic waste globally, yet are difficult to convert into useful products due to their unreactivity. Pyrolysis is a practical method for large-scale treatment of mixed, contaminated plastic, allowing for their conversion into industrially-relevant petrochemicals. Metal-organic frameworks (MOFs), despite their tremendous utility in heterogeneous catalysis, have been overlooked for polyolefin depolymerization due to their perceived thermal instabilities and inability of polyethylenes and polypropylenes to penetrate their pores. Herein, we demonstrate the viability of UiO-66 MOFs containing coordinatively-unsaturated zirconium nodes, as effective catalysts for pyrolysis that significantly enhances the yields of valuable liquid and gas hydrocarbons, whilst halving the amounts of residual solids produced. Reactions occur on the Lewis-acidic UiO-66 nodes, without the need for noble metals, and yield aliphatic product distributions distinctly different from the aromatic-rich hydrocarbons that can be obtained from zeolite catalysis. We also demonstrate the first unambiguous characterization of polyolefin penetration into UiO-66 pores at pyrolytic temperatures, allowing access to the abundant Zr-oxo nodes within the MOF interior for efficient C-C cleavage. Our work highlights the potential of MOFs as highly-designable heterogeneous catalysts for depolymerisation of plastics, which can complement conventional catalysts in reactivity.
Collapse
Affiliation(s)
- Jerry Zhi Xiong Heng
- Laboratory for Green Porous Materials, Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore, 138634, Republic of Singapore
| | - Tristan Tsai Yuan Tan
- Laboratory for Green Porous Materials, Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore, 138634, Republic of Singapore
| | - Xin Li
- Laboratory for Green Porous Materials, Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore, 138634, Republic of Singapore
| | - Wei Wei Loh
- Laboratory for Green Porous Materials, Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore, 138634, Republic of Singapore
| | - Yuting Chen
- Laboratory for Green Porous Materials, Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore, 138634, Republic of Singapore
| | - Zhenxiang Xing
- Laboratory for Green Porous Materials, Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore, 138634, Republic of Singapore
| | - Zhiyan Lim
- Laboratory for Green Porous Materials, Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore, 138634, Republic of Singapore
| | - Jennet Li Ying Ong
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 1 Pesek Road Jurong Island, Singapore, 627833, Republic of Singapore
| | - Katherine Shiyun Lin
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 1 Pesek Road Jurong Island, Singapore, 627833, Republic of Singapore
| | | | - Takefumi Yoshida
- Cluster of Nanomaterials, Graduate School of Systems Engineering, Wakayama University, 930 Sakaedani, Wakayama, 640-8510, Japan
- Physical and Chemical Research Infrastructure Group, RIKEN SPring-8 Center, RIKEN, Hyogo, 679-5148, Japan
| | - Lili Zhang
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 1 Pesek Road Jurong Island, Singapore, 627833, Republic of Singapore
| | - Ken-Ichi Otake
- Laboratory for Green Porous Materials, Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore, 138634, Republic of Singapore
- Institute for Integrated Cell-Material Sciences, Kyoto University, Institute for Advanced Study, Kyoto University Yoshida, Ushinomiya-cho, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Susumu Kitagawa
- Laboratory for Green Porous Materials, Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore, 138634, Republic of Singapore
- Institute for Integrated Cell-Material Sciences, Kyoto University, Institute for Advanced Study, Kyoto University Yoshida, Ushinomiya-cho, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Xian Jun Loh
- Laboratory for Green Porous Materials, Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore, 138634, Republic of Singapore
| | - Enyi Ye
- Laboratory for Green Porous Materials, Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore, 138634, Republic of Singapore
| | - Jason Y C Lim
- Laboratory for Green Porous Materials, Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore, 138634, Republic of Singapore
- Department of Materials Science and Engineering, National University of Singapore (NUS), 9 Engineering Drive, Singapore, 117576, Republic of Singapore
| |
Collapse
|
11
|
Taketomi H, Hosono N, Uemura T. Selective Removal of Denatured Proteins Using MOF Nanopores. J Am Chem Soc 2024. [PMID: 38842912 DOI: 10.1021/jacs.4c03886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2024]
Abstract
Here we present, for the first time, the selective adsorption of denatured proteins using a metal-organic framework (MOF), demonstrating promising potential for protein purification. Typical proteins, such as lysozyme and carbonic anhydrase B, enter the pores of MIL-101 through their narrow apertures when they are denatured to an unfolded state. Selective adsorption is achieved by finely tuning two key features: the sizes of the aperture and cage of the MOF nanopores, which are responsible for sorting unfolded polypeptide chains and inhibiting the translocation of the native form into the pores, respectively. By leveraging this selective adsorption, we successfully purified a mixture of native and denatured proteins by adding MOF to the mixture, achieving a native purity of over 99%.
Collapse
Affiliation(s)
- Hirotaka Taketomi
- Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, 113-8656 Tokyo, Japan
| | - Nobuhiko Hosono
- Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, 113-8656 Tokyo, Japan
| | - Takashi Uemura
- Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, 113-8656 Tokyo, Japan
| |
Collapse
|
12
|
Klajn K, Gozdek T, Bieliński DM. Metal Organic Frameworks: Current State and Analysis of Their Use as Modifiers of the Vulcanization Process and Properties of Rubber. MATERIALS (BASEL, SWITZERLAND) 2023; 16:7631. [PMID: 38138773 PMCID: PMC10744888 DOI: 10.3390/ma16247631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 12/08/2023] [Accepted: 12/11/2023] [Indexed: 12/24/2023]
Abstract
The interest in and application of metal organic frameworks (MOF) is increasing every year. These substances are widely used in many places, including the separation and storage of gases and energy, catalysis, electrochemistry, optoelectronics, and medicine. Their use in polymer technology is also increasing, focusing mainly on the synthesis of MOF-polymer hybrid compounds. Due to the presence of metal ions in their structure, they can also serve as a component of the crosslinking system used for curing elastomers. This article presents the possibility of using zeolitic imidazolate framework ZIF-8 or MOF-5 as activators for sulfur vulcanization of styrene-butadiene rubber (SBR), replacing zinc oxide in conventional (CV) or effective (EF) curing systems to different extents. Their participation in the curing process and influence on the crosslinking density and structure, as well as the mechanical and thermal properties of the rubber vulcanizates, were examined.
Collapse
Affiliation(s)
| | | | - Dariusz M. Bieliński
- Institute of Polymer & Dye Technology, Lodz University of Technology, 90-537 Lodz, Poland; (K.K.); (T.G.)
| |
Collapse
|
13
|
Adot Veetil K, Husna A, Kabir MH, Jeong I, Choi O, Hossain I, Kim TH. Developing Mixed Matrix Membranes with Good CO 2 Separation Performance Based on PEG-Modified UiO-66 MOF and 6FDA-Durene Polyimide. Polymers (Basel) 2023; 15:4442. [PMID: 38006167 PMCID: PMC10674161 DOI: 10.3390/polym15224442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 11/04/2023] [Accepted: 11/14/2023] [Indexed: 11/26/2023] Open
Abstract
The use of mixed matrix membranes (MMMs) comprising metal-organic frameworks (MOFs) for the separation of CO2 from flue gas has gained recognition as an effective strategy for enhancing gas separation efficiency. When incorporating porous materials like MOFs into a polymeric matrix to create MMMs, the combined characteristics of each constituent typically manifest. Nevertheless, the inadequate dispersion of an inorganic MOF filler within an organic polymer matrix can compromise the compatibility between the filler and matrix. In this context, the aspiration is to develop an MMM that not only exhibits optimal interfacial compatibility between the polymer and filler but also delivers superior gas separation performance, specifically in the efficient extraction of CO2 from flue gas. In this study, we introduce a modification technique involving the grafting of poly(ethylene glycol) diglycidyl ether (PEGDE) onto a UiO-66-NH2 MOF filler (referred to as PEG-MOF), aimed at enhancing its compatibility with the 6FDA-durene matrix. Moreover, the inherent CO2-philic nature of PEGDE is anticipated to enhance the selectivity of CO2 over N2 and CH4. The resultant MMM, incorporating 10 wt% of PEG-MOF loading, exhibits a CO2 permeability of 1671.00 Barrer and a CO2/CH4 selectivity of 22.40. Notably, these values surpass the upper bound reported by Robeson in 2008.
Collapse
Affiliation(s)
- Kavya Adot Veetil
- Organic Material Synthesis Laboratory, Department of Chemistry, Incheon National University, Incheon 22012, Republic of Korea; (K.A.V.); (A.H.); (M.H.K.); (I.J.); (O.C.); (I.H.)
- Research Institute of Basic Sciences, Core Research Institute, Incheon National University, 119 Academy-ro, Yeonsu-gu, Incheon 22012, Republic of Korea
| | - Asmaul Husna
- Organic Material Synthesis Laboratory, Department of Chemistry, Incheon National University, Incheon 22012, Republic of Korea; (K.A.V.); (A.H.); (M.H.K.); (I.J.); (O.C.); (I.H.)
- Research Institute of Basic Sciences, Core Research Institute, Incheon National University, 119 Academy-ro, Yeonsu-gu, Incheon 22012, Republic of Korea
| | - Md. Homayun Kabir
- Organic Material Synthesis Laboratory, Department of Chemistry, Incheon National University, Incheon 22012, Republic of Korea; (K.A.V.); (A.H.); (M.H.K.); (I.J.); (O.C.); (I.H.)
- Research Institute of Basic Sciences, Core Research Institute, Incheon National University, 119 Academy-ro, Yeonsu-gu, Incheon 22012, Republic of Korea
| | - Insu Jeong
- Organic Material Synthesis Laboratory, Department of Chemistry, Incheon National University, Incheon 22012, Republic of Korea; (K.A.V.); (A.H.); (M.H.K.); (I.J.); (O.C.); (I.H.)
- Research Institute of Basic Sciences, Core Research Institute, Incheon National University, 119 Academy-ro, Yeonsu-gu, Incheon 22012, Republic of Korea
| | - Ook Choi
- Organic Material Synthesis Laboratory, Department of Chemistry, Incheon National University, Incheon 22012, Republic of Korea; (K.A.V.); (A.H.); (M.H.K.); (I.J.); (O.C.); (I.H.)
- Research Institute of Basic Sciences, Core Research Institute, Incheon National University, 119 Academy-ro, Yeonsu-gu, Incheon 22012, Republic of Korea
| | - Iqubal Hossain
- Organic Material Synthesis Laboratory, Department of Chemistry, Incheon National University, Incheon 22012, Republic of Korea; (K.A.V.); (A.H.); (M.H.K.); (I.J.); (O.C.); (I.H.)
- Research Institute of Basic Sciences, Core Research Institute, Incheon National University, 119 Academy-ro, Yeonsu-gu, Incheon 22012, Republic of Korea
| | - Tae-Hyun Kim
- Organic Material Synthesis Laboratory, Department of Chemistry, Incheon National University, Incheon 22012, Republic of Korea; (K.A.V.); (A.H.); (M.H.K.); (I.J.); (O.C.); (I.H.)
- Research Institute of Basic Sciences, Core Research Institute, Incheon National University, 119 Academy-ro, Yeonsu-gu, Incheon 22012, Republic of Korea
| |
Collapse
|
14
|
Li X, Tan TTY, Lin Q, Lim CC, Goh R, Otake KI, Kitagawa S, Loh XJ, Lim JYC. MOF-Thermogel Composites for Differentiated and Sustained Dual Drug Delivery. ACS Biomater Sci Eng 2023; 9:5724-5736. [PMID: 37729089 DOI: 10.1021/acsbiomaterials.3c01103] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2023]
Abstract
In recent years, multidrug therapy has gained increasing popularity due to the possibility of achieving synergistic drug action and sequential delivery of different medical payloads for enhanced treatment efficacy. While a number of composite material release platforms have been developed, few combine the bottom-up design versatility of metal-organic frameworks (MOFs) to tailor drug release behavior, with the convenience of temperature-responsive hydrogels (or thermogels) in their unique ease of administration and formulation. Yet, despite their potential, MOF-thermogel composites have been largely overlooked for simultaneous multidrug delivery. Herein, we report the first systematic study of common MOFs (UiO-66, MIL-53(Al), MIL-100(Fe), and MOF-808) with different pore sizes, geometries, and hydrophobicities for their ability to achieve simultaneous dual drug release when embedded within PEG-containing thermogel matrices. After establishing that MOFs exert small influences on the rheological properties of the thermogels despite the penetration of polymers into the MOF pores in solution, the release profiles of ibuprofen and caffeine as model hydrophobic and hydrophilic drugs, respectively, from MOF-thermogel composites were investigated. Through these studies, we elucidated the important role of hydrophobic matching between MOF pores and loaded drugs in order for the MOF component to distinctly influence drug release kinetics. These findings enabled us to identify a viable MOF-thermogel composite containing UiO-66 that showed vastly different release kinetics between ibuprofen and caffeine, enabling temporally differentiated yet sustained simultaneous drug release to be achieved. Finally, the MOF-thermogel composites were shown to be noncytotoxic in vitro, paving the way for these underexploited composite materials to find possible clinical applications for multidrug therapy.
Collapse
Affiliation(s)
- Xin Li
- Laboratory for Green Porous Materials, Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore
| | - Tristan T Y Tan
- Laboratory for Green Porous Materials, Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore
| | - Qianyu Lin
- Laboratory for Green Porous Materials, Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore
| | - Chen Chuan Lim
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 1 Pesek Road Jurong Island, Singapore 627833, Republic of Singapore
| | - Rubayn Goh
- Laboratory for Green Porous Materials, Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore
| | - Ken-Ichi Otake
- Laboratory for Green Porous Materials, Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore
- Institute for Integrated Cell-Material Sciences, Kyoto University Institute for Advanced Study, Kyoto University, Yoshida Ushinomiya-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Susumu Kitagawa
- Laboratory for Green Porous Materials, Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore
- Institute for Integrated Cell-Material Sciences, Kyoto University Institute for Advanced Study, Kyoto University, Yoshida Ushinomiya-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Xian Jun Loh
- Laboratory for Green Porous Materials, Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 1 Pesek Road Jurong Island, Singapore 627833, Republic of Singapore
- Department of Materials Science and Engineering, National University of Singapore (NUS), 9 Engineering Drive, Singapore 117576, Republic of Singapore
| | - Jason Y C Lim
- Laboratory for Green Porous Materials, Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore
- Department of Materials Science and Engineering, National University of Singapore (NUS), 9 Engineering Drive, Singapore 117576, Republic of Singapore
| |
Collapse
|
15
|
Darmawan YA, Goto T, Yanagishima T, Fuji T, Kudo T. Mid-Infrared Optical Force Chromatography of Microspheres Containing Siloxane Bonds. J Phys Chem Lett 2023; 14:7306-7312. [PMID: 37561048 DOI: 10.1021/acs.jpclett.3c01679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/11/2023]
Abstract
Recent interest in particle sorting using optical forces has grown due to its ability to separate micro- and nanomaterials based on their optical properties. Here, we present a mid-infrared optical force manipulation technique that enables precise sorting of microspheres based on their molecular vibrational properties using a mid-infrared quantum cascade laser. Utilizing the optical pushing force driven by a 9.3 μm mid-infrared evanescent field generated on a prism through total internal reflection, a variety of microspheres, including those composed of Si-O-Si bonds, can be separated in accordance with their absorbance values at 9.3 μm. The experimental results are in good agreement with the optical force calculations using finite-difference time-domain simulation. Thus, each microsphere's displacement and velocity can be predicted from the absorbance value; conversely, the optical properties (e.g., absorbance and complex refractive index in the mid-infrared region) of individual microspheres can be estimated by monitoring their velocity.
Collapse
Affiliation(s)
- Yoshua Albert Darmawan
- Laser Science Laboratory, Toyota Technological Institute, 2-12-1 Hisakata, Tempaku-ku, Nagoya 468-8511, Japan
| | - Takuma Goto
- Laser Science Laboratory, Toyota Technological Institute, 2-12-1 Hisakata, Tempaku-ku, Nagoya 468-8511, Japan
| | - Taiki Yanagishima
- Department of Physics, Graduate School of Science, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto 606-8502, Japan
| | - Takao Fuji
- Laser Science Laboratory, Toyota Technological Institute, 2-12-1 Hisakata, Tempaku-ku, Nagoya 468-8511, Japan
| | - Tetsuhiro Kudo
- Laser Science Laboratory, Toyota Technological Institute, 2-12-1 Hisakata, Tempaku-ku, Nagoya 468-8511, Japan
| |
Collapse
|
16
|
Iizuka T, Sano H, Le Ouay B, Hosono N, Uemura T. An approach to MOFaxanes by threading ultralong polymers through metal-organic framework microcrystals. Nat Commun 2023; 14:3241. [PMID: 37296133 DOI: 10.1038/s41467-023-38835-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 05/17/2023] [Indexed: 06/12/2023] Open
Abstract
Mechanically interlocked architecture has inspired the fabrication of numerous molecular systems, such as rotaxanes, catenanes, molecular knots, and their polymeric analogues. However, to date, the studies in this field have only focused on the molecular-scale integrity and topology of its unique penetrating structure. Thus, the topological material design of such architectures has not been fully explored from the nano- to the macroscopic scale. Here, we propose a supramolecular interlocked system, MOFaxane, comprised of long chain molecules penetrating a microcrystal of metal-organic framework (MOF). In this study, we describe the synthesis of polypseudoMOFaxane that is one of the MOFaxane family. This has a polythreaded structure in which multiple polymer chains thread a single MOF microcrystal, forming a topological network in the bulk state. The topological crosslinking architecture is obtained by simply mixing polymers and MOFs, and displays characteristics distinct from those of conventional polyrotaxane materials, including suppression of unthreading reactions.
Collapse
Affiliation(s)
- Tomoya Iizuka
- Department of Advanced Materials Science, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, 277-8561, Chiba, Japan
| | - Hiroyuki Sano
- Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo, Bunkyo-ku, 113-8656, Tokyo, Japan
| | - Benjamin Le Ouay
- Department of Advanced Materials Science, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, 277-8561, Chiba, Japan
- Department of Chemistry, Graduate School of Science, Kyushu University, 744 Motooka, Nishi-ku, 819-0395, Fukuoka, Japan
| | - Nobuhiko Hosono
- Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo, Bunkyo-ku, 113-8656, Tokyo, Japan.
| | - Takashi Uemura
- Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo, Bunkyo-ku, 113-8656, Tokyo, Japan.
| |
Collapse
|
17
|
Mizutani N, Hosono N, Uemura T. Topological entrapment of macromolecules during the formation of metal-organic framework. Chem Commun (Camb) 2023; 59:1293-1296. [PMID: 36649107 DOI: 10.1039/d2cc06330a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Here we present our preliminary results on a novel approach to encapsulate large guest molecules in nanoporous materials, metal-organic frameworks (MOFs), via a newly discovered in situ crystal formation. This method has exciting prospects not only in the design of new organic/inorganic hybrids but also in capturing and separating molecules that are significantly larger than the actual pore size of the host MOF.
Collapse
Affiliation(s)
- Nagi Mizutani
- Department of Advanced Materials Science, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8561, Japan
| | - Nobuhiko Hosono
- Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.
| | - Takashi Uemura
- Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.
| |
Collapse
|
18
|
Fu X, Ding B, D'Alessandro D. Fabrication strategies for metal-organic framework electrochemical biosensors and their applications. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2022.214814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
19
|
Yamaguchi T, Ogawa M. Photoinduced movement: how photoirradiation induced the movements of matter. SCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS 2022; 23:796-844. [PMID: 36465797 PMCID: PMC9718566 DOI: 10.1080/14686996.2022.2142955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 10/26/2022] [Accepted: 10/27/2022] [Indexed: 06/17/2023]
Abstract
Pioneered by the success on active transport of ions across membranes in 1980 using the regulation of the binding properties of crown ethers with covalently linked photoisomerizable units, extensive studies on the movements by using varied interactions between moving objects and environments have been reported. Photoinduced movements of various objects ranging from molecules, polymers to microscopic particles were discussed from the aspects of the driving for the movements, materials design to achieve the movements and systems design to see and to utilize the movements are summarized in this review.
Collapse
Affiliation(s)
- Tetsuo Yamaguchi
- Department of Energy and Materials Engineering, Dongguk University-Seoul, Seoul, South Korea
| | - Makoto Ogawa
- School of Energy Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong, Thailand
| |
Collapse
|
20
|
|
21
|
Manna B, Yokoi H, Yamashita A, Sato S, Ohyama J, Kunitake M, Ida S. Infusion of Variable Chemical Structure to Tune Stacking among Metal‐Organic Layers in 2D Nano MOF. Chemistry 2022; 28:e202201665. [DOI: 10.1002/chem.202201665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Indexed: 11/10/2022]
Affiliation(s)
- Biplab Manna
- Institute of Industrial Nanomaterials Kumamoto University 2-39-1 Kurokami Chuo Ward Kumamoto 860-8555 Japan
- Department of Applied Chemistry and Biochemistry Graduate School of Science and Technology Kumamoto University 2-39-1 Kurokami Chuo Ward Kumamoto 860-8555 Japan
| | - Hiroyuki Yokoi
- Institute of Industrial Nanomaterials Kumamoto University 2-39-1 Kurokami Chuo Ward Kumamoto 860-8555 Japan
- Department of Materials Science and Engineering Graduate School of Science and Technology Kumamoto University 2-39-1 Kurokami Chuo Ward Kumamoto, 860-8555 Japan
| | - Akihiro Yamashita
- Technical division Kumamoto University 2-39-1 Kurokami Chuo Ward Kumamoto, 860-8555 Japan
| | - Shota Sato
- Department of Applied Chemistry and Biochemistry Graduate School of Science and Technology Kumamoto University 2-39-1 Kurokami Chuo Ward Kumamoto 860-8555 Japan
| | - Junya Ohyama
- Institute of Industrial Nanomaterials Kumamoto University 2-39-1 Kurokami Chuo Ward Kumamoto 860-8555 Japan
- Department of Applied Chemistry and Biochemistry Graduate School of Science and Technology Kumamoto University 2-39-1 Kurokami Chuo Ward Kumamoto 860-8555 Japan
| | - Masashi Kunitake
- Institute of Industrial Nanomaterials Kumamoto University 2-39-1 Kurokami Chuo Ward Kumamoto 860-8555 Japan
- Department of Applied Chemistry and Biochemistry Graduate School of Science and Technology Kumamoto University 2-39-1 Kurokami Chuo Ward Kumamoto 860-8555 Japan
| | - Shintaro Ida
- Institute of Industrial Nanomaterials Kumamoto University 2-39-1 Kurokami Chuo Ward Kumamoto 860-8555 Japan
- Department of Applied Chemistry and Biochemistry Graduate School of Science and Technology Kumamoto University 2-39-1 Kurokami Chuo Ward Kumamoto 860-8555 Japan
| |
Collapse
|
22
|
Kitao T. Controlled assemblies of conjugated polymers in metal−organic frameworks. Polym J 2022. [DOI: 10.1038/s41428-022-00657-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
23
|
Guo D, Shinde DB, Shin W, Abou-Hamad E, Emwas AH, Lai Z, Manthiram A. Foldable Solid-State Batteries Enabled by Electrolyte Mediation in Covalent Organic Frameworks. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2201410. [PMID: 35332970 DOI: 10.1002/adma.202201410] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 03/22/2022] [Indexed: 06/14/2023]
Abstract
Solid-state electrolytes with high Li+ conductivity, flexibility, durability, and stability offer an attractive solution to enhance safety and energy density. However, meeting these stringent requirements poses challenges to the existing solid polymeric or ceramic electrolytes. Here, an electrolyte-mediated single-Li+ -conductive covalent organic framework (COF) is presented, which represents a new category of quality solid-state Li+ conductors. In situ solidification of a tailored liquid electrolyte boosts the charge-carrier concentration in the COF channels, decouples Li+ cations from both COF walls and molecular chains, and eliminates defects by crystal soldering. Such an altered microenvironment activates the motion of Li+ ions in a directional manner, which leads to an increase in Li+ conductivity by 100 times with a transference number of 0.85 achieved at room temperature. Moreover, the electrolyte conversion cements the ultrathin COF membrane with fortified mechanical toughness. With the COF membrane, foldable solid-state pouch cells are demonstrated.
Collapse
Affiliation(s)
- Dong Guo
- Materials Science and Engineering Program and Texas Materials Institute, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Digambar B Shinde
- Division of Physical Science and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Woochul Shin
- Materials Science and Engineering Program and Texas Materials Institute, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Edy Abou-Hamad
- Core Labs, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Abdul-Hamid Emwas
- Core Labs, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Zhiping Lai
- Division of Physical Science and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Arumugam Manthiram
- Materials Science and Engineering Program and Texas Materials Institute, The University of Texas at Austin, Austin, TX, 78712, USA
| |
Collapse
|
24
|
Zinc-Based Metal-Organic Frameworks in Drug Delivery, Cell Imaging, and Sensing. MOLECULES (BASEL, SWITZERLAND) 2021; 27:molecules27010100. [PMID: 35011330 PMCID: PMC8746597 DOI: 10.3390/molecules27010100] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 11/30/2021] [Accepted: 12/22/2021] [Indexed: 01/19/2023]
Abstract
The design and structural frameworks for targeted drug delivery of medicinal compounds and improved cell imaging have been developed with several advantages. However, metal-organic frameworks (MOFs) are supplemented tremendously for medical uses with efficient efficacy. These MOFs are considered as an absolutely new class of porous materials, extensively used in drug delivery systems, cell imaging, and detecting the analytes, especially for cancer biomarkers, due to their excellent biocompatibility, easy functionalization, high storage capacity, and excellent biodegradability. While Zn-metal centers in MOFs have been found by enhanced efficient detection and improved drug delivery, these Zn-based MOFs have appeared to be safe as elucidated by different cytotoxicity assays for targeted drug delivery. On the other hand, the MOF-based heterogeneous catalyst is durable and can regenerate multiple times without losing activity. Therefore, as functional carriers for drug delivery, cell imaging, and chemosensory, MOFs' chemical composition and flexible porous structure allowed engineering to improve their medical formulation and functionality. This review summarizes the methodology for fabricating ultrasensitive and selective Zn-MOF-based sensors, as well as their application in early cancer diagnosis and therapy. This review also offers a systematic approach to understanding the development of MOFs as efficient drug carriers and provides new insights on their applications and limitations in utility with possible solutions.
Collapse
|
25
|
Oe N, Hosono N, Uemura T. Revisiting molecular adsorption: unconventional uptake of polymer chains from solution into sub-nanoporous media. Chem Sci 2021; 12:12576-12586. [PMID: 34703543 PMCID: PMC8494126 DOI: 10.1039/d1sc03770f] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 08/11/2021] [Indexed: 12/20/2022] Open
Abstract
Adsorption of polymers from the solution phase has been extensively studied to cope with many demands not only for separation technologies, but also for the development of coatings, adhesives, and biocompatible materials. Most studies hitherto focus on adsorption on flat surfaces and mesoporous adsorbents with open frameworks, plausibly because of the preconceived notion that it is unlikely for polymers to enter a pore with a diameter that is smaller than the gyration diameter of the polymer in solution; therefore, sub-nanoporous materials are rarely considered as a polymer adsorption medium. Here we report that polyethylene glycols (PEGs) are adsorbed into sub-nanometer one-dimensional (1D) pores of metal-organic frameworks (MOFs) from various solvents. Isothermal adsorption experiments reveal a unique solvent dependence, which is explained by the balance between polymer solvation propensity for each solvent and enthalpic contributions that compensate for potential entropic losses from uncoiling upon pore admission. In addition, adsorption kinetics identify a peculiar molecular weight (MW) dependence. While short PEGs are adsorbed faster than long ones in single-component adsorption experiments, the opposite trend was observed in double-component competitive experiments. A two-step insertion process consisting of (1) an enthalpy-driven recognition step followed by (2) diffusion regulated infiltration in the restricted 1D channels explains the intriguing selectivity of polymer uptake. Furthermore, liquid chromatography using the MOFs as the stationary phase resulted in significant PEG retention that depends on the MW and temperature. This study provides further insights into the mechanism and thermodynamics behind the present polymer adsorption system, rendering it as a promising method for polymer analysis and separation.
Collapse
Affiliation(s)
- Noriyoshi Oe
- Department of Advanced Materials Science, Graduate School of Frontier Sciences, The University of Tokyo 5-1-5 Kashiwanoha, Kashiwa Chiba 277-8561 Japan
| | - Nobuhiko Hosono
- Department of Advanced Materials Science, Graduate School of Frontier Sciences, The University of Tokyo 5-1-5 Kashiwanoha, Kashiwa Chiba 277-8561 Japan
- Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo 7-3-1 Hongo, Bunkyo-ku Tokyo 113-8656 Japan
| | - Takashi Uemura
- Department of Advanced Materials Science, Graduate School of Frontier Sciences, The University of Tokyo 5-1-5 Kashiwanoha, Kashiwa Chiba 277-8561 Japan
- Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo 7-3-1 Hongo, Bunkyo-ku Tokyo 113-8656 Japan
| |
Collapse
|
26
|
Hosono N, Uemura T. Metal-Organic Frameworks as Versatile Media for Polymer Adsorption and Separation. Acc Chem Res 2021; 54:3593-3603. [PMID: 34506124 DOI: 10.1021/acs.accounts.1c00377] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Molecular recognition is of paramount importance for modern chemical processes and has now been achieved for small molecules using well-established host-guest chemistry and adsorption-science principles. In contrast, technologies for recognizing polymer structure are relatively undeveloped. Conventional polymer separation methods, which are mostly limited in practice to size-exclusion chromatography and reprecipitation, find it difficult to recognize minute structural differences in polymer structures as such small structural alterations barely influence the polymer characteristics, including molecular size, polarity, and solubility. Therefore, most of the polymeric products being used today contain mixtures of polymers with different structures as it is challenging to completely control polymer structures during synthesis even with state-of-the-art substitution and polymerization techniques. In this context, development of novel techniques that can resolve the challenges of polymer recognition and separation is in great demand, as these techniques hold the promise of a new paradigm in polymer synthesis, impacting not only materials chemistry but also analytical and biological chemistry.In biological systems, precise recognition and translation of base monomer sequences of mRNA are achieved by threading them through small ribosome tunnels. This principle of introducing polymers into nanosized channels can possibly help us design powerful polymer recognition and separation technologies using metal-organic frameworks (MOFs) as ideal and highly designable recognition media. MOFs are porous materials comprising organic ligands and metal ions and have been extensively studied as porous beds for gas separation and storage. Recently, we found that MOFs can accommodate large polymeric chains in their nanopores. Polymer chains can spontaneously infiltrate MOFs from neat molten and solution phases by threading their terminals into MOF nanochannels. Polymer structures can be recognized and differentiated due to such insertion processes, resulting in the selective adsorption of polymers on MOFs. This enables the precise recognition of the polymer terminus structure, resulting in the perfect separation of a variety of terminal-functionalized polymers that are otherwise difficult to separate by conventional polymer separation methods. Furthermore, the MOFs can recognize polymer shapes, thus enabling the large-scale separation of high purity cyclic polymers from the complex crude mixtures of linear polymers, which are used as precursor materials in common cyclization reactions. In solution-phase adsorption, many factors, including molecular weight, terminal groups, polymer shape, polymer-MOF interaction, and coexisting solvent molecules, influence the selective adsorption behavior; this yields a new liquid chromatography-based polymer separation technology using an MOF as the stationary phase. MOF-packed columns, in which a novel separation mode based on polymer insertion into the MOF operates under a dynamic insertion/rejection equilibrium at the liquid/solid interface, exhibited excellent polymer separation capability. The polymer recognition principle described in this study thus has a high probability for realizing previously unfeasible polymer separations based on monomer composition and sequences, stereoregularity, regioregularity, helicity, and block sequences in synthetic polymers and biomacromolecules.
Collapse
Affiliation(s)
- Nobuhiko Hosono
- Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
- Department of Advanced Materials Science, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8561, Japan
| | - Takashi Uemura
- Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
- Department of Advanced Materials Science, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8561, Japan
| |
Collapse
|
27
|
Chen X, Zhuang Y, Rampal N, Hewitt R, Divitini G, O’Keefe CA, Liu X, Whitaker DJ, Wills JW, Jugdaohsingh R, Powell JJ, Yu H, Grey CP, Scherman OA, Fairen-Jimenez D. Formulation of Metal-Organic Framework-Based Drug Carriers by Controlled Coordination of Methoxy PEG Phosphate: Boosting Colloidal Stability and Redispersibility. J Am Chem Soc 2021; 143:13557-13572. [PMID: 34357768 PMCID: PMC8414479 DOI: 10.1021/jacs.1c03943] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Indexed: 12/16/2022]
Abstract
Metal-organic framework nanoparticles (nanoMOFs) have been widely studied in biomedical applications. Although substantial efforts have been devoted to the development of biocompatible approaches, the requirement of tedious synthetic steps, toxic reagents, and limitations on the shelf life of nanoparticles in solution are still significant barriers to their translation to clinical use. In this work, we propose a new postsynthetic modification of nanoMOFs with phosphate-functionalized methoxy polyethylene glycol (mPEG-PO3) groups which, when combined with lyophilization, leads to the formation of redispersible solid materials. This approach can serve as a facile and general formulation method for the storage of bare or drug-loaded nanoMOFs. The obtained PEGylated nanoMOFs show stable hydrodynamic diameters, improved colloidal stability, and delayed drug-release kinetics compared to their parent nanoMOFs. Ex situ characterization and computational studies reveal that PEGylation of PCN-222 proceeds in a two-step fashion. Most importantly, the lyophilized, PEGylated nanoMOFs can be completely redispersed in water, avoiding common aggregation issues that have limited the use of MOFs in the biomedical field to the wet form-a critical limitation for their translation to clinical use as these materials can now be stored as dried samples. The in vitro performance of the addition of mPEG-PO3 was confirmed by the improved intracellular stability and delayed drug-release capability, including lower cytotoxicity compared with that of the bare nanoMOFs. Furthermore, z-stack confocal microscopy images reveal the colocalization of bare and PEGylated nanoMOFs. This research highlights a facile PEGylation method with mPEG-PO3, providing new insights into the design of promising nanocarriers for drug delivery.
Collapse
Affiliation(s)
- Xu Chen
- The
Adsorption & Advanced Materials Laboratory (AML),
Department of Chemical Engineering & Biotechnology, University of Cambridge, Philippa Fawcett Drive, Cambridge CB3 0AS, United
Kingdom
| | - Yunhui Zhuang
- The
Adsorption & Advanced Materials Laboratory (AML),
Department of Chemical Engineering & Biotechnology, University of Cambridge, Philippa Fawcett Drive, Cambridge CB3 0AS, United
Kingdom
| | - Nakul Rampal
- The
Adsorption & Advanced Materials Laboratory (AML),
Department of Chemical Engineering & Biotechnology, University of Cambridge, Philippa Fawcett Drive, Cambridge CB3 0AS, United
Kingdom
| | - Rachel Hewitt
- Biominerals
Research Laboratory & Cellular Imaging and Analysis Facility,
Department of Veterinary Medicine, University
of Cambridge, Madingley Road, Cambridge CB3 0ES, United Kingdom
| | - Giorgio Divitini
- Electron
Microscopy Group, Department of Materials Science and Metallurgy, University of Cambridge, 27 Charles Babbage Road, Cambridge CB3 0FS, United
Kingdom
| | - Christopher A. O’Keefe
- Department
of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United
Kingdom
| | - Xiewen Liu
- The
Adsorption & Advanced Materials Laboratory (AML),
Department of Chemical Engineering & Biotechnology, University of Cambridge, Philippa Fawcett Drive, Cambridge CB3 0AS, United
Kingdom
| | - Daniel J. Whitaker
- Department
of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United
Kingdom
| | - John W. Wills
- Biominerals
Research Laboratory & Cellular Imaging and Analysis Facility,
Department of Veterinary Medicine, University
of Cambridge, Madingley Road, Cambridge CB3 0ES, United Kingdom
| | - Ravin Jugdaohsingh
- Biominerals
Research Laboratory & Cellular Imaging and Analysis Facility,
Department of Veterinary Medicine, University
of Cambridge, Madingley Road, Cambridge CB3 0ES, United Kingdom
| | - Jonathan J. Powell
- Biominerals
Research Laboratory & Cellular Imaging and Analysis Facility,
Department of Veterinary Medicine, University
of Cambridge, Madingley Road, Cambridge CB3 0ES, United Kingdom
| | - Han Yu
- School
of Chemical and Environmental Engineering, Shanghai Institute of Technology, No. 100 Haiquan Road, Shanghai 201418, P. R. China
| | - Clare P. Grey
- Department
of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United
Kingdom
| | - Oren A. Scherman
- Department
of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United
Kingdom
| | - David Fairen-Jimenez
- The
Adsorption & Advanced Materials Laboratory (AML),
Department of Chemical Engineering & Biotechnology, University of Cambridge, Philippa Fawcett Drive, Cambridge CB3 0AS, United
Kingdom
| |
Collapse
|
28
|
Hosono N, Uemura T. Development of Functional Materials via Polymer Encapsulation into Metal–Organic Frameworks. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2021. [DOI: 10.1246/bcsj.20210191] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Nobuhiko Hosono
- Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
- Department of Advanced Materials Science, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8561, Japan
| | - Takashi Uemura
- Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| |
Collapse
|
29
|
Zhou T, Wang L, Huang X, Unruangsri J, Zhang H, Wang R, Song Q, Yang Q, Li W, Wang C, Takahashi K, Xu H, Guo J. PEG-stabilized coaxial stacking of two-dimensional covalent organic frameworks for enhanced photocatalytic hydrogen evolution. Nat Commun 2021; 12:3934. [PMID: 34168150 PMCID: PMC8225615 DOI: 10.1038/s41467-021-24179-5] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Accepted: 06/03/2021] [Indexed: 02/05/2023] Open
Abstract
Two-dimensional covalent organic frameworks (2D COFs) featuring periodic frameworks, extended π-conjugation and layered stacking structures, have emerged as a promising class of materials for photocatalytic hydrogen evolution. Nevertheless, the layer-by-layer assembly in 2D COFs is not stable during the photocatalytic cycling in water, causing disordered stacking and declined activity. Here, we report an innovative strategy to stabilize the ordered arrangement of layered structures in 2D COFs for hydrogen evolution. Polyethylene glycol is filled up in the mesopore channels of a β-ketoenamine-linked COF containing benzothiadiazole moiety. This unique feature suppresses the dislocation of neighbouring layers and retains the columnar π-orbital arrays to facilitate free charge transport. The hydrogen evolution rate is therefore remarkably promoted under visible irradiation compared with that of the pristine COF. This study provides a general post-functionalization strategy for 2D COFs to enhance photocatalytic performances.
Collapse
Affiliation(s)
- Ting Zhou
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, China
| | - Lei Wang
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Soft Matter Chemistry, University of Science and Technology of China, Hefei, China
| | - Xingye Huang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, China
| | | | - Hualei Zhang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, China
| | - Rong Wang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, China
| | - Qingliang Song
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, China
| | - Qingyuan Yang
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, China
| | - Weihua Li
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, China
| | - Changchun Wang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, China
| | - Kaito Takahashi
- Institute of Atomic and Molecular Sciences Academia Sinica, Taipei, Taiwan.
| | - Hangxun Xu
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Soft Matter Chemistry, University of Science and Technology of China, Hefei, China.
| | - Jia Guo
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, China.
| |
Collapse
|
30
|
Sawayama T, Wang Y, Watanabe T, Takayanagi M, Yamamoto T, Hosono N, Uemura T. Metal‐Organic Frameworks for Practical Separation of Cyclic and Linear Polymers. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202102794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Taku Sawayama
- Department of Advanced Materials Science Graduate School of Frontier Sciences The University of Tokyo 5-1-5 Kashiwanoha Kashiwa Chiba 277-8561 Japan
| | - Yubo Wang
- Graduate School of Chemical Sciences and Engineering Hokkaido University Sapporo Hokkaido 060-8628 Japan
| | - Tomohisa Watanabe
- Graduate School of Chemical Sciences and Engineering Hokkaido University Sapporo Hokkaido 060-8628 Japan
| | - Masayoshi Takayanagi
- The Center for Data Science Education and Research Shiga University Hikone Shiga 522-8522 Japan
- RIKEN Center for Advanced Intelligence Project 1-4-1 Nihonbashi, Chuo-ku Tokyo 103-0027 Japan
| | - Takuya Yamamoto
- Division of Applied Chemistry Faculty of Engineering Hokkaido University Sapporo Hokkaido 060-8628 Japan
| | - Nobuhiko Hosono
- Department of Advanced Materials Science Graduate School of Frontier Sciences The University of Tokyo 5-1-5 Kashiwanoha Kashiwa Chiba 277-8561 Japan
- Department of Applied Chemistry Graduate School of Engineering The University of Tokyo 7-3-1 Hongo, Bunkyo-ku Tokyo 113-8656 Japan
| | - Takashi Uemura
- Department of Advanced Materials Science Graduate School of Frontier Sciences The University of Tokyo 5-1-5 Kashiwanoha Kashiwa Chiba 277-8561 Japan
- Department of Applied Chemistry Graduate School of Engineering The University of Tokyo 7-3-1 Hongo, Bunkyo-ku Tokyo 113-8656 Japan
| |
Collapse
|
31
|
Novel pervaporation mixed matrix membranes based on polyphenylene isophtalamide modified by metal–organic framework UiO-66(NH2)-EDTA for highly efficient methanol isolation. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.118370] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
32
|
Sawayama T, Wang Y, Watanabe T, Takayanagi M, Yamamoto T, Hosono N, Uemura T. Metal-Organic Frameworks for Practical Separation of Cyclic and Linear Polymers. Angew Chem Int Ed Engl 2021; 60:11830-11834. [PMID: 33733567 DOI: 10.1002/anie.202102794] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Indexed: 12/24/2022]
Abstract
The purification step in the manufacturing of cyclic polymers is difficult as complete fractionation to eliminate linear impurities requires considerable effort. Here, we report a new polymer separation methodology that uses metal-organic frameworks (MOFs) to discriminate between linear and cyclic polyethylene glycols (PEGs) via selective polymer insertion into the MOF nanopores. Preparation of a MOF-packed column allowed analytical and preparative chromatographic separation of these topologically distinct pairs. In addition, gram-scale PEGs with only cyclic structures were successfully obtained from a crude reaction mixture by using MOF as an adsorbent.
Collapse
Affiliation(s)
- Taku Sawayama
- Department of Advanced Materials Science, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba, 277-8561, Japan
| | - Yubo Wang
- Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo, Hokkaido, 060-8628, Japan
| | - Tomohisa Watanabe
- Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo, Hokkaido, 060-8628, Japan
| | - Masayoshi Takayanagi
- The Center for Data Science Education and Research, Shiga University, Hikone, Shiga, 522-8522, Japan.,RIKEN Center for Advanced Intelligence Project, 1-4-1 Nihonbashi, Chuo-ku, Tokyo, 103-0027, Japan
| | - Takuya Yamamoto
- Division of Applied Chemistry, Faculty of Engineering, Hokkaido University, Sapporo, Hokkaido, 060-8628, Japan
| | - Nobuhiko Hosono
- Department of Advanced Materials Science, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba, 277-8561, Japan.,Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Takashi Uemura
- Department of Advanced Materials Science, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba, 277-8561, Japan.,Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| |
Collapse
|
33
|
Atinafu DG, Yun BY, Wi S, Kang Y, Kim S. A comparative analysis of biochar, activated carbon, expanded graphite, and multi-walled carbon nanotubes with respect to PCM loading and energy-storage capacities. ENVIRONMENTAL RESEARCH 2021; 195:110853. [PMID: 33567299 DOI: 10.1016/j.envres.2021.110853] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 01/19/2021] [Accepted: 02/03/2021] [Indexed: 06/12/2023]
Abstract
To obtain high thermal performance composite phase change materials (PCMs), various other supporting materials have been utilized to encapsulate organic PCMs. In this study, four carbon materials (biochar, activated carbon, carbon nanotubes, and expanded graphite) were introduced to support heptadecane. The composite PCMs were designed using vacuum impregnation techniques. The structural stability, chemical compatibility, thermal stability, and thermal energy storage capacity of the as-prepared materials were systematically characterized using differential scanning calorimetry, Fourier-transform infrared spectroscopy, etc. Among the supporting materials, expanded graphite had a high PCM content of 94.5%, whereas it was low for biochar-supported PCM (25.7%). Meanwhile, the latent heat storage capacity ranged from 53.3 J/g to 195.9 J/g. It was observed that the intermolecular interactions between the PCM and supporting materials and the surface functionality of the encapsulating agents play a leading role in the thermal performance of the composite PCMs. Furthermore, pore structures such as specific surface area, total pore volume, and pore size distribution have a combined effect on the crystallinity of heptadecane in the composite PCMs. The study will provide insight into developing and designing carbon-based composite PCMs for heat-storage purposes.
Collapse
Affiliation(s)
- Dimberu G Atinafu
- Department of Architecture and Architectural Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Beom Yeol Yun
- Department of Architecture and Architectural Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Seunghwan Wi
- Department of Architecture and Architectural Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Yujin Kang
- Department of Architecture and Architectural Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Sumin Kim
- Department of Architecture and Architectural Engineering, Yonsei University, Seoul 03722, Republic of Korea.
| |
Collapse
|
34
|
Atinafu DG, Chang SJ, Berardi U, Kim KH, Kim S. Potential utility of HKUST-1-graphite nanocomposite to endow alkane with high thermal properties and low electrical resistivity. JOURNAL OF HAZARDOUS MATERIALS 2021; 402:123695. [PMID: 33254751 DOI: 10.1016/j.jhazmat.2020.123695] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 07/28/2020] [Accepted: 08/09/2020] [Indexed: 06/12/2023]
Abstract
It is desirable to develop novel multipurpose phase change materials (PCMs) with improved energy storage and release characteristics. In this study, the utility of a nanocomposite composed of a metal-organic framework (MOF) and graphite was explored for shape-stable PCMs. The prepared MOF-integrated graphite featured favorable structural characteristics (such as large specific surface area (550.6 m2/g), increased total pore volume, and dominant mesopore structure). The obtained composite with a high energy storage capacity (111.4 J/g) exhibited an electrical resistivity that was at least 7 orders of magnitude lower than that of the pristine PCM. In addition, the alkane possessed enhanced chemical compatibility with the supporting scaffolds, outstanding shape, and thermal stabilities. The strong structural connectivity, high specific surface area, and pore size distributions (micro/mesopores) of the scaffolds play a remarkable role in large PCM infiltration ratio, high electrical conductivity, and improved thermal properties of as-prepared composites. It was also suggested that the cavities of the MOF, filled with graphite and the π-π interactions between strand ligands, generate favorable pathways in the nanocomposites. Subsequently creates a supramolecular "wire-like" paths and reduce the resistivity of the parent materials. Therefore, this multifunctional material shows the potential for applications in electro/thermal energy management systems.
Collapse
Affiliation(s)
- Dimberu G Atinafu
- Department of Architecture and Architectural Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Seong Jin Chang
- Department of Interior Materials Engineering, College of Construction and Environmental Engineering, Gyeongnam National University of Science and Technology, Jinju 52725, Republic of Korea
| | - Umberto Berardi
- Department of Architectural Science, Ryerson University, Toronto, ON M5B 2K3, Canada
| | - Ki-Hyun Kim
- Department of Civil and Environmental Engineering, Hanyang University, Seoul 04763, Republic of Korea.
| | - Sumin Kim
- Department of Architecture and Architectural Engineering, Yonsei University, Seoul 03722, Republic of Korea.
| |
Collapse
|
35
|
Yang S, Karve VV, Justin A, Kochetygov I, Espín J, Asgari M, Trukhina O, Sun DT, Peng L, Queen WL. Enhancing MOF performance through the introduction of polymer guests. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2020.213525] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
36
|
Hosono N, Mochizuki S, Hayashi Y, Uemura T. Unimolecularly thick monosheets of vinyl polymers fabricated in metal-organic frameworks. Nat Commun 2020; 11:3573. [PMID: 32681039 PMCID: PMC7367882 DOI: 10.1038/s41467-020-17392-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 06/26/2020] [Indexed: 11/28/2022] Open
Abstract
Polymers with two-dimensional (2D) network topologies are currently gaining significant attention due to their unique properties that originate from their regulated conformations. However, in contrast to conventional 1D- and 3D-networked macromolecules, the synthesis of such 2D networks provides challenges for polymer chemists because of the nature of the networking polymerisation reaction, which occurs in a spatially random fashion when conventional solution-phase synthesis is performed. Here we report a versatile synthesis of polymeric monosheets with unimolecularly thick networking architectures by exploiting the 2D nanospaces of metal–organic frameworks (MOFs) as reaction templates. Crosslinking radical polymerisation in the 2D nanospaces of pillared-layer-type MOFs affords monosheets of typical vinyl polymers and can be carried out on the gram scale. Remarkably, the prepared polymer monosheets are highly soluble in organic solvents and show atypical thermal and rheological properties that result from their 2D-regulated conformations that cannot be adopted by their 1D or 3D analogues. Unlike 1D and 3D-networked macromolecules, the synthesis of 2D molecular networks is challenging because of the nature of the polymerisation reaction. Here the authors report the synthesis of polymeric monosheets with unimolecularly thick networks by exploiting the 2D nanospaces of metal–organic frameworks as reaction templates.
Collapse
Affiliation(s)
- Nobuhiko Hosono
- Department of Advanced Materials Science, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba, 277-8561, Japan.,Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Shuto Mochizuki
- Department of Advanced Materials Science, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba, 277-8561, Japan.,Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto, 615-8510, Japan
| | - Yuki Hayashi
- Department of Advanced Materials Science, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba, 277-8561, Japan
| | - Takashi Uemura
- Department of Advanced Materials Science, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba, 277-8561, Japan. .,Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan. .,CREST, Japan Science and Technology Agency (JST), 4-1-8 Honcho, Kawaguchi, Saitama, 332-0012, Japan.
| |
Collapse
|
37
|
Le Ouay B, Uemura T. Terminus-dependent insertion of molten poly(ethylene glycol) into a flexible metal-organic framework. Eur Polym J 2020. [DOI: 10.1016/j.eurpolymj.2020.109855] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
38
|
Kitao T, Uemura T. Polymers in Metal–Organic Frameworks: From Nanostructured Chain Assemblies to New Functional Materials. CHEM LETT 2020. [DOI: 10.1246/cl.200106] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Takashi Kitao
- Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
- Department of Advanced Materials Science, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8561, Japan
| | - Takashi Uemura
- Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
- Department of Advanced Materials Science, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8561, Japan
- CREST, Japan Science and Technology Agency (JST), 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| |
Collapse
|
39
|
Mizutani N, Hosono N, Le Ouay B, Kitao T, Matsuura R, Kubo T, Uemura T. Recognition of Polymer Terminus by Metal–Organic Frameworks Enabling Chromatographic Separation of Polymers. J Am Chem Soc 2020; 142:3701-3705. [DOI: 10.1021/jacs.9b13568] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Nagi Mizutani
- Department of Advanced Materials Science, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8561, Japan
| | - Nobuhiko Hosono
- Department of Advanced Materials Science, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8561, Japan
- Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Benjamin Le Ouay
- Department of Advanced Materials Science, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8561, Japan
| | - Takashi Kitao
- Department of Advanced Materials Science, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8561, Japan
- Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Ryoichirou Matsuura
- Department of Material Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Takuya Kubo
- Department of Material Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Takashi Uemura
- Department of Advanced Materials Science, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8561, Japan
- Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
- CREST, Japan Science and Technology Agency (JST), 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| |
Collapse
|
40
|
Yazaki K, Takahashi M, Miyajima N, Obata M. Construction of a polyMOF using a polymer ligand bearing the benzenedicarboxylic acid moiety in the side chain. NEW J CHEM 2020. [DOI: 10.1039/c9nj06394c] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Here we report a new synthetic strategy of a polyMOF consisting of a side chain ligand polymer. The polyMOF was consisting of a crystalline MOF-like structure in the polymer despite its film form.
Collapse
Affiliation(s)
- Kohei Yazaki
- Faculty of Engineering
- University of Yamanashi
- Kofu
- Japan
| | | | | | - Makoto Obata
- Faculty of Engineering
- University of Yamanashi
- Kofu
- Japan
| |
Collapse
|
41
|
Schmidt BVKJ. Metal-Organic Frameworks in Polymer Science: Polymerization Catalysis, Polymerization Environment, and Hybrid Materials. Macromol Rapid Commun 2019; 41:e1900333. [PMID: 31469204 DOI: 10.1002/marc.201900333] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 08/16/2019] [Indexed: 12/23/2022]
Abstract
The development of metal-organic frameworks (MOFs) has had a significant impact on various fields of chemistry and materials science. Naturally, polymer science also exploited this novel type of material for various purposes, which is due to the defined porosity, high surface area, and catalytic activity of MOFs. The present review covers various topics of MOF/polymer research beginning with MOF-based polymerization catalysis. Furthermore, polymerization inside MOF pores as well as polymerization of MOF ligands is described, which have a significant effect on polymer structures. Finally, MOF/polymer hybrid and composite materials are highlighted, encompassing a range of material classes, like bulk materials, membranes, and dispersed materials. In the course of the review, various applications of MOF/polymer combinations are discussed (e.g., adsorption, gas separation, drug delivery, catalysis, organic electronics, and stimuli-responsive materials). Finally, past research is concluded and an outlook toward future development is provided.
Collapse
Affiliation(s)
- Bernhard V K J Schmidt
- Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476, Potsdam, Germany.,School of Chemistry, University of Glasgow, Joseph Black Building, Glasgow, G12 8QQ, UK
| |
Collapse
|
42
|
Duan P, Moreton JC, Tavares SR, Semino R, Maurin G, Cohen SM, Schmidt-Rohr K. Polymer Infiltration into Metal–Organic Frameworks in Mixed-Matrix Membranes Detected in Situ by NMR. J Am Chem Soc 2019; 141:7589-7595. [DOI: 10.1021/jacs.9b02789] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Pu Duan
- Department of Chemistry, Brandeis University, Waltham, Massachusetts 02453, United States
| | - Jessica C. Moreton
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093, United States
| | - Sergio R. Tavares
- Institut Charles Gerhardt Montpellier UMR 5253 CNRS, Université de Montpellier, Place E. Bataillon, 34095 Montpellier Cedex 05, France
| | - Rocio Semino
- Institut Charles Gerhardt Montpellier UMR 5253 CNRS, Université de Montpellier, Place E. Bataillon, 34095 Montpellier Cedex 05, France
| | - Guillaume Maurin
- Institut Charles Gerhardt Montpellier UMR 5253 CNRS, Université de Montpellier, Place E. Bataillon, 34095 Montpellier Cedex 05, France
| | - Seth M. Cohen
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093, United States
| | - Klaus Schmidt-Rohr
- Department of Chemistry, Brandeis University, Waltham, Massachusetts 02453, United States
| |
Collapse
|
43
|
Wang J, Zhang Y, Ye F, Liu X, Wang X, Zhou X, Lu Y. Enhancement of orientation of rigid polymer blocks by incorporating rod–coil block copolymer chains into metal–organic frameworks. POLYM INT 2019. [DOI: 10.1002/pi.5766] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Jin Wang
- School of Telecommunication and Information EngineeringNanjing University of Posts and Telecommunications Nanjing China
| | - Yunchao Zhang
- School of Telecommunication and Information EngineeringNanjing University of Posts and Telecommunications Nanjing China
| | - Feihong Ye
- School of Telecommunication and Information EngineeringNanjing University of Posts and Telecommunications Nanjing China
| | - Xiaoli Liu
- School of Telecommunication and Information EngineeringNanjing University of Posts and Telecommunications Nanjing China
| | - Xianlin Wang
- School of Telecommunication and Information EngineeringNanjing University of Posts and Telecommunications Nanjing China
| | - Xinhui Zhou
- Key Laboratory for Organic Electronics and Information Displays and Institute of Advanced MaterialsNanjing University of Posts and Telecommunications Nanjing China
| | - Yunqing Lu
- School of Telecommunication and Information EngineeringNanjing University of Posts and Telecommunications Nanjing China
| |
Collapse
|
44
|
Guo Z, Zhang Y, Dong Y, Li J, Li S, Shao P, Feng X, Wang B. Fast Ion Transport Pathway Provided by Polyethylene Glycol Confined in Covalent Organic Frameworks. J Am Chem Soc 2019; 141:1923-1927. [PMID: 30657664 DOI: 10.1021/jacs.8b13551] [Citation(s) in RCA: 144] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Covalent organic frameworks (COFs) with well-tailored channels are able to accommodate ions and offer their conduction pathway. However, due to strong Coulombic interaction and the lack of transport medium, directly including lithium salts into the channels of COFs results in limited ion transport capability. Herein, we propose a strategy of incorporating low-molecular-weight polyethylene glycol (PEG) into COFs with anionic, neutral, or cationic skeletons to accelerate Li+ conduction. The PEG confined in the well-aligned channels retains high flexibility and Li+ solvating ability. The ion conductivity of PEG included in a cationic COF can reach 1.78 × 10-3 S cm-1 at 120 °C. The simplicity of this strategy as well as the diversity of crystalline porous materials holds great promise to design high-performance all-solid-state ion conductors.
Collapse
Affiliation(s)
- Zhenbin Guo
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science, Ministry of Education, School of Chemistry and Chemical Engineering , Beijing Institute of Technology , Beijing 100081 , People's Republic of China
| | - Yuanyuan Zhang
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science, Ministry of Education, School of Chemistry and Chemical Engineering , Beijing Institute of Technology , Beijing 100081 , People's Republic of China
| | - Yu Dong
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science, Ministry of Education, School of Chemistry and Chemical Engineering , Beijing Institute of Technology , Beijing 100081 , People's Republic of China
| | - Jie Li
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science, Ministry of Education, School of Chemistry and Chemical Engineering , Beijing Institute of Technology , Beijing 100081 , People's Republic of China
| | - Siwu Li
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science, Ministry of Education, School of Chemistry and Chemical Engineering , Beijing Institute of Technology , Beijing 100081 , People's Republic of China
| | - Pengpeng Shao
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science, Ministry of Education, School of Chemistry and Chemical Engineering , Beijing Institute of Technology , Beijing 100081 , People's Republic of China
| | - Xiao Feng
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science, Ministry of Education, School of Chemistry and Chemical Engineering , Beijing Institute of Technology , Beijing 100081 , People's Republic of China
| | - Bo Wang
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science, Ministry of Education, School of Chemistry and Chemical Engineering , Beijing Institute of Technology , Beijing 100081 , People's Republic of China
| |
Collapse
|