1
|
Niitsu A, Thomson AR, Scott AJ, Sengel JT, Jung J, Mahendran KR, Sodeoka M, Bayley H, Sugita Y, Woolfson DN, Wallace MI. Rational Design Principles for De Novo α-Helical Peptide Barrels with Dynamic Conductive Channels. J Am Chem Soc 2025; 147:11741-11753. [PMID: 40152328 DOI: 10.1021/jacs.4c13933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2025]
Abstract
Despite advances in peptide and protein design, the rational design of membrane-spanning peptides that form conducting channels remains challenging due to our imperfect understanding of the sequence-to-structure relationships that drive membrane insertion, assembly, and conductance. Here, we describe the design and computational and experimental characterization of a series of coiled coil-based peptides that form transmembrane α-helical barrels with conductive channels. Through a combination of rational and computational design, we obtain barrels with 5 to 7 helices, as characterized in detergent micelles. In lipid bilayers, these peptide assemblies exhibit two conductance states with relative populations dependent on the applied potential: (i) low-conductance states that correlate with variations in the designed amino-acid sequences and modeled coiled-coil barrel geometries, indicating stable transmembrane α-helical barrels; and (ii) high-conductance states in which single channels change size in discrete steps. Notably, the high-conductance states are similar for all peptides in contrast to the low-conductance states. This indicates the formation of large, dynamic channels, as observed in natural barrel-stave peptide channels. These findings establish rational routes to design and tune functional membrane-spanning peptide channels with specific conductance and geometry.
Collapse
Affiliation(s)
- Ai Niitsu
- Laboratory for Dynamic Biomolecule Design, RIKEN Center for Biosystems Dynamics Research, 1-7-22 Suehiro-cho, Tsurumi, Yokohama, Kanagawa 230-0045, Japan
| | - Andrew R Thomson
- School of Chemistry, University of Glasgow, Joseph Black Building, University Avenue, Glasgow G12 8QQ, U.K
| | - Alistair J Scott
- School of Chemistry, University of Bristol, Cantock's Close, Bristol BS8 1TS, U.K
| | - Jason T Sengel
- Department of Chemistry, King's College London, Britannia House, Trinity Street, SE1 1DB London, U.K
| | - Jaewoon Jung
- Theoretical Molecular Science Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
- Computational Biophysics Research Team, RIKEN Center for Computational Science, 7-1-26 Minatojima-Minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| | - Kozhinjampara R Mahendran
- Transdisciplinary Research Program, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram 695014, India
| | - Mikiko Sodeoka
- Catalysis and Integrated Research Group, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Hagan Bayley
- Department of Chemistry, University of Oxford, Mansfield Road, OX1 3TA Oxford, U.K
| | - Yuji Sugita
- Theoretical Molecular Science Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
- Computational Biophysics Research Team, RIKEN Center for Computational Science, 7-1-26 Minatojima-Minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
- Laboratory for Biomolecular Function Simulation, RIKEN Center for Biosystems Dynamics Research, 1-6-5 Minatojima-Minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| | - Derek N Woolfson
- School of Chemistry, University of Bristol, Cantock's Close, Bristol BS8 1TS, U.K
- School of Biochemistry, University of Bristol, Medical Sciences Building, University Walk, Bristol BS8 1TD, U.K
- Bristol BioDesign Institute, University of Bristol, Life Sciences Building, Tyndall Avenue, Bristol BS8 1TQ, U.K
| | - Mark I Wallace
- Department of Chemistry, King's College London, Britannia House, Trinity Street, SE1 1DB London, U.K
| |
Collapse
|
2
|
Albanese KI, Petrenas R, Pirro F, Naudin EA, Borucu U, Dawson WM, Scott DA, Leggett GJ, Weiner OD, Oliver TAA, Woolfson DN. Rationally seeded computational protein design of ɑ-helical barrels. Nat Chem Biol 2024; 20:991-999. [PMID: 38902458 PMCID: PMC11288890 DOI: 10.1038/s41589-024-01642-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 05/09/2024] [Indexed: 06/22/2024]
Abstract
Computational protein design is advancing rapidly. Here we describe efficient routes starting from validated parallel and antiparallel peptide assemblies to design two families of α-helical barrel proteins with central channels that bind small molecules. Computational designs are seeded by the sequences and structures of defined de novo oligomeric barrel-forming peptides, and adjacent helices are connected by loop building. For targets with antiparallel helices, short loops are sufficient. However, targets with parallel helices require longer connectors; namely, an outer layer of helix-turn-helix-turn-helix motifs that are packed onto the barrels. Throughout these computational pipelines, residues that define open states of the barrels are maintained. This minimizes sequence sampling, accelerating the design process. For each of six targets, just two to six synthetic genes are made for expression in Escherichia coli. On average, 70% of these genes express to give soluble monomeric proteins that are fully characterized, including high-resolution structures for most targets that match the design models with high accuracy.
Collapse
Affiliation(s)
- Katherine I Albanese
- School of Chemistry, University of Bristol, Bristol, UK
- Max Planck-Bristol Centre for Minimal Biology, University of Bristol, Bristol, UK
| | | | - Fabio Pirro
- School of Chemistry, University of Bristol, Bristol, UK
| | | | - Ufuk Borucu
- School of Biochemistry, University of Bristol, Medical Sciences Building, Bristol, UK
| | | | - D Arne Scott
- Rosa Biotech, Science Creates St Philips, Bristol, UK
| | | | - Orion D Weiner
- Cardiovascular Research Institute, Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA, USA
| | | | - Derek N Woolfson
- School of Chemistry, University of Bristol, Bristol, UK.
- Max Planck-Bristol Centre for Minimal Biology, University of Bristol, Bristol, UK.
- School of Biochemistry, University of Bristol, Medical Sciences Building, Bristol, UK.
- Bristol BioDesign Institute, University of Bristol, Bristol, UK.
| |
Collapse
|
3
|
Koch J, Romero‐Romero S, Höcker B. Stepwise introduction of stabilizing mutations reveals nonlinear additive effects in de novo TIM barrels. Protein Sci 2024; 33:e4926. [PMID: 38380781 PMCID: PMC10880431 DOI: 10.1002/pro.4926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 01/29/2024] [Accepted: 01/30/2024] [Indexed: 02/22/2024]
Abstract
Over the past decades, the TIM-barrel fold has served as a model system for the exploration of how changes in protein sequences affect their structural, stability, and functional characteristics, and moreover, how this information can be leveraged to design proteins from the ground up. After numerous attempts to design de novo proteins with this specific fold, sTIM11 was the first validated de novo design of an idealized four-fold symmetric TIM barrel. Subsequent efforts to enhance the stability of this initial design resulted in the development of DeNovoTIMs, a family of de novo TIM barrels with various stabilizing mutations. In this study, we present an investigation into the biophysical and thermodynamic effects upon introducing a varying number of stabilizing mutations per quarter along the sequence of a four-fold symmetric TIM barrel. We compared the base design DeNovoTIM0 without any stabilizing mutations with variants containing mutations in one, two, three, and all four quarters-designated TIM1q, TIM2q, TIM3q, and DeNovoTIM6, respectively. This analysis revealed a stepwise and nonlinear change in the thermodynamic properties that correlated with the number of mutated quarters, suggesting positive nonadditive effects. To shed light on the significance of the location of stabilized quarters, we engineered two variants of TIM2q which contain the same number of mutations but positioned in different quarter locations. Characterization of these TIM2q variants revealed that the mutations exhibit varying effects on the overall protein stability, contingent upon the specific region in which they are introduced. These findings emphasize that the amount and location of stabilized interfaces among the four quarters play a crucial role in shaping the conformational stability of these four-fold symmetric TIM barrels. Analysis of de novo proteins, as described in this study, enhances our understanding of how sequence variations can finely modulate stability in both naturally occurring and computationally designed proteins.
Collapse
Affiliation(s)
| | | | - Birte Höcker
- Department of BiochemistryUniversity of BayreuthBayreuthGermany
| |
Collapse
|
4
|
Christians LF, Halingstad EV, Kram E, Okolovitch EM, Pak AJ. Formalizing Coarse-Grained Representations of Anisotropic Interactions at Multimeric Protein Interfaces Using Virtual Sites. J Phys Chem B 2024; 128:1394-1406. [PMID: 38316012 DOI: 10.1021/acs.jpcb.3c07023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
Molecular simulations of biomacromolecules that assemble into multimeric complexes remain a challenge due to computationally inaccessible length and time scales. Low-resolution and implicit-solvent coarse-grained modeling approaches using traditional nonbonded interactions (both pairwise and spherically isotropic) have been able to partially address this gap. However, these models may fail to capture the complex anisotropic interactions present at macromolecular interfaces unless higher-order interaction potentials are incorporated at the expense of the computational cost. In this work, we introduce an alternate and systematic approach to represent directional interactions at protein-protein interfaces by using virtual sites restricted to pairwise interactions. We show that virtual site interaction parameters can be optimized within a relative entropy minimization framework by using only information from known statistics between coarse-grained sites. We compare our virtual site models to traditional coarse-grained models using two case studies of multimeric protein assemblies and find that the virtual site models predict pairwise correlations with higher fidelity and, more importantly, assembly behavior that is morphologically consistent with experiments. Our study underscores the importance of anisotropic interaction representations and paves the way for more accurate yet computationally efficient coarse-grained simulations of macromolecular assembly in future research.
Collapse
Affiliation(s)
- Luc F Christians
- Department of Chemical and Biological Engineering, Colorado School of Mines, Golden, Colorado 80401, United States
| | - Ethan V Halingstad
- Department of Chemical and Biological Engineering, Colorado School of Mines, Golden, Colorado 80401, United States
| | - Emiel Kram
- Department of Chemical and Biological Engineering, Colorado School of Mines, Golden, Colorado 80401, United States
| | - Evan M Okolovitch
- Department of Chemical and Biological Engineering, Colorado School of Mines, Golden, Colorado 80401, United States
| | - Alexander J Pak
- Department of Chemical and Biological Engineering, Colorado School of Mines, Golden, Colorado 80401, United States
- Quantitative Biosciences and Engineering Program, Colorado School of Mines, Golden, Colorado 80401, United States
- Materials Science Program, Colorado School of Mines, Golden, Colorado 80401, United States
| |
Collapse
|
5
|
Medeiros-Silva J, Dregni AJ, Somberg NH, Duan P, Hong M. Atomic structure of the open SARS-CoV-2 E viroporin. SCIENCE ADVANCES 2023; 9:eadi9007. [PMID: 37831764 PMCID: PMC10575589 DOI: 10.1126/sciadv.adi9007] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 09/08/2023] [Indexed: 10/15/2023]
Abstract
The envelope (E) protein of the SARS-CoV-2 virus forms cation-conducting channels in the endoplasmic reticulum Golgi intermediate compartment (ERGIC) of infected cells. The calcium channel activity of E is associated with the inflammatory responses of COVID-19. Using solid-state NMR (ssNMR) spectroscopy, we have determined the open-state structure of E's transmembrane domain (ETM) in lipid bilayers. Compared to the closed state, open ETM has an expansive water-filled amino-terminal chamber capped by key glutamate and threonine residues, a loose phenylalanine aromatic belt in the middle, and a constricted polar carboxyl-terminal pore filled with an arginine and a threonine residue. This structure gives insights into how protons and calcium ions are selected by ETM and how they permeate across the hydrophobic gate of this viroporin.
Collapse
Affiliation(s)
| | - Aurelio J. Dregni
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | | - Pu Duan
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | |
Collapse
|
6
|
Agrahari A, Lipton M, Chmielewski J. Metal-Promoted Higher-Order Assembly of Disulfide-Stapled Helical Barrels. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2645. [PMID: 37836285 PMCID: PMC10574645 DOI: 10.3390/nano13192645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 09/20/2023] [Accepted: 09/21/2023] [Indexed: 10/15/2023]
Abstract
Peptide-based helical barrels are a noteworthy building block for hierarchical assembly, with a hydrophobic cavity that can serve as a host for cargo. In this study, disulfide-stapled helical barrels were synthesized containing ligands for metal ions on the hydrophilic face of each amphiphilic peptide helix. The major product of the disulfide-stapling reaction was found to be composed of five amphiphilic peptides, thereby going from a 16-amino-acid peptide to a stapled 80-residue protein in one step. The structure of this pentamer, 5HB1, was optimized in silico, indicating a significant hydrophobic cavity of ~6 Å within a helical barrel. Metal-ion-promoted assembly of the helical barrel building blocks generated higher order assemblies with a three-dimensional (3D) matrix morphology. The matrix was decorated with hydrophobic dyes and His-tagged proteins both before and after assembly, taking advantage of the hydrophobic pocket within the helical barrels and coordination sites within the metal ion-peptide framework. As such, this peptide-based biomaterial has potential for a number of biotechnology applications, including supplying small molecule and protein growth factors during cell and tissue growth within the matrix.
Collapse
Affiliation(s)
| | - Mark Lipton
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, IN 47907, USA;
| | - Jean Chmielewski
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, IN 47907, USA;
| |
Collapse
|
7
|
Woolfson DN. Understanding a protein fold: the physics, chemistry, and biology of α-helical coiled coils. J Biol Chem 2023; 299:104579. [PMID: 36871758 PMCID: PMC10124910 DOI: 10.1016/j.jbc.2023.104579] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 02/25/2023] [Accepted: 02/27/2023] [Indexed: 03/07/2023] Open
Abstract
Protein science is being transformed by powerful computational methods for structure prediction and design: AlphaFold2 can predict many natural protein structures from sequence, and other AI methods are enabling the de novo design of new structures. This raises a question: how much do we understand the underlying sequence-to-structure/function relationships being captured by these methods? This perspective presents our current understanding of one class of protein assembly, the α-helical coiled coils. At first sight, these are straightforward: sequence repeats of hydrophobic (h) and polar (p) residues, (hpphppp)n, direct the folding and assembly of amphipathic α helices into bundles. However, many different bundles are possible: they can have two or more helices (different oligomers); the helices can have parallel, antiparallel or mixed arrangements (different topologies); and the helical sequences can be the same (homomers) or different (heteromers). Thus, sequence-to-structure relationships must be present within the hpphppp repeats to distinguish these states. I discuss the current understanding of this problem at three levels: First, physics gives a parametric framework to generate the many possible coiled-coil backbone structures. Second, chemistry provides a means to explore and deliver sequence-to-structure relationships. Third, biology shows how coiled coils are adapted and functionalized in nature, inspiring applications of coiled coils in synthetic biology. I argue that the chemistry is largely understood; the physics is partly solved, though the considerable challenge of predicting even relative stabilities of different coiled-coil states remains; but there is much more to explore in the biology and synthetic biology of coiled coils.
Collapse
Affiliation(s)
- Derek N Woolfson
- School of Chemistry, University of Bristol, Bristol, United Kingdom; School of Biochemistry, University of Bristol, Medical Sciences Building, University Walk, Bristol, United Kingdom; BrisEngBio, School of Chemistry, University of Bristol, Bristol, United Kingdom; Max Planck-Bristol Centre for Minimal Biology, University of Bristol, Bristol, United Kingdom.
| |
Collapse
|
8
|
Stevens AJ, Harris AR, Gerdts J, Kim KH, Trentesaux C, Ramirez JT, McKeithan WL, Fattahi F, Klein OD, Fletcher DA, Lim WA. Programming multicellular assembly with synthetic cell adhesion molecules. Nature 2023; 614:144-152. [PMID: 36509107 PMCID: PMC9892004 DOI: 10.1038/s41586-022-05622-z] [Citation(s) in RCA: 73] [Impact Index Per Article: 36.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 12/02/2022] [Indexed: 12/14/2022]
Abstract
Cell adhesion molecules are ubiquitous in multicellular organisms, specifying precise cell-cell interactions in processes as diverse as tissue development, immune cell trafficking and the wiring of the nervous system1-4. Here we show that a wide array of synthetic cell adhesion molecules can be generated by combining orthogonal extracellular interactions with intracellular domains from native adhesion molecules, such as cadherins and integrins. The resulting molecules yield customized cell-cell interactions with adhesion properties that are similar to native interactions. The identity of the intracellular domain of the synthetic cell adhesion molecules specifies interface morphology and mechanics, whereas diverse homotypic or heterotypic extracellular interaction domains independently specify the connectivity between cells. This toolkit of orthogonal adhesion molecules enables the rationally programmed assembly of multicellular architectures, as well as systematic remodelling of native tissues. The modularity of synthetic cell adhesion molecules provides fundamental insights into how distinct classes of cell-cell interfaces may have evolved. Overall, these tools offer powerful abilities for cell and tissue engineering and for systematically studying multicellular organization.
Collapse
Affiliation(s)
- Adam J Stevens
- UCSF Cell Design Institute, University of California, San Francisco, CA, USA
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA, USA
- Center for Cellular Construction, University of California, San Francisco, CA, USA
| | - Andrew R Harris
- Center for Cellular Construction, University of California, San Francisco, CA, USA
- Department of Bioengineering, University of California, Berkeley, CA, USA
- Department of Mechanical and Aerospace Engineering, Carleton University, Ottawa, Ontario, Canada
| | - Josiah Gerdts
- UCSF Cell Design Institute, University of California, San Francisco, CA, USA
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA, USA
- Center for Cellular Construction, University of California, San Francisco, CA, USA
- Department of Neurology, Weill Institute for Neuroscience, University of California, San Francisco, CA, USA
| | - Ki H Kim
- UCSF Cell Design Institute, University of California, San Francisco, CA, USA
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA, USA
- Center for Cellular Construction, University of California, San Francisco, CA, USA
| | - Coralie Trentesaux
- Program in Craniofacial Biology, University of California, San Francisco, CA, USA
- Department of Orofacial Sciences, University of California, San Francisco, CA, USA
| | - Jonathan T Ramirez
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA, USA
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, CA, USA
| | - Wesley L McKeithan
- UCSF Cell Design Institute, University of California, San Francisco, CA, USA
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA, USA
- Center for Cellular Construction, University of California, San Francisco, CA, USA
- Maze Therapeutics, San Francisco, CA, USA
| | - Faranak Fattahi
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA, USA
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, CA, USA
| | - Ophir D Klein
- Program in Craniofacial Biology, University of California, San Francisco, CA, USA
- Department of Orofacial Sciences, University of California, San Francisco, CA, USA
- Department of Pediatrics, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Daniel A Fletcher
- Center for Cellular Construction, University of California, San Francisco, CA, USA
- Department of Bioengineering, University of California, Berkeley, CA, USA
- Chan Zuckerberg Biohub, San Francisco, CA, USA
| | - Wendell A Lim
- UCSF Cell Design Institute, University of California, San Francisco, CA, USA.
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA, USA.
- Center for Cellular Construction, University of California, San Francisco, CA, USA.
| |
Collapse
|
9
|
Niitsu A, Sugita Y. Towards de novo design of transmembrane α-helical assemblies using structural modelling and molecular dynamics simulation. Phys Chem Chem Phys 2023; 25:3595-3606. [PMID: 36647771 DOI: 10.1039/d2cp03972a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Computational de novo protein design involves iterative processes consisting of amino acid sequence design, structural modelling and scoring, and design validation by synthesis and experimental characterisation. Recent advances in protein structure prediction and modelling methods have enabled the highly efficient and accurate design of water-soluble proteins. However, the design of membrane proteins remains a major challenge. To advance membrane protein design, considering the higher complexity of membrane protein folding, stability, and dynamic interactions between water, ions, lipids, and proteins is an important task. For introducing explicit solvents and membranes to these design methods, all-atom molecular dynamics (MD) simulations of designed proteins provide useful information that cannot be obtained experimentally. In this review, we first describe two major approaches to designing transmembrane α-helical assemblies, consensus and de novo design. We further illustrate recent MD studies of membrane protein folding related to protein design, as well as advanced treatments in molecular models and conformational sampling techniques in the simulations. Finally, we discuss the possibility to introduce MD simulations after the existing static modelling and screening of design decoys as an additional step for refinement of the design, which considers membrane protein folding dynamics and interactions with explicit membranes.
Collapse
Affiliation(s)
- Ai Niitsu
- Theoretical Molecular Science Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan.
| | - Yuji Sugita
- Theoretical Molecular Science Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan. .,Computational Biophysics Research Team, RIKEN Center for Computational Science, 7-1-26 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan.,Laboratory for Biomolecular Function Simulation, RIKEN Center for Biosystems Dynamics Research, 6-7-1 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| |
Collapse
|
10
|
Differential sensing with arrays of de novo designed peptide assemblies. Nat Commun 2023; 14:383. [PMID: 36693847 PMCID: PMC9873944 DOI: 10.1038/s41467-023-36024-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 01/11/2023] [Indexed: 01/25/2023] Open
Abstract
Differential sensing attempts to mimic the mammalian senses of smell and taste to identify analytes and complex mixtures. In place of hundreds of complex, membrane-bound G-protein coupled receptors, differential sensors employ arrays of small molecules. Here we show that arrays of computationally designed de novo peptides provide alternative synthetic receptors for differential sensing. We use self-assembling α-helical barrels (αHBs) with central channels that can be altered predictably to vary their sizes, shapes and chemistries. The channels accommodate environment-sensitive dyes that fluoresce upon binding. Challenging arrays of dye-loaded barrels with analytes causes differential fluorophore displacement. The resulting fluorimetric fingerprints are used to train machine-learning models that relate the patterns to the analytes. We show that this system discriminates between a range of biomolecules, drink, and diagnostically relevant biological samples. As αHBs are robust and chemically diverse, the system has potential to sense many analytes in various settings.
Collapse
|
11
|
Heide F, Stetefeld J. A Structural Analysis of Proteinaceous Nanotube Cavities and Their Applications in Nanotechnology. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:4080. [PMID: 36432365 PMCID: PMC9698212 DOI: 10.3390/nano12224080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/17/2022] [Accepted: 11/18/2022] [Indexed: 06/16/2023]
Abstract
Protein nanotubes offer unique properties to the materials science field that allow them to fulfill various functions in drug delivery, biosensors and energy storage. Protein nanotubes are chemically diverse, modular, biodegradable and nontoxic. Furthermore, although the initial design or repurposing of such nanotubes is highly complex, the field has matured to understand underlying chemical and physical properties to a point where applications are successfully being developed. An important feature of a nanotube is its ability to bind ligands via its internal cavities. As ligands of interest vary in size, shape and chemical properties, cavities have to be able to accommodate very specific features. As such, understanding cavities on a structural level is essential for their effective application. The objective of this review is to present the chemical and physical diversity of protein nanotube cavities and highlight their potential applications in materials science, specifically in biotechnology.
Collapse
Affiliation(s)
- Fabian Heide
- Correspondence: (F.H.); (J.S.); Tel.: +1-(204)-332-0853 (F.H.); +1-(204)-474-9731 (J.S.)
| | - Jörg Stetefeld
- Correspondence: (F.H.); (J.S.); Tel.: +1-(204)-332-0853 (F.H.); +1-(204)-474-9731 (J.S.)
| |
Collapse
|
12
|
Wilson MA, Pohorille A. Structure and Computational Electrophysiology of Ac-LS3, a Synthetic Ion Channel. J Phys Chem B 2022; 126:8985-8999. [PMID: 36306164 DOI: 10.1021/acs.jpcb.2c05965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Computer simulations are reported on Ac-LS3, a synthetic ion channel, containing 21 residues with a Leu-Ser-Ser-Leu-Leu-Ser-Leu heptad repeat, which forms ions channels upon application of voltage. A hexameric, coiled-coil bundle initially positioned perpendicular to the membrane settled into a stable, tilted structure after 1.5 μs, most likely to improve contacts between the non-polar exterior of the channel and the hydrophobic core of the membrane. Once tilted, the bundle remained in this state during subsequent simulations of nearly 10 μs at voltages ranging from 200 to -100 mV. In contrast, attempts to identify a stable pentameric structure failed, thus supporting the hypothesis that the channel is a hexamer. Results at 100 mV were used to reconstruct the free energy profiles for K+ and Cl- in the channel. This was done by way of several methods in which results of molecular dynamics (MD) simulations were combined with the electrodiffusion model. Two of them developed recently do not require knowledge of the diffusivity. Instead, they utilize one-sided density profiles and committor probabilities. The consistency between different methods is very good, supporting the utility of the newly developed methods for reconstructing free energies of ions in channels. The flux of K+, which accounts for most of the current through the channel, calculated directly from MD matches well the total measured current. However, the current of Cl- is somewhat overestimated, possibly due to a slightly unbalanced force field involving chloride. The current-voltage dependence was also reconstructed by way of a recently developed, efficient method that requires simulations only at a single voltage, yielding good agreement with the experiment. Taken together, the results demonstrate that computational electrophysiology has become a reliable tool for studying how channels mediate ion transport through membranes.
Collapse
Affiliation(s)
- Michael A Wilson
- Exobiology Branch, MS239-4, NASA Ames Research Center, Moffett Field, California94035, United States.,SETI Institute, 189 Bernardo Avenue, Suite 200, Mountain View, California94043, United States
| | - Andrew Pohorille
- Exobiology Branch, MS239-4, NASA Ames Research Center, Moffett Field, California94033, United States.,Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, California94132, United States
| |
Collapse
|
13
|
Russell CM, Schaefer KG, Dixson A, Gray ALH, Pyron RJ, Alves DS, Moore N, Conley EA, Schuck RJ, White TA, Do TD, King GM, Barrera FN. The Candida albicans virulence factor candidalysin polymerizes in solution to form membrane pores and damage epithelial cells. eLife 2022; 11:e75490. [PMID: 36173096 PMCID: PMC9522247 DOI: 10.7554/elife.75490] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 08/15/2022] [Indexed: 11/28/2022] Open
Abstract
Candida albicans causes severe invasive candidiasis. C. albicans infection requires the virulence factor candidalysin (CL) which damages target cell membranes. However, the mechanism that CL uses to permeabilize membranes is unclear. We reveal that CL forms membrane pores using a unique mechanism. Unexpectedly, CL readily assembled into polymers in solution. We propose that the basic structural unit in polymer formation is a CL oligomer, which is sequentially added into a string configuration that can close into a loop. CL loops appear to spontaneously insert into the membrane to become pores. A CL mutation (G4W) inhibited the formation of polymers in solution and prevented pore formation in synthetic lipid systems. Epithelial cell studies showed that G4W CL failed to activate the danger response pathway, a hallmark of the pathogenic effect of CL. These results indicate that CL polymerization in solution is a necessary step for the damage of cellular membranes. Analysis of CL pores by atomic force microscopy revealed co-existence of simple depressions and more complex pores, which are likely formed by CL assembled in an alternate oligomer orientation. We propose that this structural rearrangement represents a maturation mechanism that stabilizes pore formation to achieve more robust cellular damage. To summarize, CL uses a previously unknown mechanism to damage membranes, whereby pre-assembly of CL loops in solution leads to formation of membrane pores. Our investigation not only unravels a new paradigm for the formation of membrane pores, but additionally identifies CL polymerization as a novel therapeutic target to treat candidiasis.
Collapse
Affiliation(s)
- Charles M Russell
- Department of Biochemistry & Cellular and Molecular Biology, University of TennesseeKnoxvilleUnited States
| | - Katherine G Schaefer
- Department of Physics and Astronomy, University of MissouriColumbiaUnited States
| | - Andrew Dixson
- Department of Biochemistry & Cellular and Molecular Biology, University of TennesseeKnoxvilleUnited States
| | - Amber LH Gray
- Department of Chemistry, University of TennesseeKnoxvilleUnited States
| | - Robert J Pyron
- Department of Biochemistry & Cellular and Molecular Biology, University of TennesseeKnoxvilleUnited States
| | - Daiane S Alves
- Department of Biochemistry & Cellular and Molecular Biology, University of TennesseeKnoxvilleUnited States
| | - Nicholas Moore
- Department of Biochemistry & Cellular and Molecular Biology, University of TennesseeKnoxvilleUnited States
| | - Elizabeth A Conley
- Department of Physics and Astronomy, University of MissouriColumbiaUnited States
| | - Ryan J Schuck
- Department of Biochemistry & Cellular and Molecular Biology, University of TennesseeKnoxvilleUnited States
| | - Tommi A White
- Department of Biochemistry, University of MissouriColumbiaUnited States
- Electron Microscopy Core, University of MissouriColumbiaUnited States
| | - Thanh D Do
- Department of Chemistry, University of TennesseeKnoxvilleUnited States
| | - Gavin M King
- Department of Physics and Astronomy, University of MissouriColumbiaUnited States
- Department of Biochemistry, University of MissouriColumbiaUnited States
| | - Francisco N Barrera
- Department of Biochemistry & Cellular and Molecular Biology, University of TennesseeKnoxvilleUnited States
| |
Collapse
|
14
|
Qing R, Hao S, Smorodina E, Jin D, Zalevsky A, Zhang S. Protein Design: From the Aspect of Water Solubility and Stability. Chem Rev 2022; 122:14085-14179. [PMID: 35921495 PMCID: PMC9523718 DOI: 10.1021/acs.chemrev.1c00757] [Citation(s) in RCA: 89] [Impact Index Per Article: 29.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Indexed: 12/13/2022]
Abstract
Water solubility and structural stability are key merits for proteins defined by the primary sequence and 3D-conformation. Their manipulation represents important aspects of the protein design field that relies on the accurate placement of amino acids and molecular interactions, guided by underlying physiochemical principles. Emulated designer proteins with well-defined properties both fuel the knowledge-base for more precise computational design models and are used in various biomedical and nanotechnological applications. The continuous developments in protein science, increasing computing power, new algorithms, and characterization techniques provide sophisticated toolkits for solubility design beyond guess work. In this review, we summarize recent advances in the protein design field with respect to water solubility and structural stability. After introducing fundamental design rules, we discuss the transmembrane protein solubilization and de novo transmembrane protein design. Traditional strategies to enhance protein solubility and structural stability are introduced. The designs of stable protein complexes and high-order assemblies are covered. Computational methodologies behind these endeavors, including structure prediction programs, machine learning algorithms, and specialty software dedicated to the evaluation of protein solubility and aggregation, are discussed. The findings and opportunities for Cryo-EM are presented. This review provides an overview of significant progress and prospects in accurate protein design for solubility and stability.
Collapse
Affiliation(s)
- Rui Qing
- State
Key Laboratory of Microbial Metabolism, School of Life Sciences and
Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
- Media
Lab, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
- The
David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Shilei Hao
- Media
Lab, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
- Key
Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400030, China
| | - Eva Smorodina
- Department
of Immunology, University of Oslo and Oslo
University Hospital, Oslo 0424, Norway
| | - David Jin
- Avalon GloboCare
Corp., Freehold, New Jersey 07728, United States
| | - Arthur Zalevsky
- Laboratory
of Bioinformatics Approaches in Combinatorial Chemistry and Biology, Shemyakin−Ovchinnikov Institute of Bioorganic
Chemistry RAS, Moscow 117997, Russia
| | - Shuguang Zhang
- Media
Lab, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
15
|
Rhys GG, Cross JA, Dawson WM, Thompson HF, Shanmugaratnam S, Savery NJ, Dodding MP, Höcker B, Woolfson DN. De novo designed peptides for cellular delivery and subcellular localisation. Nat Chem Biol 2022; 18:999-1004. [PMID: 35836017 DOI: 10.1038/s41589-022-01076-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 06/03/2022] [Indexed: 12/14/2022]
Abstract
Increasingly, it is possible to design peptide and protein assemblies de novo from first principles or computationally. This approach provides new routes to functional synthetic polypeptides, including designs to target and bind proteins of interest. Much of this work has been developed in vitro. Therefore, a challenge is to deliver de novo polypeptides efficiently to sites of action within cells. Here we describe the design, characterisation, intracellular delivery, and subcellular localisation of a de novo synthetic peptide system. This system comprises a dual-function basic peptide, programmed both for cell penetration and target binding, and a complementary acidic peptide that can be fused to proteins of interest and introduced into cells using synthetic DNA. The designs are characterised in vitro using biophysical methods and X-ray crystallography. The utility of the system for delivery into mammalian cells and subcellular targeting is demonstrated by marking organelles and actively engaging functional protein complexes.
Collapse
Affiliation(s)
- Guto G Rhys
- Department of Biochemistry, University of Bayreuth, Bayreuth, Germany
| | - Jessica A Cross
- School of Chemistry, University of Bristol, Bristol, UK.,School of Biochemistry, University of Bristol, Bristol, UK
| | | | - Harry F Thompson
- School of Chemistry, University of Bristol, Bristol, UK.,School of Biochemistry, University of Bristol, Bristol, UK
| | | | - Nigel J Savery
- School of Biochemistry, University of Bristol, Bristol, UK.,BrisSynBio, University of Bristol, Bristol, UK
| | - Mark P Dodding
- School of Biochemistry, University of Bristol, Bristol, UK
| | - Birte Höcker
- Department of Biochemistry, University of Bayreuth, Bayreuth, Germany.
| | - Derek N Woolfson
- School of Chemistry, University of Bristol, Bristol, UK. .,School of Biochemistry, University of Bristol, Bristol, UK. .,BrisSynBio, University of Bristol, Bristol, UK.
| |
Collapse
|
16
|
Lang EJM, Baker EG, Woolfson DN, Mulholland AJ. Generalized Born Implicit Solvent Models Do Not Reproduce Secondary Structures of De Novo Designed Glu/Lys Peptides. J Chem Theory Comput 2022; 18:4070-4076. [PMID: 35687842 PMCID: PMC9281390 DOI: 10.1021/acs.jctc.1c01172] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
We test a range of
standard generalized Born (GB) models and protein
force fields for a set of five experimentally characterized, designed
peptides comprising alternating blocks of glutamate and lysine, which
have been shown to differ significantly in α-helical content.
Sixty-five combinations of force fields and GB models are evaluated
in >800 μs of molecular dynamics simulations. GB models generally
do not reproduce the experimentally observed α-helical content,
and none perform well for all five peptides. These results illustrate
that these models are not usefully predictive in this context. These
peptides provide a useful test set for simulation methods.
Collapse
Affiliation(s)
- Eric J M Lang
- Centre for Computational Chemistry, School of Chemistry, University of Bristol, Cantock's Close, Bristol BS8 1TS, U.K.,School of Chemistry, University of Bristol, Cantock's Close, Bristol BS8 1TS, U.K.,BrisSynBio, University of Bristol, Life Sciences Building, Tyndall Avenue, Bristol BS8 1TQ, U.K
| | - Emily G Baker
- School of Chemistry, University of Bristol, Cantock's Close, Bristol BS8 1TS, U.K.,BrisSynBio, University of Bristol, Life Sciences Building, Tyndall Avenue, Bristol BS8 1TQ, U.K
| | - Derek N Woolfson
- School of Chemistry, University of Bristol, Cantock's Close, Bristol BS8 1TS, U.K.,BrisSynBio, University of Bristol, Life Sciences Building, Tyndall Avenue, Bristol BS8 1TQ, U.K.,School of Biochemistry, University of Bristol, Medical Sciences Building, University Walk, Bristol BS8 1TD, U.K
| | - Adrian J Mulholland
- Centre for Computational Chemistry, School of Chemistry, University of Bristol, Cantock's Close, Bristol BS8 1TS, U.K.,School of Chemistry, University of Bristol, Cantock's Close, Bristol BS8 1TS, U.K
| |
Collapse
|
17
|
Miller JG, Hughes SA, Modlin C, Conticello VP. Structures of synthetic helical filaments and tubes based on peptide and peptido-mimetic polymers. Q Rev Biophys 2022; 55:1-103. [PMID: 35307042 DOI: 10.1017/s0033583522000014] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
AbstractSynthetic peptide and peptido-mimetic filaments and tubes represent a diverse class of nanomaterials with a broad range of potential applications, such as drug delivery, vaccine development, synthetic catalyst design, encapsulation, and energy transduction. The structures of these filaments comprise supramolecular polymers based on helical arrangements of subunits that can be derived from self-assembly of monomers based on diverse structural motifs. In recent years, structural analyses of these materials at near-atomic resolution (NAR) have yielded critical insights into the relationship between sequence, local conformation, and higher-order structure and morphology. This structural information offers the opportunity for development of new tools to facilitate the predictable and reproduciblede novodesign of synthetic helical filaments. However, these studies have also revealed several significant impediments to the latter process – most notably, the common occurrence of structural polymorphism due to the lability of helical symmetry in structural space. This article summarizes the current state of knowledge on the structures of designed peptide and peptido-mimetic filamentous assemblies, with a focus on structures that have been solved to NAR for which reliable atomic models are available.
Collapse
Affiliation(s)
- Jessalyn G Miller
- Department of Chemistry, Emory University, 1515 Dickey Drive, Atlanta, GA30322
| | - Spencer A Hughes
- Department of Chemistry, Emory University, 1515 Dickey Drive, Atlanta, GA30322
| | - Charles Modlin
- Department of Chemistry, Emory University, 1515 Dickey Drive, Atlanta, GA30322
| | | |
Collapse
|
18
|
Villegas JA, Sinha NJ, Teramoto N, Von Bargen CD, Pochan DJ, Saven JG. Computational Design of Single-Peptide Nanocages with Nanoparticle Templating. Molecules 2022; 27:1237. [PMID: 35209027 PMCID: PMC8874777 DOI: 10.3390/molecules27041237] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 02/01/2022] [Accepted: 02/08/2022] [Indexed: 01/25/2023] Open
Abstract
Protein complexes perform a diversity of functions in natural biological systems. While computational protein design has enabled the development of symmetric protein complexes with spherical shapes and hollow interiors, the individual subunits often comprise large proteins. Peptides have also been applied to self-assembly, and it is of interest to explore such short sequences as building blocks of large, designed complexes. Coiled-coil peptides are promising subunits as they have a symmetric structure that can undergo further assembly. Here, an α-helical 29-residue peptide that forms a tetrameric coiled coil was computationally designed to assemble into a spherical cage that is approximately 9 nm in diameter and presents an interior cavity. The assembly comprises 48 copies of the designed peptide sequence. The design strategy allowed breaking the side chain conformational symmetry within the peptide dimer that formed the building block (asymmetric unit) of the cage. Dynamic light scattering (DLS) and transmission electron microscopy (TEM) techniques showed that one of the seven designed peptide candidates assembled into individual nanocages of the size and shape. The stability of assembled nanocages was found to be sensitive to the assembly pathway and final solution conditions (pH and ionic strength). The nanocages templated the growth of size-specific Au nanoparticles. The computational design serves to illustrate the possibility of designing target assemblies with pre-determined specific dimensions using short, modular coiled-coil forming peptide sequences.
Collapse
Affiliation(s)
- José A. Villegas
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104, USA; (J.A.V.); (C.D.V.B.)
| | - Nairiti J. Sinha
- Department of Materials Science and Engineering, University of Delaware, Newark, DE 19716, USA; (N.J.S.); (N.T.)
| | - Naozumi Teramoto
- Department of Materials Science and Engineering, University of Delaware, Newark, DE 19716, USA; (N.J.S.); (N.T.)
| | - Christopher D. Von Bargen
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104, USA; (J.A.V.); (C.D.V.B.)
| | - Darrin J. Pochan
- Department of Materials Science and Engineering, University of Delaware, Newark, DE 19716, USA; (N.J.S.); (N.T.)
| | - Jeffery G. Saven
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104, USA; (J.A.V.); (C.D.V.B.)
| |
Collapse
|
19
|
Kumar P, Woolfson DN. Socket2: A Program for Locating, Visualising, and Analysing Coiled-coil Interfaces in Protein Structures. Bioinformatics 2021; 37:4575-4577. [PMID: 34498035 PMCID: PMC8652024 DOI: 10.1093/bioinformatics/btab631] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 06/14/2021] [Accepted: 08/24/2021] [Indexed: 12/03/2022] Open
Abstract
Motivation Protein–protein interactions are central to all biological processes. One frequently observed mode of such interactions is the α-helical coiled coil (CC). Thus, an ability to extract, visualize and analyze CC interfaces quickly and without expert guidance would facilitate a wide range of biological research. In 2001, we reported Socket, which locates and characterizes CCs in protein structures based on the knobs-into-holes (KIH) packing between helices in CCs. Since then, studies of natural and de novo designed CCs have boomed, and the number of CCs in the RCSB PDB has increased rapidly. Therefore, we have updated Socket and made it accessible to expert and nonexpert users alike. Results The original Socket only classified CCs with up to six helices. Here, we report Socket2, which rectifies this oversight to identify CCs with any number of helices, and KIH interfaces with any of the 20 proteinogenic residues or incorporating nonnatural amino acids. In addition, we have developed a new and easy-to-use web server with additional features. These include the use of NGL Viewer for instantly visualizing CCs, and tabs for viewing the sequence repeats, helix-packing angles and core-packing geometries of CCs identified and calculated by Socket2. Availability and implementation Socket2 has been tested on all modern browsers. It can be accessed freely at http://coiledcoils.chm.bris.ac.uk/socket2/home.html. The source code is distributed using an MIT licence and available to download under the Downloads tab of the Socket2 home page.
Collapse
Affiliation(s)
- Prasun Kumar
- School of Chemistry, University of Bristol, Cantock's Close, Bristol BS8 1TS, United Kingdom
| | - Derek N Woolfson
- School of Chemistry, University of Bristol, Cantock's Close, Bristol BS8 1TS, United Kingdom.,School of Biochemistry, University of Bristol, Medical Sciences Building, University Walk, Bristol, United Kingdom BS8 1TD.,Bristol BioDesign Institute, University of Bristol, Life Sciences Building, Tyndall Avenue, Bristol, BS8, United Kingdom 1TQ
| |
Collapse
|
20
|
Woolfson DN. A Brief History of De Novo Protein Design: Minimal, Rational, and Computational. J Mol Biol 2021; 433:167160. [PMID: 34298061 DOI: 10.1016/j.jmb.2021.167160] [Citation(s) in RCA: 82] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 07/07/2021] [Accepted: 07/12/2021] [Indexed: 12/26/2022]
Abstract
Protein design has come of age, but how will it mature? In the 1980s and the 1990s, the primary motivation for de novo protein design was to test our understanding of the informational aspect of the protein-folding problem; i.e., how does protein sequence determine protein structure and function? This necessitated minimal and rational design approaches whereby the placement of each residue in a design was reasoned using chemical principles and/or biochemical knowledge. At that time, though with some notable exceptions, the use of computers to aid design was not widespread. Over the past two decades, the tables have turned and computational protein design is firmly established. Here, I illustrate this progress through a timeline of de novo protein structures that have been solved to atomic resolution and deposited in the Protein Data Bank. From this, it is clear that the impact of rational and computational design has been considerable: More-complex and more-sophisticated designs are being targeted with many being resolved to atomic resolution. Furthermore, our ability to generate and manipulate synthetic proteins has advanced to a point where they are providing realistic alternatives to natural protein functions for applications both in vitro and in cells. Also, and increasingly, computational protein design is becoming accessible to non-specialists. This all begs the questions: Is there still a place for minimal and rational design approaches? And, what challenges lie ahead for the burgeoning field of de novo protein design as a whole?
Collapse
Affiliation(s)
- Derek N Woolfson
- School of Chemistry, University of Bristol, Cantock's Close, Bristol BS8 1TS, UK; School of Biochemistry, University of Bristol, Biomedical Sciences Building, University Walk, Bristol BS8 1TD, UK; Bristol BioDesign Institute, University of Bristol, Life Sciences Building, Tyndall Avenue, Bristol BS8 1TQ, UK.
| |
Collapse
|
21
|
Warren JP, Miles DE, Kapur N, Wilcox RK, Beales PA. Hydrodynamic Mixing Tunes the Stiffness of Proteoglycan-Mimicking Physical Hydrogels. Adv Healthc Mater 2021; 10:e2001998. [PMID: 33943034 PMCID: PMC11468938 DOI: 10.1002/adhm.202001998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 02/23/2021] [Indexed: 11/09/2022]
Abstract
Self-assembling hydrogels are promising materials for regenerative medicine and tissue engineering. However, designing hydrogels that replicate the 3-4 order of magnitude variation in soft tissue mechanics remains a major challenge. Here hybrid hydrogels are investigated formed from short self-assembling β-fibril peptides, and the glycosaminoglycan chondroitin sulfate (CS), chosen to replicate physical aspects of proteoglycans, specifically natural aggrecan, which provides structural mechanics to soft tissues. Varying the peptide:CS compositional ratio (1:2, 1:10, or 1:20) can tune the mechanics of the gel by one to two orders of magnitude. In addition, it is demonstrated that at any fixed composition, the gel shear modulus can be tuned over approximately two orders of magnitude through varying the initial vortex mixing time. This tuneability arises due to changes in the mesoscale structure of the gel network (fibril width, length, and connectivity), giving rise to both shear-thickening and shear-thinning behavior. The resulting hydrogels range in shear elastic moduli from 0.14 to 220 kPa, mimicking the mechanical variability in a range of soft tissues. The high degree of discrete tuneability of composition and mechanics in these hydrogels makes them particularly promising for matching the chemical and mechanical requirements of different applications in tissue engineering and regenerative medicine.
Collapse
Affiliation(s)
- James P. Warren
- School of ChemistryUniversity of LeedsLeedsLS2 9JTUK
- School of Mechanical EngineeringUniversity of LeedsLeedsLS2 9JTUK
- Institute of Medical and Biological EngineeringUniversity of LeedsLeedsLS2 9JTUK
| | - Danielle E. Miles
- School of ChemistryUniversity of LeedsLeedsLS2 9JTUK
- School of Mechanical EngineeringUniversity of LeedsLeedsLS2 9JTUK
- Institute of Medical and Biological EngineeringUniversity of LeedsLeedsLS2 9JTUK
| | - Nikil Kapur
- School of Mechanical EngineeringUniversity of LeedsLeedsLS2 9JTUK
| | - Ruth K. Wilcox
- School of Mechanical EngineeringUniversity of LeedsLeedsLS2 9JTUK
- Institute of Medical and Biological EngineeringUniversity of LeedsLeedsLS2 9JTUK
| | - Paul A. Beales
- School of ChemistryUniversity of LeedsLeedsLS2 9JTUK
- Astbury Centre for Structural BiologyUniversity of LeedsLeedsLS2 9JTUK
- Bragg Centre for Materials ResearchUniversity of LeedsLeedsLS2 9JTUK
| |
Collapse
|
22
|
Dawson WM, Martin FJO, Rhys GG, Shelley KL, Brady RL, Woolfson DN. Coiled coils 9-to-5: rational de novo design of α-helical barrels with tunable oligomeric states. Chem Sci 2021; 12:6923-6928. [PMID: 34745518 PMCID: PMC8503928 DOI: 10.1039/d1sc00460c] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 04/13/2021] [Indexed: 01/10/2023] Open
Abstract
The rational design of linear peptides that assemble controllably and predictably in water is challenging. Short sequences must encode unique target structures and avoid alternative states. However, the non-covalent forces that stabilize and discriminate between states are weak. Nonetheless, for α-helical coiled-coil assemblies considerable progress has been made in rational de novo design. In these, sequence repeats of nominally hydrophobic (h) and polar (p) residues, hpphppp, direct the assembly of amphipathic helices into dimeric to tetrameric bundles. Expanding this pattern to hpphhph can produce larger α-helical barrels. Here, we show that pentameric to nonameric barrels are accessed by varying the residue at one of the h sites. In peptides with four L/I-K-E-I-A-x-Z repeats, decreasing the size of Z from threonine to serine to alanine to glycine gives progressively larger oligomers. X-ray crystal structures of the resulting α-helical barrels rationalize this: side chains at Z point directly into the helical interfaces, and smaller residues allow closer helix contacts and larger assemblies.
Collapse
Affiliation(s)
- William M Dawson
- School of Chemistry, University of Bristol Cantock's Close Bristol BS8 1TS UK
| | - Freddie J O Martin
- School of Chemistry, University of Bristol Cantock's Close Bristol BS8 1TS UK
| | - Guto G Rhys
- School of Chemistry, University of Bristol Cantock's Close Bristol BS8 1TS UK
- Department of Chemistry, University of Bayreuth, Universitätsstraße 30 95447 Bayreuth Germany
| | - Kathryn L Shelley
- School of Chemistry, University of Bristol Cantock's Close Bristol BS8 1TS UK
- School of Biochemistry, University of Bristol Biomedical Sciences Building, University Walk Bristol BS8 1TD UK
| | - R Leo Brady
- School of Biochemistry, University of Bristol Biomedical Sciences Building, University Walk Bristol BS8 1TD UK
| | - Derek N Woolfson
- School of Chemistry, University of Bristol Cantock's Close Bristol BS8 1TS UK
- School of Biochemistry, University of Bristol Biomedical Sciences Building, University Walk Bristol BS8 1TD UK
- Bristol BioDesign Institute, University of Bristol Life Sciences Building, Tyndall Avenue Bristol BS8 1TQ UK
| |
Collapse
|
23
|
Wang TT, Xia YY, Gao JQ, Xu DH, Han M. Recent Progress in the Design and Medical Application of In Situ Self-Assembled Polypeptide Materials. Pharmaceutics 2021; 13:753. [PMID: 34069645 PMCID: PMC8160760 DOI: 10.3390/pharmaceutics13050753] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 05/05/2021] [Accepted: 05/11/2021] [Indexed: 12/20/2022] Open
Abstract
Inspired by molecular self-assembly, which is ubiquitous in natural environments and biological systems, self-assembled peptides have become a research hotspot in the biomedical field due to their inherent biocompatibility and biodegradability, properties that are afforded by the amide linkages forming the peptide backbone. This review summarizes the biological advantages, principles, and design strategies of self-assembled polypeptide systems. We then focus on the latest advances in in situ self-assembly of polypeptides in medical applications, such as oncotherapy, materials science, regenerative medicine, and drug delivery, and then briefly discuss their potential challenges in clinical treatment.
Collapse
Affiliation(s)
- Tian-Tian Wang
- Department of Pharmacy, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310058, China;
| | - Yi-Yi Xia
- Institution of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China; (Y.-Y.X.); (J.-Q.G.)
| | - Jian-Qing Gao
- Institution of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China; (Y.-Y.X.); (J.-Q.G.)
| | - Dong-Hang Xu
- Department of Pharmacy, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310058, China;
| | - Min Han
- Institution of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China; (Y.-Y.X.); (J.-Q.G.)
| |
Collapse
|
24
|
Constructing ion channels from water-soluble α-helical barrels. Nat Chem 2021; 13:643-650. [PMID: 33972753 PMCID: PMC7611114 DOI: 10.1038/s41557-021-00688-0] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 03/05/2021] [Indexed: 12/21/2022]
Abstract
The design of peptides that assemble in membranes to form functional ion channels is challenging. Specifically, hydrophobic interactions must be designed between the peptides and at the peptide-lipid interfaces simultaneously. Here, we take a multi-step approach towards this problem. First, we use rational de novo design to generate water-soluble α-helical barrels with polar interiors, and confirm their structures using high-resolution X-ray crystallography. These α-helical barrels have water-filled lumens like those of transmembrane channels. Then, we modify the sequences to facilitate their insertion into lipid bilayers. Single-channel electrical recordings and fluorescent imaging of the peptides in membranes show monodisperse, cation-selective channels of unitary conductance. Surprisingly, however, an X-ray structure solved from lipidic cubic phase for one peptide reveals an alternative state with tightly packed helices and a constricted channel. To reconcile these observations, we perform computational analyses to compare the properties of possible different states of the peptide.
Collapse
|
25
|
ElGamacy M, Hernandez Alvarez B. Expanding the versatility of natural and de novo designed coiled coils and helical bundles. Curr Opin Struct Biol 2021; 68:224-234. [PMID: 33964630 DOI: 10.1016/j.sbi.2021.03.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 03/23/2021] [Accepted: 03/23/2021] [Indexed: 10/21/2022]
Abstract
Natural helical bundles (HBs) constitute a ubiquitous class of protein folds built of two or more longitudinally arranged α-helices. They adopt topologies that include symmetric, highly regular assemblies all the way to asymmetric, loosely packed domains. The diverse functional spectrum of HBs ranges from structural scaffolds to complex and dynamic effectors as molecular motors, signaling and sensing molecules, enzymes, and molecular switches. Symmetric HBs, particularly coiled coils, offer simple model systems providing an ideal entry point for protein folding and design studies. Herein, we review recent progress unveiling new structural features and functional mechanisms in natural HBs and cover staggering advances in the de novo design of HBs, giving rise to exotic structures and the creation of novel functions.
Collapse
Affiliation(s)
- Mohammad ElGamacy
- Systems Biology of Development Group, Friedrich Miescher Laboratory of the Max Planck Society, Max-Planck-Ring 9, Tübingen, 72076, Germany; Division of Translational Oncology, Department of Hematology, Oncology, Clinical Immunology and Rheumatology, University Hospital Tübingen, Otfried-Müller-Strasse 10, Tübingen, 72076, Germany; Department of Protein Evolution, Max Planck Institute for Developmental Biology, Max-Planck-Ring 5, Tübingen, 72076, Germany
| | - Birte Hernandez Alvarez
- Department of Protein Evolution, Max Planck Institute for Developmental Biology, Max-Planck-Ring 5, Tübingen, 72076, Germany.
| |
Collapse
|
26
|
Walker DR, Alizadehmojarad AA, Kolomeisky AB, Hartgerink JD. Charge-Free, Stabilizing Amide-π Interactions Can Be Used to Control Collagen Triple-Helix Self-Assembly. Biomacromolecules 2021; 22:2137-2147. [PMID: 33881314 DOI: 10.1021/acs.biomac.1c00234] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
There is a noted lack of understood, controllable interactions for directing the organization of collagen triple helices. While the field has had success using charge-pair interactions and cation-π interactions in helix design, these alone are not adequate for achieving the degree of specificity desirable for these supramolecular structures. Furthermore, because of the reliance on electrostatic interactions, designed heterotrimeric systems have been heavily charged, a property undesirable in some applications. Amide-π interactions are a comparatively understudied class of charge-free interactions, which could potentially be harnessed for triple-helix design. Herein, we propose, validate, and utilize pairwise amino acid amide-π interactions in collagen triple-helix design. Glutamine-phenylalanine pairs, when arranged in an axial geometry, are found to exhibit a moderately stabilizing effect, while in the lateral geometry, this pair is destabilizing. Together this allows glutamine-phenylalanine pairs to effectively set the register of triple helices. In contrast, interactions between asparagine and phenylalanine appear to have little effect on triple-helical stability. After deconvoluting the contributions of these amino acids to triple-helix stability, we demonstrate these new glutamine-phenylalanine interactions in the successful design of a heterotrimeric triple helix. The results of all of these analyses are used to update our collagen triple-helix thermal stability prediction algorithm, Scoring function for Collagen Emulating Peptides' Temperature of Transition (SCEPTTr).
Collapse
|
27
|
Rhys GG, Dawson WM, Beesley JL, Martin FJO, Brady RL, Thomson AR, Woolfson DN. How Coiled-Coil Assemblies Accommodate Multiple Aromatic Residues. Biomacromolecules 2021; 22:2010-2019. [PMID: 33881308 DOI: 10.1021/acs.biomac.1c00131] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Rational protein design requires understanding the contribution of each amino acid to a targeted protein fold. For a subset of protein structures, namely, α-helical coiled coils (CCs), knowledge is sufficiently advanced to allow the rational de novo design of many structures, including entirely new protein folds. Current CC design rules center on using aliphatic hydrophobic residues predominantly to drive the folding and assembly of amphipathic α helices. The consequences of using aromatic residues-which would be useful for introducing structural probes, and binding and catalytic functionalities-into these interfaces are not understood. There are specific examples of designed CCs containing such aromatic residues, e.g., phenylalanine-rich sequences, and the use of polar aromatic residues to make buried hydrogen-bond networks. However, it is not known generally if sequences rich in tyrosine can form CCs, or what CC assemblies these would lead to. Here, we explore tyrosine-rich sequences in a general CC-forming background and resolve new CC structures. In one of these, an antiparallel tetramer, the tyrosine residues are solvent accessible and pack at the interface between the core and the surface. In another more complex structure, the residues are buried and form an extended hydrogen-bond network.
Collapse
Affiliation(s)
- Guto G Rhys
- School of Chemistry, University of Bristol, Cantock's Close, Bristol BS8 1TS, United Kingdom.,Department of Biochemistry, University of Bayreuth, Universitätsstraße 30, 95447 Bayreuth, Germany
| | - William M Dawson
- School of Chemistry, University of Bristol, Cantock's Close, Bristol BS8 1TS, United Kingdom
| | - Joseph L Beesley
- School of Chemistry, University of Bristol, Cantock's Close, Bristol BS8 1TS, United Kingdom
| | - Freddie J O Martin
- School of Chemistry, University of Bristol, Cantock's Close, Bristol BS8 1TS, United Kingdom
| | - R Leo Brady
- School of Biochemistry, University of Bristol, Medical Sciences Building, University Walk, Bristol BS8 1TD, United Kingdom
| | - Andrew R Thomson
- School of Chemistry, University of Bristol, Cantock's Close, Bristol BS8 1TS, United Kingdom.,School of Chemistry, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| | - Derek N Woolfson
- School of Chemistry, University of Bristol, Cantock's Close, Bristol BS8 1TS, United Kingdom.,School of Biochemistry, University of Bristol, Medical Sciences Building, University Walk, Bristol BS8 1TD, United Kingdom.,Bristol BioDesign Institute, University of Bristol, Life Sciences Building, Tyndall Avenue, Bristol BS8 1TQ, United Kingdom
| |
Collapse
|
28
|
Szczepaniak K, Bukala A, da Silva Neto AM, Ludwiczak J, Dunin-Horkawicz S. A library of coiled-coil domains: from regular bundles to peculiar twists. Bioinformatics 2021; 36:5368-5376. [PMID: 33325494 PMCID: PMC8016460 DOI: 10.1093/bioinformatics/btaa1041] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 10/30/2020] [Accepted: 12/07/2020] [Indexed: 11/30/2022] Open
Abstract
MOTIVATION Coiled coils are widespread protein domains involved in diverse processes ranging from providing structural rigidity to the transduction of conformational changes. They comprise two or more α-helices that are wound around each other to form a regular supercoiled bundle. Owing to this regularity, coiled-coil structures can be described with parametric equations, thus enabling the numerical representation of their properties, such as the degree and handedness of supercoiling, rotational state of the helices, and the offset between them. These descriptors are invaluable in understanding the function of coiled coils and designing new structures of this type. The existing tools for such calculations require manual preparation of input and are therefore not suitable for the high-throughput analyses. RESULTS To address this problem, we developed SamCC-Turbo, a software for fully automated, per-residue measurement of coiled coils. By surveying Protein Data Bank with SamCC-Turbo, we generated a comprehensive atlas of ∼50 000 coiled-coil regions. This machine learning-ready dataset features precise measurements as well as decomposes coiled-coil structures into fragments characterized by various degrees of supercoiling. The potential applications of SamCC-Turbo are exemplified by analyses in which we reveal general structural features of coiled coils involved in functions requiring conformational plasticity. Finally, we discuss further directions in the prediction and modeling of coiled coils. AVAILABILITY AND IMPLEMENTATION SamCC-Turbo is available as a web server (https://lbs.cent.uw.edu.pl/samcc_turbo) and as a Python library (https://github.com/labstructbioinf/samcc_turbo), whereas the results of the Protein Data Bank scan can be browsed and downloaded at https://lbs.cent.uw.edu.pl/ccdb. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Krzysztof Szczepaniak
- Laboratory of Structural Bioinformatics, Centre of New Technologies, University of Warsaw, 02-097 Warsaw, Poland
| | - Adriana Bukala
- Laboratory of Structural Bioinformatics, Centre of New Technologies, University of Warsaw, 02-097 Warsaw, Poland
| | - Antonio Marinho da Silva Neto
- Molecular Prospecting and Bioinformatics Group, Laboratory of Immunopathology Keizo Asami, Federal University of Pernambuco, 50670-901 Recife, Brazil
| | - Jan Ludwiczak
- Laboratory of Structural Bioinformatics, Centre of New Technologies, University of Warsaw, 02-097 Warsaw, Poland
- Laboratory of Bioinformatics, Nencki Institute of Experimental Biology, 02-093 Warsaw, Poland
| | - Stanislaw Dunin-Horkawicz
- Laboratory of Structural Bioinformatics, Centre of New Technologies, University of Warsaw, 02-097 Warsaw, Poland
| |
Collapse
|
29
|
Structural resolution of switchable states of a de novo peptide assembly. Nat Commun 2021; 12:1530. [PMID: 33750792 PMCID: PMC7943578 DOI: 10.1038/s41467-021-21851-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 02/12/2021] [Indexed: 12/18/2022] Open
Abstract
De novo protein design is advancing rapidly. However, most designs are for single states. Here we report a de novo designed peptide that forms multiple α-helical-bundle states that are accessible and interconvertible under the same conditions. Usually in such designs amphipathic α helices associate to form compact structures with consolidated hydrophobic cores. However, recent rational and computational designs have delivered open α-helical barrels with functionalisable cavities. By placing glycine judiciously in the helical interfaces of an α-helical barrel, we obtain both open and compact states in a single protein crystal. Molecular dynamics simulations indicate a free-energy landscape with multiple and interconverting states. Together, these findings suggest a frustrated system in which steric interactions that maintain the open barrel and the hydrophobic effect that drives complete collapse are traded-off. Indeed, addition of a hydrophobic co-solvent that can bind within the barrel affects the switch between the states both in silico and experimentally. So far most of the de novo designed proteins are for single states only. Here, the authors present the de novo design and crystal structure determination of a coiled-coil peptide that assembles into multiple, distinct conformational states under the same conditions and further characterise its properties with biophysical experiments, NMR and MD simulations.
Collapse
|
30
|
Utterström J, Naeimipour S, Selegård R, Aili D. Coiled coil-based therapeutics and drug delivery systems. Adv Drug Deliv Rev 2021; 170:26-43. [PMID: 33378707 DOI: 10.1016/j.addr.2020.12.012] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 12/18/2020] [Accepted: 12/20/2020] [Indexed: 12/20/2022]
Abstract
Coiled coils are characterized by an arrangement of two or more α-helices into a superhelix and one of few protein motifs where the sequence-to-structure relationship to a large extent have been decoded and understood. The abundance of both natural and de novo designed coil coils provides a rich molecular toolbox for self-assembly of elaborate bespoke molecular architectures, nanostructures, and materials. Leveraging on the numerous possibilities to tune both affinities and preferences for polypeptide oligomerization, coiled coils offer unique possibilities to design modular and dynamic assemblies that can respond in a predictable manner to biomolecular interactions and subtle physicochemical cues. In this review, strategies to use coiled coils in design of novel therapeutics and advanced drug delivery systems are discussed. The applications of coiled coils for generating drug carriers and vaccines, and various aspects of using coiled coils for controlling and triggering drug release, and for improving drug targeting and drug uptake are described. The plethora of innovative coiled coil-based molecular systems provide new knowledge and techniques for improving efficacy of existing drugs and can facilitate development of novel therapeutic strategies.
Collapse
|
31
|
Orientational Ambiguity in Septin Coiled Coils and its Structural Basis. J Mol Biol 2021; 433:166889. [PMID: 33639214 DOI: 10.1016/j.jmb.2021.166889] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Revised: 01/25/2021] [Accepted: 02/17/2021] [Indexed: 12/21/2022]
Abstract
Septins are an example of subtle molecular recognition whereby different paralogues must correctly assemble into functional filaments important for essential cellular events such as cytokinesis. Most possess C-terminal domains capable of forming coiled coils which are believed to be involved in filament formation and bundling. Here, we report an integrated structural approach which aims to unravel their architectural diversity and in so doing provide direct structural information for the coiled-coil regions of five human septins. Unexpectedly, we encounter dimeric structures presenting both parallel and antiparallel arrangements which are in consonance with molecular modelling suggesting that both are energetically accessible. These sequences therefore code for two metastable states of different orientations which employ different but overlapping interfaces. The antiparallel structures present a mixed coiled-coil interface, one side of which is dominated by a continuous chain of core hydrophilic residues. This unusual type of coiled coil could be used to expand the toolkit currently available to the protein engineer for the design of previously unforeseen coiled-coil based assemblies. Within a physiological context, our data provide the first atomic details related to the assumption that the parallel orientation is likely formed between septin monomers from the same filament whilst antiparallelism may participate in the widely described interfilament cross bridges necessary for higher order structures and thereby septin function.
Collapse
|
32
|
Predicting the stability of homotrimeric and heterotrimeric collagen helices. Nat Chem 2021; 13:260-269. [DOI: 10.1038/s41557-020-00626-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 12/14/2020] [Indexed: 12/12/2022]
|
33
|
Jiang Y, Zhang W, Yang F, Wan C, Cai X, Liu J, Zhang Q, Li Z, Han W. Molecular design of stapled pentapeptides as building blocks of self-assembled coiled coil-like fibers. SCIENCE ADVANCES 2021; 7:eabd0492. [PMID: 33523941 PMCID: PMC10662664 DOI: 10.1126/sciadv.abd0492] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 12/07/2020] [Indexed: 06/12/2023]
Abstract
Peptide self-assembly inspired by natural superhelical coiled coils has been actively pursued but remains challenging due to limited helicity of short peptides. Side chain stapling can strengthen short helices but is unexplored in design of self-assembled helical nanofibers as it is unknown how staples could be adapted to coiled coil architecture. Here, we demonstrate the feasibility of this design for pentapeptides using a computational method capable of predicting helicity and fiber-forming tendency of stapled peptides containing noncoded amino acids. Experiments showed that the best candidates, which carried an aromatically substituted staple and phenylalanine analogs, displayed exceptional helicity and assembled into nanofibers via specific head-to-tail hydrogen bonding and packing between staple and noncoded side chains. The fibers exhibited sheet-of-helix structures resembling the recently found collapsed coiled coils whose formation was sensitive to side chain flexibility. This study expands the chemical space of coiled coil assemblies and provides guidance for their design.
Collapse
Affiliation(s)
- Yixiang Jiang
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Shenzhen Graduate School of Peking University, Shenzhen 518055, China
- Shenzhen Bay Laboratory, Shenzhen 518055, China
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen Key Laboratory of Functional Polymer, Shenzhen 518055, China
| | - Wan Zhang
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Shenzhen Graduate School of Peking University, Shenzhen 518055, China
| | - Fadeng Yang
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Shenzhen Graduate School of Peking University, Shenzhen 518055, China
- Shenzhen Bay Laboratory, Shenzhen 518055, China
| | - Chuan Wan
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Shenzhen Graduate School of Peking University, Shenzhen 518055, China
- Shenzhen Bay Laboratory, Shenzhen 518055, China
| | - Xiang Cai
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Shenzhen Graduate School of Peking University, Shenzhen 518055, China
| | - Jianbo Liu
- Shenzhen Bay Laboratory, Shenzhen 518055, China
| | - Qianling Zhang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen Key Laboratory of Functional Polymer, Shenzhen 518055, China
| | - Zigang Li
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Shenzhen Graduate School of Peking University, Shenzhen 518055, China.
- Shenzhen Bay Laboratory, Shenzhen 518055, China
| | - Wei Han
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Shenzhen Graduate School of Peking University, Shenzhen 518055, China.
| |
Collapse
|
34
|
Pappas CG, Mandal PK, Liu B, Kauffmann B, Miao X, Komáromy D, Hoffmann W, Manz C, Chang R, Liu K, Pagel K, Huc I, Otto S. Emergence of low-symmetry foldamers from single monomers. Nat Chem 2020; 12:1180-1186. [DOI: 10.1038/s41557-020-00565-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 09/21/2020] [Indexed: 12/20/2022]
|
35
|
Abudula T, Bhatt K, Eggermont LJ, O'Hare N, Memic A, Bencherif SA. Supramolecular Self-Assembled Peptide-Based Vaccines: Current State and Future Perspectives. Front Chem 2020; 8:598160. [PMID: 33195107 PMCID: PMC7662149 DOI: 10.3389/fchem.2020.598160] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 10/05/2020] [Indexed: 02/01/2023] Open
Abstract
Despite the undeniable success of vaccination programs in preventing diseases, effective vaccines against several life-threatening infectious pathogens such as human immunodeficiency virus are still unavailable. Vaccines are designed to boost the body's natural ability to protect itself against foreign pathogens. To enhance vaccine-based immunotherapies to combat infections, cancer, and other conditions, biomaterials have been harnessed to improve vaccine safety and efficacy. Recently, peptides engineered to self-assemble into specific nanoarchitectures have shown great potential as advanced biomaterials for vaccine development. These supramolecular nanostructures (i.e., composed of many peptides) can be programmed to organize into various forms, including nanofibers, nanotubes, nanoribbons, and hydrogels. Additionally, they have been designed to be responsive upon exposure to various external stimuli, providing new innovations in the development of smart materials for vaccine delivery and immunostimulation. Specifically, self-assembled peptides can provide cell adhesion sites, epitope recognition, and antigen presentation, depending on their biochemical and structural characteristics. Furthermore, they have been tailored to form exquisite nanostructures that provide improved enzymatic stability and biocompatibility, in addition to the controlled release and targeted delivery of immunomodulatory factors (e.g., adjuvants). In this mini review, we first describe the different types of self-assembled peptides and resulting nanostructures that have recently been investigated. Then, we discuss the recent progress and development trends of self-assembled peptide-based vaccines, their challenges, and clinical translatability, as well as their future perspectives.
Collapse
Affiliation(s)
| | - Khushbu Bhatt
- Department of Pharmaceutical Sciences, Northeastern University, Boston, MA, United States
| | - Loek J Eggermont
- Department of Chemical Engineering, Northeastern University, Boston, MA, United States
| | - Nick O'Hare
- Department of Chemical Engineering, Northeastern University, Boston, MA, United States
| | - Adnan Memic
- Center of Nanotechnology, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Sidi A Bencherif
- Department of Chemical Engineering, Northeastern University, Boston, MA, United States.,Department of Bioengineering, Northeastern University, Boston, MA, United States.,Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, United States.,Sorbonne University, UTC CNRS UMR 7338, Biomechanics and Bioengineering (BMBI), University of Technology of Compiègne, Compiègne, France
| |
Collapse
|
36
|
Abstract
Protein pores play key roles in fundamental biological processes1 and biotechnological applications such as DNA nanopore sequencing2–4, and hence the design of pore-containing proteins is of considerable scientific and biotechnological interest. Synthetic amphiphilic peptides have been found to form ion channels5,6, and there have been recent advances in de novo membrane protein design7,8 and in redesigning naturally occurring channel-containing proteins9,10. However, the de novo design of stable, well-defined transmembrane protein pores capable of conducting ions selectively or large enough to allow passage of small-molecule fluorophores remains an outstanding challenge11,12. Here, we report the computational design of protein pores formed by two concentric rings of ɑ-helices that are stable and mono-disperse in both water-soluble and transmembrane forms. Crystal structures of the water-soluble forms of a 12 helical and a 16 helical pore are close to the computational design models. Patch-clamp electrophysiology experiments show that the transmembrane form of the 12-helix pore expressed in insect cells allows passage of ions across the membrane with high selectivity for potassium over sodium, which is blocked by specific chemical modification at the pore entrance. The transmembrane form of the 16-helix pore, but not the 12-helix pore, allows passage of biotinylated Alexa Fluor 488 when incorporated into liposomes using in vitro protein synthesis. A cryo-EM structure of the 16-helix transmembrane pore closely matches the design model. The ability to produce structurally and functionally well-defined transmembrane pores opens the door to the creation of designer pores for a wide variety of applications.
Collapse
|
37
|
|
38
|
Towards functional de novo designed proteins. Curr Opin Chem Biol 2019; 52:102-111. [DOI: 10.1016/j.cbpa.2019.06.011] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 04/25/2019] [Accepted: 06/06/2019] [Indexed: 12/31/2022]
|
39
|
Smith AJ, Thomas F, Shoemark D, Woolfson DN, Savery NJ. Guiding Biomolecular Interactions in Cells Using de Novo Protein-Protein Interfaces. ACS Synth Biol 2019; 8:1284-1293. [PMID: 31059644 DOI: 10.1021/acssynbio.8b00501] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
An improved ability to direct and control biomolecular interactions in living cells would have an impact on synthetic biology. A key issue is the need to introduce interacting components that act orthogonally to endogenous proteomes and interactomes. Here, we show that low-complexity, de novo designed protein-protein interaction (PPI) domains can substitute for natural PPIs and guide engineered protein-DNA interactions in Escherichia coli. Specifically, we use de novo homo- and heterodimeric coiled coils to reconstitute a cytoplasmic split adenylate cyclase, recruit RNA polymerase to a promoter and activate gene expression, and oligomerize both natural and designed DNA-binding domains to repress transcription. Moreover, the stabilities of the heterodimeric coiled coils can be modulated by rational design and, thus, adjust the levels of gene activation and repression in vivo. These experiments demonstrate the possibilities for using designed proteins and interactions to control biomolecular systems such as enzyme cascades and circuits in cells.
Collapse
Affiliation(s)
- Abigail J. Smith
- School of Biochemistry, University of Bristol, Medical Sciences Building, University Walk, Bristol BS8 1TD, U.K
- BrisSynBio, University of Bristol, Life Sciences Building, Tyndall Avenue, Bristol BS8 1TQ, U.K
| | - Franziska Thomas
- School of Chemistry, University of Bristol, Cantock’s Close, Bristol BS8 1TS, U.K
| | - Deborah Shoemark
- School of Biochemistry, University of Bristol, Medical Sciences Building, University Walk, Bristol BS8 1TD, U.K
- BrisSynBio, University of Bristol, Life Sciences Building, Tyndall Avenue, Bristol BS8 1TQ, U.K
| | - Derek N. Woolfson
- School of Biochemistry, University of Bristol, Medical Sciences Building, University Walk, Bristol BS8 1TD, U.K
- BrisSynBio, University of Bristol, Life Sciences Building, Tyndall Avenue, Bristol BS8 1TQ, U.K
- School of Chemistry, University of Bristol, Cantock’s Close, Bristol BS8 1TS, U.K
| | - Nigel J. Savery
- School of Biochemistry, University of Bristol, Medical Sciences Building, University Walk, Bristol BS8 1TD, U.K
- BrisSynBio, University of Bristol, Life Sciences Building, Tyndall Avenue, Bristol BS8 1TQ, U.K
| |
Collapse
|
40
|
Lai X, Daher H, Galien A, Hugouvieux V, Zubieta C. Structural Basis for Plant MADS Transcription Factor Oligomerization. Comput Struct Biotechnol J 2019; 17:946-953. [PMID: 31360333 PMCID: PMC6639411 DOI: 10.1016/j.csbj.2019.06.014] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 06/06/2019] [Accepted: 06/11/2019] [Indexed: 10/26/2022] Open
Abstract
MADS transcription factors (TFs) are DNA binding proteins found in almost all eukaryotes that play essential roles in diverse biological processes. While present in animals and fungi as a small TF family, the family has dramatically expanded in plants over the course of evolution, with the model flowering plant, Arabidopsis thaliana, possessing over 100 type I and type II MADS TFs. All MADS TFs contain a core and highly conserved DNA binding domain called the MADS or M domain. Plant MADS TFs have diversified this domain with plant-specific auxiliary domains. Plant type I MADS TFs have a highly diverse and largely unstructured Carboxy-terminal (C domain), whereas type II MADS have added oligomerization domains, called Intervening (I domain) and Keratin-like (K domain), in addition to the C domain. In this mini review, we describe the overall structure of the type II "MIKC" type MADS TFs in plants, with a focus on the K domain, a critical oligomerization module. We summarize the determining factors for oligomerization and provide mechanistic insights on how secondary structural elements are required for oligomerization capability and specificity. Using MADS TFs that are involved in flower organ specification as an example, we provide case studies and homology modeling of MADS TFs complex formation. Finally, we highlight outstanding questions in the field.
Collapse
Affiliation(s)
- Xuelei Lai
- Laboratoire de Physiologie Cellulaire et Végétale, CNRS, Univ. Grenoble Alpes, CEA, INRA, IRIG, Grenoble, France
| | - Hussein Daher
- Laboratoire de Physiologie Cellulaire et Végétale, CNRS, Univ. Grenoble Alpes, CEA, INRA, IRIG, Grenoble, France
| | - Antonin Galien
- Laboratoire de Physiologie Cellulaire et Végétale, CNRS, Univ. Grenoble Alpes, CEA, INRA, IRIG, Grenoble, France
| | - Veronique Hugouvieux
- Laboratoire de Physiologie Cellulaire et Végétale, CNRS, Univ. Grenoble Alpes, CEA, INRA, IRIG, Grenoble, France
| | - Chloe Zubieta
- Laboratoire de Physiologie Cellulaire et Végétale, CNRS, Univ. Grenoble Alpes, CEA, INRA, IRIG, Grenoble, France
| |
Collapse
|
41
|
Rhys GG, Wood CW, Beesley JL, Zaccai NR, Burton AJ, Brady RL, Thomson AR, Woolfson DN. Navigating the Structural Landscape of De Novo α-Helical Bundles. J Am Chem Soc 2019; 141:8787-8797. [PMID: 31066556 DOI: 10.1021/jacs.8b13354] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The association of amphipathic α helices in water leads to α-helical-bundle protein structures. However, the driving force for this-the hydrophobic effect-is not specific and does not define the number or the orientation of helices in the associated state. Rather, this is achieved through deeper sequence-to-structure relationships, which are increasingly being discerned. For example, for one structurally extreme but nevertheless ubiquitous class of bundle-the α-helical coiled coils-relationships have been established that discriminate between all-parallel dimers, trimers, and tetramers. Association states above this are known, as are antiparallel and mixed arrangements of the helices. However, these alternative states are less well understood. Here, we describe a synthetic-peptide system that switches between parallel hexamers and various up-down-up-down tetramers in response to single-amino-acid changes and solution conditions. The main accessible states of each peptide variant are characterized fully in solution and, in most cases, to high resolution with X-ray crystal structures. Analysis and inspection of these structures helps rationalize the different states formed. This navigation of the structural landscape of α-helical coiled coils above the dimers and trimers that dominate in nature has allowed us to design rationally a well-defined and hyperstable antiparallel coiled-coil tetramer (apCC-Tet). This robust de novo protein provides another scaffold for further structural and functional designs in protein engineering and synthetic biology.
Collapse
Affiliation(s)
- Guto G Rhys
- School of Chemistry , University of Bristol , Cantock's Close , Bristol BS8 1TS , United Kingdom
| | - Christopher W Wood
- School of Chemistry , University of Bristol , Cantock's Close , Bristol BS8 1TS , United Kingdom
| | - Joseph L Beesley
- School of Chemistry , University of Bristol , Cantock's Close , Bristol BS8 1TS , United Kingdom
| | - Nathan R Zaccai
- School of Biochemistry , University of Bristol , Medical Sciences Building, University Walk , Bristol BS8 1TD , United Kingdom
| | - Antony J Burton
- School of Chemistry , University of Bristol , Cantock's Close , Bristol BS8 1TS , United Kingdom
- Frick Chemistry Laboratory , Princeton University , Princeton , New Jersey 08544 , United States
| | - R Leo Brady
- School of Biochemistry , University of Bristol , Medical Sciences Building, University Walk , Bristol BS8 1TD , United Kingdom
| | - Andrew R Thomson
- School of Chemistry , University of Bristol , Cantock's Close , Bristol BS8 1TS , United Kingdom
- School of Chemistry , University of Glasgow , Glasgow G12 8QQ , United Kingdom
| | - Derek N Woolfson
- School of Chemistry , University of Bristol , Cantock's Close , Bristol BS8 1TS , United Kingdom
- School of Biochemistry , University of Bristol , Medical Sciences Building, University Walk , Bristol BS8 1TD , United Kingdom
- BrisSynBio , University of Bristol , Life Sciences Building, Tyndall Avenue , Bristol BS8 1TQ , United Kingdom
| |
Collapse
|