1
|
Chen Z, Wu F, Li Y, Li L, Lei Y, Gao S, Chen T, Xie Y, Xiao J, Zeng H, Deng J, Zhao X, Hou Y. Inhibition of DEK restores hematopoietic stem cell function in Fanconi anemia. J Exp Med 2025; 222:e20241248. [PMID: 39836085 PMCID: PMC11748990 DOI: 10.1084/jem.20241248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 11/11/2024] [Accepted: 12/19/2024] [Indexed: 01/30/2025] Open
Abstract
Hematopoietic stem cells (HSCs) are susceptible to replication stress, which is a major contributor to HSC defects in Fanconi anemia (FA). Here, we report that HSCs relax the global chromatin by downregulating the expression of a chromatin architectural protein, DEK, in response to replication stress. DEK is abnormally accumulated in bone marrow (BM) CD34+ cells from patients with FA and in Fancd2-deficient HSCs. DEK haploinsufficiency promotes chromatin relaxation, replication stress relief, and function recovery of Fancd2-deficient HSCs. Furthermore, inhibition of DEK restores the proliferation of FA CD34+ cells in vitro and enhances their engraftment in vivo. Mechanistically, the activating transcription factor 2 (ATF2), specifically phosphorylated ATF2 at Thr69/71, was identified as a promoter of DEK transcription. Fancd2 deficiency results in p38 hyperphosphorylation, which in turn phosphorylates ATF2 at Thr69/71, leading to DEK accumulation in HSCs. In conclusion, our findings establish a functional link between chromatin relaxation and replication stress tolerance in HSCs and highlight DEK as a target for FA.
Collapse
Affiliation(s)
- Zhe Chen
- Department of Hematology, The Second Affiliated Hospital of Chongqing Medical University, School of Basic Medical Sciences, Chongqing Medical University, Chongqing, China
| | - Feng Wu
- Department of Hematology, The Second Affiliated Hospital of Chongqing Medical University, School of Basic Medical Sciences, Chongqing Medical University, Chongqing, China
| | - Yan Li
- Department of Hematology, The Second Affiliated Hospital of Chongqing Medical University, School of Basic Medical Sciences, Chongqing Medical University, Chongqing, China
| | - Lei Li
- School of Basic Medical Sciences, Chongqing Medical University, Chongqing, China
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China
| | - Yufei Lei
- School of Basic Medical Sciences, Chongqing Medical University, Chongqing, China
| | - Siwei Gao
- Department of Hematology, The Second Affiliated Hospital of Chongqing Medical University, School of Basic Medical Sciences, Chongqing Medical University, Chongqing, China
| | - Tao Chen
- School of Medicine, Guizhou University, Guiyang, China
| | - Yuxin Xie
- School of Basic Medical Sciences, Chongqing Medical University, Chongqing, China
| | - Jianwen Xiao
- Department of Hematology and Oncology, Children’s Hospital, Chongqing Medical University, Chongqing, China
| | - Hanqing Zeng
- Department of Hematology, The Second Affiliated Hospital of Chongqing Medical University, School of Basic Medical Sciences, Chongqing Medical University, Chongqing, China
| | - Jianchuan Deng
- Department of Hematology, The Second Affiliated Hospital of Chongqing Medical University, School of Basic Medical Sciences, Chongqing Medical University, Chongqing, China
| | - Xueya Zhao
- Department of Hematology, The Second Affiliated Hospital of Chongqing Medical University, School of Basic Medical Sciences, Chongqing Medical University, Chongqing, China
| | - Yu Hou
- Department of Hematology, The Second Affiliated Hospital of Chongqing Medical University, School of Basic Medical Sciences, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Hematology and Microenvironment, Chongqing, China
| |
Collapse
|
2
|
Chen Y, Gong S, Tang J, Wang X, Gao Y, Yang H, Chen W, Hu H, Tong W, Lv K. LNK/SH2B3 Loss Exacerbates the Development of Myeloproliferative Neoplasms in CBL-deficient Mice. Stem Cell Rev Rep 2025; 21:509-519. [PMID: 39560864 PMCID: PMC11976319 DOI: 10.1007/s12015-024-10825-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/14/2024] [Indexed: 11/20/2024]
Abstract
Genetic variations of signaling modulator protein LNK (also called SH2B3) are associated with relatively mild myeloproliferative phenotypes in patients with myeloproliferative neoplasms (MPN). However, these variations can induce more severe MPN disease and even leukemic transformation when co-existing with other driver mutations. In addition to the most prevalent driver mutation JAK2V617F, LNK mutations have been clinically identified in patients harboring CBL inactivation mutations, but its significance remains unclear. Here, using a transgenic mouse model, we demonstrated that mice with the loss of both Lnk and Cbl exhibited severe splenomegaly, extramedullary hematopoiesis and exacerbated myeloproliferative characteristics. Moreover, a population of Mac1+ myeloid cells expressed c-Kit in aged mice. Mechanistically, we discovered that LNK could pull down multiple regulatory subunits of the proteosome. Further analysis confirmed a positive role of LNK in regulating proteasome activity, independent of its well-established function in signaling transduction. Thus, our work reveals a novel function of LNK in coordinating with the E3 ligase CBL to regulate myeloid malignancies.
Collapse
Affiliation(s)
- Yafei Chen
- Department of Biochemistry, School of Medicine, Southern University of Science and Technology, Shenzhen, 518071, China
| | - Shangyu Gong
- Department of Biochemistry, School of Medicine, Southern University of Science and Technology, Shenzhen, 518071, China
| | - Juan Tang
- Department of Biochemistry, School of Medicine, Southern University of Science and Technology, Shenzhen, 518071, China
| | - Xinying Wang
- Department of Biochemistry, School of Medicine, Southern University of Science and Technology, Shenzhen, 518071, China
| | - Yudan Gao
- Department of Biochemistry, School of Medicine, Southern University of Science and Technology, Shenzhen, 518071, China
| | - Hanying Yang
- Department of Biochemistry, School of Medicine, Southern University of Science and Technology, Shenzhen, 518071, China
| | - Wanze Chen
- Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Hailiang Hu
- Department of Biochemistry, School of Medicine, Southern University of Science and Technology, Shenzhen, 518071, China.
| | - Wei Tong
- Division of Hematology, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA.
| | - Kaosheng Lv
- Hunan Provincial Key Laboratory of Animal Models and Molecular Medicine, School of Biomedical Sciences, Hunan University, Changsha, 410013, China.
| |
Collapse
|
3
|
Tomaszowski KH, Chen Y, Roy S, Harris M, Zhang J, Tsai CL, Schlacher K. Diet induced mitochondrial DNA replication instability in Rad51c mutant mice drives sex-bias in anemia of inflammation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.21.613572. [PMID: 39345482 PMCID: PMC11430050 DOI: 10.1101/2024.09.21.613572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Anemia of inflammation (AI) is a common comorbidity associated with obesity, diabetes, cardiac disease, aging, and during anti-cancer therapies. Mounting evidence illustrates that males are disproportionally affected by AI, but not why. Here we demonstrate a molecular cause for a sex-bias in inflammation. The data shows that mitochondrial DNA (mtDNA) instability induced by dietary stress causes anemia associated with inflamed macrophages and improper iron recycling in mice. These phenotypes are enhanced in mice with mutations in Fanco/Rad51c , which predisposes to the progeroid disease Fanconi Anemia. The data reveals a striking sex-bias whereby females are protected. We find that estrogen acts as a mitochondrial antioxidant that reduces diet-induced oxidative stress, mtDNA replication instability and the distinctively mtDNA-dependent unphosphorylated STAT1 response. Consequently, treatment of male Rad51c mutant mice with estrogen or mitochondrial antioxidants suppresses the inflammation-induced anemia. Collectively, this study uncovers estrogen-responsive mtDNA replication instability as a cause for sex-specific inflammatory responses and molecular driver for AI.
Collapse
|
4
|
Tomaszowski KH, Roy S, Guerrero C, Shukla P, Keshvani C, Chen Y, Ott M, Wu X, Zhang J, DiNardo CD, Schindler D, Schlacher K. Hypomorphic Brca2 and Rad51c double mutant mice display Fanconi anemia, cancer and polygenic replication stress. Nat Commun 2023; 14:1333. [PMID: 36906610 PMCID: PMC10008622 DOI: 10.1038/s41467-023-36933-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 02/10/2023] [Indexed: 03/13/2023] Open
Abstract
The prototypic cancer-predisposition disease Fanconi Anemia (FA) is identified by biallelic mutations in any one of twenty-three FANC genes. Puzzlingly, inactivation of one Fanc gene alone in mice fails to faithfully model the pleiotropic human disease without additional external stress. Here we find that FA patients frequently display FANC co-mutations. Combining exemplary homozygous hypomorphic Brca2/Fancd1 and Rad51c/Fanco mutations in mice phenocopies human FA with bone marrow failure, rapid death by cancer, cellular cancer-drug hypersensitivity and severe replication instability. These grave phenotypes contrast the unremarkable phenotypes seen in mice with single gene-function inactivation, revealing an unexpected synergism between Fanc mutations. Beyond FA, breast cancer-genome analysis confirms that polygenic FANC tumor-mutations correlate with lower survival, expanding our understanding of FANC genes beyond an epistatic FA-pathway. Collectively, the data establish a polygenic replication stress concept as a testable principle, whereby co-occurrence of a distinct second gene mutation amplifies and drives endogenous replication stress, genome instability and disease.
Collapse
Affiliation(s)
- Karl-Heinz Tomaszowski
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77054, USA
| | - Sunetra Roy
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77054, USA
| | - Carolina Guerrero
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77054, USA
| | - Poojan Shukla
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77054, USA
| | - Caezaan Keshvani
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77054, USA
| | - Yue Chen
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77054, USA
| | - Martina Ott
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, TX, 77054, USA
| | - Xiaogang Wu
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, 77054, USA
| | - Jianhua Zhang
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, 77054, USA
| | - Courtney D DiNardo
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, 77054, USA
| | - Detlev Schindler
- Institut fuer Humangenetik, University of Wuerzburg, Wuerzburg, Germany
| | - Katharina Schlacher
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77054, USA.
| |
Collapse
|
5
|
Abstract
Although hematopoietic stem cells (HSCs) in the bone marrow are in a state of quiescence, they harbor the self-renewal capacity and the pluripotency to differentiate into mature blood cells when needed, which is key to maintain hematopoietic homeostasis. Importantly, HSCs are characterized by their long lifespan ( e. g., up to 60 months for mice), display characteristics of aging, and are vulnerable to various endogenous and exogenous genotoxic stresses. Generally, DNA damage in HSCs is endogenous, which is typically induced by reactive oxygen species (ROS), aldehydes, and replication stress. Mammalian cells have evolved a complex and efficient DNA repair system to cope with various DNA lesions to maintain genomic stability. The repair machinery for DNA damage in HSCs has its own characteristics. For instance, the Fanconi anemia (FA)/BRCA pathway is particularly important for the hematopoietic system, as it can limit the damage caused by DNA inter-strand crosslinks, oxidative stress, and replication stress to HSCs to prevent FA occurrence. In addition, HSCs prefer to utilize the classical non-homologous end-joining pathway, which is essential for the V(D)J rearrangement in developing lymphocytes and is involved in double-strand break repair to maintain genomic stability in the long-term quiescent state. In contrast, the base excision repair pathway is less involved in the hematopoietic system. In this review, we summarize the impact of various types of DNA damage on HSC function and review our knowledge of the corresponding repair mechanisms and related human genetic diseases.
Collapse
|
6
|
Wang LN, Zhang ZT, Wang L, Wei HX, Zhang T, Zhang LM, Lin H, Zhang H, Wang SQ. TGF-β1/SH2B3 axis regulates anoikis resistance and EMT of lung cancer cells by modulating JAK2/STAT3 and SHP2/Grb2 signaling pathways. Cell Death Dis 2022; 13:472. [PMID: 35589677 PMCID: PMC9120066 DOI: 10.1038/s41419-022-04890-x] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 04/13/2022] [Accepted: 04/26/2022] [Indexed: 12/14/2022]
Abstract
The pathogenesis of lung cancer, the most common cancer, is complex and unclear, leading to limited treatment options and poor prognosis. To provide molecular insights into lung cancer development, we investigated the function and underlying mechanism of SH2B3 in the regulation of lung cancer. We indicated SH2B3 was diminished while TGF-β1 was elevated in lung cancer tissues and cells. Low SH2B3 level was correlated with poor prognosis of lung cancer patients. SH2B3 overexpression suppressed cancer cell anoikis resistance, proliferation, migration, invasion, and EMT, while TGF-β1 promoted those processes via reducing SH2B3. SH2B3 bound to JAK2 and SHP2 to repress JAK2/STAT3 and SHP2/Grb2/PI3K/AKT signaling pathways, respectively, resulting in reduced cancer cell anoikis resistance, proliferation, migration, invasion, and EMT. Overexpression of SH2B3 suppressed lung cancer growth and metastasis in vivo. In conclusion, SH2B3 restrained the development of anoikis resistance and EMT of lung cancer cells via suppressing JAK2/STAT3 and SHP2/Grb2/PI3K/AKT signaling cascades, leading to decreased cancer cell proliferation, migration, and invasion.
Collapse
Affiliation(s)
- Li-Na Wang
- Department of Thoracic Surgery, Affiliated Hospital of Jining Medical University, Jining Medical University, 272029, Jining, Shandong Province, P. R. China
- Medical Research Center, Affiliated Hospital of Jining Medical University, Jining Medical University, 272029, Jining, Shandong Province, P. R. China
| | - Zi-Teng Zhang
- Department of Thoracic Surgery, Affiliated Hospital of Jining Medical University, Jining Medical University, 272029, Jining, Shandong Province, P. R. China
| | - Li Wang
- Department of Thoracic Surgery, The Second Xiangya Hospital of Central South University, 410011, Changsha, Hunan Province, P. R. China
- Hunan Key Laboratory of Early Diagnosis and Precise Treatment of Lung Cancer, The Second Xiangya Hospital of Central South University, 410011, Changsha, Hunan Province, P. R. China
| | - Hai-Xiang Wei
- Department of Thoracic Surgery, Affiliated Hospital of Jining Medical University, Jining Medical University, 272029, Jining, Shandong Province, P. R. China
| | - Tao Zhang
- Department of Thoracic Surgery, Affiliated Hospital of Jining Medical University, Jining Medical University, 272029, Jining, Shandong Province, P. R. China
| | - Li-Ming Zhang
- Department of Thoracic Surgery, Affiliated Hospital of Jining Medical University, Jining Medical University, 272029, Jining, Shandong Province, P. R. China
| | - Hang Lin
- Department of General Thoracic Surgery, Xiangya Hospital, Central South University, 410008, Changsha, Hunan Province, P. R. China
| | - Heng Zhang
- Department of General Thoracic Surgery, Xiangya Hospital, Central South University, 410008, Changsha, Hunan Province, P. R. China.
- Xiangya Lung Cancer Center, Xiangya Hospital, Central South University, 410008, Changsha, Hunan Province, P. R. China.
- Hunan Engineering Research Center for Pulmonary Nodules Precise Diagnosis & Treatment, 410008, Changsha, Hunan Province, P. R. China.
- National Clinical Research Center for Geriatric Disorders (Xiangya Hospital), Changsha, P. R. China.
| | - Shao-Qiang Wang
- Department of Thoracic Surgery, Affiliated Hospital of Jining Medical University, Jining Medical University, 272029, Jining, Shandong Province, P. R. China.
| |
Collapse
|
7
|
Geng X, Zhang C, Li M, Wang J, Ji F, Feng H, Xing M, Li F, Zhang L, Li W, Chen Z, Hickson ID, Shen H, Ying S. PICH Supports Embryonic Hematopoiesis by Suppressing a cGAS-STING-Mediated Interferon Response. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2103837. [PMID: 35037428 PMCID: PMC8895048 DOI: 10.1002/advs.202103837] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 12/18/2021] [Indexed: 05/11/2023]
Abstract
The Plk1-interacting checkpoint helicase (PICH) protein localizes to ultrafine anaphase DNA bridges in mitosis along with a complex of DNA repair proteins. Previous studies show PICH deficiency-induced embryonic lethality in mice. However, the function of PICH that is required to suppress embryonic lethality in PICH-deficient mammals remains to be determined. Previous clinical studies suggest a link between PICH deficiency and the onset of acquired aplastic anemia. Here, using Pich knock-out (KO) mouse models, the authors provide evidence for a mechanistic link between PICH deficiency and defective hematopoiesis. Fetal livers from Pich-KO embryos exhibit a significantly elevated number of hematopoietic stem cells (HSCs); however, these HSCs display a higher level of apoptosis and a much-reduced ability to reconstitute a functional hematopoietic system when transplanted into lethally irradiated recipients. Moreover, these HSCs show an elevated cytoplasmic dsDNA expression and an activation of the cGAS-STING pathway, resulting in excessive production of type I interferons (IFN). Importantly, deletion of Ifnar1 or cGAS reverses the defective hematopoiesis. The authors conclude that loss of PICH results in defective hematopoiesis via cGAS-STING-mediated type I IFN production.
Collapse
Affiliation(s)
- Xinwei Geng
- Department of Pharmacology and Department of Respiratory and Critical Care Medicine of the Second Affiliated HospitalZhejiang University School of MedicineKey Laboratory of Respiratory Disease of Zhejiang ProvinceHangzhouZhejiang310009China
| | - Chao Zhang
- Key Laboratory of Respiratory Disease of Zhejiang ProvinceDepartment of Respiratory and Critical Care MedicineSecond Affiliated Hospital of Zhejiang University School of MedicineHangzhouZhejiang310009China
- Department of AnatomyZhejiang University School of MedicineHangzhouZhejiang310058China
| | - Miao Li
- Key Laboratory of Respiratory Disease of Zhejiang ProvinceDepartment of Respiratory and Critical Care MedicineSecond Affiliated Hospital of Zhejiang University School of MedicineHangzhouZhejiang310009China
| | - Jiaqi Wang
- Department of Pharmacology and Department of Respiratory and Critical Care Medicine of the Second Affiliated HospitalZhejiang University School of MedicineKey Laboratory of Respiratory Disease of Zhejiang ProvinceHangzhouZhejiang310009China
| | - Fang Ji
- Department of Pharmacology and Department of Respiratory and Critical Care Medicine of the Second Affiliated HospitalZhejiang University School of MedicineKey Laboratory of Respiratory Disease of Zhejiang ProvinceHangzhouZhejiang310009China
| | - Hanrong Feng
- Department of Pharmacology and Department of Respiratory and Critical Care Medicine of the Second Affiliated HospitalZhejiang University School of MedicineKey Laboratory of Respiratory Disease of Zhejiang ProvinceHangzhouZhejiang310009China
| | - Meichun Xing
- Department of Pharmacology and Department of Respiratory and Critical Care Medicine of the Second Affiliated HospitalZhejiang University School of MedicineKey Laboratory of Respiratory Disease of Zhejiang ProvinceHangzhouZhejiang310009China
| | - Fei Li
- Department of Pharmacology and Department of Respiratory and Critical Care Medicine of the Second Affiliated HospitalZhejiang University School of MedicineKey Laboratory of Respiratory Disease of Zhejiang ProvinceHangzhouZhejiang310009China
| | - Lingling Zhang
- International Institutes of Medicinethe Fourth Affiliated Hospital of Zhejiang University School of MedicineYiwuZhejiang322000China
| | - Wen Li
- Key Laboratory of Respiratory Disease of Zhejiang ProvinceDepartment of Respiratory and Critical Care MedicineSecond Affiliated Hospital of Zhejiang University School of MedicineHangzhouZhejiang310009China
| | - Zhihua Chen
- Key Laboratory of Respiratory Disease of Zhejiang ProvinceDepartment of Respiratory and Critical Care MedicineSecond Affiliated Hospital of Zhejiang University School of MedicineHangzhouZhejiang310009China
| | - Ian D. Hickson
- Center for Chromosome Stability and Center for Healthy AgingDepartment of Cellular and Molecular MedicineUniversity of CopenhagenBlegdamsvej 3BCopenhagen N2200Denmark
| | - Huahao Shen
- Key Laboratory of Respiratory Disease of Zhejiang ProvinceDepartment of Respiratory and Critical Care MedicineSecond Affiliated Hospital of Zhejiang University School of MedicineHangzhouZhejiang310009China
- State Key Laboratory of Respiratory DiseasesGuangzhouGuangdong510120China
| | - Songmin Ying
- Department of Pharmacology and Department of Respiratory and Critical Care Medicine of the Second Affiliated HospitalZhejiang University School of MedicineKey Laboratory of Respiratory Disease of Zhejiang ProvinceHangzhouZhejiang310009China
- International Institutes of Medicinethe Fourth Affiliated Hospital of Zhejiang University School of MedicineYiwuZhejiang322000China
| |
Collapse
|
8
|
Morris R, Butler L, Perkins A, Kershaw NJ, Babon JJ. The Role of LNK (SH2B3) in the Regulation of JAK-STAT Signalling in Haematopoiesis. Pharmaceuticals (Basel) 2021; 15:ph15010024. [PMID: 35056081 PMCID: PMC8781068 DOI: 10.3390/ph15010024] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 12/17/2021] [Accepted: 12/21/2021] [Indexed: 01/05/2023] Open
Abstract
LNK is a member of the SH2B family of adaptor proteins and is a non-redundant regulator of cytokine signalling. Cytokines are secreted intercellular messengers that bind to specific receptors on the surface of target cells to activate the Janus Kinase-Signal Transducer and Activator of Transcription (JAK-STAT) signalling pathway. Activation of the JAK-STAT pathway leads to proliferative and often inflammatory effects, and so the amplitude and duration of signalling are tightly controlled. LNK binds phosphotyrosine residues to signalling proteins downstream of cytokines and constrains JAK-STAT signalling. Mutations in LNK have been identified in a range of haematological and inflammatory diseases due to increased signalling following the loss of LNK function. Here, we review the regulation of JAK-STAT signalling via the adaptor protein LNK and discuss the role of LNK in haematological diseases.
Collapse
Affiliation(s)
- Rhiannon Morris
- Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia; (R.M.); (N.J.K.)
- Department of Medical Biology, The University of Melbourne, Parkville, VIC 3052, Australia
| | - Liesl Butler
- Australian Centre for Blood Diseases, Monash University, Melbourne, VIC 3001, Australia; (L.B.); (A.P.)
- Alfred Health, Melbourne, VIC 3001, Australia
| | - Andrew Perkins
- Australian Centre for Blood Diseases, Monash University, Melbourne, VIC 3001, Australia; (L.B.); (A.P.)
- Alfred Health, Melbourne, VIC 3001, Australia
| | - Nadia J. Kershaw
- Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia; (R.M.); (N.J.K.)
- Department of Medical Biology, The University of Melbourne, Parkville, VIC 3052, Australia
| | - Jeffrey J. Babon
- Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia; (R.M.); (N.J.K.)
- Department of Medical Biology, The University of Melbourne, Parkville, VIC 3052, Australia
- Correspondence: ; Tel.: +61-3-9345-2960; Fax: +61-3-9347-0852
| |
Collapse
|
9
|
Allenspach EJ, Shubin NJ, Cerosaletti K, Mikacenic C, Gorman JA, MacQuivey MA, Rosen AB, Timms AE, Wray-Dutra MN, Niino K, Liggitt D, Wurfel MM, Buckner JH, Piliponsky AM, Rawlings DJ. The Autoimmune Risk R262W Variant of the Adaptor SH2B3 Improves Survival in Sepsis. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2021; 207:2710-2719. [PMID: 34740959 PMCID: PMC8612972 DOI: 10.4049/jimmunol.2100454] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 09/27/2021] [Indexed: 11/19/2022]
Abstract
The single-nucleotide polymorphism (SNP) rs3184504 is broadly associated with increased risk for multiple autoimmune and cardiovascular diseases. Although the allele is uniquely enriched in European descent, the mechanism for the widespread selective sweep is not clear. In this study, we find the rs3184504*T allele had a strong association with reduced mortality in a human sepsis cohort. The rs3184504*T allele associates with a loss-of-function amino acid change (p.R262W) in the adaptor protein SH2B3, a likely causal variant. To better understand the role of SH2B3 in sepsis, we used mouse modeling and challenged SH2B3-deficient mice with a polymicrobial cecal-ligation puncture (CLP) procedure. We found SH2B3 deficiency improved survival and morbidity with less organ damage and earlier bacterial clearance compared with control mice. The peritoneal infiltrating cells exhibited augmented phagocytosis in Sh2b3 -/- mice with enriched recruitment of Ly6Chi inflammatory monocytes despite equivalent or reduced chemokine expression. Rapid cycling of monocytes and progenitors occurred uniquely in the Sh2b3 -/- mice following CLP, suggesting augmented myelopoiesis. To model the hypomorphic autoimmune risk allele, we created a novel knockin mouse harboring a similar point mutation in the murine pleckstrin homology domain of SH2B3. At baseline, phenotypic changes suggested a hypomorphic allele. In the CLP model, homozygous knockin mice displayed improved mortality and morbidity compared with wild-type or heterozygous mice. Collectively, these data suggest that hypomorphic SH2B3 improves the sepsis response and that balancing selection likely contributed to the relative frequency of the autoimmune risk variant.
Collapse
Affiliation(s)
- Eric J. Allenspach
- Center for Immunity and Immunotherapies, Seattle Children’s Research Institute, Seattle, Washington, USA,Department of Pediatrics, University of Washington, Seattle, Washington, USA
| | - Nicholas J. Shubin
- Center for Immunity and Immunotherapies, Seattle Children’s Research Institute, Seattle, Washington, USA
| | - Karen Cerosaletti
- Center for Translational Immunology, Benaroya Research Institute at Virginia Mason, Seattle, Washington, USA
| | - Carmen Mikacenic
- Center for Translational Immunology, Benaroya Research Institute at Virginia Mason, Seattle, Washington, USA,Department of Medicine, Division of Pulmonary and Critical Care, University of Washington, Seattle, Washington, USA
| | - Jacquelyn A Gorman
- Center for Immunity and Immunotherapies, Seattle Children’s Research Institute, Seattle, Washington, USA
| | - Matthew A. MacQuivey
- Center for Immunity and Immunotherapies, Seattle Children’s Research Institute, Seattle, Washington, USA
| | - Aaron B.I. Rosen
- Center for Immunity and Immunotherapies, Seattle Children’s Research Institute, Seattle, Washington, USA
| | - Andrew E. Timms
- Center for Immunity and Immunotherapies, Seattle Children’s Research Institute, Seattle, Washington, USA
| | - Michelle N. Wray-Dutra
- Center for Immunity and Immunotherapies, Seattle Children’s Research Institute, Seattle, Washington, USA
| | - Kerri Niino
- Center for Immunity and Immunotherapies, Seattle Children’s Research Institute, Seattle, Washington, USA
| | - Denny Liggitt
- Department of Comparative Medicine, University of Washington, Seattle, Washington, USA
| | - Mark M. Wurfel
- Department of Medicine, Division of Pulmonary and Critical Care, University of Washington, Seattle, Washington, USA
| | - Jane H. Buckner
- Center for Translational Immunology, Benaroya Research Institute at Virginia Mason, Seattle, Washington, USA,Department of Immunology, University of Washington, Seattle, Washington, USA
| | - Adrian M. Piliponsky
- Center for Immunity and Immunotherapies, Seattle Children’s Research Institute, Seattle, Washington, USA,Departments of Pediatrics, Pathology and Global Health, University of Washington School of Medicine, Seattle, Washington, USA
| | - David J. Rawlings
- Center for Immunity and Immunotherapies, Seattle Children’s Research Institute, Seattle, Washington, USA,Department of Pediatrics, University of Washington, Seattle, Washington, USA,Department of Immunology, University of Washington, Seattle, Washington, USA,Correspondence should be addressed to D.J.R. () and E.J.A. ()
| |
Collapse
|
10
|
LNK (SH2B3) Inhibition Expands Healthy and Fanconi Anemia Human Hematopoietic Stem and Progenitor Cells. Blood Adv 2021; 6:731-745. [PMID: 34844262 PMCID: PMC8945310 DOI: 10.1182/bloodadvances.2021004205] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 11/07/2021] [Indexed: 11/20/2022] Open
Abstract
Hematopoietic stem cell transplantation (HSCT) remains the only curative treatment for a variety of hematological diseases. Allogenic HSCT requires hematopoietic stem cells (HSCs) from matched donors and comes with cytotoxicity and mortality. Recent advances in genome modification of HSCs have demonstrated the possibility of using autologous HSCT-based gene therapy to cure monogenic diseases, such as the inherited bone marrow failure (BMF) syndrome Fanconi Anemia (FA). However, for FA and other BMF syndromes insufficient HSC numbers with functional defects results in delayed hematopoietic recovery and increased risk of graft failure. We and others previously identified the adaptor protein Lnk (Sh2b3) as a critical negative regulator of murine HSC homeostasis. However, whether LNK (SH2B3) controls human HSCs has not been studied. Here, we demonstrate that depletion of LNK via lentiviral expression of miR30-based short hairpin RNAs (shRNAs) resulted in robust expansion of transplantable human HSCs that provided balanced multilineage reconstitution in primary and secondary mouse recipients. Importantly, LNK depletion enhanced cytokine mediated JAK/STAT activation in CD34+ hematopoietic stem and progenitor cells (HSPCs). Moreover, we demonstrate that LNK depletion expands primary HSPCs associated with FA. In xenotransplant, engraftment defects of FANCD2-depleted FA-like HSCs were markedly improved by LNK inhibition. Finally, targeting LNK in primary bone marrow HSPCs from FA patients enhanced their colony forming potential in vitro. Together, these results demonstrate the potential of targeting LNK to expand HSCs to improve HSCT and HSCT-based gene therapy.
Collapse
|
11
|
SLFN11 promotes stalled fork degradation that underlies the phenotype in Fanconi anemia cells. Blood 2021; 137:336-348. [PMID: 32735670 DOI: 10.1182/blood.2019003782] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Accepted: 07/22/2020] [Indexed: 12/11/2022] Open
Abstract
Fanconi anemia (FA) is a hereditary disorder caused by mutations in any 1 of 22 FA genes. The disease is characterized by hypersensitivity to interstrand crosslink (ICL) inducers such as mitomycin C (MMC). In addition to promoting ICL repair, FA proteins such as RAD51, BRCA2, or FANCD2 protect stalled replication forks from nucleolytic degradation during replication stress, which may have a profound impact on FA pathophysiology. Recent studies showed that expression of the putative DNA/RNA helicase SLFN11 in cancer cells correlates with cell death on chemotherapeutic treatment. However, the underlying mechanisms of SLFN11-mediated DNA damage sensitivity remain unclear. Because SLFN11 expression is high in hematopoietic stem cells, we hypothesized that SLFN11 depletion might ameliorate the phenotypes of FA cells. Here we report that SLFN11 knockdown in the FA patient-derived FANCD2-deficient PD20 cell line improved cell survival on treatment with ICL inducers. FANCD2-/-SLFN11-/- HAP1 cells also displayed phenotypic rescue, including reduced levels of MMC-induced chromosome breakage compared with FANCD2-/- cells. Importantly, we found that SLFN11 promotes extensive fork degradation in FANCD2-/- cells. The degradation process is mediated by the nucleases MRE11 or DNA2 and depends on the SLFN11 ATPase activity. This observation was accompanied by an increased RAD51 binding at stalled forks, consistent with the role of RAD51 antagonizing nuclease recruitment and subsequent fork degradation. Suppression of SLFN11 protects nascent DNA tracts even in wild-type cells. We conclude that SLFN11 destabilizes stalled replication forks, and this function may contribute to the attrition of hematopoietic stem cells in FA.
Collapse
|
12
|
Pparγ1 Facilitates ErbB2-Mammary Adenocarcinoma in Mice. Cancers (Basel) 2021; 13:cancers13092171. [PMID: 33946495 PMCID: PMC8125290 DOI: 10.3390/cancers13092171] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 04/09/2021] [Accepted: 04/11/2021] [Indexed: 02/06/2023] Open
Abstract
HER2, which is associated with clinically aggressive disease, is overexpressed in 15-20% of breast cancers (BC). The host immune system participates in the therapeutic response of HER2+ breast cancer. Identifying genetic programs that participate in ErbB2-induced tumors may provide the rational basis for co-extinction therapeutic approaches. Peroxisome proliferator-activated receptor γ (PPARγ), which is expressed in a variety of malignancies, governs biological functions through transcriptional programs. Herein, genetic deletion of endogenous Pparγ1 restrained mammary tumor progression, lipogenesis, and induced local mammary tumor macrophage infiltration, without affecting other tissue hematopoietic stem cell pools. Endogenous Pparγ1 induced expression of both an EphA2-Amphiregulin and an inflammatory INFγ and Cxcl5 signaling module, that was recapitulated in human breast cancer. Pparγ1 bound directly to growth promoting and proinflammatory target genes in the context of chromatin. We conclude Pparγ1 promotes ErbB2-induced tumor growth and inflammation and represents a relevant target for therapeutic coextinction. Herein, endogenous Pparγ1 promoted ErbB2-mediated mammary tumor onset and progression. PPARγ1 increased expression of an EGF-EphA2 receptor tyrosine kinase module and a cytokine/chemokine 1 transcriptional module. The induction of a pro-tumorigenic inflammatory state by Pparγ1 may provide the rationale for complementary coextinction programs in ErbB2 tumors.
Collapse
|
13
|
Lv K, Gong C, Antony C, Han X, Ren JG, Donaghy R, Cheng Y, Pellegrino S, Warren AJ, Paralkar VR, Tong W. HectD1 controls hematopoietic stem cell regeneration by coordinating ribosome assembly and protein synthesis. Cell Stem Cell 2021; 28:1275-1290.e9. [PMID: 33711283 DOI: 10.1016/j.stem.2021.02.008] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 12/28/2020] [Accepted: 02/05/2021] [Indexed: 01/28/2023]
Abstract
Impaired ribosome function is the underlying etiology in a group of bone marrow failure syndromes called ribosomopathies. However, how ribosomes are regulated remains poorly understood, as are approaches to restore hematopoietic stem cell (HSC) function loss because of defective ribosome biogenesis. Here we reveal a role of the E3 ubiquitin ligase HectD1 in regulating HSC function via ribosome assembly and protein translation. Hectd1-deficient HSCs exhibit a striking defect in transplantation ability and ex vivo maintenance concomitant with reduced protein synthesis and growth rate under stress conditions. Mechanistically, HectD1 ubiquitinates and degrades ZNF622, an assembly factor for the ribosomal 60S subunit. Hectd1 loss leads to accumulation of ZNF622 and the anti-association factor eIF6 on 60S, resulting in 60S/40S joining defects. Importantly, Znf622 depletion in Hectd1-deficient HSCs restored ribosomal subunit joining, protein synthesis, and HSC reconstitution capacity. These findings highlight the importance of ubiquitin-coordinated ribosome assembly in HSC regeneration.
Collapse
Affiliation(s)
- Kaosheng Lv
- Division of Hematology, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Division of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Chujie Gong
- Division of Hematology, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Division of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Charles Antony
- Division of Hematology-Oncology, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Xu Han
- Division of Hematology, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Division of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jian-Gang Ren
- Division of Hematology, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Division of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Ryan Donaghy
- Division of Hematology, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Division of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Ying Cheng
- Division of Hematology, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Division of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Simone Pellegrino
- Cambridge Institute for Medical Research, Cambridge, UK; Department of Haematology, University of Cambridge, Cambridge, UK; Wellcome Trust-Medical Research Council Stem Cell Institute, University of Cambridge, Cambridge, UK
| | - Alan J Warren
- Cambridge Institute for Medical Research, Cambridge, UK; Department of Haematology, University of Cambridge, Cambridge, UK; Wellcome Trust-Medical Research Council Stem Cell Institute, University of Cambridge, Cambridge, UK
| | - Vikram R Paralkar
- Division of Hematology-Oncology, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Wei Tong
- Division of Hematology, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Division of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
14
|
Rodríguez A, Zhang K, Färkkilä A, Filiatrault J, Yang C, Velázquez M, Furutani E, Goldman DC, García de Teresa B, Garza-Mayén G, McQueen K, Sambel LA, Molina B, Torres L, González M, Vadillo E, Pelayo R, Fleming WH, Grompe M, Shimamura A, Hautaniemi S, Greenberger J, Frías S, Parmar K, D'Andrea AD. MYC Promotes Bone Marrow Stem Cell Dysfunction in Fanconi Anemia. Cell Stem Cell 2021; 28:33-47.e8. [PMID: 32997960 PMCID: PMC7796920 DOI: 10.1016/j.stem.2020.09.004] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 05/11/2020] [Accepted: 09/08/2020] [Indexed: 01/08/2023]
Abstract
Bone marrow failure (BMF) in Fanconi anemia (FA) patients results from dysfunctional hematopoietic stem and progenitor cells (HSPCs). To identify determinants of BMF, we performed single-cell transcriptome profiling of primary HSPCs from FA patients. In addition to overexpression of p53 and TGF-β pathway genes, we identified high levels of MYC expression. We correspondingly observed coexistence of distinct HSPC subpopulations expressing high levels of TP53 or MYC in FA bone marrow (BM). Inhibiting MYC expression with the BET bromodomain inhibitor (+)-JQ1 reduced the clonogenic potential of FA patient HSPCs but rescued physiological and genotoxic stress in HSPCs from FA mice, showing that MYC promotes proliferation while increasing DNA damage. MYC-high HSPCs showed significant downregulation of cell adhesion genes, consistent with enhanced egress of FA HSPCs from bone marrow to peripheral blood. We speculate that MYC overexpression impairs HSPC function in FA patients and contributes to exhaustion in FA bone marrow.
Collapse
Affiliation(s)
- Alfredo Rodríguez
- Department of Radiation Oncology and Center for DNA Damage and Repair, Dana Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA; Laboratorio de Citogenética, Instituto Nacional de Pediatría, Mexico City 04530, Mexico
| | - Kaiyang Zhang
- Research Program in Systems Oncology, Research Program Unit, Faculty of Medicine, University of Helsinki, Helsinki 00014, Finland
| | - Anniina Färkkilä
- Department of Radiation Oncology and Center for DNA Damage and Repair, Dana Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA; Research Program in Systems Oncology, Research Program Unit, Faculty of Medicine, University of Helsinki, Helsinki 00014, Finland
| | - Jessica Filiatrault
- Department of Radiation Oncology and Center for DNA Damage and Repair, Dana Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA
| | - Chunyu Yang
- Department of Radiation Oncology and Center for DNA Damage and Repair, Dana Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA
| | - Martha Velázquez
- Department of Radiation Oncology and Center for DNA Damage and Repair, Dana Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA
| | - Elissa Furutani
- Dana Farber and Boston Children's Cancer and Blood Disorders Center, Harvard Medical School, Boston, MA 02115, USA
| | - Devorah C Goldman
- Oregon Stem Cell Center, Department of Pediatrics, Oregon Health and Science University, Portland, OR 97239, USA
| | | | - Gilda Garza-Mayén
- Laboratorio de Citogenética, Instituto Nacional de Pediatría, Mexico City 04530, Mexico
| | - Kelsey McQueen
- Department of Radiation Oncology and Center for DNA Damage and Repair, Dana Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA
| | - Larissa A Sambel
- Department of Radiation Oncology and Center for DNA Damage and Repair, Dana Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA
| | - Bertha Molina
- Laboratorio de Citogenética, Instituto Nacional de Pediatría, Mexico City 04530, Mexico
| | - Leda Torres
- Laboratorio de Citogenética, Instituto Nacional de Pediatría, Mexico City 04530, Mexico
| | - Marisol González
- Laboratorio de Citogenética, Instituto Nacional de Pediatría, Mexico City 04530, Mexico
| | - Eduardo Vadillo
- Unidad de Investigación Médica en Enfermedades Oncológicas, Hospital de Oncología, Centro Médico Nacional, Instituto Mexicano del Seguro Social, Mexico City 06720, Mexico
| | - Rosana Pelayo
- Centro de Investigación Biomédica de Oriente, Instituto Mexicano del Seguro Social, Puebla 74360, Mexico
| | - William H Fleming
- Oregon Stem Cell Center, Department of Pediatrics, Oregon Health and Science University, Portland, OR 97239, USA
| | - Markus Grompe
- Oregon Stem Cell Center, Department of Pediatrics, Oregon Health and Science University, Portland, OR 97239, USA
| | - Akiko Shimamura
- Dana Farber and Boston Children's Cancer and Blood Disorders Center, Harvard Medical School, Boston, MA 02115, USA
| | - Sampsa Hautaniemi
- Research Program in Systems Oncology, Research Program Unit, Faculty of Medicine, University of Helsinki, Helsinki 00014, Finland
| | - Joel Greenberger
- Department of Radiation Oncology, University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
| | - Sara Frías
- Laboratorio de Citogenética, Instituto Nacional de Pediatría, Mexico City 04530, Mexico; Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| | - Kalindi Parmar
- Department of Radiation Oncology and Center for DNA Damage and Repair, Dana Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA
| | - Alan D D'Andrea
- Department of Radiation Oncology and Center for DNA Damage and Repair, Dana Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA.
| |
Collapse
|
15
|
Thom CS, Voight BF. Genetic colocalization atlas points to common regulatory sites and genes for hematopoietic traits and hematopoietic contributions to disease phenotypes. BMC Med Genomics 2020; 13:89. [PMID: 32600345 PMCID: PMC7325014 DOI: 10.1186/s12920-020-00742-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 06/17/2020] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Genetic associations link hematopoietic traits and disease end-points, but most causal variants and genes underlying these relationships are unknown. Here, we used genetic colocalization to nominate loci and genes related to shared genetic signal for hematopoietic, cardiovascular, autoimmune, neuropsychiatric, and cancer phenotypes. METHODS Our aim was to identify colocalization sites for human traits among established genome-wide significant loci. Using genome-wide association study (GWAS) summary statistics, we determined loci where multiple traits colocalized at a false discovery rate < 5%. We then identified quantitative trait loci among colocalization sites to highlight related genes. In addition, we used Mendelian randomization analysis to further investigate certain trait relationships genome-wide. RESULTS Our findings recapitulated developmental hematopoietic lineage relationships, identified loci that linked traits with causal genetic relationships, and revealed novel trait associations. Out of 2706 loci with genome-wide significant signal for at least 1 blood trait, we identified 1779 unique sites (66%) with shared genetic signal for 2+ hematologic traits. We could assign some sites to specific developmental cell types during hematopoiesis based on affected traits, including those likely to impact hematopoietic progenitor cells and/or megakaryocyte-erythroid progenitor cells. Through an expanded analysis of 70 human traits, we defined 2+ colocalizing traits at 2123 loci from an analysis of 9852 sites (22%) containing genome-wide significant signal for at least 1 GWAS trait. In addition to variants and genes underlying shared genetic signal between blood traits and disease phenotypes that had been previously related through Mendelian randomization studies, we defined loci and related genes underlying shared signal between eosinophil percentage and eczema. We also identified colocalizing signals in a number of clinically relevant coding mutations, including sites linking PTPN22 with Crohn's disease, NIPA with coronary artery disease and platelet trait variation, and the hemochromatosis gene HFE with altered lipid levels. Finally, we anticipate potential off-target effects on blood traits related novel therapeutic targets, including TRAIL. CONCLUSIONS Our findings provide a road map for gene validation experiments and novel therapeutics related to hematopoietic development, and offer a rationale for pleiotropic interactions between hematopoietic loci and disease end-points.
Collapse
Affiliation(s)
- Christopher S Thom
- Division of Neonatology, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania - Perelman School of Medicine, Philadelphia, PA, USA
- Department of Genetics, University of Pennsylvania - Perelman School of Medicine, Philadelphia, PA, USA
- Institute of Translational Medicine and Therapeutics, University of Pennsylvania - Perelman School of Medicine, Philadelphia, PA, USA
| | - Benjamin F Voight
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania - Perelman School of Medicine, Philadelphia, PA, USA.
- Department of Genetics, University of Pennsylvania - Perelman School of Medicine, Philadelphia, PA, USA.
- Institute of Translational Medicine and Therapeutics, University of Pennsylvania - Perelman School of Medicine, Philadelphia, PA, USA.
| |
Collapse
|
16
|
LNK promotes the growth and metastasis of triple negative breast cancer via activating JAK/STAT3 and ERK1/2 pathway. Cancer Cell Int 2020; 20:124. [PMID: 32322171 PMCID: PMC7160949 DOI: 10.1186/s12935-020-01197-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 03/31/2020] [Indexed: 11/17/2022] Open
Abstract
Background LNK adaptor protein is a crucial regulator of normal hematopoiesis, which down-regulates activated tyrosine kinases at the cell surface resulting in an antitumor effect. To date, little studies have examined activities of LNK in solid tumors except ovarian cancer. Methods Clinical tissue chips were obtained from 16 clinical patients after surgery. Western blotting assay and quantitative real time PCR was performed to measure the expression of LNK. We investigate the in vivo and vitro effect of LNK in Triple Negative Breast Cancer by using cell proliferation、migration assays and an in vivo murine xenograft model. Western blotting assay was performed to investigate the mechanism of LNK in triple negative breast cancer. Results We found that the levels of LNK expression were elevated in high grade triple-negative breast cancer through Clinical tissue chips. Remarkably, overexpression of LNK can promote breast cancer cell proliferation and migration in vivo and vitro, while silencing of LNK show the opposite phenomenon. We also found that LNK can promote breast cancer cell to proliferate and migrate via activating JAK/STAT3 and ERK1/2 pathway. Conclusions Our results suggest that the adaptor protein LNK acts as a positive signal transduction modulator in TNBC.
Collapse
|
17
|
Zhong ZM, Chen X, Qi X, Wang XM, Li CY, Qin RJ, Wang SQ, Liang J, Zeng MS, Sun CZ. Adaptor protein LNK promotes anaplastic thyroid carcinoma cell growth via 14-3-3 ε/γ binding. Cancer Cell Int 2020; 20:11. [PMID: 31938019 PMCID: PMC6953139 DOI: 10.1186/s12935-019-1090-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 12/28/2019] [Indexed: 01/08/2023] Open
Abstract
Background Rapid progression contributes to treatment failure in anaplastic thyroid carcinoma (ATC) patients. In a preliminary study, we demonstrated that some hematopoietic factors may be involved in the progression of ATC. The adaptor protein LNK, which is a negative regulator of hematopoietic cytokine signalling, has been studied extensively in malignant hematopoietic cells. However, there are few studies on LNK in solid tumours. Methods Real-time PCR, immunohistochemistry (IHC) and western blot analysis of LNK were performed on ATC cells, differentiated thyroid cancer (DTC) cells and normal thyroid cells. In vitro assays (including pull-down, liquid chromatography-mass spectrometry (LC–MS), co-IP, MTT and colony formation) were performed to validate the effect of LNK on ATC progression and elucidate the molecular mechanisms. Results Compared with DTC cells and normal thyroid cells, ATC cells exhibit overexpression of LNK. In addition, LNK overexpression results in increased proliferation of ATC cells. Conversely, LNK knockdown significantly suppresses ATC cell proliferation. LC–MS identified the 14-3-3 ε/γ protein as a LNK binding partner. Finally, the results indicate that LNK overexpression significantly enhances the anti-apoptotic ability of ATC cells via the Akt-NFκB-Bcl-2/Bcl-xL pathway and that the oncogenic effect of LNK largely depends on 14-3-3 ε/γ binding. Conclusions The present study elucidated the important role of LNK in the growth of ATC opposite to its behaviour in the hematopoietic system and indicates that LNK is a potential target for the treatment of ATC.
Collapse
Affiliation(s)
- Zhao-Ming Zhong
- Department of Head and Neck Surgery Section II, The Third Affiliated Hospital of Kunming Medical University/Yunnan Cancer Hospital, 519 Kunzhou Road, Kunming, China.,2Department of Medical Oncology, The First Affiliated Hospital of Kunming Medical University, 295 Xichang Road, Kunming, China
| | - Xue Chen
- Department of Head and Neck Surgery Section II, The Third Affiliated Hospital of Kunming Medical University/Yunnan Cancer Hospital, 519 Kunzhou Road, Kunming, China
| | - Xiao Qi
- Department of Head and Neck Surgery Section II, The Third Affiliated Hospital of Kunming Medical University/Yunnan Cancer Hospital, 519 Kunzhou Road, Kunming, China
| | - Xue-Min Wang
- Department of Head and Neck Surgery Section II, The Third Affiliated Hospital of Kunming Medical University/Yunnan Cancer Hospital, 519 Kunzhou Road, Kunming, China
| | - Chun-Yan Li
- Department of Head and Neck Surgery Section II, The Third Affiliated Hospital of Kunming Medical University/Yunnan Cancer Hospital, 519 Kunzhou Road, Kunming, China
| | - Ru-Jia Qin
- Department of Head and Neck Surgery Section II, The Third Affiliated Hospital of Kunming Medical University/Yunnan Cancer Hospital, 519 Kunzhou Road, Kunming, China
| | - Shi-Qi Wang
- Department of Head and Neck Surgery Section II, The Third Affiliated Hospital of Kunming Medical University/Yunnan Cancer Hospital, 519 Kunzhou Road, Kunming, China
| | - Jin Liang
- 2Department of Medical Oncology, The First Affiliated Hospital of Kunming Medical University, 295 Xichang Road, Kunming, China
| | - Mu-Sheng Zeng
- 3State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, China
| | - Chuan-Zheng Sun
- Department of Head and Neck Surgery Section II, The Third Affiliated Hospital of Kunming Medical University/Yunnan Cancer Hospital, 519 Kunzhou Road, Kunming, China
| |
Collapse
|