1
|
Wang T, Shen Z, Yang L, Zhang X, Yu M, Yu S, Zhao B. The coagulation and tumor system are directly linked through the proteolysis and activation of epidermal growth factor receptor by thrombin. Oncogene 2025; 44:1153-1166. [PMID: 39910317 DOI: 10.1038/s41388-025-03296-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 01/10/2025] [Accepted: 01/30/2025] [Indexed: 02/07/2025]
Abstract
Cancer cachexia and cancer-associated thrombosis are potentially fatal outcomes of advanced cancer. Unfortunately, this knowledge has not yet led to any breakthrough in cancer therapy. Thrombin is the key enzyme of blood coagulation system. The identification of a direct link between thrombin and the tumor progression remains unknown. We illustrated thrombin expression in lung adenocarcinoma (LUAD) was closely related to clinicopathological features, prognosis, and chemotherapy outcome of patients via TCGA and clinical pathological analysis. Using genetic and pharmacological approaches, we showed a direct link between thrombin catalytic activity and lung cancer progression in vitro and in vivo. Furthermore, we revealed that thrombin cleaves epidermal growth factor receptor (EGFR) at a GRG motif perfectly conserved across disparate species, indicating functional importance, which results in activation of EGFR/AKT/mTOR signaling pathway. Last we found the mutual interaction between thrombin and chemotherapy resistance. Combination therapy of thrombin inhibitor and chemotherapy results in improved anti-tumor efficacy. Together, our data firstly revealed a mechanism of cancer progression and chemotherapy resistance that involves thrombin-mediated EGFR cleavage. We propose that thrombin could be a prognostic biomarker for lung cancer, blockade of thrombin is a valuable therapeutic strategy to overcome cancer's resistance to chemotherapy.
Collapse
Affiliation(s)
- Tianfa Wang
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Zhiyuan Shen
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Liu Yang
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Xiaohan Zhang
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Min Yu
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China.
- Qidong-Fudan Innovative Institute of Medical Sciences, Nantong, Jiangsu Province, China.
| | - Sanjian Yu
- Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.
| | - Bing Zhao
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China.
- Qidong-Fudan Innovative Institute of Medical Sciences, Nantong, Jiangsu Province, China.
| |
Collapse
|
2
|
Huang Y, Zhang P, Wang H, Chen Y, Liu T, Luo X. Genetic Code Expansion: Recent Developments and Emerging Applications. Chem Rev 2025; 125:523-598. [PMID: 39737807 PMCID: PMC11758808 DOI: 10.1021/acs.chemrev.4c00216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 12/02/2024] [Accepted: 12/09/2024] [Indexed: 01/01/2025]
Abstract
The concept of genetic code expansion (GCE) has revolutionized the field of chemical and synthetic biology, enabling the site-specific incorporation of noncanonical amino acids (ncAAs) into proteins, thus opening new avenues in research and applications across biology and medicine. In this review, we cover the principles of GCE, including the optimization of the aminoacyl-tRNA synthetase (aaRS)/tRNA system and the advancements in translation system engineering. Notable developments include the refinement of aaRS/tRNA pairs, enhancements in screening methods, and the biosynthesis of noncanonical amino acids. The applications of GCE technology span from synthetic biology, where it facilitates gene expression regulation and protein engineering, to medicine, with promising approaches in drug development, vaccine production, and gene editing. The review concludes with a perspective on the future of GCE, underscoring its potential to further expand the toolkit of biology and medicine. Through this comprehensive review, we aim to provide a detailed overview of the current state of GCE technology, its challenges, opportunities, and the frontier it represents in the expansion of the genetic code for novel biological research and therapeutic applications.
Collapse
Affiliation(s)
- Yujia Huang
- State
Key Laboratory of Natural and Biomimetic Drugs, Department of Molecular
and Cellular Pharmacology, School of Pharmaceutical Sciences, Chemical
Biology Center, Peking University, Beijing 100191, China
| | - Pan Zhang
- Shenzhen
Key Laboratory for the Intelligent Microbial Manufacturing of Medicines,
Key Laboratory of Quantitative Synthetic Biology, Center for Synthetic
Biochemistry, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese
Academy of Sciences, Shenzhen 518055, P.R. China
| | - Haoyu Wang
- State
Key Laboratory of Natural and Biomimetic Drugs, Department of Molecular
and Cellular Pharmacology, School of Pharmaceutical Sciences, Chemical
Biology Center, Peking University, Beijing 100191, China
| | - Yan Chen
- Shenzhen
Key Laboratory for the Intelligent Microbial Manufacturing of Medicines,
Key Laboratory of Quantitative Synthetic Biology, Center for Synthetic
Biochemistry, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese
Academy of Sciences, Shenzhen 518055, P.R. China
- University
of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Tao Liu
- State
Key Laboratory of Natural and Biomimetic Drugs, Department of Molecular
and Cellular Pharmacology, School of Pharmaceutical Sciences, Chemical
Biology Center, Peking University, Beijing 100191, China
| | - Xiaozhou Luo
- Shenzhen
Key Laboratory for the Intelligent Microbial Manufacturing of Medicines,
Key Laboratory of Quantitative Synthetic Biology, Center for Synthetic
Biochemistry, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese
Academy of Sciences, Shenzhen 518055, P.R. China
- University
of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
3
|
De Faveri C, Mattheisen JM, Sakmar TP, Coin I. Noncanonical Amino Acid Tools and Their Application to Membrane Protein Studies. Chem Rev 2024; 124:12498-12550. [PMID: 39509680 PMCID: PMC11613316 DOI: 10.1021/acs.chemrev.4c00181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 09/19/2024] [Accepted: 09/25/2024] [Indexed: 11/15/2024]
Abstract
Methods rooted in chemical biology have contributed significantly to studies of integral membrane proteins. One recent key approach has been the application of genetic code expansion (GCE), which enables the site-specific incorporation of noncanonical amino acids (ncAAs) with defined chemical properties into proteins. Efficient GCE is challenging, especially for membrane proteins, which have specialized biogenesis and cell trafficking machinery and tend to be expressed at low levels in cell membranes. Many eukaryotic membrane proteins cannot be expressed functionally in E. coli and are most effectively studied in mammalian cell culture systems. Recent advances have facilitated broader applications of GCE for studies of membrane proteins. First, AARS/tRNA pairs have been engineered to function efficiently in mammalian cells. Second, bioorthogonal chemical reactions, including cell-friendly copper-free "click" chemistry, have enabled linkage of small-molecule probes such as fluorophores to membrane proteins in live cells. Finally, in concert with advances in GCE methodology, the variety of available ncAAs has increased dramatically, thus enabling the investigation of protein structure and dynamics by multidisciplinary biochemical and biophysical approaches. These developments are reviewed in the historical framework of the development of GCE technology with a focus on applications to studies of membrane proteins.
Collapse
Affiliation(s)
- Chiara De Faveri
- Faculty
of Life Science, Institute of Biochemistry, Leipzig University, Leipzig 04103, Germany
| | - Jordan M. Mattheisen
- Laboratory
of Chemical Biology and Signal Transduction, The Rockefeller University, New York, New York 10065, United States
- Tri-Institutional
PhD Program in Chemical Biology, New York, New York 10065, United States
| | - Thomas P. Sakmar
- Laboratory
of Chemical Biology and Signal Transduction, The Rockefeller University, New York, New York 10065, United States
| | - Irene Coin
- Faculty
of Life Science, Institute of Biochemistry, Leipzig University, Leipzig 04103, Germany
| |
Collapse
|
4
|
Dunkelmann DL, Chin JW. Engineering Pyrrolysine Systems for Genetic Code Expansion and Reprogramming. Chem Rev 2024; 124:11008-11062. [PMID: 39235427 PMCID: PMC11467909 DOI: 10.1021/acs.chemrev.4c00243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 07/29/2024] [Accepted: 07/31/2024] [Indexed: 09/06/2024]
Abstract
Over the past 16 years, genetic code expansion and reprogramming in living organisms has been transformed by advances that leverage the unique properties of pyrrolysyl-tRNA synthetase (PylRS)/tRNAPyl pairs. Here we summarize the discovery of the pyrrolysine system and describe the unique properties of PylRS/tRNAPyl pairs that provide a foundation for their transformational role in genetic code expansion and reprogramming. We describe the development of genetic code expansion, from E. coli to all domains of life, using PylRS/tRNAPyl pairs, and the development of systems that biosynthesize and incorporate ncAAs using pyl systems. We review applications that have been uniquely enabled by the development of PylRS/tRNAPyl pairs for incorporating new noncanonical amino acids (ncAAs), and strategies for engineering PylRS/tRNAPyl pairs to add noncanonical monomers, beyond α-L-amino acids, to the genetic code of living organisms. We review rapid progress in the discovery and scalable generation of mutually orthogonal PylRS/tRNAPyl pairs that can be directed to incorporate diverse ncAAs in response to diverse codons, and we review strategies for incorporating multiple distinct ncAAs into proteins using mutually orthogonal PylRS/tRNAPyl pairs. Finally, we review recent advances in the encoded cellular synthesis of noncanonical polymers and macrocycles and discuss future developments for PylRS/tRNAPyl pairs.
Collapse
Affiliation(s)
- Daniel L. Dunkelmann
- Medical
Research Council Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, England, United Kingdom
- Max
Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| | - Jason W. Chin
- Medical
Research Council Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, England, United Kingdom
| |
Collapse
|
5
|
Kozma E, Kele P. Bioorthogonal Reactions in Bioimaging. Top Curr Chem (Cham) 2024; 382:7. [PMID: 38400853 PMCID: PMC10894152 DOI: 10.1007/s41061-024-00452-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 01/22/2024] [Indexed: 02/26/2024]
Abstract
Visualization of biomolecules in their native environment or imaging-aided understanding of more complex biomolecular processes are one of the focus areas of chemical biology research, which requires selective, often site-specific labeling of targets. This challenging task is effectively addressed by bioorthogonal chemistry tools in combination with advanced synthetic biology methods. Today, the smart combination of the elements of the bioorthogonal toolbox allows selective installation of multiple markers to selected targets, enabling multicolor or multimodal imaging of biomolecules. Furthermore, recent developments in bioorthogonally applicable probe design that meet the growing demands of superresolution microscopy enable more complex questions to be addressed. These novel, advanced probes enable highly sensitive, low-background, single- or multiphoton imaging of biological species and events in live organisms at resolutions comparable to the size of the biomolecule of interest. Herein, the latest developments in bioorthogonal fluorescent probe design and labeling schemes will be discussed in the context of in cellulo/in vivo (multicolor and/or superresolved) imaging schemes. The second part focuses on the importance of genetically engineered minimal bioorthogonal tags, with a particular interest in site-specific protein tagging applications to answer biological questions.
Collapse
Affiliation(s)
- Eszter Kozma
- Chemical Biology Research Group, Institute of Organic Chemistry, HUN-REN Research Centre for Natural Sciences, Magyar Tudósok Krt. 2, Budapest, 1117, Hungary
| | - Péter Kele
- Chemical Biology Research Group, Institute of Organic Chemistry, HUN-REN Research Centre for Natural Sciences, Magyar Tudósok Krt. 2, Budapest, 1117, Hungary.
| |
Collapse
|
6
|
Mudumbi KC, Burns EA, Schodt DJ, Petrova ZO, Kiyatkin A, Kim LW, Mangiacapre EM, Ortiz-Caraveo I, Rivera Ortiz H, Hu C, Ashtekar KD, Lidke KA, Lidke DS, Lemmon MA. Distinct interactions stabilize EGFR dimers and higher-order oligomers in cell membranes. Cell Rep 2024; 43:113603. [PMID: 38117650 PMCID: PMC10835193 DOI: 10.1016/j.celrep.2023.113603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 09/23/2023] [Accepted: 12/05/2023] [Indexed: 12/22/2023] Open
Abstract
The epidermal growth factor receptor (EGFR) is a receptor tyrosine kinase with important roles in many cellular processes as well as in cancer and other diseases. EGF binding promotes EGFR dimerization and autophosphorylation through interactions that are well understood structurally. How these dimers relate to higher-order EGFR oligomers seen in cell membranes, however, remains unclear. Here, we used single-particle tracking (SPT) and Förster resonance energy transfer imaging to examine how each domain of EGFR contributes to receptor oligomerization and the rate of receptor diffusion in the cell membrane. Although the extracellular region of EGFR is sufficient to drive receptor dimerization, we find that the EGF-induced EGFR slowdown seen by SPT requires higher-order oligomerization-mediated in part by the intracellular tyrosine kinase domain when it adopts an active conformation. Our data thus provide important insight into the interactions required for higher-order EGFR assemblies involved in EGF signaling.
Collapse
Affiliation(s)
- Krishna C Mudumbi
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06520, USA; Yale Cancer Biology Institute, Yale University West Campus, West Haven, CT 06516, USA.
| | - Eric A Burns
- Department of Pathology, University of New Mexico School of Medicine, Albuquerque, NM 87131, USA; Comprehensive Cancer Center, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA
| | - David J Schodt
- Comprehensive Cancer Center, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA; Department of Physics and Astronomy, University of New Mexico, Albuquerque, NM 87106, USA
| | - Zaritza O Petrova
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06520, USA; Yale Cancer Biology Institute, Yale University West Campus, West Haven, CT 06516, USA
| | - Anatoly Kiyatkin
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06520, USA; Yale Cancer Biology Institute, Yale University West Campus, West Haven, CT 06516, USA
| | - Lucy W Kim
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06520, USA; Yale Cancer Biology Institute, Yale University West Campus, West Haven, CT 06516, USA
| | - Emma M Mangiacapre
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06520, USA; Yale Cancer Biology Institute, Yale University West Campus, West Haven, CT 06516, USA
| | - Irais Ortiz-Caraveo
- Department of Pathology, University of New Mexico School of Medicine, Albuquerque, NM 87131, USA; Comprehensive Cancer Center, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA
| | - Hector Rivera Ortiz
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06520, USA; Yale Cancer Biology Institute, Yale University West Campus, West Haven, CT 06516, USA
| | - Chun Hu
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06520, USA; Yale Cancer Biology Institute, Yale University West Campus, West Haven, CT 06516, USA
| | - Kumar D Ashtekar
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06520, USA; Yale Cancer Biology Institute, Yale University West Campus, West Haven, CT 06516, USA
| | - Keith A Lidke
- Comprehensive Cancer Center, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA; Department of Physics and Astronomy, University of New Mexico, Albuquerque, NM 87106, USA
| | - Diane S Lidke
- Department of Pathology, University of New Mexico School of Medicine, Albuquerque, NM 87131, USA; Comprehensive Cancer Center, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA.
| | - Mark A Lemmon
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06520, USA; Yale Cancer Biology Institute, Yale University West Campus, West Haven, CT 06516, USA.
| |
Collapse
|
7
|
Feng S, Sanford JA, Weber T, Hutchinson-Bunch CM, Dakup PP, Paurus VL, Attah K, Sauro HM, Qian WJ, Wiley HS. A Phosphoproteomics Data Resource for Systems-level Modeling of Kinase Signaling Networks. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.03.551714. [PMID: 37577496 PMCID: PMC10418157 DOI: 10.1101/2023.08.03.551714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
Building mechanistic models of kinase-driven signaling pathways requires quantitative measurements of protein phosphorylation across physiologically relevant conditions, but this is rarely done because of the insensitivity of traditional technologies. By using a multiplexed deep phosphoproteome profiling workflow, we were able to generate a deep phosphoproteomics dataset of the EGFR-MAPK pathway in non-transformed MCF10A cells across physiological ligand concentrations with a time resolution of <12 min and in the presence and absence of multiple kinase inhibitors. An improved phosphosite mapping technique allowed us to reliably identify >46,000 phosphorylation sites on >6600 proteins, of which >4500 sites from 2110 proteins displayed a >2-fold increase in phosphorylation in response to EGF. This data was then placed into a cellular context by linking it to 15 previously published protein databases. We found that our results were consistent with much, but not all previously reported data regarding the activation and negative feedback phosphorylation of core EGFR-ERK pathway proteins. We also found that EGFR signaling is biphasic with substrates downstream of RAS/MAPK activation showing a maximum response at <3ng/ml EGF while direct substrates, such as HGS and STAT5B, showing no saturation. We found that RAS activation is mediated by at least 3 parallel pathways, two of which depend on PTPN11. There appears to be an approximately 4-minute delay in pathway activation at the step between RAS and RAF, but subsequent pathway phosphorylation was extremely rapid. Approximately 80 proteins showed a >2-fold increase in phosphorylation across all experiments and these proteins had a significantly higher median number of phosphorylation sites (~18) relative to total cellular phosphoproteins (~4). Over 60% of EGF-stimulated phosphoproteins were downstream of MAPK and included mediators of cellular processes such as gene transcription, transport, signal transduction and cytoskeletal arrangement. Their phosphorylation was either linear with respect to MAPK activation or biphasic, corresponding to the biphasic signaling seen at the level of the EGFR. This deep, integrated phosphoproteomics data resource should be useful in building mechanistic models of EGFR and MAPK signaling and for understanding how downstream responses are regulated.
Collapse
Affiliation(s)
- Song Feng
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352 USA
| | - James A. Sanford
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352 USA
| | - Thomas Weber
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352 USA
| | | | - Panshak P. Dakup
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352 USA
| | - Vanessa L. Paurus
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352 USA
| | - Kwame Attah
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352 USA
| | - Herbert M. Sauro
- Department of Bioengineering, University of Washington, Seattle, WA
| | - Wei-Jun Qian
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352 USA
| | - H. Steven Wiley
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA 99352 USA
| |
Collapse
|
8
|
Wang Y, He S. Inference on autoregulation in gene expression with variance-to-mean ratio. J Math Biol 2023; 86:87. [PMID: 37131095 PMCID: PMC10154285 DOI: 10.1007/s00285-023-01924-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 04/14/2023] [Accepted: 04/18/2023] [Indexed: 05/04/2023]
Abstract
Some genes can promote or repress their own expressions, which is called autoregulation. Although gene regulation is a central topic in biology, autoregulation is much less studied. In general, it is extremely difficult to determine the existence of autoregulation with direct biochemical approaches. Nevertheless, some papers have observed that certain types of autoregulations are linked to noise levels in gene expression. We generalize these results by two propositions on discrete-state continuous-time Markov chains. These two propositions form a simple but robust method to infer the existence of autoregulation from gene expression data. This method only needs to compare the mean and variance of the gene expression level. Compared to other methods for inferring autoregulation, our method only requires non-interventional one-time data, and does not need to estimate parameters. Besides, our method has few restrictions on the model. We apply this method to four groups of experimental data and find some genes that might have autoregulation. Some inferred autoregulations have been verified by experiments or other theoretical works.
Collapse
Affiliation(s)
- Yue Wang
- Department of Computational Medicine, University of California, Los Angeles, CA, 90095, USA.
- Institut des Hautes Études Scientifiques (IHÉS), Bures-sur-Yvette, 91440, Essonne, France.
| | - Siqi He
- Simons Center for Geometry and Physics, Stony Brook University, Stony Brook, NY, 11794, USA
| |
Collapse
|
9
|
Mudumbi KC, Burns EA, Schodt DJ, Petrova ZO, Kiyatkin A, Kim LW, Mangiacapre EM, Ortiz-Caraveo I, Ortiz HR, Hu C, Ashtekar KD, Lidke KA, Lidke DS, Lemmon MA. Distinct interactions stabilize EGFR dimers and higher-order oligomers in cell membranes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.10.536273. [PMID: 37090557 PMCID: PMC10120646 DOI: 10.1101/2023.04.10.536273] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2023]
Abstract
The epidermal growth factor receptor (EGFR) is a receptor tyrosine kinase (RTK) with important roles in many cellular processes as well as cancer and other diseases. EGF binding promotes EGFR dimerization and autophosphorylation through interactions that are well understood structurally. However, it is not clear how these dimers relate to higher-order EGFR oligomers detected at the cell surface. We used single-particle tracking (SPT) and Förster resonance energy transfer (FRET) imaging to examine how each domain within EGFR contributes to receptor dimerization and the rate of its diffusion in the cell membrane. We show that the EGFR extracellular region is sufficient to drive receptor dimerization, but that the EGF-induced EGFR slow-down seen by SPT requires formation of higher order oligomers, mediated in part by the intracellular tyrosine kinase domain - but only when in its active conformation. Our data thus provide important insight into higher-order EGFR interactions required for EGF signaling.
Collapse
|
10
|
Wang Y, He S. Using Fano factors to determine certain types of gene autoregulation. ARXIV 2023:arXiv:2301.06692v2. [PMID: 36713249 PMCID: PMC9882590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The expression of one gene might be regulated by its corresponding protein, which is called autoregulation. Although gene regulation is a central topic in biology, autoregulation is much less studied. In general, it is extremely difficult to determine the existence of autoregulation with direct biochemical approaches. Nevertheless, some papers have observed that certain types of autoregulations are linked to noise levels in gene expression. We generalize these results by two propositions on discrete-state continuous-time Markov chains. These two propositions form a simple but robust method to infer the existence of autoregulation in certain scenarios from gene expression data. This method only depends on the Fano factor, namely the ratio of variance and mean of the gene expression level. Compared to other methods for inferring autoregulation, our method only requires non-interventional one-time data, and does not need to estimate parameters. Besides, our method has few restrictions on the model. We apply this method to four groups of experimental data and find some genes that might have autoregulation. Some inferred autoregulations have been verified by experiments or other theoretical works.
Collapse
Affiliation(s)
- Yue Wang
- Department of Computational Medicine, University of California, Los Angeles, California, United States of America
- Institut des Hautes Études Scientifiques, Bures-sur-Yvette, Essonne, France
| | - Siqi He
- Simons Center for Geometry and Physics, Stony Brook University, Stony Brook, New York, United States of America
| |
Collapse
|
11
|
Casula M, Pisano M, Paliogiannis P, Colombino M, Sini MC, Zinellu A, Santeufemia D, Manca A, Casula S, Tore S, Lobrano R, Cossu A, Palmieri G. Comparison between Three Different Techniques for the Detection of EGFR Mutations in Liquid Biopsies of Patients with Advanced Stage Lung Adenocarcinoma. Int J Mol Sci 2023; 24:ijms24076410. [PMID: 37047382 PMCID: PMC10094170 DOI: 10.3390/ijms24076410] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 03/12/2023] [Accepted: 03/27/2023] [Indexed: 03/31/2023] Open
Abstract
Oncogenic mutations in the EGFR gene are targets of tyrosine kinase inhibitors (TKIs) in lung adenocarcinoma (LC) patients, and their search is mandatory to make decisions on treatment strategies. Liquid biopsy of circulating tumour DNA (ctDNA) is increasingly used to detect EGFR mutations, including main activating alterations (exon 19 deletions and exon 21 L858R mutation) and T790M mutation, which is the most common mechanism of acquired resistance to first- and second-generation TKIs. In this study, we prospectively compared three different techniques for EGFR mutation detection in liquid biopsies of such patients. Fifty-four ctDNA samples from 48 consecutive advanced LC patients treated with TKIs were tested for relevant EGFR mutations with Therascreen® EGFR Plasma RGQ-PCR Kit (Qiagen). Samples were subsequently tested with two different technologies, with the aim to compare the EGFR detection rates: real-time PCR based Idylla™ ctEGFR mutation assay (Biocartis) and next-generation sequencing (NGS) system with Ion AmpliSeq Cancer Hotspot panel (ThermoFisher). A high concordance rate for main druggable EGFR alterations was observed with the two real-time PCR-based assays, ranging from 100% for T790M mutation to 94% for L858R variant and 85% for exon 19 deletions. Conversely, lower concordance rates were found between real-time PCR approaches and the NGS method (L858R: 88%; exon19-dels: 74%; T790M: 37.5%). Our results evidenced an equivalent detection ability between PCR-based techniques for circulating EGFR mutations. The NGS assay allowed detection of a wider range of EGFR mutations but showed a poor ability to detect T790M.
Collapse
Affiliation(s)
- Milena Casula
- Unit of Cancer Genetics, Institute of Genetic Biomedical Research (IRGB), National Research Council (CNR), 07100 Sassari, Italy; (M.C.) (M.P.); (M.C.); (M.C.S.); (A.M.); (S.C.); (S.T.)
| | - Marina Pisano
- Unit of Cancer Genetics, Institute of Genetic Biomedical Research (IRGB), National Research Council (CNR), 07100 Sassari, Italy; (M.C.) (M.P.); (M.C.); (M.C.S.); (A.M.); (S.C.); (S.T.)
| | - Panagiotis Paliogiannis
- Anatomic Pathology and Histology, University Hospital (AOU) of Sassari, 07100 Sassari, Italy; (P.P.); (R.L.); (A.C.)
| | - Maria Colombino
- Unit of Cancer Genetics, Institute of Genetic Biomedical Research (IRGB), National Research Council (CNR), 07100 Sassari, Italy; (M.C.) (M.P.); (M.C.); (M.C.S.); (A.M.); (S.C.); (S.T.)
| | - Maria Cristina Sini
- Unit of Cancer Genetics, Institute of Genetic Biomedical Research (IRGB), National Research Council (CNR), 07100 Sassari, Italy; (M.C.) (M.P.); (M.C.); (M.C.S.); (A.M.); (S.C.); (S.T.)
| | - Angelo Zinellu
- Department of Biomedical Sciences (DSB), University of Sassari, 07100 Sassari, Italy;
| | | | - Antonella Manca
- Unit of Cancer Genetics, Institute of Genetic Biomedical Research (IRGB), National Research Council (CNR), 07100 Sassari, Italy; (M.C.) (M.P.); (M.C.); (M.C.S.); (A.M.); (S.C.); (S.T.)
| | - Stefania Casula
- Unit of Cancer Genetics, Institute of Genetic Biomedical Research (IRGB), National Research Council (CNR), 07100 Sassari, Italy; (M.C.) (M.P.); (M.C.); (M.C.S.); (A.M.); (S.C.); (S.T.)
| | - Silvia Tore
- Unit of Cancer Genetics, Institute of Genetic Biomedical Research (IRGB), National Research Council (CNR), 07100 Sassari, Italy; (M.C.) (M.P.); (M.C.); (M.C.S.); (A.M.); (S.C.); (S.T.)
| | - Renato Lobrano
- Anatomic Pathology and Histology, University Hospital (AOU) of Sassari, 07100 Sassari, Italy; (P.P.); (R.L.); (A.C.)
| | | | - Antonio Cossu
- Anatomic Pathology and Histology, University Hospital (AOU) of Sassari, 07100 Sassari, Italy; (P.P.); (R.L.); (A.C.)
| | - Giuseppe Palmieri
- Unit of Cancer Genetics, Institute of Genetic Biomedical Research (IRGB), National Research Council (CNR), 07100 Sassari, Italy; (M.C.) (M.P.); (M.C.); (M.C.S.); (A.M.); (S.C.); (S.T.)
- Immuno-Oncology & Targeted Cancer Biotherapies, University of Sassari, 07100 Sassari, Italy
- Correspondence: or ; Tel.: +39-07-9284-1303
| |
Collapse
|
12
|
Steiert F, Schultz P, Höfinger S, Müller TD, Schwille P, Weidemann T. Insights into receptor structure and dynamics at the surface of living cells. Nat Commun 2023; 14:1596. [PMID: 36949079 PMCID: PMC10033668 DOI: 10.1038/s41467-023-37284-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 03/10/2023] [Indexed: 03/24/2023] Open
Abstract
Evaluating protein structures in living cells remains a challenge. Here, we investigate Interleukin-4 receptor alpha (IL-4Rα) into which the non-canonical amino acid bicyclo[6.1.0]nonyne-lysine (BCNK) is incorporated by genetic code expansion. Bioorthogonal click labeling is performed with tetrazine-conjugated dyes. To quantify the reaction yield in situ, we develop brightness-calibrated ratiometric imaging, a protocol where fluorescent signals in confocal multi-color images are ascribed to local concentrations. Screening receptor mutants bearing BCNK in the extracellular domain uncovered site-specific variations of both click efficiency and Interleukin-4 binding affinity, indicating subtle well-defined structural perturbations. Molecular dynamics and continuum electrostatics calculations suggest solvent polarization to determine site-specific variations of BCNK reactivity. Strikingly, signatures of differential click efficiency, measured for IL-4Rα in ligand-bound and free form, mirror sub-angstrom deformations of the protein backbone at corresponding locations. Thus, click efficiency by itself represents a remarkably informative readout linked to protein structure and dynamics in the native plasma membrane.
Collapse
Affiliation(s)
- Frederik Steiert
- Department of Cellular and Molecular Biophysics, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152, Martinsried, Germany
- Department of Physics, Technical University Munich, 85748, Garching, Germany
| | - Peter Schultz
- Department of Cellular and Molecular Biophysics, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152, Martinsried, Germany
| | - Siegfried Höfinger
- VSC Research Center, TU Wien, Operngasse 11 / E057-09, 1040, Wien, Austria
- Department of Physics, Michigan Technological University, 1400 Townsend Drive, 49931, Houghton, MI, USA
| | - Thomas D Müller
- Biozentrum, Julius-von-Sachs-Institut für Biowissenschaften, Lehrstuhl für Molekulare Pflanzenphysiologie und Biophysik - Botanik I, Julius-von-Sachs-Platz 2, 97082, Würzburg, Germany
| | - Petra Schwille
- Department of Cellular and Molecular Biophysics, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152, Martinsried, Germany
| | - Thomas Weidemann
- Department of Cellular and Molecular Biophysics, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152, Martinsried, Germany.
| |
Collapse
|
13
|
Electron transfer in protein modifications: from detection to imaging. Sci China Chem 2023. [DOI: 10.1007/s11426-022-1417-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
14
|
OXTR High stroma fibroblasts control the invasion pattern of oral squamous cell carcinoma via ERK5 signaling. Nat Commun 2022; 13:5124. [PMID: 36045118 PMCID: PMC9433374 DOI: 10.1038/s41467-022-32787-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 08/17/2022] [Indexed: 11/20/2022] Open
Abstract
The Pattern Of Invasion (POI) of tumor cells into adjacent normal tissues clinically predicts postoperative tumor metastasis/recurrence of early oral squamous cell carcinoma (OSCC), but the mechanisms underlying the development of these subtypes remain unclear. Focusing on the highest score of POIs (Worst POI, WPOI) present within each tumor, we observe a disease progression-driven shift of WPOI towards the high-risk type 4/5, associated with a mesenchymal phenotype in advanced OSCC. WPOI 4-5-derived cancer-associated fibroblasts (CAFsWPOI4-5), characterized by high oxytocin receptor expression (OXTRHigh), contribute to local-regional metastasis. OXTRHigh CAFs induce a desmoplastic stroma and CCL26 is required for the invasive phenotype of CCR3+ tumors. Mechanistically, OXTR activates nuclear ERK5 transcription signaling via Gαq and CDC37 to maintain high levels of OXTR and CCL26. ERK5 ablation reprograms the pro-invasive phenotype of OXTRHigh CAFs. Therefore, targeting ERK5 signaling in OXTRHigh CAFs is a potential therapeutic strategy for OSCC patients with WPOI 4-5. Worst pattern of invasion (WPOI) is a parameter used to quantify tumor invasiveness of oral squamous cell carcinoma (OSCC). Here the authors show that a fibroblast subset characterized by the expression of the oxytocin receptor is enriched in highly invasive WPOI 4-5 OSCC tumors and can be targeted to reduce the desmoplastic stroma and tumor metastasis.
Collapse
|
15
|
Aphicho K, Kittipanukul N, Uttamapinant C. Visualizing the complexity of proteins in living cells with genetic code expansion. Curr Opin Chem Biol 2022; 66:102108. [PMID: 35026612 DOI: 10.1016/j.cbpa.2021.102108] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/30/2021] [Accepted: 12/07/2021] [Indexed: 12/28/2022]
Abstract
Genetic code expansion has emerged as an enabling tool to provide insight into functions of understudied proteinogenic species, such as small proteins and peptides, and to probe protein biophysics in the cellular context. Here, we discuss recent technical advances and applications of genetic code expansion in cellular imaging of complex mammalian protein species, along with considerations and challenges on using the method.
Collapse
Affiliation(s)
- Kanokpol Aphicho
- School of Biomolecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong, Thailand
| | - Narongyot Kittipanukul
- School of Biomolecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong, Thailand
| | - Chayasith Uttamapinant
- School of Biomolecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong, Thailand.
| |
Collapse
|
16
|
Brüggemann Y, Karajannis LS, Stanoev A, Stallaert W, Bastiaens PIH. Growth factor-dependent ErbB vesicular dynamics couple receptor signaling to spatially and functionally distinct Erk pools. Sci Signal 2021; 14:14/683/eabd9943. [PMID: 34006609 DOI: 10.1126/scisignal.abd9943] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Growth factor-dependent vesicular dynamics allow cells to regulate the spatial distribution of growth factor receptors and thereby their coupling to downstream signaling effectors that guide cellular responses. We found that the ErbB ligands epidermal growth factor (EGF) and heregulin (HRG) generated distinct spatiotemporal patterns of cognate receptor activities to activate distinct subcellular pools of the extracellular signal-regulated kinase (Erk). Sustained plasma membrane activity of the receptor tyrosine kinases ErbB2/ErbB3 signaled to Erk complexed with the scaffold protein KSR to promote promigratory EphA2 phosphorylation and cellular motility upon HRG stimulation. In contrast, receptor-saturating EGF stimuli caused proliferation-inducing transient activation of cytoplasmic Erk due to the rapid internalization of EGF receptors (EGFR or ErbB1) toward endosomes. Paradoxically, promigratory signaling mediated by Erk complexed to KSR was sustained at low EGF concentrations by vesicular recycling that maintained steady-state amounts of active, phosphorylated EGFR at the plasma membrane. Thus, the effect of ligand identity and concentration on determining ErbB vesicular dynamics constitutes a mechanism by which cells can transduce growth factor composition through spatially distinct Erk pools to enable functionally diverse cellular responses.
Collapse
Affiliation(s)
- Yannick Brüggemann
- Department of Systemic Cell Biology, Max Planck Institute of Molecular Physiology, Otto-Hahn-Str.11, 44227 Dortmund, Germany.,Faculty of Chemistry and Chemical Biology, TU Dortmund, Otto-Hahn-Str. 6, 44227 Dortmund, Germany
| | - Lisa S Karajannis
- Department of Systemic Cell Biology, Max Planck Institute of Molecular Physiology, Otto-Hahn-Str.11, 44227 Dortmund, Germany
| | - Angel Stanoev
- Department of Systemic Cell Biology, Max Planck Institute of Molecular Physiology, Otto-Hahn-Str.11, 44227 Dortmund, Germany
| | - Wayne Stallaert
- Department of Systemic Cell Biology, Max Planck Institute of Molecular Physiology, Otto-Hahn-Str.11, 44227 Dortmund, Germany
| | - Philippe I H Bastiaens
- Department of Systemic Cell Biology, Max Planck Institute of Molecular Physiology, Otto-Hahn-Str.11, 44227 Dortmund, Germany. .,Faculty of Chemistry and Chemical Biology, TU Dortmund, Otto-Hahn-Str. 6, 44227 Dortmund, Germany
| |
Collapse
|
17
|
Sappakhaw K, Jantarug K, Slavoff SA, Israsena N, Uttamapinant C. A Genetic Code Expansion-Derived Molecular Beacon for the Detection of Intracellular Amyloid-β Peptide Generation. Angew Chem Int Ed Engl 2021; 60:3934-3939. [PMID: 33063327 PMCID: PMC7898502 DOI: 10.1002/anie.202010703] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 09/19/2020] [Indexed: 12/01/2022]
Abstract
Polypeptides generated from proteolytic processing of protein precursors, or proteolytic proteoforms, play an important role in diverse biological functions and diseases. However, their often-small size and intricate post-translational biogenesis preclude the use of simple genetic tagging in their cellular studies. Herein, we develop a labeling strategy for this class of proteoforms, based on residue-specific genetic code expansion labeling with a molecular beacon design. We demonstrate the utility of such a design by creating a molecular beacon reporter to detect amyloid-β peptides, known to be involved in the pathogenesis of Alzheimer's disease, as they are produced from amyloid precursor protein (APP) along the endocytic pathway of living cells.
Collapse
Affiliation(s)
- Khomkrit Sappakhaw
- School of Biomolecular Science and EngineeringVidyasirimedhi Institute of Science and Technology (VISTEC)Rayong21210Thailand
| | - Krittapas Jantarug
- School of Biomolecular Science and EngineeringVidyasirimedhi Institute of Science and Technology (VISTEC)Rayong21210Thailand
| | | | - Nipan Israsena
- Stem Cell and Cell Therapy Research Unit and Department of PharmacologyFaculty of MedicineChulalongkorn UniversityBangkok10330Thailand
| | - Chayasith Uttamapinant
- School of Biomolecular Science and EngineeringVidyasirimedhi Institute of Science and Technology (VISTEC)Rayong21210Thailand
| |
Collapse
|
18
|
Sappakhaw K, Jantarug K, Slavoff SA, Israsena N, Uttamapinant C. A Genetic Code Expansion-Derived Molecular Beacon for the Detection of Intracellular Amyloid-β Peptide Generation. ANGEWANDTE CHEMIE (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 133:3980-3985. [PMID: 38504667 PMCID: PMC10946459 DOI: 10.1002/ange.202010703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 09/19/2020] [Indexed: 11/09/2022]
Abstract
Polypeptides generated from proteolytic processing of protein precursors, or proteolytic proteoforms, play an important role in diverse biological functions and diseases. However, their often-small size and intricate post-translational biogenesis preclude the use of simple genetic tagging in their cellular studies. Herein, we develop a labeling strategy for this class of proteoforms, based on residue-specific genetic code expansion labeling with a molecular beacon design. We demonstrate the utility of such a design by creating a molecular beacon reporter to detect amyloid-β peptides, known to be involved in the pathogenesis of Alzheimer's disease, as they are produced from amyloid precursor protein (APP) along the endocytic pathway of living cells.
Collapse
Affiliation(s)
- Khomkrit Sappakhaw
- School of Biomolecular Science and EngineeringVidyasirimedhi Institute of Science and Technology (VISTEC)Rayong21210Thailand
| | - Krittapas Jantarug
- School of Biomolecular Science and EngineeringVidyasirimedhi Institute of Science and Technology (VISTEC)Rayong21210Thailand
| | | | - Nipan Israsena
- Stem Cell and Cell Therapy Research Unit and Department of PharmacologyFaculty of MedicineChulalongkorn UniversityBangkok10330Thailand
| | - Chayasith Uttamapinant
- School of Biomolecular Science and EngineeringVidyasirimedhi Institute of Science and Technology (VISTEC)Rayong21210Thailand
| |
Collapse
|
19
|
Abstract
The encoded biosynthesis of proteins provides the ultimate paradigm for high-fidelity synthesis of long polymers of defined sequence and composition, but it is limited to polymerizing the canonical amino acids. Recent advances have built on genetic code expansion - which commonly permits the cellular incorporation of one type of non-canonical amino acid into a protein - to enable the encoded incorporation of several distinct non-canonical amino acids. Developments include strategies to read quadruplet codons, use non-natural DNA base pairs, synthesize completely recoded genomes and create orthogonal translational components with reprogrammed specificities. These advances may enable the genetically encoded synthesis of non-canonical biopolymers and provide a platform for transforming the discovery and evolution of new materials and therapeutics.
Collapse
Affiliation(s)
| | - Jason W Chin
- Medical Research Council Laboratory of Molecular Biology, Cambridge, UK.
| |
Collapse
|
20
|
Koseska A, Bastiaens PI. Processing Temporal Growth Factor Patterns by an Epidermal Growth Factor Receptor Network Dynamically Established in Space. Annu Rev Cell Dev Biol 2020; 36:359-383. [DOI: 10.1146/annurev-cellbio-013020-103810] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The proto-oncogenic epidermal growth factor (EGF) receptor (EGFR) is a tyrosine kinase whose sensitivity and response to growth factor signals that vary over time and space determine cellular behavior within a developing tissue. The molecular reorganization of the receptors on the plasma membrane and the enzyme-kinetic mechanisms of phosphorylation are key determinants that couple growth factor binding to EGFR signaling. To enable signal initiation and termination while simultaneously accounting for suppression of aberrant signaling, a coordinated coupling of EGFR kinase and protein tyrosine phosphatase activity is established through space by vesicular dynamics. The dynamical operation mode of this network enables not only time-varying growth factor sensing but also adaptation of the response depending on cellular context. By connecting spatially coupled enzymatic kinase/phosphatase processes and the corresponding dynamical systems description of the EGFR network, we elaborate on the general principles necessary for processing complex growth factor signals.
Collapse
Affiliation(s)
- Aneta Koseska
- Lise Meitner Group Cellular Computations and Learning, Centre of Advanced European Studies and Research (caesar), D-53175 Bonn, Germany
| | - Philippe I.H. Bastiaens
- Department of Systemic Cell Biology, Max Planck Institute of Molecular Physiology, 44227 Dortmund, Germany
| |
Collapse
|
21
|
Mitchell R, Mikolajczak M, Kersten C, Fleetwood-Walker S. ErbB1-dependent signalling and vesicular trafficking in primary afferent nociceptors associated with hypersensitivity in neuropathic pain. Neurobiol Dis 2020; 142:104961. [DOI: 10.1016/j.nbd.2020.104961] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 05/26/2020] [Accepted: 06/08/2020] [Indexed: 02/06/2023] Open
|
22
|
Jang HS, Jana S, Blizzard RJ, Meeuwsen JC, Mehl RA. Access to Faster Eukaryotic Cell Labeling with Encoded Tetrazine Amino Acids. J Am Chem Soc 2020; 142:7245-7249. [PMID: 32251579 DOI: 10.1021/jacs.9b11520] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Labeling of biomolecules in live eukaryotic cells has been limited by low component stability and slow reaction rates. We show that genetically encoded tetrazine amino acids in proteins reach reaction rates of 8 × 104 M-1 s-1 with sTCO reagents, making them the fastest site-specific bioorthogonal labels in eukaryotic systems. We demonstrate that tetrazine amino acids are stable on proteins and are capable of quantitative labeling with sTCO reagents. The exceptionally high reaction rate of this ligation minimizes label concentration, allowing for substoichiometric in vivo eukaryotic protein labeling where the concentration of the label is less than the concentration of the protein. This approach offers unprecedented control over the composition and stability of the protein tag. We anticipate that this system will have a broad impact on labeling and imaging studies because it can be used where all generally orthogonal PylRS/tRNA pairs are employed.
Collapse
Affiliation(s)
- Hyo Sang Jang
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, Oregon 97331, United States
| | - Subhashis Jana
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, Oregon 97331, United States
| | - Robert J Blizzard
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, Oregon 97331, United States
| | - Joseph C Meeuwsen
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, Oregon 97331, United States
| | - Ryan A Mehl
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, Oregon 97331, United States
| |
Collapse
|
23
|
Stanoev A, Nandan AP, Koseska A. Organization at criticality enables processing of time-varying signals by receptor networks. Mol Syst Biol 2020; 16:e8870. [PMID: 32090487 PMCID: PMC7036718 DOI: 10.15252/msb.20198870] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 12/17/2019] [Accepted: 12/23/2019] [Indexed: 01/19/2023] Open
Abstract
How cells utilize surface receptors for chemoreception is a recurrent question spanning between physics and biology over the past few decades. However, the dynamical mechanism for processing time-varying signals is still unclear. Using dynamical systems formalism to describe criticality in non-equilibrium systems, we propose generic principle for temporal information processing through phase space trajectories using dynamic transient memory. In contrast to short-term memory, dynamic memory generated via "ghost" attractor enables signal integration depending on stimulus history and thereby uniquely promotes integrating and interpreting complex temporal growth factor signals. We argue that this is a generic feature of receptor networks, the first layer of the cell that senses the changing environment. Using the experimentally established epidermal growth factor sensing system, we propose how recycling could provide self-organized maintenance of the critical receptor concentration at the plasma membrane through a simple, fluctuation-sensing mechanism. Processing of non-stationary signals, a feature previously attributed only to neural networks, thus uniquely emerges for receptor networks organized at criticality.
Collapse
Affiliation(s)
- Angel Stanoev
- Department of Systemic Cell BiologyMax Planck Institute for Molecular PhysiologyDortmundGermany
| | - Akhilesh P Nandan
- Department of Systemic Cell BiologyMax Planck Institute for Molecular PhysiologyDortmundGermany
| | - Aneta Koseska
- Department of Systemic Cell BiologyMax Planck Institute for Molecular PhysiologyDortmundGermany
| |
Collapse
|
24
|
Huang SM, Yang F, Cai BY, He QT, Liu Q, Qu CX, Han MJ, Kong W, Jia YL, Li F, Yu X, Sun JP, Wang J. Genetically Encoded Fluorescent Amino Acid for Monitoring Protein Interactions through FRET. Anal Chem 2019; 91:14936-14942. [PMID: 31670502 DOI: 10.1021/acs.analchem.9b03305] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Förster resonance energy transfer (FRET) is a well-established method for studying macromolecular interactions and conformational changes within proteins. Such a method normally uses fluorescent proteins or chemical-labeling methods which are often only accessible to surface-exposed residues and risk-disturbing target protein structures. Here, we demonstrate that the genetic incorporation of a synthetic fluorescent amino acid, L-(7-hydroxycoumarin-4-yl) ethylglycine (Cou) and natural endogenous fluorophore Tryptophan (Trp) residues of a protein could serve as an efficient FRET pair to monitor protein interactions, using the signaling transducer β-arrestin-1 as a model system. We used this technology to record the dynamic spectra in both binding and competition experiments of β-arrestin-1, the contribution of each specific phosphate in ternary complex formation, in a rapid and efficient manner. The determined Kd value for the association between the active arrestin and Fab30 is 0.68 μM in the three-component interaction system. Moreover, we were able to determine the contributions of the site 3 phospho-site and the site 6 phospho-site binding, each contributing to the high affinity ternary complex assembly as 2.7 fold and 15.5 fold, respectively, which were never determined before. These results thus highlighted the potential usage of this new method in measurement of the allosteric-induced enhanced affinity with small amount proteins and in a fast manner and in a complex system. Collectively, our newly developed Trp:Cou FRET system based on genetic expansion technology has extended the molecular toolboxes available for biochemical and structural biology studies.
Collapse
Affiliation(s)
- Shen-Ming Huang
- Key Laboratory of Molecular Cardiovascular Science, School of Basic Medical Sciences, Ministry of Education , Peking University , 38 Xueyuan Road , Haidian District, Beijing 100191 , China.,Institute of Biophysics, Chinese Academy of Sciences, Beijing , 15 Datun Road , Chaoyang District, Beijing 100101 , China
| | - Fan Yang
- Key Laboratory Experimental Teratology of the Ministry of Education and Department of Biochemistry and Molecular Biology , Shandong University School of Medicine , 44 Wenhua Xi Road , Jinan , Shandong 250012 , China
| | - Bai-Yang Cai
- Key Laboratory of Molecular Cardiovascular Science, School of Basic Medical Sciences, Ministry of Education , Peking University , 38 Xueyuan Road , Haidian District, Beijing 100191 , China
| | - Qing-Tao He
- Institute of Biophysics, Chinese Academy of Sciences, Beijing , 15 Datun Road , Chaoyang District, Beijing 100101 , China.,Key Laboratory Experimental Teratology of the Ministry of Education and Department of Biochemistry and Molecular Biology , Shandong University School of Medicine , 44 Wenhua Xi Road , Jinan , Shandong 250012 , China
| | - Qi Liu
- Institute of Biophysics, Chinese Academy of Sciences, Beijing , 15 Datun Road , Chaoyang District, Beijing 100101 , China.,Key Laboratory Experimental Teratology of the Ministry of Education and Department of Biochemistry and Molecular Biology , Shandong University School of Medicine , 44 Wenhua Xi Road , Jinan , Shandong 250012 , China
| | - Chang-Xiu Qu
- Key Laboratory of Molecular Cardiovascular Science, School of Basic Medical Sciences, Ministry of Education , Peking University , 38 Xueyuan Road , Haidian District, Beijing 100191 , China.,Key Laboratory Experimental Teratology of the Ministry of Education and Department of Biochemistry and Molecular Biology , Shandong University School of Medicine , 44 Wenhua Xi Road , Jinan , Shandong 250012 , China
| | - Ming-Jie Han
- Institute of Biophysics, Chinese Academy of Sciences, Beijing , 15 Datun Road , Chaoyang District, Beijing 100101 , China
| | - Wei Kong
- Key Laboratory of Molecular Cardiovascular Science, School of Basic Medical Sciences, Ministry of Education , Peking University , 38 Xueyuan Road , Haidian District, Beijing 100191 , China
| | - Ying-Li Jia
- Key Laboratory of Molecular Cardiovascular Science, School of Basic Medical Sciences, Ministry of Education , Peking University , 38 Xueyuan Road , Haidian District, Beijing 100191 , China
| | - Fahui Li
- Institute of Biophysics, Chinese Academy of Sciences, Beijing , 15 Datun Road , Chaoyang District, Beijing 100101 , China
| | - Xiao Yu
- Key Laboratory Experimental Teratology of the Ministry of Education and Department of Biochemistry and Molecular Biology , Shandong University School of Medicine , 44 Wenhua Xi Road , Jinan , Shandong 250012 , China
| | - Jin-Peng Sun
- Key Laboratory of Molecular Cardiovascular Science, School of Basic Medical Sciences, Ministry of Education , Peking University , 38 Xueyuan Road , Haidian District, Beijing 100191 , China.,Key Laboratory Experimental Teratology of the Ministry of Education and Department of Biochemistry and Molecular Biology , Shandong University School of Medicine , 44 Wenhua Xi Road , Jinan , Shandong 250012 , China
| | - Jiangyun Wang
- Institute of Biophysics, Chinese Academy of Sciences, Beijing , 15 Datun Road , Chaoyang District, Beijing 100101 , China
| |
Collapse
|
25
|
Nozaki M, Yasui H, Ohnishi Y. Ligand-Independent EGFR Activation by Anchorage-Stimulated Src Promotes Cancer Cell Proliferation and Cetuximab Resistance via ErbB3 Phosphorylation. Cancers (Basel) 2019; 11:E1552. [PMID: 31615015 PMCID: PMC6826992 DOI: 10.3390/cancers11101552] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 10/03/2019] [Accepted: 10/08/2019] [Indexed: 12/24/2022] Open
Abstract
Activation of the epidermal growth factor receptor (EGFR) pathway plays an important role in the progression of cancer and is associated with a poor prognosis in patients. The monoclonal antibody cetuximab, which displays EGFR extracellular domain-specific binding, has proven effective in the treatment of locally advanced disease and relapsed/metastatic disease. However, the effects of cetuximab are weaker than those of EGFR tyrosine kinase inhibitors (TKIs). This study investigates differences in the effects on cell growth of cetuximab and EGFR TKI AG1478 at the molecular level using oral squamous cell carcinoma (OSCC) cell lines. First, we found that there were EGFR-inhibitor-sensitive (EIS) and EGFR-inhibitor-resistant cell lines. The EIS cell lines expressed not only EGFR but also ErbB3, and both were clearly phosphorylated. The levels of phosphorylated ErbB3 were unaffected by cetuximab but were reduced by AG1478. EGFR ligand treatment increased the levels of phosphorylated EGFR but not phosphorylated ErbB3. Moreover, when EIS cell lines that were only capable of anchorage-dependent growth were grown in suspension, cell growth was suppressed and the levels of phosphorylated focal adhesion kinase (FAK), Src, and ErbB3 were significantly reduced. The levels of phosphorylated ErbB3 were unaffected by the FAK inhibitor PF573228, but were reduced by Src inhibition. Finally, combining cetuximab and a Src inhibitor produced an additive effect on the inhibition of EIS cell line growth.
Collapse
Affiliation(s)
- Masami Nozaki
- Department of Cell Biology, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan.
| | - Hiroki Yasui
- Department of Cell Biology, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan.
- Second Department of Oral and Maxillofacial Surgery, Osaka Dental University, Hirakata, Osaka 573-1121, Japan.
| | - Yuichi Ohnishi
- Department of Cell Biology, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan.
- Second Department of Oral and Maxillofacial Surgery, Osaka Dental University, Hirakata, Osaka 573-1121, Japan.
| |
Collapse
|
26
|
Nödling AR, Spear LA, Williams TL, Luk LYP, Tsai YH. Using genetically incorporated unnatural amino acids to control protein functions in mammalian cells. Essays Biochem 2019; 63:237-266. [PMID: 31092687 PMCID: PMC6610526 DOI: 10.1042/ebc20180042] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Revised: 03/14/2019] [Accepted: 03/19/2019] [Indexed: 02/07/2023]
Abstract
Genetic code expansion allows unnatural (non-canonical) amino acid incorporation into proteins of interest by repurposing the cellular translation machinery. The development of this technique has enabled site-specific incorporation of many structurally and chemically diverse amino acids, facilitating a plethora of applications, including protein imaging, engineering, mechanistic and structural investigations, and functional regulation. Particularly, genetic code expansion provides great tools to study mammalian proteins, of which dysregulations often have important implications in health. In recent years, a series of methods has been developed to modulate protein function through genetically incorporated unnatural amino acids. In this review, we will first discuss the basic concept of genetic code expansion and give an up-to-date list of amino acids that can be incorporated into proteins in mammalian cells. We then focus on the use of unnatural amino acids to activate, inhibit, or reversibly modulate protein function by translational, optical or chemical control. The features of each approach will also be highlighted.
Collapse
Affiliation(s)
| | - Luke A Spear
- School of Chemistry, Cardiff University, Cardiff, Wales, United Kingdom
| | - Thomas L Williams
- School of Chemistry, Cardiff University, Cardiff, Wales, United Kingdom
| | - Louis Y P Luk
- School of Chemistry, Cardiff University, Cardiff, Wales, United Kingdom
| | - Yu-Hsuan Tsai
- School of Chemistry, Cardiff University, Cardiff, Wales, United Kingdom
| |
Collapse
|
27
|
Chen T, He B, Tao J, He Y, Deng H, Wang X, Zheng Y. Application of Förster Resonance Energy Transfer (FRET) technique to elucidate intracellular and In Vivo biofate of nanomedicines. Adv Drug Deliv Rev 2019; 143:177-205. [PMID: 31201837 DOI: 10.1016/j.addr.2019.04.009] [Citation(s) in RCA: 94] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Revised: 02/25/2019] [Accepted: 04/08/2019] [Indexed: 12/24/2022]
Abstract
Extensive studies on nanomedicines have been conducted for drug delivery and disease diagnosis (especially for cancer therapy). However, the intracellular and in vivo biofate of nanomedicines, which is significantly associated with their clinical therapeutic effect, is poorly understood at present. This is because of the technical challenges to quantify the disassembly and behaviour of nanomedicines. As a fluorescence- and distance-based approach, the Förster Resonance Energy Transfer (FRET) technique is very successful to study the interaction of nanomedicines with biological systems. In this review, principles on how to select a FRET pair and construct FRET-based nanomedicines have been described first, followed by their application to study structural integrity, biodistribution, disassembly kinetics, and elimination of nanomedicines at intracellular and in vivo levels, especially with drug nanocarriers including polymeric micelles, polymeric nanoparticles, and lipid-based nanoparticles. FRET is a powerful tool to reveal changes and interaction of nanoparticles after delivery, which will be very useful to guide future developments of nanomedicine.
Collapse
Affiliation(s)
- Tongkai Chen
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Bing He
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery System, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China; State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100191, China
| | - Jingsong Tao
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - Yuan He
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - Hailiang Deng
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery System, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Xueqing Wang
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery System, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China.
| | - Ying Zheng
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China.
| |
Collapse
|