1
|
Xu Y, Luo H, Wang J, Liu H, Chen L, Ji H, Deng Z, Liu X. CD103 + T Cells Eliminate Damaged Alveolar Epithelial Type II Cells Under Oxidative Stress to Prevent Lung Tumorigenesis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025:e2503557. [PMID: 40344646 DOI: 10.1002/advs.202503557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2025] [Revised: 04/20/2025] [Indexed: 05/11/2025]
Abstract
The nexus between aging-associated immune deteriorations and tumorigenesis of lung cancers remains elusive. In a mouse model with Med23 depletion in T cells (Med23 -/-), it is found a strong association between the decline of CD103+ T cells and spontaneous alveolar epithelial type II cell (AT2 cell)-originated lung adenocarcinomas. The reduction of CD103+ T cells in the lung results in an accumulation of AT2 cells bearing oxidative damages, which appears to be the major origin of the lung adenocarcinoma. Functional experiments reveal CD103+ T cells can eradicate oxidative-damage-bearing AT2 cells as well as ROS-dependent, KRAS (G12D)-driven tumorigenesis. In vitro co-cultures prove CD103+ T cells, especially CD103+ CD8+ T cells, exhibit a killing capacity that matches the oxidative stress level in the target cells. In aged animals, it is found the abundance of CD103+ CD8+ T cells in the lung declines with age, accompanied by an accumulation of oxidative-damage-bearing AT2 cells. Collectively, the study establishes the vital function of CD103+ T cells in surveilling epithelial cells under oxidative stress to prevent malignancies, and unravels a potential immuno-dysregulation in the aged lung which contributes to tumorigenesis.
Collapse
Affiliation(s)
- Yu Xu
- Key Laboratory of Multicellular Systems, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, 200031, China
| | - Haorui Luo
- Key Laboratory of Multicellular Systems, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, 200031, China
| | - Jiahao Wang
- Key Laboratory of Multicellular Systems, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, 200031, China
| | - Haifeng Liu
- Key Laboratory of Multicellular Systems, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, 200031, China
| | - Luonan Chen
- Key Laboratory of Multicellular Systems, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, 200031, China
| | - Hongbin Ji
- Key Laboratory of Multicellular Systems, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, 200031, China
| | - Zimu Deng
- Key Laboratory of Multicellular Systems, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, 200031, China
- Zhongshan Institute for Drug discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, 528400, China
| | - Xiaolong Liu
- Key Laboratory of Multicellular Systems, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, 200031, China
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Hangzhou, 310024, China
- School of Life Science and Technology, ShanghaiTech University, 319 Yueyang Road, Shanghai, 200031, China
| |
Collapse
|
2
|
Shi G, Chang Z, Zhang P, Zou X, Zheng X, Liu X, Yan J, Xu H, Tian Z, Zhang N, Cui N, Sun L, Xu G, Yang H. Heterogeneous stiffness of the bone marrow microenvironment regulates the fate decision of haematopoietic stem and progenitor cells. Cell Prolif 2024; 57:e13715. [PMID: 38982593 PMCID: PMC11628730 DOI: 10.1111/cpr.13715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 06/04/2024] [Accepted: 06/27/2024] [Indexed: 07/11/2024] Open
Abstract
The bone marrow (BM) niches are the complex microenvironments that surround cells, providing various external stimuli to regulate a range of haematopoietic stem cell (HSC) behaviours. Recently, it has been proposed that the fate decision of HSCs is often correlated with significantly altered biophysical signals of BM niches. To thoroughly elucidate the effect of mechanical microenvironments on cell fates, we constructed 2D and 3D cell culture hydrogels using polyacrylamide to replicate the mechanical properties of heterogeneous sub-niches, including the inherent rigidity of marrow adipose tissue (2 kPa), perivascular tissue (8 kPa) and endosteum region (35 kPa) in BM. Our observations suggest that HSCs can respond to the mechanical heterogeneity of the BM microenvironment, exhibiting diversity in cell mechanics, haematopoietic pool maintenance and differentiated lineages. Hydrogels with higher stiffness promote the preservation of long-term repopulating HSCs (LT-HSCs), while those with lower stiffness support multi-potent progenitors (MPPs) viability in vitro. Furthermore, we established a comprehensive transcriptional profile of haematopoietic subpopulations to reflect the multipotency of haematopoietic stem and progenitor cells (HSPCs) that are modulated by niche-like stiffness. Our findings demonstrate that HSPCs exhibit completely distinct downstream differentiated preferences within hydrogel systems of varying stiffness. This highlights the crucial role of tissue-specific mechanical properties in HSC lineage decisions, which may provide innovative solutions to clinical challenges.
Collapse
Affiliation(s)
- Guolin Shi
- School of Life SciencesNorthwestern Polytechnical UniversityXi'anChina
- Engineering Research Center of Chinese Ministry of Education for Biological DiagnosisTreatment and Protection Technology and EquipmentXi'anChina
- Center of Special Environmental Biomechanics & Biomedical EngineeringNorthwestern Polytechnical UniversityXi'anChina
| | - Zhuo Chang
- Laboratory for Multiscale Mechanics and Medical Science, Department of Engineering Mechanics, State Key Laboratory for Strength and Vibration of Mechanical Structures, School of Aerospace EngineeringXi'an Jiaotong UniversityXi'anChina
| | - Pan Zhang
- School College of Food Science and EngineeringShaanxi University of Science and TechnologyXi'anChina
| | - Xiaohang Zou
- School of Life SciencesNorthwestern Polytechnical UniversityXi'anChina
- Engineering Research Center of Chinese Ministry of Education for Biological DiagnosisTreatment and Protection Technology and EquipmentXi'anChina
- Center of Special Environmental Biomechanics & Biomedical EngineeringNorthwestern Polytechnical UniversityXi'anChina
| | - Xinmin Zheng
- School of Life SciencesNorthwestern Polytechnical UniversityXi'anChina
- Engineering Research Center of Chinese Ministry of Education for Biological DiagnosisTreatment and Protection Technology and EquipmentXi'anChina
- Center of Special Environmental Biomechanics & Biomedical EngineeringNorthwestern Polytechnical UniversityXi'anChina
| | - Xiru Liu
- School of Life SciencesNorthwestern Polytechnical UniversityXi'anChina
- Engineering Research Center of Chinese Ministry of Education for Biological DiagnosisTreatment and Protection Technology and EquipmentXi'anChina
- Center of Special Environmental Biomechanics & Biomedical EngineeringNorthwestern Polytechnical UniversityXi'anChina
| | - Jinxiao Yan
- School of Life SciencesNorthwestern Polytechnical UniversityXi'anChina
- Engineering Research Center of Chinese Ministry of Education for Biological DiagnosisTreatment and Protection Technology and EquipmentXi'anChina
- Center of Special Environmental Biomechanics & Biomedical EngineeringNorthwestern Polytechnical UniversityXi'anChina
| | - Huiyun Xu
- School of Life SciencesNorthwestern Polytechnical UniversityXi'anChina
- Engineering Research Center of Chinese Ministry of Education for Biological DiagnosisTreatment and Protection Technology and EquipmentXi'anChina
- Center of Special Environmental Biomechanics & Biomedical EngineeringNorthwestern Polytechnical UniversityXi'anChina
| | - Zhenhao Tian
- School of Life SciencesNorthwestern Polytechnical UniversityXi'anChina
- Engineering Research Center of Chinese Ministry of Education for Biological DiagnosisTreatment and Protection Technology and EquipmentXi'anChina
- Center of Special Environmental Biomechanics & Biomedical EngineeringNorthwestern Polytechnical UniversityXi'anChina
| | - Nu Zhang
- School of Life SciencesNorthwestern Polytechnical UniversityXi'anChina
- Engineering Research Center of Chinese Ministry of Education for Biological DiagnosisTreatment and Protection Technology and EquipmentXi'anChina
- Center of Special Environmental Biomechanics & Biomedical EngineeringNorthwestern Polytechnical UniversityXi'anChina
| | - Ning Cui
- School of Life SciencesNorthwestern Polytechnical UniversityXi'anChina
- Engineering Research Center of Chinese Ministry of Education for Biological DiagnosisTreatment and Protection Technology and EquipmentXi'anChina
- Center of Special Environmental Biomechanics & Biomedical EngineeringNorthwestern Polytechnical UniversityXi'anChina
| | - Leming Sun
- School of Life SciencesNorthwestern Polytechnical UniversityXi'anChina
- Engineering Research Center of Chinese Ministry of Education for Biological DiagnosisTreatment and Protection Technology and EquipmentXi'anChina
- Center of Special Environmental Biomechanics & Biomedical EngineeringNorthwestern Polytechnical UniversityXi'anChina
| | - Guangkui Xu
- Laboratory for Multiscale Mechanics and Medical Science, Department of Engineering Mechanics, State Key Laboratory for Strength and Vibration of Mechanical Structures, School of Aerospace EngineeringXi'an Jiaotong UniversityXi'anChina
| | - Hui Yang
- School of Life SciencesNorthwestern Polytechnical UniversityXi'anChina
- Engineering Research Center of Chinese Ministry of Education for Biological DiagnosisTreatment and Protection Technology and EquipmentXi'anChina
- Center of Special Environmental Biomechanics & Biomedical EngineeringNorthwestern Polytechnical UniversityXi'anChina
| |
Collapse
|
3
|
Bamaga A, Muthaffar O, Alyazidi A, Bahowarth S, Shawli M, Alotibi F, Alsehemi M, Almohammal M, Alawwadh A, Alghamdi N. MED23 pathogenic variant: genomic-phenotypic analysis. J Med Life 2024; 17:500-507. [PMID: 39144687 PMCID: PMC11320618 DOI: 10.25122/jml-2024-0065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 05/02/2024] [Indexed: 08/16/2024] Open
Abstract
The mediator complex subunit 23 (MED23) gene encodes a protein that acts as a tail module mediator complex, a multi-subunit co-activator involved in several cellular activities. MED23 has been shown to have substantial roles in myogenesis and other molecular mechanisms. The functions of MED23 in the neurological system remain unclear and the clinical phenotype is not thoroughly described. Whole exome sequencing was used to identify a novel mutation in the MED23 gene. DNA capture probes using next-generation sequencing-based copy number variation analysis with Illumina array were performed. The clinical, demographic, neuroimaging, and electrophysiological data of the patients were collected, and similarly, the data of all reported cases in the literature were extracted to compare findings. Screening a total of 9,662 articles, we identified 22 main regulatory processes for the MED23 gene, including suppressive activity for carcinogenic processes. MED23 is also involved in the brain's neurogenesis and functions. The identified cases mainly presented with intellectual disability (87.5%) and developmental delay (50%). Seizures were present in only 18.75% of the patients. Slow backgrounds and spike and sharp-wave complexes were reported on the electroencephalogram (EEG) of a few patients and delayed myelination, thin corpus callosum, and pontine hypoplasia on magnetic resonance imaging (MRI). The MED23 gene regulates several processes in which its understanding promotes considerable therapeutic potential for patients. It is crucial to consider genetic and laboratory testing, particularly when encountering potential carriers. Intellectual disability and developmental delay are the most notable clinical signs with heterogeneous features on EEG and MRI.
Collapse
Affiliation(s)
- Ahmed Bamaga
- Department of Pediatrics, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
- Neuromuscular Medicine Unit, Department of Pediatrics, Faculty of Medicine, King Abdulaziz University Hospital, Jeddah, Saudi Arabia
| | - Osama Muthaffar
- Department of Pediatrics, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Anas Alyazidi
- Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Sarah Bahowarth
- Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mohammed Shawli
- Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Fahad Alotibi
- Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Matar Alsehemi
- Pediatric Neurology Unit, Department of Pediatrics, King Fahad Hospital, Albaha, Saudi Arabia
| | | | - Adel Alawwadh
- Department of Pediatrics, Khamis Mushait Maternity and Children Hospital, Abha, Saudi Arabia
| | - Njood Alghamdi
- Faculty of Medicine, Albaha University, Albaha, Saudi Arabia
| |
Collapse
|
4
|
Gao Z, Smith AL, Scott JF, Bevington S, Boyes J. Temporal analyses reveal a pivotal role for sense and antisense enhancer RNAs in coordinate immunoglobulin lambda locus activation. Nucleic Acids Res 2023; 51:10344-10363. [PMID: 37702072 PMCID: PMC10602925 DOI: 10.1093/nar/gkad741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 08/24/2023] [Accepted: 08/30/2023] [Indexed: 09/14/2023] Open
Abstract
Transcription enhancers are essential activators of V(D)J recombination that orchestrate non-coding transcription through complementary, unrearranged gene segments. How transcription is coordinately increased at spatially distinct promoters, however, remains poorly understood. Using the murine immunoglobulin lambda (Igλ) locus as model, we find that three enhancer-like elements in the 3' Igλ domain, Eλ3-1, HSCλ1 and HSE-1, show strikingly similar transcription factor binding dynamics and close spatial proximity, suggesting that they form an active enhancer hub. Temporal analyses show coordinate recruitment of complementary V and J gene segments to this hub, with comparable transcription factor binding dynamics to that at enhancers. We find further that E2A, p300, Mediator and Integrator bind to enhancers as early events, whereas YY1 recruitment and eRNA synthesis occur later, corresponding to transcription activation. Remarkably, the interplay between sense and antisense enhancer RNA is central to both active enhancer hub formation and coordinate Igλ transcription: Antisense Eλ3-1 eRNA represses Igλ activation whereas temporal analyses demonstrate that accumulating levels of sense eRNA boost YY1 recruitment to stabilise enhancer hub/promoter interactions and lead to coordinate transcription activation. These studies therefore demonstrate for the first time a critical role for threshold levels of sense versus antisense eRNA in locus activation.
Collapse
Affiliation(s)
- Zeqian Gao
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Alastair L Smith
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - James N F Scott
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Sarah L Bevington
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Joan Boyes
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| |
Collapse
|
5
|
Dickerson KM, Qu C, Gao Q, Iacobucci I, Gu Z, Yoshihara H, Backhaus EA, Chang Y, Janke LJ, Xu B, Wu G, Papachristou EK, D'Santos CS, Roberts KG, Mullighan CG. ZNF384 fusion oncoproteins drive lineage aberrancy in acute leukemia. Blood Cancer Discov 2022; 3:240-263. [PMID: 35247902 DOI: 10.1158/2643-3230.bcd-21-0163] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 12/21/2021] [Accepted: 02/28/2022] [Indexed: 11/16/2022] Open
Abstract
ZNF384-rearranged fusion oncoproteins (FO) define a subset of lineage ambiguous leukemias, but their mechanistic role in leukemogenesis and lineage ambiguity is poorly understood. Using viral expression in mouse and human hematopoietic stem and progenitor cells (HSPCs) and a Ep300::Znf384 knockin mouse model, we show that ZNF384 FO promote hematopoietic expansion, myeloid lineage skewing, and self-renewal. In mouse HSPCs, concomitant lesions, such as NRASG12D, were required for fully penetrant leukemia, whereas in human HSPCs expression of ZNF384 FO drove B/myeloid leukemia, with sensitivity of a ZNF384-rearranged xenograft to FLT3 inhibition in vivo. Mechanistically, ZNF384 FO occupy a subset of predominantly intragenic/enhancer regions with increased histone 3 lysine acetylation and deregulate expression of hematopoietic stem cell transcription factors. These data define a paradigm for FO-driven lineage ambiguous leukemia, in which expression in HSPCs results in deregulation of lineage-specific genes and hematopoietic skewing, progressing to full leukemia in the context of proliferative stress.
Collapse
Affiliation(s)
| | - Chunxu Qu
- St. Jude Children's Research Hospital, Memphis, Tennessee, United States
| | - Qingsong Gao
- St. Jude Children's Research Hospital, Memphis, United States
| | - Ilaria Iacobucci
- St. Jude Children's Research Hospital, Memphis, Tennessee, United States
| | - Zhaohui Gu
- City Of Hope National Medical Center, United States
| | | | - Emily A Backhaus
- St. Jude Children's Research Hospital, Memphis, TN, United States
| | - Yunchao Chang
- St. Jude Children's Research Hospital, Memphis, TN, United States
| | - Laura J Janke
- St. Jude Children's Research Hospital, Memphis, TN, United States
| | - Beisi Xu
- St. Jude Children's Research Hospital, Memphis, TN, United States
| | - Gang Wu
- St. Jude Children's Research Hospital, Memphis, United States
| | | | - Clive S D'Santos
- Cancer Research UK Cambridge Research Institute, Cambridge, United Kingdom
| | | | | |
Collapse
|
6
|
3D collagen matrices modulate the transcriptional trajectory of bone marrow hematopoietic progenitors into macrophage lineage commitment. Bioact Mater 2021; 10:255-268. [PMID: 34901544 PMCID: PMC8636680 DOI: 10.1016/j.bioactmat.2021.08.032] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 08/20/2021] [Accepted: 08/29/2021] [Indexed: 12/23/2022] Open
Abstract
Physical signals provided by the extracellular matrix (ECM) are key microenvironmental parameters for the fate decision of hematopoietic stem and progenitor cells (HSPC) in bone marrow. Insights into cell-ECM interactions are critical for advancing HSC-based tissue engineering. Herein, we employed collagen hydrogels and collagen-alginate hydrogels of defined stiffness to study the behaviors of hematopoietic progenitor cells (HPCs). Three-dimensional (3D) collagen hydrogels with a stiffness of 45 Pa were found to promote HPC maintenance and colony formation of monocyte/macrophage progenitors. Using single-cell RNA sequencing (scRNA-seq), we also characterized the comprehensive transcriptional profiles of cells randomly selected from two-dimensional (2D) and 3D hydrogels. A distinct maturation trajectory from HPCs into macrophages within the 3D microenvironment was revealed by these results. 3D-derived macrophages expressed high levels of various cytokines and chemokines, such as Saa3, Cxcl2, Socs3 and Tnf. Furthermore, enhanced communication between 3D-macrophages and other hematopoietic clusters based on ligand-repair interactions was demonstrated through bioinformatic analyses. Our research underlines the regulatory role of matrix-dimensionality in HPC differentiation and therefore probably be applied to the generation of specialized macrophages. 3D collagen hydrogels influenced the maintenance of hematopoietic progenitor cells. 3D matrices modulated the lineage specification of hematopoietic progenitors and promoted the formation of CFU-M colonies. Single-cell RNA sequencing identified a cluster of specialized macrophages within a 3D microenvironment.
Collapse
|
7
|
Tan C, Zhu S, Chen Z, Liu C, Li YE, Zhu M, Zhang Z, Zhang Z, Zhang L, Gu Y, Liang Z, Boyer TG, Ouyang K, Evans SM, Fang X. Mediator complex proximal Tail subunit MED30 is critical for Mediator core stability and cardiomyocyte transcriptional network. PLoS Genet 2021; 17:e1009785. [PMID: 34506481 PMCID: PMC8432849 DOI: 10.1371/journal.pgen.1009785] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 08/18/2021] [Indexed: 01/28/2023] Open
Abstract
Dysregulation of cardiac transcription programs has been identified in patients and families with heart failure, as well as those with morphological and functional forms of congenital heart defects. Mediator is a multi-subunit complex that plays a central role in transcription initiation by integrating regulatory signals from gene-specific transcriptional activators to RNA polymerase II (Pol II). Recently, Mediator subunit 30 (MED30), a metazoan specific Mediator subunit, has been associated with Langer-Giedion syndrome (LGS) Type II and Cornelia de Lange syndrome-4 (CDLS4), characterized by several abnormalities including congenital heart defects. A point mutation in MED30 has been identified in mouse and is associated with mitochondrial cardiomyopathy. Very recent structural analyses of Mediator revealed that MED30 localizes to the proximal Tail, anchoring Head and Tail modules, thus potentially influencing stability of the Mediator core. However, in vivo cellular and physiological roles of MED30 in maintaining Mediator core integrity remain to be tested. Here, we report that deletion of MED30 in embryonic or adult cardiomyocytes caused rapid development of cardiac defects and lethality. Importantly, cardiomyocyte specific ablation of MED30 destabilized Mediator core subunits, while the kinase module was preserved, demonstrating an essential role of MED30 in stability of the overall Mediator complex. RNAseq analyses of constitutive cardiomyocyte specific Med30 knockout (cKO) embryonic hearts and inducible cardiomyocyte specific Med30 knockout (icKO) adult cardiomyocytes further revealed critical transcription networks in cardiomyocytes controlled by Mediator. Taken together, our results demonstrated that MED30 is essential for Mediator stability and transcriptional networks in both developing and adult cardiomyocytes. Our results affirm the key role of proximal Tail modular subunits in maintaining core Mediator stability in vivo.
Collapse
Affiliation(s)
- Changming Tan
- Department of Medicine, University of California, San Diego, California, United States of America
- Department of Cardiovascular Surgery, the Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Siting Zhu
- Department of Medicine, University of California, San Diego, California, United States of America
- Department of Cardiovascular Surgery, Peking University Shenzhen Hospital, School of Chemical Biology and Biotechnology, State Key Laboratory of Chemical Oncogenomics, Peking University Shenzhen Graduate School, Shenzhen, China
| | - Zee Chen
- Department of Medicine, University of California, San Diego, California, United States of America
- Department of Cardiovascular Surgery, Peking University Shenzhen Hospital, School of Chemical Biology and Biotechnology, State Key Laboratory of Chemical Oncogenomics, Peking University Shenzhen Graduate School, Shenzhen, China
| | - Canzhao Liu
- Department of Medicine, University of California, San Diego, California, United States of America
| | - Yang E. Li
- Department of Medicine, University of California, San Diego, California, United States of America
| | - Mason Zhu
- Department of Medicine, University of California, San Diego, California, United States of America
| | - Zhiyuan Zhang
- Department of Medicine, University of California, San Diego, California, United States of America
- Department of Cardiovascular Surgery, the Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zhiwei Zhang
- Department of Medicine, University of California, San Diego, California, United States of America
- Department of Cardiovascular Surgery, the Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Lunfeng Zhang
- Department of Medicine, University of California, San Diego, California, United States of America
| | - Yusu Gu
- Department of Medicine, University of California, San Diego, California, United States of America
| | - Zhengyu Liang
- Department of Medicine, University of California, San Diego, California, United States of America
| | - Thomas G. Boyer
- Department of Molecular Medicine, University of Texas Health Science Center, San Antonio, Texas, United States of America
| | - Kunfu Ouyang
- Department of Cardiovascular Surgery, Peking University Shenzhen Hospital, School of Chemical Biology and Biotechnology, State Key Laboratory of Chemical Oncogenomics, Peking University Shenzhen Graduate School, Shenzhen, China
| | - Sylvia M. Evans
- Department of Medicine, University of California, San Diego, California, United States of America
- Department of Pharmacology, University of California, San Diego, California, United States of America
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, California, United States of America
| | - Xi Fang
- Department of Medicine, University of California, San Diego, California, United States of America
| |
Collapse
|
8
|
Shen H, Gu C, Liang T, Liu H, Guo F, Liu X. Unveiling the heterogeneity of NKT cells in the liver through single cell RNA sequencing. Sci Rep 2020; 10:19453. [PMID: 33173202 PMCID: PMC7655820 DOI: 10.1038/s41598-020-76659-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Accepted: 10/29/2020] [Indexed: 11/10/2022] Open
Abstract
CD1d-dependent type I NKT cells, which are activated by lipid antigen, are known to play important roles in innate and adaptive immunity, as are a portion of type II NKT cells. However, the heterogeneity of NKT cells, especially NKT-like cells, remains largely unknown. Here, we report the profiling of NKT (NK1.1+CD3e+) cells in livers from wild type (WT), Jα18-deficient and CD1d-deficient mice by single-cell RNA sequencing. Unbiased transcriptional clustering revealed distinct cell subsets. The transcriptomic profiles identified the well-known CD1d-dependent NKT cells and defined two CD1d-independent NKT cell subsets. In addition, validation of marker genes revealed the differential organ distribution and landscape of NKT cell subsets during liver tumor progression. More importantly, we found that CD1d-independent Sca-1−CD62L+ NKT cells showed a strong ability to secrete IFN-γ after costimulation with IL-2, IL-12 and IL-18 in vitro. Collectively, our findings provide a comprehensive characterization of NKT cell heterogeneity and unveil a previously undefined functional NKT cell subset.
Collapse
Affiliation(s)
- Hao Shen
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Chan Gu
- Center for Translational Medicine, Ministry of Education Key Laboratory of Birth Defects and Related Diseases of Women and Children, Department of Obstetrics and Gynecology, West China Second Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Tao Liang
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Haifeng Liu
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Fan Guo
- Center for Translational Medicine, Ministry of Education Key Laboratory of Birth Defects and Related Diseases of Women and Children, Department of Obstetrics and Gynecology, West China Second Hospital, Sichuan University, Chengdu, 610041, Sichuan, China. .,Ministry of Education Key Laboratory of Bio-Resource and Eco-Environment, College of Life Sciences, Sichuan University, Chengdu, 610041, Sichuan, China.
| | - Xiaolong Liu
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Beijing, China. .,School of Life Sciences, Hangzhou Institute for Advanced Study, UCAS, Hangzhou, 310024, China. .,School of Life Science and Technology, ShanghaiTech University, Shanghai, 200031, China.
| |
Collapse
|