1
|
Guo X, Bai J, Wang X, Guo S, Shang Z, Shao Z. Evoking the Cancer-immunity cycle by targeting the tumor-specific antigens in Cancer immunotherapy. Int Immunopharmacol 2025; 154:114576. [PMID: 40168803 DOI: 10.1016/j.intimp.2025.114576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2025] [Revised: 03/17/2025] [Accepted: 03/27/2025] [Indexed: 04/03/2025]
Abstract
Cancer-related deaths continue to rise, largely due to the suboptimal efficacy of current treatments. Fortunately, immunotherapy has emerged as a promising alternative, offering new hope for cancer patients. Among various immunotherapy approaches, targeting tumor-specific antigens (TSAs) has gained particular attention due to its demonstrated success in clinical settings. Despite these advancements, there are still gaps in our understanding of TSAs. Therefore, this review explores the life cycle of TSAs in cancer, the methods used to identify them, and recent advances in TSAs-targeted cancer therapies. Enhancing medical professionals' understanding of TSAs will help facilitate the development of more effective TSAs-based cancer treatments.
Collapse
Affiliation(s)
- Xiaomeng Guo
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Junqiang Bai
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Xinmiao Wang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Shutian Guo
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Zhengjun Shang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China; Department of Oral and Maxillofacial-Head and Neck Oncology, School & Hospital of Stomatology, Wuhan University, Wuhan, China.
| | - Zhe Shao
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China; Day Surgery Center, School and Hospital of Stomatology, Wuhan University, Wuhan, China.
| |
Collapse
|
2
|
Modestov A, Buzdin A, Suntsova M. Unveiling RNA Editing by ADAR and APOBEC Protein Gene Families. FRONT BIOSCI-LANDMRK 2025; 30:26298. [PMID: 40302320 DOI: 10.31083/fbl26298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 11/13/2024] [Accepted: 11/20/2024] [Indexed: 05/02/2025]
Abstract
RNA editing is a crucial post-transcriptional modification that alters the transcriptome and proteome and affects many cellular processes, including splicing, microRNA specificity, stability of RNA molecules, and protein structure. Enzymes from the adenosine deaminase acting on RNA (ADAR) and apolipoprotein B mRNA editing catalytic polypeptide-like (APOBEC) protein families mediate RNA editing and can alter a variety of non-coding and coding RNAs, including all regions of mRNA molecules, leading to tumor development and progression. This review provides novel insights into the potential use of RNA editing parameters, such as editing levels, expression of ADAR and APOBEC genes, and specifically edited genes, as biomarkers for cancer progression, distinguishing it from previous studies that focused on isolated aspects of RNA editing mechanisms. The methodological section offers clues to accelerate high-throughput analysis of RNA or DNA sequencing data for the identification of RNA editing events.
Collapse
Affiliation(s)
- Alexander Modestov
- Institute of Personalized Oncology, I.M. Sechenov First Moscow State Medical University, 119991 Moscow, Russia
- Moscow Institute of Physics and Technology, 141701 Dolgoprudny, Moscow, Russia
| | - Anton Buzdin
- Institute of Personalized Oncology, I.M. Sechenov First Moscow State Medical University, 119991 Moscow, Russia
- Moscow Institute of Physics and Technology, 141701 Dolgoprudny, Moscow, Russia
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 117997 Moscow, Russia
- PathoBiology Group, European Organization for Research and Treatment of Cancer (EORTC), 1200 Brussels, Belgium
| | - Maria Suntsova
- Institute of Personalized Oncology, I.M. Sechenov First Moscow State Medical University, 119991 Moscow, Russia
| |
Collapse
|
3
|
Yang Y, Sakurai M. Advances in Detection Methods for A-to-I RNA Editing. WILEY INTERDISCIPLINARY REVIEWS. RNA 2025; 16:e70014. [PMID: 40223708 PMCID: PMC11995373 DOI: 10.1002/wrna.70014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 03/28/2025] [Accepted: 03/31/2025] [Indexed: 04/15/2025]
Abstract
Adenosine-to-inosine (A-to-I) RNA editing is a key post-transcriptional modification that influences gene expression and various cellular processes. Advances in sequencing technologies have greatly contributed to the identification of A-to-I editing sites, providing insights into their distribution across coding and non-coding regions. These developments have facilitated the discovery of functionally relevant editing events and have advanced the understanding of their biological roles. This review presents the evolution of methodologies for RNA editing detection and examines recent advances, including chemically-assisted, enzyme-assisted, and quantitative approaches. By evaluating these techniques, we aim to help researchers select the most effective tools for investigating RNA editing and its broader implications in health and disease.
Collapse
Affiliation(s)
- Yuxi Yang
- Research Institute for Biomedical SciencesTokyo University of ScienceChibaJapan
| | - Masayuki Sakurai
- Research Institute for Biomedical SciencesTokyo University of ScienceChibaJapan
| |
Collapse
|
4
|
Raja R, Mangalaparthi KK, Madugundu AK, Jessen E, Pathangey L, Magtibay P, Butler K, Christie E, Pandey A, Curtis M. Immunogenic cryptic peptides dominate the antigenic landscape of ovarian cancer. SCIENCE ADVANCES 2025; 11:eads7405. [PMID: 39970218 PMCID: PMC11837991 DOI: 10.1126/sciadv.ads7405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Accepted: 01/16/2025] [Indexed: 02/21/2025]
Abstract
Increased infiltration of CD3+ and CD8+ T cells into ovarian cancer (OC) is linked to better prognosis, but the specific antigens involved are unclear. Recent reports suggest that HLA class I can present peptides from noncoding genomic regions, known as noncanonical or cryptic peptides, but their immunogenicity is underexplored. To address this, we used immunopeptidomic analysis and RNA sequencing on five metastatic OC samples, which identified 311 cryptic peptides (40 to 83 per patient). Despite comprising less than 1% of total peptides, cryptic peptides from noncoding transcripts emerged as the predominant antigen class when compared to the other major classes of known tumor-specific and tumor-associated antigens in OC samples. Notably, nearly 70% of the prioritized cryptic peptides elicited T cell activation, as evidenced by increased 4-1BB and IFN-γ expression in autologous CD8+ T cells. This study reveals noncoding cryptic peptides as an important class of immunogenic antigens in OC.
Collapse
Affiliation(s)
- Remya Raja
- Department of Immunology, Mayo Clinic, Phoenix, AZ, USA
| | | | - Anil K. Madugundu
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Erik Jessen
- Division of Computational Biology, Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, USA
| | | | - Paul Magtibay
- Division of Gynecology, Mayo Clinic, Phoenix, AZ, USA
| | - Kristina Butler
- Division of Gynecology, Mayo Clinic, Phoenix, AZ, USA
- College of Medicine and Science, Mayo Clinic, Phoenix, AZ, USA
| | - Elizabeth Christie
- Peter MacCallum Cancer Centre, Melbourne, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Australia
| | - Akhilesh Pandey
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
- Mayo Clinic Comprehensive Cancer Center, Mayo Clinic, Rochester, MN, USA
- Center for Individualized Medicine, Mayo Clinic, 200 First St SW, Rochester, MN, USA
- Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Marion Curtis
- Department of Immunology, Mayo Clinic, Phoenix, AZ, USA
- College of Medicine and Science, Mayo Clinic, Phoenix, AZ, USA
- Department of Cancer Biology, Mayo Clinic, Phoenix, AZ, USA
- Mayo Clinic Comprehensive Cancer Center, Mayo Clinic, Phoenix, AZ, USA
| |
Collapse
|
5
|
Takahashi T, Shigeyasu K, Kondo Y, Takeda S, Umeda H, Moriwake K, Kayano M, Sakurai Y, Nakamura S, Takahashi M, Nitta K, Yoshida K, Matsumi Y, Michiue H, Yamamoto H, Kishimoto H, Teraishi F, Shoji R, Kanaya N, Kashima H, Kakiuchi Y, Kuroda S, Kagawa S, Fujiwara T. Predictive marker for response to trifluridine/tipiracil plus bevacizumab in metastatic colorectal cancer patients. BMC Cancer 2025; 25:1. [PMID: 39748254 PMCID: PMC11694457 DOI: 10.1186/s12885-024-13370-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 12/19/2024] [Indexed: 01/04/2025] Open
Abstract
OBJECTIVE Trifluridine/tipiracil (FTD/TPI) is one of the options for late-line treatment of colorectal cancer (CRC). However, the specific patient populations that would particularly benefit from it remain unclear. This study attempted to identify predictive markers of chemotherapy efficacy with trifluridine/tipiracil (FTD/TPI), focusing on the RNA-editing enzyme adenosine deaminase acting on RNA 1 (ADAR1) expression and neutrophil-lymphocyte ratio (NLR). METHODS To assess the effectiveness of FTD/TPI in CRC patients, we retrospectively analyzed 72 CRC patients at Okayama University Hospital from 2014 to 2022. RESULTS Adding bevacizumab to FTD/TPI resulted in a more prolonged progression-free survival (PFS), consistent with the SUNLIGHT study findings (p = 0.0028). Among the participants, those with a high NLR had a shorter PFS (p = 0.0395). Moreover, high ADAR1 expression was associated with longer PFS (p = 0.0151). In multivariate analysis, low ADAR1 (HR = 3.43, p = 0.01) and absence of bevacizumab (HR = 4.25, p = 0.01) were identified as factors shortening PFS. The high ADAR1 group demonstrated fewer cases of progressive disease and a higher proportion of stable disease than the low ADAR1 group (p = 0.0288). Low NLR and high ADAR1 were predictive markers of prolonged PFS in the bevacizumab-treated group (p = 0.0036). CONCLUSION Low NLR and high ADAR1 were predictive markers for a positive response to the FTD/TPI plus bevacizumab regimen associated with prolonged PFS. The FTD/TPI plus bevacizumab regimen should be proactively implemented in the low NLR and high ADAR1 subgroups.
Collapse
Affiliation(s)
- Toshiaki Takahashi
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, 2-5-1 Shikata-Cho, Kita-Ku, Okayama, 700-8558, Japan
| | - Kunitoshi Shigeyasu
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, 2-5-1 Shikata-Cho, Kita-Ku, Okayama, 700-8558, Japan.
| | - Yoshitaka Kondo
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, 2-5-1 Shikata-Cho, Kita-Ku, Okayama, 700-8558, Japan
| | - Sho Takeda
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, 2-5-1 Shikata-Cho, Kita-Ku, Okayama, 700-8558, Japan.
| | - Hibiki Umeda
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, 2-5-1 Shikata-Cho, Kita-Ku, Okayama, 700-8558, Japan
| | - Kazuya Moriwake
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, 2-5-1 Shikata-Cho, Kita-Ku, Okayama, 700-8558, Japan
| | - Masashi Kayano
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, 2-5-1 Shikata-Cho, Kita-Ku, Okayama, 700-8558, Japan
| | - Yuya Sakurai
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, 2-5-1 Shikata-Cho, Kita-Ku, Okayama, 700-8558, Japan
| | - Shunsuke Nakamura
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, 2-5-1 Shikata-Cho, Kita-Ku, Okayama, 700-8558, Japan
| | - Masafumi Takahashi
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, 2-5-1 Shikata-Cho, Kita-Ku, Okayama, 700-8558, Japan
| | - Kaori Nitta
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, 2-5-1 Shikata-Cho, Kita-Ku, Okayama, 700-8558, Japan
| | - Kazuhiro Yoshida
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, 2-5-1 Shikata-Cho, Kita-Ku, Okayama, 700-8558, Japan
| | - Yuki Matsumi
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, 2-5-1 Shikata-Cho, Kita-Ku, Okayama, 700-8558, Japan
| | - Hiroyuki Michiue
- Neutron Therapy Research Center, Okayama University, Okayama, Japan
| | - Hideki Yamamoto
- Department of Clinical Genomic Medicine, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | - Hiroyuki Kishimoto
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, 2-5-1 Shikata-Cho, Kita-Ku, Okayama, 700-8558, Japan
| | - Fuminori Teraishi
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, 2-5-1 Shikata-Cho, Kita-Ku, Okayama, 700-8558, Japan
| | - Ryohei Shoji
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, 2-5-1 Shikata-Cho, Kita-Ku, Okayama, 700-8558, Japan
| | - Nobuhiko Kanaya
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, 2-5-1 Shikata-Cho, Kita-Ku, Okayama, 700-8558, Japan
| | - Hajime Kashima
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, 2-5-1 Shikata-Cho, Kita-Ku, Okayama, 700-8558, Japan
| | - Yoshihiko Kakiuchi
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, 2-5-1 Shikata-Cho, Kita-Ku, Okayama, 700-8558, Japan
| | - Shinji Kuroda
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, 2-5-1 Shikata-Cho, Kita-Ku, Okayama, 700-8558, Japan
| | - Shunsuke Kagawa
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, 2-5-1 Shikata-Cho, Kita-Ku, Okayama, 700-8558, Japan
| | - Toshiyoshi Fujiwara
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, 2-5-1 Shikata-Cho, Kita-Ku, Okayama, 700-8558, Japan
| |
Collapse
|
6
|
Aparicio B, Theunissen P, Hervas-Stubbs S, Fortes P, Sarobe P. Relevance of mutation-derived neoantigens and non-classical antigens for anticancer therapies. Hum Vaccin Immunother 2024; 20:2303799. [PMID: 38346926 PMCID: PMC10863374 DOI: 10.1080/21645515.2024.2303799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 01/06/2024] [Indexed: 02/15/2024] Open
Abstract
Efficacy of cancer immunotherapies relies on correct recognition of tumor antigens by lymphocytes, eliciting thus functional responses capable of eliminating tumor cells. Therefore, important efforts have been carried out in antigen identification, with the aim of understanding mechanisms of response to immunotherapy and to design safer and more efficient strategies. In addition to classical tumor-associated antigens identified during the last decades, implementation of next-generation sequencing methodologies is enabling the identification of neoantigens (neoAgs) arising from mutations, leading to the development of new neoAg-directed therapies. Moreover, there are numerous non-classical tumor antigens originated from other sources and identified by new methodologies. Here, we review the relevance of neoAgs in different immunotherapies and the results obtained by applying neoAg-based strategies. In addition, the different types of non-classical tumor antigens and the best approaches for their identification are described. This will help to increase the spectrum of targetable molecules useful in cancer immunotherapies.
Collapse
Affiliation(s)
- Belen Aparicio
- Program of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA) University of Navarra, Pamplona, Spain
- Cancer Center Clinica Universidad de Navarra (CCUN), Pamplona, Spain
- Navarra Institute for Health Research (IDISNA), Pamplona, Spain
- CIBERehd, Pamplona, Spain
| | - Patrick Theunissen
- Cancer Center Clinica Universidad de Navarra (CCUN), Pamplona, Spain
- Navarra Institute for Health Research (IDISNA), Pamplona, Spain
- CIBERehd, Pamplona, Spain
- DNA and RNA Medicine Division, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain
| | - Sandra Hervas-Stubbs
- Program of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA) University of Navarra, Pamplona, Spain
- Cancer Center Clinica Universidad de Navarra (CCUN), Pamplona, Spain
- Navarra Institute for Health Research (IDISNA), Pamplona, Spain
- CIBERehd, Pamplona, Spain
| | - Puri Fortes
- Cancer Center Clinica Universidad de Navarra (CCUN), Pamplona, Spain
- Navarra Institute for Health Research (IDISNA), Pamplona, Spain
- CIBERehd, Pamplona, Spain
- DNA and RNA Medicine Division, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain
- Spanish Network for Advanced Therapies (TERAV ISCIII), Spain
| | - Pablo Sarobe
- Program of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA) University of Navarra, Pamplona, Spain
- Cancer Center Clinica Universidad de Navarra (CCUN), Pamplona, Spain
- Navarra Institute for Health Research (IDISNA), Pamplona, Spain
- CIBERehd, Pamplona, Spain
| |
Collapse
|
7
|
Zhang Y, Li L, Mendoza JJ, Wang D, Yan Q, Shi L, Gong Z, Zeng Z, Chen P, Xiong W. Advances in A-to-I RNA editing in cancer. Mol Cancer 2024; 23:280. [PMID: 39731127 DOI: 10.1186/s12943-024-02194-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Accepted: 12/04/2024] [Indexed: 12/29/2024] Open
Abstract
RNA modifications are widespread throughout the mammalian transcriptome and play pivotal roles in regulating various cellular processes. These modifications are strongly linked to the development of many cancers. One of the most prevalent forms of RNA modifications in humans is adenosine-to-inosine (A-to-I) editing, catalyzed by the enzyme adenosine deaminase acting on RNA (ADAR) in double-stranded RNA (dsRNA). With advancements in RNA sequencing technologies, the role of A-to-I modification in cancer has garnered increasing attention. Research indicates that the levels and specific sites of A-to-I editing are significantly altered in many malignant tumors, correlating closely with tumor progression. This editing occurs in both coding and noncoding regions of RNA, influencing signaling pathways involved in cancer development. These modifications can either promote or suppress cancer progression through several mechanisms, including inducing non-synonymous amino acid mutations, altering the immunogenicity of dsRNAs, modulating mRNA interactions with microRNAs (miRNAs), and affecting the splicing of circular RNAs (circRNAs) as well as the function of long non-coding RNAs (lncRNAs). A comprehensive understanding of A-to-I RNA editing is crucial for advancing the diagnosis, treatment, and prognosis of human cancers. This review explores the regulatory mechanisms of A-to-I editing in cancers and examines their potential clinical applications. It also summarizes current research, identifies future directions, and highlights potential therapeutic implications.
Collapse
Affiliation(s)
- Yi Zhang
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, 410078, China
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, School of Basic Medicine Sciences, Central South University, Changsha, Hunan, 410078, China
| | - Lvyuan Li
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, 410078, China
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, School of Basic Medicine Sciences, Central South University, Changsha, Hunan, 410078, China
| | - Juana Jessica Mendoza
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, 410078, China
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, School of Basic Medicine Sciences, Central South University, Changsha, Hunan, 410078, China
| | - Dan Wang
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, 410078, China
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, School of Basic Medicine Sciences, Central South University, Changsha, Hunan, 410078, China
| | - Qijia Yan
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Lei Shi
- Department of Oral and Maxillofacial Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Zhaojian Gong
- Department of Oral and Maxillofacial Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Zhaoyang Zeng
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, 410078, China
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, School of Basic Medicine Sciences, Central South University, Changsha, Hunan, 410078, China
- Furong Laboratory, Changsha, Hunan, 410078, China
| | - Pan Chen
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, 410078, China.
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, School of Basic Medicine Sciences, Central South University, Changsha, Hunan, 410078, China.
- Furong Laboratory, Changsha, Hunan, 410078, China.
| | - Wei Xiong
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, 410078, China.
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, School of Basic Medicine Sciences, Central South University, Changsha, Hunan, 410078, China.
- Furong Laboratory, Changsha, Hunan, 410078, China.
| |
Collapse
|
8
|
He D, Niu C, Bai R, Chen N, Cui J. ADAR1 Promotes Invasion and Migration and Inhibits Ferroptosis via the FAK/AKT Pathway in Colorectal Cancer. Mol Carcinog 2024; 63:2401-2413. [PMID: 39239920 DOI: 10.1002/mc.23818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 08/21/2024] [Accepted: 08/23/2024] [Indexed: 09/07/2024]
Abstract
The role of adenosine deaminase acting on RNA1 (ADAR1) in colorectal cancer (CRC) is poorly understood. This study investigated the roles and underlying molecular mechanisms of ADAR1 and its isoforms, explored the correlations between ADAR1 expression and the immune microenvironment and anticancer drug sensitivity, and examined the potential synergy of using ADAR1 expression and clinical parameters to determine the prognosis of CRC patients. CRC samples showed significant upregulation of ADAR1, and high ADAR1 expression was correlated with poor prognosis. Silencing ADAR1 inhibited the proliferation, invasion, and migration of CRC cells and induced ferroptosis by suppressing FAK/AKT activation, and the results of rescue assays were consistent with these mechanisms. Both ADAR1-p110 and ADAR1-p150 were demonstrated to regulate the FAK/AKT pathway, with ADAR1-p110 playing a particularly substantial role. In evaluating the prognosis of CRC patients, combining ADAR1 expression with clinical parameters produced a substantial synergistic effect. The in vivo tumorigenesis of CRC was significantly inhibited by silencing ADAR1. Furthermore, ADAR1 expression was positively correlated with tumor mutational burden (TMB) and microsatellite status (p < 0.05), indicating that ADAR1 plays a complex role in CRC immunotherapy. In conclusion, ADAR1 plays oncogenic roles in CRC both in vitro and in vivo, potentially by inhibiting ferroptosis via downregulation of the FAK/AKT pathway. Thus, ADAR1 serves as a potential prognostic biomarker and a promising target for CRC therapy.
Collapse
Affiliation(s)
- Dongsheng He
- Cancer Center, First Hospital of Jilin University, Changchun, Jilin, China
| | - Chao Niu
- Cancer Center, First Hospital of Jilin University, Changchun, Jilin, China
| | - Rilan Bai
- Cancer Center, First Hospital of Jilin University, Changchun, Jilin, China
| | - Naifei Chen
- Cancer Center, First Hospital of Jilin University, Changchun, Jilin, China
| | - Jiuwei Cui
- Cancer Center, First Hospital of Jilin University, Changchun, Jilin, China
| |
Collapse
|
9
|
Ji M, Yu Q, Yang XZ, Yu X, Wang J, Xiao C, An NA, Han C, Li CY, Ding W. Long-range alternative splicing contributes to neoantigen specificity in glioblastoma. Brief Bioinform 2024; 25:bbae503. [PMID: 39401143 PMCID: PMC11472750 DOI: 10.1093/bib/bbae503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 08/14/2024] [Indexed: 10/17/2024] Open
Abstract
Recent advances in neoantigen research have accelerated the development of immunotherapies for cancers, such as glioblastoma (GBM). Neoantigens resulting from genomic mutations and dysregulated alternative splicing have been studied in GBM. However, these studies have primarily focused on annotated alternatively-spliced transcripts, leaving non-annotated transcripts largely unexplored. Circular ribonucleic acids (circRNAs), abnormally regulated in tumors, are correlated with the presence of non-annotated linear transcripts with exon skipping events. But the extent to which these linear transcripts truly exist and their functions in cancer immunotherapies remain unknown. Here, we found the ubiquitous co-occurrence of circRNA biogenesis and alternative splicing across various tumor types, resulting in large amounts of long-range alternatively-spliced transcripts (LRs). By comparing tumor and healthy tissues, we identified tumor-specific LRs more abundant in GBM than in normal tissues and other tumor types. This may be attributable to the upregulation of the protein quaking in GBM, which is reported to promote circRNA biogenesis. In total, we identified 1057 specific and recurrent LRs in GBM. Through in silico translation prediction and MS-based immunopeptidome analysis, 16 major histocompatibility complex class I-associated peptides were identified as potential immunotherapy targets in GBM. This study revealed long-range alternatively-spliced transcripts specifically upregulated in GBM may serve as recurrent, immunogenic tumor-specific antigens.
Collapse
Affiliation(s)
- Mingjun Ji
- State Key Laboratory of Protein and Plant Gene Research, Laboratory of Bioinformatics and Genomic Medicine, Institute of Molecular Medicine, College of Future Technology, Peking University, No. 5 Yiheyuan Road, Haidian District, Beijing 100871, China
| | - Qing Yu
- State Key Laboratory of Protein and Plant Gene Research, Laboratory of Bioinformatics and Genomic Medicine, Institute of Molecular Medicine, College of Future Technology, Peking University, No. 5 Yiheyuan Road, Haidian District, Beijing 100871, China
| | - Xin-Zhuang Yang
- Center for Bioinformatics, National Infrastructures for Translational Medicine, Institute of Clinical Medicine and Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 9 Dongdan Santiao, Dongcheng District, Beijing 100730, China
| | - Xianhong Yu
- Academic Department, Shanghai MobiDrop Co., Ltd., Room 308, Building 1, No. 351 Guoshoujing Road, Shanghai Free Trade Pilot Zone, Shanghai 200000, China
| | - Jiaxin Wang
- State Key Laboratory of Protein and Plant Gene Research, Laboratory of Bioinformatics and Genomic Medicine, Institute of Molecular Medicine, College of Future Technology, Peking University, No. 5 Yiheyuan Road, Haidian District, Beijing 100871, China
| | - Chunfu Xiao
- State Key Laboratory of Protein and Plant Gene Research, Laboratory of Bioinformatics and Genomic Medicine, Institute of Molecular Medicine, College of Future Technology, Peking University, No. 5 Yiheyuan Road, Haidian District, Beijing 100871, China
| | - Ni A An
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, No. 1 West Beichen Road, Chaoyang District, Beijing 100101, China
| | - Chuanhui Han
- School of Basic Medical Sciences, Peking University, No. 38 Xueyuan Road, Haidian District, Beijing 100191, China
| | - Chuan-Yun Li
- State Key Laboratory of Protein and Plant Gene Research, Laboratory of Bioinformatics and Genomic Medicine, Institute of Molecular Medicine, College of Future Technology, Peking University, No. 5 Yiheyuan Road, Haidian District, Beijing 100871, China
- Chinese Institute for Brain Research, No. 26 Science Park Road, Changping District, Beijing 102206, China
- Southwest United Graduate School, 121 Dajie, Wuhua District, Kunming 650092, China
| | - Wanqiu Ding
- State Key Laboratory of Protein and Plant Gene Research, Laboratory of Bioinformatics and Genomic Medicine, Institute of Molecular Medicine, College of Future Technology, Peking University, No. 5 Yiheyuan Road, Haidian District, Beijing 100871, China
- Bioinformatics Core Facility, Institute of Molecular Medicine, College of Future Technology, Peking University, No. 5 Yiheyuan Road, Haidian District, Beijing 100871, China
| |
Collapse
|
10
|
Li Z, Zhang B, Chan JJ, Tabatabaeian H, Tong QY, Chew XH, Fan X, Driguez P, Chan C, Cheong F, Wang S, Siew BE, Tan IJW, Lee KY, Lieske B, Cheong WK, Kappei D, Tan KK, Gao X, Tay Y. An isoform-resolution transcriptomic atlas of colorectal cancer from long-read single-cell sequencing. CELL GENOMICS 2024; 4:100641. [PMID: 39216476 PMCID: PMC11480860 DOI: 10.1016/j.xgen.2024.100641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 06/06/2024] [Accepted: 08/07/2024] [Indexed: 09/04/2024]
Abstract
Colorectal cancer (CRC) ranks as the second leading cause of cancer deaths globally. In recent years, short-read single-cell RNA sequencing (scRNA-seq) has been instrumental in deciphering tumor heterogeneities. However, these studies only enable gene-level quantification but neglect alterations in transcript structures arising from alternative end processing or splicing. In this study, we integrated short- and long-read scRNA-seq of CRC samples to build an isoform-resolution CRC transcriptomic atlas. We identified 394 dysregulated transcript structures in tumor epithelial cells, including 299 resulting from various combinations of splicing events. Second, we characterized genes and isoforms associated with epithelial lineages and subpopulations exhibiting distinct prognoses. Among 31,935 isoforms with novel junctions, 330 were supported by The Cancer Genome Atlas RNA-seq and mass spectrometry data. Finally, we built an algorithm that integrated novel peptides derived from open reading frames of recurrent tumor-specific transcripts with mass spectrometry data and identified recurring neoepitopes that may aid the development of cancer vaccines.
Collapse
Affiliation(s)
- Zhongxiao Li
- Computer Science Program, Computer, Electrical and Mathematical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia; Center of Excellence for Smart Health (KCSH), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia; Center of Excellence on Generative AI, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Bin Zhang
- Computer Science Program, Computer, Electrical and Mathematical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia; Center of Excellence for Smart Health (KCSH), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia; Center of Excellence on Generative AI, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia.
| | - Jia Jia Chan
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore
| | - Hossein Tabatabaeian
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore
| | - Qing Yun Tong
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore
| | - Xiao Hong Chew
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore
| | - Xiaonan Fan
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore
| | - Patrick Driguez
- Core Labs, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Charlene Chan
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore
| | - Faith Cheong
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore
| | - Shi Wang
- Department of Pathology, National University Health System, Singapore 119228, Singapore
| | - Bei En Siew
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
| | - Ian Jse-Wei Tan
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore; Division of Colorectal Surgery, University Surgical Cluster, National University Health System, Singapore 119228, Singapore
| | - Kai-Yin Lee
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore; Division of Colorectal Surgery, University Surgical Cluster, National University Health System, Singapore 119228, Singapore
| | - Bettina Lieske
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore; Division of Colorectal Surgery, University Surgical Cluster, National University Health System, Singapore 119228, Singapore
| | - Wai-Kit Cheong
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore; Division of Colorectal Surgery, University Surgical Cluster, National University Health System, Singapore 119228, Singapore
| | - Dennis Kappei
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore; NUS Centre for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore; Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
| | - Ker-Kan Tan
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore; Division of Colorectal Surgery, University Surgical Cluster, National University Health System, Singapore 119228, Singapore
| | - Xin Gao
- Computer Science Program, Computer, Electrical and Mathematical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia; Center of Excellence for Smart Health (KCSH), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia; Center of Excellence on Generative AI, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia.
| | - Yvonne Tay
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore; NUS Centre for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore; Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore.
| |
Collapse
|
11
|
Chen J, Zhang CH, Tao T, Zhang X, Lin Y, Wang FB, Liu HF, Liu J. A-to-I RNA co-editing predicts clinical outcomes and is associated with immune cells infiltration in hepatocellular carcinoma. Commun Biol 2024; 7:838. [PMID: 38982182 PMCID: PMC11233613 DOI: 10.1038/s42003-024-06520-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 06/28/2024] [Indexed: 07/11/2024] Open
Abstract
Aberrant RNA editing has emerged as a pivotal factor in the pathogenesis of hepatocellular carcinoma (HCC), but the impact of RNA co-editing within HCC remains underexplored. We used a multi-step algorithm to construct an RNA co-editing network in HCC, and found that HCC-related RNA editings are predominantly centralized within the network. Furthermore, five pairs of risk RNA co-editing events were significantly correlated with the overall survival in HCC. Based on presence of risk RNA co-editings resulted in the categorization of HCC patients into high-risk and low-risk groups. Disparities in immune cell infiltrations were observed between the two groups, with the high-risk group exhibiting a greater abundance of exhausted T cells. Additionally, seven genes associated with risk RNA co-editing pairs were identified, whose expression effectively differentiates HCC tumor samples from normal ones. Our research offers an innovative perspective on the etiology and potential therapeutics for HCC.
Collapse
Affiliation(s)
- Juan Chen
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Cheng-Hui Zhang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Tao Tao
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Xian Zhang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Yan Lin
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Fang-Bin Wang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Hui-Fang Liu
- Department of Endocrinology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430014, Hubei, China.
| | - Jian Liu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China.
- Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei, 230009, China.
| |
Collapse
|
12
|
Bernal YA, Durán E, Solar I, Sagredo EA, Armisén R. ADAR-Mediated A>I(G) RNA Editing in the Genotoxic Drug Response of Breast Cancer. Int J Mol Sci 2024; 25:7424. [PMID: 39000531 PMCID: PMC11242177 DOI: 10.3390/ijms25137424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 06/13/2024] [Accepted: 06/24/2024] [Indexed: 07/16/2024] Open
Abstract
Epitranscriptomics is a field that delves into post-transcriptional changes. Among these modifications, the conversion of adenosine to inosine, traduced as guanosine (A>I(G)), is one of the known RNA-editing mechanisms, catalyzed by ADARs. This type of RNA editing is the most common type of editing in mammals and contributes to biological diversity. Disruption in the A>I(G) RNA-editing balance has been linked to diseases, including several types of cancer. Drug resistance in patients with cancer represents a significant public health concern, contributing to increased mortality rates resulting from therapy non-responsiveness and disease progression, representing the greatest challenge for researchers in this field. The A>I(G) RNA editing is involved in several mechanisms over the immunotherapy and genotoxic drug response and drug resistance. This review investigates the relationship between ADAR1 and specific A>I(G) RNA-edited sites, focusing particularly on breast cancer, and the impact of these sites on DNA damage repair and the immune response over anti-cancer therapy. We address the underlying mechanisms, bioinformatics, and in vitro strategies for the identification and validation of A>I(G) RNA-edited sites. We gathered databases related to A>I(G) RNA editing and cancer and discussed the potential clinical and research implications of understanding A>I(G) RNA-editing patterns. Understanding the intricate role of ADAR1-mediated A>I(G) RNA editing in breast cancer holds significant promise for the development of personalized treatment approaches tailored to individual patients' A>I(G) RNA-editing profiles.
Collapse
Affiliation(s)
- Yanara A Bernal
- Centro de Genética y Genómica, Instituto de Ciencias e Innovación en Medicina (ICIM), Facultad de Medicina Clínica Alemana Universidad del Desarrollo, Santiago 7610658, Chile
| | - Eduardo Durán
- Subdepartamento de Genómica y Genética Molecular, Sección Genética Humana, Instituto de Salud Pública de Chile, Avenida Marathon 1000, Ñuñoa, Santiago 7780050, Chile
| | - Isidora Solar
- Centro de Genética y Genómica, Instituto de Ciencias e Innovación en Medicina (ICIM), Facultad de Medicina Clínica Alemana Universidad del Desarrollo, Santiago 7610658, Chile
| | - Eduardo A Sagredo
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, SE-171 77 Stockholm, Sweden
- Science for Life Laboratory, Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, SE-171 77 Stockholm, Sweden
| | - Ricardo Armisén
- Centro de Genética y Genómica, Instituto de Ciencias e Innovación en Medicina (ICIM), Facultad de Medicina Clínica Alemana Universidad del Desarrollo, Santiago 7610658, Chile
| |
Collapse
|
13
|
Liu J, Zhijin Z, Zhang W, Niraj M, Yang F, Changcheng G, Shen L, Xu T, Liu S, Junfeng Z, Mao S, Li W, Yao X. Urinary exosomes: Potential diagnostic markers and application in bladder cancer. Heliyon 2024; 10:e32621. [PMID: 38975179 PMCID: PMC11226776 DOI: 10.1016/j.heliyon.2024.e32621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 06/05/2024] [Accepted: 06/06/2024] [Indexed: 07/09/2024] Open
Abstract
Background The exosome is a critical component of the intercellular communication., playing a vital role in regulating cell function. These small vesicles contain proteins, mRNAs, miRNAs, and lncRNAs, surrounded by lipid bilayer substances. Most cells in the human body can produce exosomes, released into various body fluids such as urine, blood, and cerebrospinal fluid. Bladder cancer is the most common tumor in the urinary system, with high recurrence and metastasis rates. Early diagnosis and treatment are crucial for improving patient outcomes. Methods This study employed the PubMed search engine to retrieve publicly accessible data pertaining to urinary exosomes. Results We summarize the origins and intricate biological characteristics of urinary exosomes, the introduction of research methodologies used in basic experiments to isolate and analyze these exosomes, the discussion of their applications and progress in the diagnosis and treatment of bladder cancer, and the exploration of the current limitations associated with using urinary exosomes as molecular biomarkers for diagnosing bladder cancer. Conclusion Exosomes isolated from urine may be used as molecular biomarkers for early detection of bladder cancer.
Collapse
Affiliation(s)
- Ji Liu
- Department of Urology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, China
- Urologic Cancer Institute, School of Medicine, Tongji University, Shanghai, 200331, China
| | - Zhang Zhijin
- Department of Urology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, China
- Urologic Cancer Institute, School of Medicine, Tongji University, Shanghai, 200331, China
| | - Wentao Zhang
- Department of Urology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, China
- Urologic Cancer Institute, School of Medicine, Tongji University, Shanghai, 200331, China
| | - Maskey Niraj
- Department of Urology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, China
- Urologic Cancer Institute, School of Medicine, Tongji University, Shanghai, 200331, China
| | - Fuhan Yang
- Department of Urology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, China
- Urologic Cancer Institute, School of Medicine, Tongji University, Shanghai, 200331, China
| | - Guo Changcheng
- Department of Urology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, China
- Urologic Cancer Institute, School of Medicine, Tongji University, Shanghai, 200331, China
| | - Liliang Shen
- Department of Urology, The Affiliated Yinzhou Renmin Hospital of Medical School of Ningbo University, Ningbo, 315040, China
| | - Tianyuan Xu
- Department of Urology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, China
- Urologic Cancer Institute, School of Medicine, Tongji University, Shanghai, 200331, China
| | - Shenghua Liu
- Shanghai Huashan Hospital, Shanghai, 200433, China
| | - Zhang Junfeng
- Department of Urology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, China
- Urologic Cancer Institute, School of Medicine, Tongji University, Shanghai, 200331, China
| | - Shiyu Mao
- Department of Urology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, China
- Urologic Cancer Institute, School of Medicine, Tongji University, Shanghai, 200331, China
| | - Wei Li
- Department of Urology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, China
- Urologic Cancer Institute, School of Medicine, Tongji University, Shanghai, 200331, China
| | - Xudong Yao
- Department of Urology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, China
- Urologic Cancer Institute, School of Medicine, Tongji University, Shanghai, 200331, China
| |
Collapse
|
14
|
Wernaart D, Fumagalli A, Agami R. Molecular mechanisms of non-genetic aberrant peptide production in cancer. Oncogene 2024; 43:2053-2062. [PMID: 38802646 DOI: 10.1038/s41388-024-03069-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 05/16/2024] [Accepted: 05/17/2024] [Indexed: 05/29/2024]
Abstract
The cancer peptidome has long been known to be altered by genetic mutations. However, more recently, non-genetic polypeptide mutations have also been related to cancer cells. These non-genetic mutations occur post-t30ranscriptionally, leading to the modification of the peptide primary structure, while the corresponding genes remain unchanged. Three main processes participate in the production of these aberrant proteins: mRNA alternative splicing, mRNA editing, and mRNA aberrant translation. In this review, we summarize the molecular mechanisms underlying these processes and the recent findings on the functions of the aberrant proteins, as well as their exploitability as new therapeutic targets due to their specific enrichment in cancer cells. These non-genetic aberrant polypeptides represent a source of novel cancer cell targets independent from their level of mutational burden, still to be exhaustively explored.
Collapse
Affiliation(s)
- Demi Wernaart
- Division of Oncogenomics, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Amos Fumagalli
- Division of Oncogenomics, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Reuven Agami
- Division of Oncogenomics, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, The Netherlands.
- Erasmus MC, Department of Genetics, Rotterdam University, Rotterdam, The Netherlands.
| |
Collapse
|
15
|
Huang E, Frydman C, Xiao X. Navigating the landscape of epitranscriptomics and host immunity. Genome Res 2024; 34:515-529. [PMID: 38702197 PMCID: PMC11146601 DOI: 10.1101/gr.278412.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/06/2024]
Abstract
RNA modifications, also termed epitranscriptomic marks, encompass chemical alterations to individual nucleotides, including processes such as methylation and editing. These marks contribute to a wide range of biological processes, many of which are related to host immune system defense. The functions of immune-related RNA modifications can be categorized into three main groups: regulation of immunogenic RNAs, control of genes involved in innate immune response, and facilitation of adaptive immunity. Here, we provide an overview of recent research findings that elucidate the contributions of RNA modifications to each of these processes. We also discuss relevant methods for genome-wide identification of RNA modifications and their immunogenic substrates. Finally, we highlight recent advances in cancer immunotherapies that aim to reduce cancer cell viability by targeting the enzymes responsible for RNA modifications. Our presentation of these dynamic research avenues sets the stage for future investigations in this field.
Collapse
Affiliation(s)
- Elaine Huang
- Bioinformatics Interdepartmental Program, University of California, Los Angeles, California 90095, USA
| | - Clara Frydman
- Bioinformatics Interdepartmental Program, University of California, Los Angeles, California 90095, USA
| | - Xinshu Xiao
- Bioinformatics Interdepartmental Program, University of California, Los Angeles, California 90095, USA;
- Department of Integrative Biology and Physiology, University of California, Los Angeles, California 90095, USA
- Molecular Biology Interdepartmental Program, University of California, Los Angeles, California 90095, USA
- Molecular Biology Institute, University of California, Los Angeles, California 90095, USA
| |
Collapse
|
16
|
Lu Q, Zhou W, Fan L, Ding T, Wang W, Zhang X. Tumor neoantigens derived from RNA editing events show significant clinical relevance in melanoma patients treated with immunotherapy. Anticancer Drugs 2024; 35:305-314. [PMID: 38170793 DOI: 10.1097/cad.0000000000001565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
This study aimed to investigate the clinical significance of RNA editing (RE) and RNA editing derived (RED-) neoantigens in melanoma patients treated with immunotherapy. Vardict and VEP were used to identify the somatic mutations. RE events were identified by Reditools2 and filtered by the custom pipeline. miRTar2GO was implemented to predict the RE whether located in miRNA targets within the 3' UTR region. NetMHCpan and NetCTLpan were used to identify and characterize RED-neoantigens. In total, 7116 RE events were identified, most of which were A-to-I events. Using our custom pipeline, 631 RED-neoantigens were identified that show a significantly greater peptide-MHC affinity, and facilitate epitope processing and presentation than wild-type peptides. The OS of the patients with high RED-neoantigens burden was significantly longer ( P = 0.035), and a significantly higher RED-neoantigens burden was observed in responders ( P = 0.048). The area under the curve of the RED-neoantigen was 0.831 of OS. Then, we validated the reliability of RED-neoantigens in predicting the prognosis in an independent cohort and found that patients with high RED-neoantigens exhibited a longer OS ( P = 0.008). To our knowledge, this is the first study to systematically assess the clinical relevance of RED-neoantigens in melanoma patients treated with immunotherapy.
Collapse
Affiliation(s)
- Qicheng Lu
- Department of Gastrointestinal Surgery, Changzhou First People's Hospital, Changzhou, Jiangsu
| | - Wenhao Zhou
- Shenzhen Engineering Center for Translational Medicine of Precision Cancer Immunodiagnosis and Therapy, YuceBio Technology Co., Ltd., Shenzhen, Guangdong
| | - Ligang Fan
- Department of Neurosurgery, Third Affiliated Hospital of Soochow University, Changzhou
| | - Tian Ding
- Department of Clinical Medicine, Medical School, Nantong University
| | - Wei Wang
- Shenzhen Engineering Center for Translational Medicine of Precision Cancer Immunodiagnosis and Therapy, YuceBio Technology Co., Ltd., Shenzhen, Guangdong
| | - Xiaodong Zhang
- Department of Medical Oncology, Tumor Hospital Affiliated To Nantong University, Nantong, Jiangsu, China
| |
Collapse
|
17
|
Hato L, Vizcay A, Eguren I, Pérez-Gracia JL, Rodríguez J, Gállego Pérez-Larraya J, Sarobe P, Inogés S, Díaz de Cerio AL, Santisteban M. Dendritic Cells in Cancer Immunology and Immunotherapy. Cancers (Basel) 2024; 16:981. [PMID: 38473341 DOI: 10.3390/cancers16050981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 02/15/2024] [Accepted: 02/23/2024] [Indexed: 03/14/2024] Open
Abstract
Cancer immunotherapy modulates the immune system, overcomes immune escape and stimulates immune defenses against tumors. Dendritic cells (DCs) are professional promoters of immune responses against tumor antigens with the outstanding ability to coordinate the innate and adaptive immune systems. Evidence suggests that there is a decrease in both the number and function of DCs in cancer patients. Therefore, they represent a strong scaffold for therapeutic interventions. DC vaccination (DCV) is safe, and the antitumoral responses induced are well established in solid tumors. Although the addition of checkpoint inhibitors (CPIs) to chemotherapy has provided new options in the treatment of cancer, they have shown no clinical benefit in immune desert tumors or in those tumors with dysfunctional or exhausted T-cells. In this way, DC-based therapy has demonstrated the ability to modify the tumor microenvironment for immune enriched tumors and to potentiate systemic host immune responses as an active approach to treating cancer patients. Application of DCV in cancer seeks to obtain long-term antitumor responses through an improved T-cell priming by enhancing previous or generating de novo immune responses. To date, DCV has induced immune responses in the peripheral blood of patients without a significant clinical impact on outcome. Thus, improvements in vaccines formulations, selection of patients based on biomarkers and combinations with other antitumoral therapies are needed to enhance patient survival. In this work, we review the role of DCV in different solid tumors with their strengths and weaknesses, and we finally mention new trends to improve the efficacy of this immune strategy.
Collapse
Affiliation(s)
- Laura Hato
- Immunology, Riberalab, 03203 Alicante, Spain
| | - Angel Vizcay
- Medical Oncology, Clínica Universidad de Navarra, 31008 Pamplona, Spain
- IdiSNA, Instituto de Investigación Sanitaria de Navarra, 31008 Pamplona, Spain
| | - Iñaki Eguren
- Medical Oncology, Clínica Universidad de Navarra, 31008 Pamplona, Spain
| | | | - Javier Rodríguez
- Medical Oncology, Clínica Universidad de Navarra, 31008 Pamplona, Spain
- IdiSNA, Instituto de Investigación Sanitaria de Navarra, 31008 Pamplona, Spain
| | | | - Pablo Sarobe
- IdiSNA, Instituto de Investigación Sanitaria de Navarra, 31008 Pamplona, Spain
- Program of Immunology and Immunotherapy, Centro de Investigación Médica Aplicada (CIMA), Universidad de Navarra, 31008 Pamplona, Spain
- CIBEREHD, 31008 Pamplona, Spain
| | - Susana Inogés
- IdiSNA, Instituto de Investigación Sanitaria de Navarra, 31008 Pamplona, Spain
- Cell Therapy Unit, Program of Immunology and Immunotherapy, Clínica Universidad de Navarra, 31008 Pamplona, Spain
| | - Ascensión López Díaz de Cerio
- IdiSNA, Instituto de Investigación Sanitaria de Navarra, 31008 Pamplona, Spain
- Cell Therapy Unit, Program of Immunology and Immunotherapy, Clínica Universidad de Navarra, 31008 Pamplona, Spain
| | - Marta Santisteban
- Medical Oncology, Clínica Universidad de Navarra, 31008 Pamplona, Spain
- IdiSNA, Instituto de Investigación Sanitaria de Navarra, 31008 Pamplona, Spain
| |
Collapse
|
18
|
Addala V, Newell F, Pearson JV, Redwood A, Robinson BW, Creaney J, Waddell N. Computational immunogenomic approaches to predict response to cancer immunotherapies. Nat Rev Clin Oncol 2024; 21:28-46. [PMID: 37907723 DOI: 10.1038/s41571-023-00830-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/03/2023] [Indexed: 11/02/2023]
Abstract
Cancer immunogenomics is an emerging field that bridges genomics and immunology. The establishment of large-scale genomic collaborative efforts along with the development of new single-cell transcriptomic techniques and multi-omics approaches have enabled characterization of the mutational and transcriptional profiles of many cancer types and helped to identify clinically actionable alterations as well as predictive and prognostic biomarkers. Researchers have developed computational approaches and machine learning algorithms to accurately obtain clinically useful information from genomic and transcriptomic sequencing data from bulk tissue or single cells and explore tumours and their microenvironment. The rapid growth in sequencing and computational approaches has resulted in the unmet need to understand their true potential and limitations in enabling improvements in the management of patients with cancer who are receiving immunotherapies. In this Review, we describe the computational approaches currently available to analyse bulk tissue and single-cell sequencing data from cancer, stromal and immune cells, as well as how best to select the most appropriate tool to address various clinical questions and, ultimately, improve patient outcomes.
Collapse
Affiliation(s)
- Venkateswar Addala
- Cancer Program, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia.
- Faculty of Medicine, The University of Queensland, Brisbane, Queensland, Australia.
| | - Felicity Newell
- Cancer Program, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - John V Pearson
- Cancer Program, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Alec Redwood
- National Centre for Asbestos Related Diseases, University of Western Australia, Perth, Western Australia, Australia
- Institute of Respiratory Health, Perth, Western Australia, Australia
- School of Biomedical Science, University of Western Australia, Perth, Western Australia, Australia
| | - Bruce W Robinson
- National Centre for Asbestos Related Diseases, University of Western Australia, Perth, Western Australia, Australia
- Institute of Respiratory Health, Perth, Western Australia, Australia
- Department of Respiratory Medicine, Sir Charles Gairdner Hospital, Perth, Western Australia, Australia
- Medical School, University of Western Australia, Perth, Western Australia, Australia
| | - Jenette Creaney
- National Centre for Asbestos Related Diseases, University of Western Australia, Perth, Western Australia, Australia
- Institute of Respiratory Health, Perth, Western Australia, Australia
- School of Biomedical Science, University of Western Australia, Perth, Western Australia, Australia
- Department of Respiratory Medicine, Sir Charles Gairdner Hospital, Perth, Western Australia, Australia
| | - Nicola Waddell
- Cancer Program, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia.
- Faculty of Medicine, The University of Queensland, Brisbane, Queensland, Australia.
| |
Collapse
|
19
|
Weng S, Yang X, Yu N, Wang PC, Xiong S, Ruan H. Harnessing ADAR-Mediated Site-Specific RNA Editing in Immune-Related Disease: Prediction and Therapeutic Implications. Int J Mol Sci 2023; 25:351. [PMID: 38203521 PMCID: PMC10779106 DOI: 10.3390/ijms25010351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/15/2023] [Accepted: 12/23/2023] [Indexed: 01/12/2024] Open
Abstract
ADAR (Adenosine Deaminases Acting on RNA) proteins are a group of enzymes that play a vital role in RNA editing by converting adenosine to inosine in RNAs. This process is a frequent post-transcriptional event observed in metazoan transcripts. Recent studies indicate widespread dysregulation of ADAR-mediated RNA editing across many immune-related diseases, such as human cancer. We comprehensively review ADARs' function as pattern recognizers and their capability to contribute to mediating immune-related pathways. We also highlight the potential role of site-specific RNA editing in maintaining homeostasis and its relationship to various diseases, such as human cancers. More importantly, we summarize the latest cutting-edge computational approaches and data resources for predicting and analyzing RNA editing sites. Lastly, we cover the recent advancement in site-directed ADAR editing tool development. This review presents an up-to-date overview of ADAR-mediated RNA editing, how site-specific RNA editing could potentially impact disease pathology, and how they could be harnessed for therapeutic applications.
Collapse
Affiliation(s)
- Shenghui Weng
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou 215123, China; (S.W.); (P.-C.W.)
| | - Xinyi Yang
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou 215123, China; (S.W.); (P.-C.W.)
| | - Nannan Yu
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou 215123, China; (S.W.); (P.-C.W.)
| | - Peng-Cheng Wang
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou 215123, China; (S.W.); (P.-C.W.)
| | - Sidong Xiong
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou 215123, China; (S.W.); (P.-C.W.)
| | - Hang Ruan
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou 215123, China; (S.W.); (P.-C.W.)
- MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College of Soochow University, Suzhou 215123, China
| |
Collapse
|
20
|
Meng Z, Rodriguez Ehrenfried A, Tan CL, Steffens LK, Kehm H, Zens S, Lauenstein C, Paul A, Schwab M, Förster JD, Salek M, Riemer AB, Wu H, Eckert C, Leonhardt CS, Strobel O, Volkmar M, Poschke I, Offringa R. Transcriptome-based identification of tumor-reactive and bystander CD8 + T cell receptor clonotypes in human pancreatic cancer. Sci Transl Med 2023; 15:eadh9562. [PMID: 37967201 DOI: 10.1126/scitranslmed.adh9562] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 10/16/2023] [Indexed: 11/17/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is generally refractory to immune checkpoint blockade, although patients with genetically unstable tumors can show modest therapeutic benefit. We previously demonstrated the presence of tumor-reactive CD8+ T cells in PDAC samples. Here, we charted the tumor-infiltrating T cell repertoire in PDAC by combining single-cell transcriptomics with functional testing of T cell receptors (TCRs) for reactivity against autologous tumor cells. On the basis of a comprehensive dataset including 93 tumor-reactive and 65 bystander TCR clonotypes, we delineated a gene signature that effectively distinguishes between these T cell subsets in PDAC, as well as in other tumor indications. This revealed a high frequency of tumor-reactive TCR clonotypes in three genetically unstable samples. In contrast, the T cell repertoire in six genetically stable PDAC tumors was largely dominated by bystander T cells. Nevertheless, multiple tumor-reactive TCRs were successfully identified in each of these samples, thereby providing a perspective for personalized immunotherapy in this treatment-resistant indication.
Collapse
Affiliation(s)
- Zibo Meng
- Department of General, Visceral and Transplantation Surgery, University Hospital Heidelberg, 69120 Heidelberg, Germany
- Division of Molecular Oncology of Gastrointestinal Tumors, German Cancer Research Center, 69120 Heidelberg, Germany
- Sino-German Laboratory of Personalized Medicine for Pancreatic Cancer, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022 Wuhan, China
| | - Aaron Rodriguez Ehrenfried
- Division of Molecular Oncology of Gastrointestinal Tumors, German Cancer Research Center, 69120 Heidelberg, Germany
- Helmholtz-Institute for Translational Oncology by DKFZ (HI-TRON), 55131 Mainz, Germany
- Faculty of Biosciences, Heidelberg University, 69120 Heidelberg, Germany
| | - Chin Leng Tan
- Division of Molecular Oncology of Gastrointestinal Tumors, German Cancer Research Center, 69120 Heidelberg, Germany
- Faculty of Biosciences, Heidelberg University, 69120 Heidelberg, Germany
- Clinical Cooperation Unit Neuroimmunology and Brain Tumor Immunology, German Cancer Research Center, 69120 Heidelberg, Germany
| | - Laura K Steffens
- Division of Molecular Oncology of Gastrointestinal Tumors, German Cancer Research Center, 69120 Heidelberg, Germany
- Faculty of Biosciences, Heidelberg University, 69120 Heidelberg, Germany
| | - Hannes Kehm
- Division of Molecular Oncology of Gastrointestinal Tumors, German Cancer Research Center, 69120 Heidelberg, Germany
- Faculty of Biosciences, Heidelberg University, 69120 Heidelberg, Germany
| | - Stefan Zens
- Division of Molecular Oncology of Gastrointestinal Tumors, German Cancer Research Center, 69120 Heidelberg, Germany
- Faculty of Biosciences, Heidelberg University, 69120 Heidelberg, Germany
| | - Claudia Lauenstein
- Division of Molecular Oncology of Gastrointestinal Tumors, German Cancer Research Center, 69120 Heidelberg, Germany
| | - Alina Paul
- Division of Molecular Oncology of Gastrointestinal Tumors, German Cancer Research Center, 69120 Heidelberg, Germany
- Faculty of Biosciences, Heidelberg University, 69120 Heidelberg, Germany
| | - Marius Schwab
- Department of General, Visceral and Transplantation Surgery, University Hospital Heidelberg, 69120 Heidelberg, Germany
- Division of Molecular Oncology of Gastrointestinal Tumors, German Cancer Research Center, 69120 Heidelberg, Germany
| | - Jonas D Förster
- Faculty of Biosciences, Heidelberg University, 69120 Heidelberg, Germany
- Division of Immunotherapy & Immunoprevention, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- Molecular Vaccine Design, German Center for Infection Research (DZIF), partner site Heidelberg, 69120 Heidelberg, Germany
| | - Mogjiborahman Salek
- Division of Immunotherapy & Immunoprevention, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- Molecular Vaccine Design, German Center for Infection Research (DZIF), partner site Heidelberg, 69120 Heidelberg, Germany
| | - Angelika B Riemer
- Division of Immunotherapy & Immunoprevention, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- Molecular Vaccine Design, German Center for Infection Research (DZIF), partner site Heidelberg, 69120 Heidelberg, Germany
| | - Heshui Wu
- Sino-German Laboratory of Personalized Medicine for Pancreatic Cancer, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022 Wuhan, China
- Department of Pancreatic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022 Wuhan, China
| | - Christoph Eckert
- Pathology Institute, University Hospital Heidelberg, 69120 Heidelberg, Germany
| | - Carl-Stephan Leonhardt
- Department of General, Visceral and Transplantation Surgery, University Hospital Heidelberg, 69120 Heidelberg, Germany
| | - Oliver Strobel
- Department of General, Visceral and Transplantation Surgery, University Hospital Heidelberg, 69120 Heidelberg, Germany
| | - Michael Volkmar
- Department of General, Visceral and Transplantation Surgery, University Hospital Heidelberg, 69120 Heidelberg, Germany
- Division of Molecular Oncology of Gastrointestinal Tumors, German Cancer Research Center, 69120 Heidelberg, Germany
- Helmholtz-Institute for Translational Oncology by DKFZ (HI-TRON), 55131 Mainz, Germany
| | - Isabel Poschke
- Department of General, Visceral and Transplantation Surgery, University Hospital Heidelberg, 69120 Heidelberg, Germany
- Division of Molecular Oncology of Gastrointestinal Tumors, German Cancer Research Center, 69120 Heidelberg, Germany
- Clinical Cooperation Unit Neuroimmunology and Brain Tumor Immunology, German Cancer Research Center, 69120 Heidelberg, Germany
- Immune Monitoring Unit, National Center for Tumor Diseases (NCT), 69120 Heidelberg, Germany
| | - Rienk Offringa
- Department of General, Visceral and Transplantation Surgery, University Hospital Heidelberg, 69120 Heidelberg, Germany
- Division of Molecular Oncology of Gastrointestinal Tumors, German Cancer Research Center, 69120 Heidelberg, Germany
- Sino-German Laboratory of Personalized Medicine for Pancreatic Cancer, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022 Wuhan, China
| |
Collapse
|
21
|
Meng W, Schreiber RD, Lichti CF. Recent advances in immunopeptidomic-based tumor neoantigen discovery. Adv Immunol 2023; 160:1-36. [PMID: 38042584 DOI: 10.1016/bs.ai.2023.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2023]
Abstract
The role of aberrantly expressed proteins in tumors in driving immune-mediated control of cancer has been well documented for more than five decades. Today, we know that both aberrantly expressed normal proteins as well as mutant proteins (neoantigens) can function as tumor antigens in both humans and mice. Next-generation sequencing (NGS) and high-resolution mass spectrometry (MS) technologies have made significant advances since the early 2010s, enabling detection of rare but clinically relevant neoantigens recognized by T cells. MS profiling of tumor-specific immunopeptidomes remains the most direct method to identify mutant peptides bound to cellular MHC. However, the need for use of large numbers of cells or significant amounts of tumor tissue to achieve neoantigen detection has historically limited the application of MS. Newer, more sensitive MS technologies have recently demonstrated the capacities to detect neoantigens from fewer cells. Here, we highlight recent advancements in immunopeptidomics-based characterization of tumor-specific neoantigens. Various tumor antigen categories and neoantigen identification approaches are also discussed. Furthermore, we summarize recent reports that achieved successful tumor neoantigen detection by MS using a variety of starting materials, MS acquisition modes, and novel ion mobility devices.
Collapse
Affiliation(s)
- Wei Meng
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO, United States; The Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, Saint Louis, MO, United States
| | - Robert D Schreiber
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO, United States; The Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, Saint Louis, MO, United States.
| | - Cheryl F Lichti
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO, United States; The Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, Saint Louis, MO, United States.
| |
Collapse
|
22
|
Zhang B, Bassani-Sternberg M. Current perspectives on mass spectrometry-based immunopeptidomics: the computational angle to tumor antigen discovery. J Immunother Cancer 2023; 11:e007073. [PMID: 37899131 PMCID: PMC10619091 DOI: 10.1136/jitc-2023-007073] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/21/2023] [Indexed: 10/31/2023] Open
Abstract
Identification of tumor antigens presented by the human leucocyte antigen (HLA) molecules is essential for the design of effective and safe cancer immunotherapies that rely on T cell recognition and killing of tumor cells. Mass spectrometry (MS)-based immunopeptidomics enables high-throughput, direct identification of HLA-bound peptides from a variety of cell lines, tumor tissues, and healthy tissues. It involves immunoaffinity purification of HLA complexes followed by MS profiling of the extracted peptides using data-dependent acquisition, data-independent acquisition, or targeted approaches. By incorporating DNA, RNA, and ribosome sequencing data into immunopeptidomics data analysis, the proteogenomic approach provides a powerful means for identifying tumor antigens encoded within the canonical open reading frames of annotated coding genes and non-canonical tumor antigens derived from presumably non-coding regions of our genome. We discuss emerging computational challenges in immunopeptidomics data analysis and tumor antigen identification, highlighting key considerations in the proteogenomics-based approach, including accurate DNA, RNA and ribosomal sequencing data analysis, careful incorporation of predicted novel protein sequences into reference protein database, special quality control in MS data analysis due to the expanded and heterogeneous search space, cancer-specificity determination, and immunogenicity prediction. The advancements in technology and computation is continually enabling us to identify tumor antigens with higher sensitivity and accuracy, paving the way toward the development of more effective cancer immunotherapies.
Collapse
Affiliation(s)
- Bing Zhang
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | - Michal Bassani-Sternberg
- Ludwig Institute for Cancer Research, University of Lausanne, Lausanne, Switzerland
- Department of Oncology, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
- Agora Cancer Research Centre, Lausanne, Switzerland
| |
Collapse
|
23
|
Ye L, Yao X, Xu B, Chen W, Lou H, Tong X, Fang S, Zou R, Hu Y, Wang Z, Xiang D, Lin Q, Feng S, Xue X, Guo G. RNA epigenetic modifications in ovarian cancer: The changes, chances, and challenges. WILEY INTERDISCIPLINARY REVIEWS. RNA 2023; 14:e1784. [PMID: 36811232 DOI: 10.1002/wrna.1784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 01/19/2023] [Accepted: 01/25/2023] [Indexed: 02/23/2023]
Abstract
Ovarian cancer (OC) is the most common female cancer worldwide. Patients with OC have high mortality because of its complex and poorly understood pathogenesis. RNA epigenetic modifications, such as m6 A, m1 A, and m5 C, are closely associated with the occurrence and development of OC. RNA modifications can affect the stability of mRNA transcripts, nuclear export of RNAs, translation efficiency, and decoding accuracy. However, there are few overviews that summarize the link between m6 A RNA modification and OC. Here, we discuss the molecular and cellular functions of different RNA modifications and how their regulation contributes to the pathogenesis of OC. By improving our understanding of the role of RNA modifications in the etiology of OC, we provide new perspectives for their use in OC diagnosis and treatment. This article is categorized under: RNA Processing > RNA Editing and Modification RNA in Disease and Development > RNA in Disease.
Collapse
Affiliation(s)
- Lele Ye
- Wenzhou Collaborative Innovation Center of Gastrointestinal Cancer in Basic Research and Precision Medicine, Wenzhou Key Laboratory of Cancer-related Pathogens and Immunity, Department of Microbiology and Immunology, Institute of Molecular Virology and Immunology, Institute of Tropical Medicine, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China
- Department of Gynecologic Oncology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Xuyang Yao
- First Clinical College, Wenzhou Medical University, Wenzhou, China
| | - Binbing Xu
- First Clinical College, Wenzhou Medical University, Wenzhou, China
| | - Wenwen Chen
- Wenzhou Collaborative Innovation Center of Gastrointestinal Cancer in Basic Research and Precision Medicine, Wenzhou Key Laboratory of Cancer-related Pathogens and Immunity, Department of Microbiology and Immunology, Institute of Molecular Virology and Immunology, Institute of Tropical Medicine, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Han Lou
- Wenzhou Collaborative Innovation Center of Gastrointestinal Cancer in Basic Research and Precision Medicine, Wenzhou Key Laboratory of Cancer-related Pathogens and Immunity, Department of Microbiology and Immunology, Institute of Molecular Virology and Immunology, Institute of Tropical Medicine, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Xinya Tong
- Wenzhou Collaborative Innovation Center of Gastrointestinal Cancer in Basic Research and Precision Medicine, Wenzhou Key Laboratory of Cancer-related Pathogens and Immunity, Department of Microbiology and Immunology, Institute of Molecular Virology and Immunology, Institute of Tropical Medicine, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Su Fang
- Wenzhou Collaborative Innovation Center of Gastrointestinal Cancer in Basic Research and Precision Medicine, Wenzhou Key Laboratory of Cancer-related Pathogens and Immunity, Department of Microbiology and Immunology, Institute of Molecular Virology and Immunology, Institute of Tropical Medicine, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Ruanmin Zou
- Department of Obstetrics and Gynecology, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, China
| | - Yingying Hu
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Zhibin Wang
- Wenzhou Collaborative Innovation Center of Gastrointestinal Cancer in Basic Research and Precision Medicine, Wenzhou Key Laboratory of Cancer-related Pathogens and Immunity, Department of Microbiology and Immunology, Institute of Molecular Virology and Immunology, Institute of Tropical Medicine, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Dan Xiang
- Wenzhou Collaborative Innovation Center of Gastrointestinal Cancer in Basic Research and Precision Medicine, Wenzhou Key Laboratory of Cancer-related Pathogens and Immunity, Department of Microbiology and Immunology, Institute of Molecular Virology and Immunology, Institute of Tropical Medicine, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Qiaoai Lin
- Wenzhou Collaborative Innovation Center of Gastrointestinal Cancer in Basic Research and Precision Medicine, Wenzhou Key Laboratory of Cancer-related Pathogens and Immunity, Department of Microbiology and Immunology, Institute of Molecular Virology and Immunology, Institute of Tropical Medicine, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Shiyu Feng
- Wenzhou Collaborative Innovation Center of Gastrointestinal Cancer in Basic Research and Precision Medicine, Wenzhou Key Laboratory of Cancer-related Pathogens and Immunity, Department of Microbiology and Immunology, Institute of Molecular Virology and Immunology, Institute of Tropical Medicine, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Xiangyang Xue
- Wenzhou Collaborative Innovation Center of Gastrointestinal Cancer in Basic Research and Precision Medicine, Wenzhou Key Laboratory of Cancer-related Pathogens and Immunity, Department of Microbiology and Immunology, Institute of Molecular Virology and Immunology, Institute of Tropical Medicine, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Gangqiang Guo
- Wenzhou Collaborative Innovation Center of Gastrointestinal Cancer in Basic Research and Precision Medicine, Wenzhou Key Laboratory of Cancer-related Pathogens and Immunity, Department of Microbiology and Immunology, Institute of Molecular Virology and Immunology, Institute of Tropical Medicine, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
24
|
Qiu L, Jing Q, Li Y, Han J. RNA modification: mechanisms and therapeutic targets. MOLECULAR BIOMEDICINE 2023; 4:25. [PMID: 37612540 PMCID: PMC10447785 DOI: 10.1186/s43556-023-00139-x] [Citation(s) in RCA: 59] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Accepted: 07/28/2023] [Indexed: 08/25/2023] Open
Abstract
RNA modifications are dynamic and reversible chemical modifications on substrate RNA that are regulated by specific modifying enzymes. They play important roles in the regulation of many biological processes in various diseases, such as the development of cancer and other diseases. With the help of advanced sequencing technologies, the role of RNA modifications has caught increasing attention in human diseases in scientific research. In this review, we briefly summarized the basic mechanisms of several common RNA modifications, including m6A, m5C, m1A, m7G, Ψ, A-to-I editing and ac4C. Importantly, we discussed their potential functions in human diseases, including cancer, neurological disorders, cardiovascular diseases, metabolic diseases, genetic and developmental diseases, as well as immune disorders. Through the "writing-erasing-reading" mechanisms, RNA modifications regulate the stability, translation, and localization of pivotal disease-related mRNAs to manipulate disease development. Moreover, we also highlighted in this review all currently available RNA-modifier-targeting small molecular inhibitors or activators, most of which are designed against m6A-related enzymes, such as METTL3, FTO and ALKBH5. This review provides clues for potential clinical therapy as well as future study directions in the RNA modification field. More in-depth studies on RNA modifications, their roles in human diseases and further development of their inhibitors or activators are needed for a thorough understanding of epitranscriptomics as well as diagnosis, treatment, and prognosis of human diseases.
Collapse
Affiliation(s)
- Lei Qiu
- State Key Laboratory of Biotherapy and Cancer Center, Research Laboratory of Tumor Epigenetics and Genomics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, P.R. China
| | - Qian Jing
- State Key Laboratory of Biotherapy and Cancer Center, Research Laboratory of Tumor Epigenetics and Genomics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, P.R. China
| | - Yanbo Li
- State Key Laboratory of Biotherapy and Cancer Center, Research Laboratory of Tumor Epigenetics and Genomics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, P.R. China
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Junhong Han
- State Key Laboratory of Biotherapy and Cancer Center, Research Laboratory of Tumor Epigenetics and Genomics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, P.R. China.
| |
Collapse
|
25
|
Chen J, Jin J, Jiang J, Wang Y. Adenosine deaminase acting on RNA 1 (ADAR1) as crucial regulators in cardiovascular diseases: structures, pathogenesis, and potential therapeutic approach. Front Pharmacol 2023; 14:1194884. [PMID: 37663249 PMCID: PMC10469703 DOI: 10.3389/fphar.2023.1194884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 07/11/2023] [Indexed: 09/05/2023] Open
Abstract
Cardiovascular diseases (CVDs) are a group of diseases that have a major impact on global health and are the leading cause of death. A large number of chemical base modifications in ribonucleic acid (RNA) are associated with cardiovascular diseases. A variety of ribonucleic acid modifications exist in cells, among which adenosine deaminase-dependent modification is one of the most common ribonucleic acid modifications. Adenosine deaminase acting on ribonucleic acid 1 (Adenosine deaminase acting on RNA 1) is a widely expressed double-stranded ribonucleic acid adenosine deaminase that forms inosine (A-to-I) by catalyzing the deamination of adenosine at specific sites of the target ribonucleic acid. In this review, we provide a comprehensive overview of the structure of Adenosine deaminase acting on RNA 1 and summarize the regulatory mechanisms of ADAR1-mediated ribonucleic acid editing in cardiovascular diseases, indicating Adenosine deaminase acting on RNA 1 as a promising therapeutic target in cardiovascular diseases.
Collapse
Affiliation(s)
- Jieying Chen
- Department of Cardiology ofThe Second Affiliated Hospital, School of Medicine Zhejiang University, Hangzhou, China
| | - Junyan Jin
- Department of Cardiology ofThe Second Affiliated Hospital, School of Medicine Zhejiang University, Hangzhou, China
- Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, China
| | - Jun Jiang
- Department of Cardiology ofThe Second Affiliated Hospital, School of Medicine Zhejiang University, Hangzhou, China
- Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, China
| | - Yaping Wang
- Department of Cardiology ofThe Second Affiliated Hospital, School of Medicine Zhejiang University, Hangzhou, China
- Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, China
| |
Collapse
|
26
|
Wang B, Tian P, Sun Q, Zhang H, Han L, Zhu B. A novel, effective machine learning-based RNA editing profile for predicting the prognosis of lower-grade gliomas. Heliyon 2023; 9:e18075. [PMID: 37483735 PMCID: PMC10362151 DOI: 10.1016/j.heliyon.2023.e18075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 07/02/2023] [Accepted: 07/05/2023] [Indexed: 07/25/2023] Open
Abstract
Patients with low-grade glioma (LGG) may survive for long time periods, but their tumors often progress to higher-grade lesions. Currently, no cure for LGG is available. A-to-I RNA editing accounts for nearly 90% of all RNA editing events in humans and plays a role in tumorigenesis in various cancers. However, little is known regarding its prognostic role in LGG. On the basis of The Cancer Genome Atlas (TCGA) data, we used LASSO and univariate Cox regression to construct an RNA editing site signature. The results derived from the TCGA dataset were further validated with Gene Expression Omnibus (GEO) and Chinese Glioma Genome Atlas (CGGA) datasets. Five machine learning algorithms (Decision Trees C5.0, XGboost, GBDT, Lightgbm, and Catboost) were used to confirm the prognosis associated with the RNA editing site signature. Finally, we explored immune function, immunotherapy, and potential therapeutic agents in the high- and low-risk groups by using multiple biological prediction websites. A total of 22,739 RNA editing sites were identified, and a signature model consisting of four RNA editing sites (PRKCSH|chr19:11561032, DSEL|chr18:65174489, UGGT1|chr2:128952084, and SOD2|chr6:160101723) was established. Cox regression analysis indicated that the RNA editing signature was an independent prognostic factor, according to the ROC curve (AUC = 0.823), and the nomogram model had good predictive power (C-index = 0.824). In addition, the predictive ability of the RNA editing signature was confirmed with the machine learning model. The sensitivity of PCI-34051 and Elephantin was significantly higher in the high-risk group than the low-risk group, thus potentially providing a marker to predict the effects of lung cancer drug treatment. RNA editing may serve as a novel survival prediction tool, thus offering hope for developing editing-based therapeutic strategies to combat LGG progression. In addition, this tool may help optimize survival risk assessment and individualized care for patients with low-grade gliomas.
Collapse
Affiliation(s)
- Boshen Wang
- Jiangsu Provincial Center for Disease Prevention and Control, Nanjing 210000, Jiangsu, China
- Key Laboratory of Environmental Medicine Engineering of Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, Jiangsu, China
| | - Peijie Tian
- Department of Pathology, Weifang Medical University, China
| | - Qianyu Sun
- Key Laboratory of Environmental Medicine Engineering of Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, Jiangsu, China
| | - Hengdong Zhang
- Jiangsu Provincial Center for Disease Prevention and Control, Nanjing 210000, Jiangsu, China
| | - Lei Han
- Jiangsu Provincial Center for Disease Prevention and Control, Nanjing 210000, Jiangsu, China
| | - Baoli Zhu
- Jiangsu Provincial Center for Disease Prevention and Control, Nanjing 210000, Jiangsu, China
- Key Laboratory of Environmental Medicine Engineering of Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, Jiangsu, China
| |
Collapse
|
27
|
Yuan J, Xu L, Bao HJ, Wang JL, Zhao Y, Chen S. Biological roles of A-to-I editing: implications in innate immunity, cell death, and cancer immunotherapy. J Exp Clin Cancer Res 2023; 42:149. [PMID: 37328893 DOI: 10.1186/s13046-023-02727-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 06/02/2023] [Indexed: 06/18/2023] Open
Abstract
Adenosine-to-inosine (A-to-I) editing, a key RNA modification widely found in eukaryotes, is catalyzed by adenosine deaminases acting on RNA (ADARs). Such RNA editing destabilizes endogenous dsRNAs, which are subsequently recognized by the sensors of innate immune and other proteins as autologous dsRNAs. This prevents the activation of innate immunity and type I interferon-mediated responses, thereby reducing the downstream cell death induced by the activation of the innate immune sensing system. ADARs-mediated editing can also occur in mRNAs and non-coding RNAs (ncRNAs) in different species. In mRNAs, A-to-I editing may lead to missense mutations and the selective splicing of coding regions. Meanwhile, in ncRNAs, A-to-I editing may affect targeting and disrupt ncRNAs maturation, leading to anomalous cell proliferation, invasion, and responses to immunotherapy. This review highlights the biological functions of A-to-I editing, its role in regulating innate immunity and cell death, and its potential molecular significance in tumorigenesis and cancer targeted therapy and immunotherapy.
Collapse
Affiliation(s)
- Jing Yuan
- Department of Obstetrics and Gynecology, Department of Gynecologic Oncology Research Office, Guangzhou Key Laboratory of Targeted Therapy for Gynecologic Oncology, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, The Third Affiliated Hospital of Guangzhou Medical University, No.63 Duobao Road, Liwan District, Guangzhou City, Guangdong Province, 510150, P. R. China
| | - Li Xu
- Department of Laboratory Medicine, The First Hospital of China Medical University, Shenyang, 110001, China
| | - Hai-Juan Bao
- Department of Obstetrics and Gynecology, Department of Gynecologic Oncology Research Office, Guangzhou Key Laboratory of Targeted Therapy for Gynecologic Oncology, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, The Third Affiliated Hospital of Guangzhou Medical University, No.63 Duobao Road, Liwan District, Guangzhou City, Guangdong Province, 510150, P. R. China
| | - Jie-Lin Wang
- Department of Obstetrics and Gynecology, Department of Gynecologic Oncology Research Office, Guangzhou Key Laboratory of Targeted Therapy for Gynecologic Oncology, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, The Third Affiliated Hospital of Guangzhou Medical University, No.63 Duobao Road, Liwan District, Guangzhou City, Guangdong Province, 510150, P. R. China
| | - Yang Zhao
- Department of Obstetrics and Gynecology, Department of Gynecologic Oncology Research Office, Guangzhou Key Laboratory of Targeted Therapy for Gynecologic Oncology, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, The Third Affiliated Hospital of Guangzhou Medical University, No.63 Duobao Road, Liwan District, Guangzhou City, Guangdong Province, 510150, P. R. China.
| | - Shuo Chen
- Department of Obstetrics and Gynecology, Department of Gynecologic Oncology Research Office, Guangzhou Key Laboratory of Targeted Therapy for Gynecologic Oncology, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, The Third Affiliated Hospital of Guangzhou Medical University, No.63 Duobao Road, Liwan District, Guangzhou City, Guangdong Province, 510150, P. R. China.
| |
Collapse
|
28
|
Lu D, Lu J, Liu Q, Zhang Q. Emerging role of the RNA-editing enzyme ADAR1 in stem cell fate and function. Biomark Res 2023; 11:61. [PMID: 37280687 DOI: 10.1186/s40364-023-00503-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Accepted: 05/13/2023] [Indexed: 06/08/2023] Open
Abstract
Stem cells are critical for organism development and the maintenance of tissue homeostasis. Recent studies focusing on RNA editing have indicated how this mark controls stem cell fate and function in both normal and malignant states. RNA editing is mainly mediated by adenosine deaminase acting on RNA 1 (ADAR1). The RNA editing enzyme ADAR1 converts adenosine in a double-stranded RNA (dsRNA) substrate into inosine. ADAR1 is a multifunctional protein that regulate physiological processes including embryonic development, cell differentiation, and immune regulation, and even apply to the development of gene editing technologies. In this review, we summarize the structure and function of ADAR1 with a focus on how it can mediate distinct functions in stem cell self-renewal and differentiation. Targeting ADAR1 has emerged as a potential novel therapeutic strategy in both normal and dysregulated stem cell contexts.
Collapse
Affiliation(s)
- Di Lu
- The Biotherapy Center, the Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510630, China
| | - Jianxi Lu
- The Biotherapy Center, the Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510630, China
| | - Qiuli Liu
- The Biotherapy Center, the Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510630, China.
| | - Qi Zhang
- The Biotherapy Center, the Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510630, China.
| |
Collapse
|
29
|
Pan Y, Phillips JW, Zhang BD, Noguchi M, Kutschera E, McLaughlin J, Nesterenko PA, Mao Z, Bangayan NJ, Wang R, Tran W, Yang HT, Wang Y, Xu Y, Obusan MB, Cheng D, Lee AH, Kadash-Edmondson KE, Champhekar A, Puig-Saus C, Ribas A, Prins RM, Seet CS, Crooks GM, Witte ON, Xing Y. IRIS: Discovery of cancer immunotherapy targets arising from pre-mRNA alternative splicing. Proc Natl Acad Sci U S A 2023; 120:e2221116120. [PMID: 37192158 PMCID: PMC10214192 DOI: 10.1073/pnas.2221116120] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 04/05/2023] [Indexed: 05/18/2023] Open
Abstract
Alternative splicing (AS) is prevalent in cancer, generating an extensive but largely unexplored repertoire of novel immunotherapy targets. We describe Isoform peptides from RNA splicing for Immunotherapy target Screening (IRIS), a computational platform capable of discovering AS-derived tumor antigens (TAs) for T cell receptor (TCR) and chimeric antigen receptor T cell (CAR-T) therapies. IRIS leverages large-scale tumor and normal transcriptome data and incorporates multiple screening approaches to discover AS-derived TAs with tumor-associated or tumor-specific expression. In a proof-of-concept analysis integrating transcriptomics and immunopeptidomics data, we showed that hundreds of IRIS-predicted TCR targets are presented by human leukocyte antigen (HLA) molecules. We applied IRIS to RNA-seq data of neuroendocrine prostate cancer (NEPC). From 2,939 NEPC-associated AS events, IRIS predicted 1,651 epitopes from 808 events as potential TCR targets for two common HLA types (A*02:01 and A*03:01). A more stringent screening test prioritized 48 epitopes from 20 events with "neoantigen-like" NEPC-specific expression. Predicted epitopes are often encoded by microexons of ≤30 nucleotides. To validate the immunogenicity and T cell recognition of IRIS-predicted TCR epitopes, we performed in vitro T cell priming in combination with single-cell TCR sequencing. Seven TCRs transduced into human peripheral blood mononuclear cells (PBMCs) showed high activity against individual IRIS-predicted epitopes, providing strong evidence of isolated TCRs reactive to AS-derived peptides. One selected TCR showed efficient cytotoxicity against target cells expressing the target peptide. Our study illustrates the contribution of AS to the TA repertoire of cancer cells and demonstrates the utility of IRIS for discovering AS-derived TAs and expanding cancer immunotherapies.
Collapse
Affiliation(s)
- Yang Pan
- Bioinformatics Interdepartmental Graduate Program, University of California, Los Angeles, CA90095
- Center for Computational and Genomic Medicine, The Children’s Hospital of Philadelphia, Philadelphia, PA19104
| | - John W. Phillips
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, CA90095
| | - Beatrice D. Zhang
- Center for Computational and Genomic Medicine, The Children’s Hospital of Philadelphia, Philadelphia, PA19104
| | - Miyako Noguchi
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, CA90095
| | - Eric Kutschera
- Center for Computational and Genomic Medicine, The Children’s Hospital of Philadelphia, Philadelphia, PA19104
| | - Jami McLaughlin
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, CA90095
| | | | - Zhiyuan Mao
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, CA90095
| | - Nathanael J. Bangayan
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, CA90095
| | - Robert Wang
- Center for Computational and Genomic Medicine, The Children’s Hospital of Philadelphia, Philadelphia, PA19104
- Graduate Group in Genomics and Computational Biology, University of Pennsylvania, Philadelphia, PA19104
| | - Wendy Tran
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, CA90095
| | - Harry T. Yang
- Bioinformatics Interdepartmental Graduate Program, University of California, Los Angeles, CA90095
| | - Yuanyuan Wang
- Bioinformatics Interdepartmental Graduate Program, University of California, Los Angeles, CA90095
- Center for Computational and Genomic Medicine, The Children’s Hospital of Philadelphia, Philadelphia, PA19104
| | - Yang Xu
- Center for Computational and Genomic Medicine, The Children’s Hospital of Philadelphia, Philadelphia, PA19104
- Graduate Group in Genomics and Computational Biology, University of Pennsylvania, Philadelphia, PA19104
| | - Matthew B. Obusan
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, CA90095
| | - Donghui Cheng
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, CA90095
| | - Alex H. Lee
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, CA90095
- Department of Neurosurgery, David Geffen School of Medicine, University of California, Los Angeles, CA90095
| | - Kathryn E. Kadash-Edmondson
- Center for Computational and Genomic Medicine, The Children’s Hospital of Philadelphia, Philadelphia, PA19104
| | - Ameya Champhekar
- Division of Hematology-Oncology, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA90095
| | - Cristina Puig-Saus
- Division of Hematology-Oncology, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA90095
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, CA90095
- Parker Institute for Cancer Immunotherapy, David Geffen School of Medicine, University of California, Los Angeles, CA90095
| | - Antoni Ribas
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, CA90095
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, CA90095
- Division of Hematology-Oncology, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA90095
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, CA90095
- Parker Institute for Cancer Immunotherapy, David Geffen School of Medicine, University of California, Los Angeles, CA90095
- Department of Surgery, David Geffen School of Medicine, University of California, Los Angeles, CA90095
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA90095
| | - Robert M. Prins
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, CA90095
- Department of Neurosurgery, David Geffen School of Medicine, University of California, Los Angeles, CA90095
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, CA90095
- Parker Institute for Cancer Immunotherapy, David Geffen School of Medicine, University of California, Los Angeles, CA90095
| | - Christopher S. Seet
- Molecular Biology Institute, University of California, Los Angeles, CA90095
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, CA90095
- Division of Hematology-Oncology, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA90095
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, CA90095
| | - Gay M. Crooks
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, CA90095
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, CA90095
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA90095
- Division of Pediatric Hematology-Oncology, Department of Pediatrics, David Geffen School of Medicine, University of California, Los Angeles, CA90095
| | - Owen N. Witte
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, CA90095
- Molecular Biology Institute, University of California, Los Angeles, CA90095
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, CA90095
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, CA90095
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, CA90095
- Parker Institute for Cancer Immunotherapy, David Geffen School of Medicine, University of California, Los Angeles, CA90095
| | - Yi Xing
- Center for Computational and Genomic Medicine, The Children’s Hospital of Philadelphia, Philadelphia, PA19104
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, CA90095
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA19104
- Department of Biomedical and Health Informatics, The Children’s Hospital of Philadelphia, Philadelphia, PA19104
| |
Collapse
|
30
|
Admon A. The biogenesis of the immunopeptidome. Semin Immunol 2023; 67:101766. [PMID: 37141766 DOI: 10.1016/j.smim.2023.101766] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 04/26/2023] [Accepted: 04/26/2023] [Indexed: 05/06/2023]
Abstract
The immunopeptidome is the repertoire of peptides bound and presented by the MHC class I, class II, and non-classical molecules. The peptides are produced by the degradation of most cellular proteins, and in some cases, peptides are produced from extracellular proteins taken up by the cells. This review attempts to first describe some of its known and well-accepted concepts, and next, raise some questions about a few of the established dogmas in this field: The production of novel peptides by splicing is questioned, suggesting here that spliced peptides are extremely rare, if existent at all. The degree of the contribution to the immunopeptidome by degradation of cellular protein by the proteasome is doubted, therefore this review attempts to explain why it is likely that this contribution to the immunopeptidome is possibly overstated. The contribution of defective ribosome products (DRiPs) and non-canonical peptides to the immunopeptidome is noted and methods are suggested to quantify them. In addition, the common misconception that the MHC class II peptidome is mostly derived from extracellular proteins is noted, and corrected. It is stressed that the confirmation of sequence assignments of non-canonical and spliced peptides should rely on targeted mass spectrometry using spiking-in of heavy isotope-labeled peptides. Finally, the new methodologies and modern instrumentation currently available for high throughput kinetics and quantitative immunopeptidomics are described. These advanced methods open up new possibilities for utilizing the big data generated and taking a fresh look at the established dogmas and reevaluating them critically.
Collapse
Affiliation(s)
- Arie Admon
- Faculty of Biology, Technion-Israel Institute of Technology, Israel.
| |
Collapse
|
31
|
Oreper D, Klaeger S, Jhunjhunwala S, Delamarre L. The peptide woods are lovely, dark and deep: Hunting for novel cancer antigens. Semin Immunol 2023; 67:101758. [PMID: 37027981 DOI: 10.1016/j.smim.2023.101758] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 03/22/2023] [Accepted: 03/22/2023] [Indexed: 04/08/2023]
Abstract
Harnessing the patient's immune system to control a tumor is a proven avenue for cancer therapy. T cell therapies as well as therapeutic vaccines, which target specific antigens of interest, are being explored as treatments in conjunction with immune checkpoint blockade. For these therapies, selecting the best suited antigens is crucial. Most of the focus has thus far been on neoantigens that arise from tumor-specific somatic mutations. Although there is clear evidence that T-cell responses against mutated neoantigens are protective, the large majority of these mutations are not immunogenic. In addition, most somatic mutations are unique to each individual patient and their targeting requires the development of individualized approaches. Therefore, novel antigen types are needed to broaden the scope of such treatments. We review high throughput approaches for discovering novel tumor antigens and some of the key challenges associated with their detection, and discuss considerations when selecting tumor antigens to target in the clinic.
Collapse
Affiliation(s)
- Daniel Oreper
- Genentech, 1 DNA way, South San Francisco, 94080 CA, USA.
| | - Susan Klaeger
- Genentech, 1 DNA way, South San Francisco, 94080 CA, USA.
| | | | | |
Collapse
|
32
|
Xia H, McMichael J, Becker-Hapak M, Onyeador OC, Buchli R, McClain E, Pence P, Supabphol S, Richters MM, Basu A, Ramirez CA, Puig-Saus C, Cotto KC, Freshour SL, Hundal J, Kiwala S, Goedegebuure SP, Johanns TM, Dunn GP, Ribas A, Miller CA, Gillanders WE, Fehniger TA, Griffith OL, Griffith M. Computational prediction of MHC anchor locations guides neoantigen identification and prioritization. Sci Immunol 2023; 8:eabg2200. [PMID: 37027480 PMCID: PMC10450883 DOI: 10.1126/sciimmunol.abg2200] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 03/16/2023] [Indexed: 04/09/2023]
Abstract
Neoantigens are tumor-specific peptide sequences resulting from sources such as somatic DNA mutations. Upon loading onto major histocompatibility complex (MHC) molecules, they can trigger recognition by T cells. Accurate neoantigen identification is thus critical for both designing cancer vaccines and predicting response to immunotherapies. Neoantigen identification and prioritization relies on correctly predicting whether the presenting peptide sequence can successfully induce an immune response. Because most somatic mutations are single-nucleotide variants, changes between wild-type and mutated peptides are typically subtle and require cautious interpretation. A potentially underappreciated variable in neoantigen prediction pipelines is the mutation position within the peptide relative to its anchor positions for the patient's specific MHC molecules. Whereas a subset of peptide positions are presented to the T cell receptor for recognition, others are responsible for anchoring to the MHC, making these positional considerations critical for predicting T cell responses. We computationally predicted anchor positions for different peptide lengths for 328 common HLA alleles and identified unique anchoring patterns among them. Analysis of 923 tumor samples shows that 6 to 38% of neoantigen candidates are potentially misclassified and can be rescued using allele-specific knowledge of anchor positions. A subset of anchor results were orthogonally validated using protein crystallography structures. Representative anchor trends were experimentally validated using peptide-MHC stability assays and competition binding assays. By incorporating our anchor prediction results into neoantigen prediction pipelines, we hope to formalize, streamline, and improve the identification process for relevant clinical studies.
Collapse
Affiliation(s)
- Huiming Xia
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
- McDonnell Genome Institute, Washington University School of Medicine, St. Louis, MO, USA
| | - Joshua McMichael
- McDonnell Genome Institute, Washington University School of Medicine, St. Louis, MO, USA
| | - Michelle Becker-Hapak
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Onyinyechi C. Onyeador
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Rico Buchli
- Pure Protein LLC, Oklahoma City, OK 73104, USA
| | - Ethan McClain
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Patrick Pence
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Suangson Supabphol
- Department of Surgery, Washington University School of Medicine, St. Louis, MO, USA
- The Center of Excellence in Systems Biology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Megan M. Richters
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
- McDonnell Genome Institute, Washington University School of Medicine, St. Louis, MO, USA
| | - Anamika Basu
- McDonnell Genome Institute, Washington University School of Medicine, St. Louis, MO, USA
| | - Cody A. Ramirez
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
- McDonnell Genome Institute, Washington University School of Medicine, St. Louis, MO, USA
| | - Cristina Puig-Saus
- Division of Hematology/Oncology, Department of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
- Jonsson Comprehensive Cancer Center, Los Angeles, CA, USA
- Parker Institute for Cancer Immunotherapy, San Francisco, CA, USA
| | - Kelsy C. Cotto
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
- McDonnell Genome Institute, Washington University School of Medicine, St. Louis, MO, USA
| | - Sharon L. Freshour
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
- McDonnell Genome Institute, Washington University School of Medicine, St. Louis, MO, USA
| | - Jasreet Hundal
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
- McDonnell Genome Institute, Washington University School of Medicine, St. Louis, MO, USA
| | - Susanna Kiwala
- McDonnell Genome Institute, Washington University School of Medicine, St. Louis, MO, USA
| | - S. Peter Goedegebuure
- Department of Surgery, Washington University School of Medicine, St. Louis, MO, USA
- Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO, USA
| | - Tanner M. Johanns
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Gavin P. Dunn
- Department of Neurosurgery, Washington University School of Medicine, St. Louis, MO, USA
| | - Antoni Ribas
- Division of Hematology/Oncology, Department of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
- Jonsson Comprehensive Cancer Center, Los Angeles, CA, USA
- Parker Institute for Cancer Immunotherapy, San Francisco, CA, USA
| | - Christopher A. Miller
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
- Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO, USA
| | - William E. Gillanders
- Department of Surgery, Washington University School of Medicine, St. Louis, MO, USA
- Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO, USA
| | - Todd A. Fehniger
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Obi L. Griffith
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
- McDonnell Genome Institute, Washington University School of Medicine, St. Louis, MO, USA
- Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO, USA
- Department of Genetics, Washington University School of Medicine, St. Louis, MO, USA
| | - Malachi Griffith
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
- McDonnell Genome Institute, Washington University School of Medicine, St. Louis, MO, USA
- Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO, USA
- Department of Genetics, Washington University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
33
|
Martínez-Ruiz C, Black JRM, Puttick C, Hill MS, Demeulemeester J, Larose Cadieux E, Thol K, Jones TP, Veeriah S, Naceur-Lombardelli C, Toncheva A, Prymas P, Rowan A, Ward S, Cubitt L, Athanasopoulou F, Pich O, Karasaki T, Moore DA, Salgado R, Colliver E, Castignani C, Dietzen M, Huebner A, Al Bakir M, Tanić M, Watkins TBK, Lim EL, Al-Rashed AM, Lang D, Clements J, Cook DE, Rosenthal R, Wilson GA, Frankell AM, de Carné Trécesson S, East P, Kanu N, Litchfield K, Birkbak NJ, Hackshaw A, Beck S, Van Loo P, Jamal-Hanjani M, Swanton C, McGranahan N. Genomic-transcriptomic evolution in lung cancer and metastasis. Nature 2023; 616:543-552. [PMID: 37046093 PMCID: PMC10115639 DOI: 10.1038/s41586-023-05706-4] [Citation(s) in RCA: 88] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 01/04/2023] [Indexed: 04/14/2023]
Abstract
Intratumour heterogeneity (ITH) fuels lung cancer evolution, which leads to immune evasion and resistance to therapy1. Here, using paired whole-exome and RNA sequencing data, we investigate intratumour transcriptomic diversity in 354 non-small cell lung cancer tumours from 347 out of the first 421 patients prospectively recruited into the TRACERx study2,3. Analyses of 947 tumour regions, representing both primary and metastatic disease, alongside 96 tumour-adjacent normal tissue samples implicate the transcriptome as a major source of phenotypic variation. Gene expression levels and ITH relate to patterns of positive and negative selection during tumour evolution. We observe frequent copy number-independent allele-specific expression that is linked to epigenomic dysfunction. Allele-specific expression can also result in genomic-transcriptomic parallel evolution, which converges on cancer gene disruption. We extract signatures of RNA single-base substitutions and link their aetiology to the activity of the RNA-editing enzymes ADAR and APOBEC3A, thereby revealing otherwise undetected ongoing APOBEC activity in tumours. Characterizing the transcriptomes of primary-metastatic tumour pairs, we combine multiple machine-learning approaches that leverage genomic and transcriptomic variables to link metastasis-seeding potential to the evolutionary context of mutations and increased proliferation within primary tumour regions. These results highlight the interplay between the genome and transcriptome in influencing ITH, lung cancer evolution and metastasis.
Collapse
Affiliation(s)
- Carlos Martínez-Ruiz
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
- Cancer Genome Evolution Research Group, Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
| | - James R M Black
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
- Cancer Genome Evolution Research Group, Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
| | - Clare Puttick
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
- Cancer Genome Evolution Research Group, Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute and University College London Cancer Institute, London, UK
| | - Mark S Hill
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute and University College London Cancer Institute, London, UK
| | - Jonas Demeulemeester
- Cancer Genomics Laboratory, The Francis Crick Institute, London, UK
- Integrative Cancer Genomics Laboratory, Department of Oncology, KU Leuven, Leuven, Belgium
- VIB-KU Leuven Center for Cancer Biology, Leuven, Belgium
| | - Elizabeth Larose Cadieux
- Cancer Genomics Laboratory, The Francis Crick Institute, London, UK
- Medical Genomics, University College London Cancer Institute, London, UK
| | - Kerstin Thol
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
- Cancer Genome Evolution Research Group, Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
| | - Thomas P Jones
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
- Cancer Genome Evolution Research Group, Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
| | - Selvaraju Veeriah
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
| | | | - Antonia Toncheva
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
| | - Paulina Prymas
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
| | - Andrew Rowan
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute and University College London Cancer Institute, London, UK
| | - Sophia Ward
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute and University College London Cancer Institute, London, UK
- Advanced Sequencing Facility, The Francis Crick Institute, London, UK
| | - Laura Cubitt
- Advanced Sequencing Facility, The Francis Crick Institute, London, UK
| | - Foteini Athanasopoulou
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute and University College London Cancer Institute, London, UK
- Advanced Sequencing Facility, The Francis Crick Institute, London, UK
| | - Oriol Pich
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute and University College London Cancer Institute, London, UK
| | - Takahiro Karasaki
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute and University College London Cancer Institute, London, UK
- Cancer Metastasis Laboratory, University College London Cancer Institute, London, UK
| | - David A Moore
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute and University College London Cancer Institute, London, UK
- Department of Cellular Pathology, University College London Hospitals, London, UK
| | - Roberto Salgado
- Department of Pathology, ZAS Hospitals, Antwerp, Belgium
- Division of Research, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Emma Colliver
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute and University College London Cancer Institute, London, UK
| | - Carla Castignani
- Cancer Genomics Laboratory, The Francis Crick Institute, London, UK
- Medical Genomics, University College London Cancer Institute, London, UK
| | - Michelle Dietzen
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
- Cancer Genome Evolution Research Group, Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute and University College London Cancer Institute, London, UK
| | - Ariana Huebner
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
- Cancer Genome Evolution Research Group, Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute and University College London Cancer Institute, London, UK
| | - Maise Al Bakir
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute and University College London Cancer Institute, London, UK
| | - Miljana Tanić
- Medical Genomics, University College London Cancer Institute, London, UK
- Experimental Oncology, Institute for Oncology and Radiology of Serbia, Belgrade, Serbia
| | - Thomas B K Watkins
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute and University College London Cancer Institute, London, UK
| | - Emilia L Lim
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute and University College London Cancer Institute, London, UK
| | - Ali M Al-Rashed
- Centre for Nephrology, Division of Medicine, University College London, London, UK
| | - Danny Lang
- Scientific Computing STP, Francis Crick Institute, London, UK
| | - James Clements
- Scientific Computing STP, Francis Crick Institute, London, UK
| | - Daniel E Cook
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute and University College London Cancer Institute, London, UK
| | - Rachel Rosenthal
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute and University College London Cancer Institute, London, UK
| | - Gareth A Wilson
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute and University College London Cancer Institute, London, UK
| | - Alexander M Frankell
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute and University College London Cancer Institute, London, UK
| | | | - Philip East
- Bioinformatics and Biostatistics, The Francis Crick Institute, London, UK
| | - Nnennaya Kanu
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
| | - Kevin Litchfield
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
- Tumour Immunogenomics and Immunosurveillance Laboratory, University College London Cancer Institute, London, UK
| | - Nicolai J Birkbak
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute and University College London Cancer Institute, London, UK
- Department of Molecular Medicine, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Bioinformatics Research Centre, Aarhus University, Aarhus, Denmark
| | - Allan Hackshaw
- Cancer Research UK & UCL Cancer Trials Centre, London, UK
| | - Stephan Beck
- Medical Genomics, University College London Cancer Institute, London, UK
| | - Peter Van Loo
- Cancer Genomics Laboratory, The Francis Crick Institute, London, UK
- Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Mariam Jamal-Hanjani
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
- Cancer Metastasis Laboratory, University College London Cancer Institute, London, UK
- Department of Medical Oncology, University College London Hospitals, London, UK
| | - Charles Swanton
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK.
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute and University College London Cancer Institute, London, UK.
- Department of Medical Oncology, University College London Hospitals, London, UK.
| | - Nicholas McGranahan
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK.
- Cancer Genome Evolution Research Group, Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK.
| |
Collapse
|
34
|
Shi S, Chen S, Wang M, Guo B, He Y, Chen H. Clinical relevance of RNA editing profiles in lung adenocarcinoma. Front Genet 2023; 14:1084869. [PMID: 36999050 PMCID: PMC10043753 DOI: 10.3389/fgene.2023.1084869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 02/27/2023] [Indexed: 03/12/2023] Open
Abstract
Background: Lung adenocarcinoma (LUAD) is the most frequently occurring lung cancer worldwide, with increasing death rates. It belongs to the non-small cell lung cancer (NSCLC) type and has a strong association with previous smoking history. Growing evidence has demonstrated the significance of adenosine-to-inosine RNA editing (ATIRE) dysregulation in cancer. The aim of the present study was to evaluate ATIRE events that might be clinically useful or tumorigenic.Methods: To explore survival-related ATIRE events in LUAD, its ATIRE profiles, gene expression data, and corresponding patients’ clinical information were downloaded from the Cancer Genome Atlas (TCGA) and the synapse database. We evaluated 10441 ATIRE in 440 LUAD patients from the TCGA database. ATIRE profiles were merged with TCGA survival data. We selected prognostic ATIRE sites, using a univariate Cox analysis (p < 0.001). Cox proportional hazards regression and lasso regression analysis were used to determine survival-related ATIRE sites, create risk ratings for those sites, and build a prognostic model and a nomogram for assessing overall survival (OS). Six ATIRE sites were used in the prognostic model construction and patients were randomly divided into a validation cohort (n = 176) and a training cohort (n = 264). The “Pheatmap” program was used to create risk curves that included risk score, survival time, and expression of ATIRE sites. We also determined the clinical prediction model’s discrimination. The decision curve analysis and the 1-, 2-, and 3-year corrective curves were simultaneously used to evaluate the nomogram. We also evaluated the relationship between the amount of ATIRE sites and host gene expression and the impact of ATIRE expression on transcriptome expression.Results: The pyroglutamyl-peptidase I (PGPEP1) chr19:18476416A > I, ankyrin repeat domain 36B pseudogene 1 (ANKRD36BP1) (dist = 3,795), T-box transcription factor (TBX19) (dist = 29815) chr1:168220463A > I, Syntrophin Beta 2 (SNTB2) chr16:69338598A > I, hook microtubule-tethering protein 3 (HOOK3) chr8:42883441A > I, NADH dehydrogenase flavoprotein 3 (NDUFV3) chr21:44329452A > I, and FK506-binding protein 11 (FKBP11) chr12:49316769A > I were used in the prognostic model construction. High levels of risk score were significantly associated with worse OS and progression-free survival. Tumour stage and risk score were related to OS in LUAD patients. The predictors were among the prognostic nomogram model’s risk score, age, gender, and tumor stage. The calibration plot and C-index (0.718) demonstrated the significant accuracy of nomogram’s predictions. ATIRE level was markedly elevated in tumor tissues and was highly variable between patients.Conclusion: Events involving ATIRE in LUAD were highly functional and clinically relevant. The RNA editing-based model provides a solid framework for further investigation of the functions of RNA editing in non-coding areas and may be used as a unique method for predicting LUAD survival.
Collapse
Affiliation(s)
- Si Shi
- The Respiratory Department, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Shibin Chen
- Medical Research Center, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Menghang Wang
- The Respiratory Department, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Bingchen Guo
- Department of Cardiology, The first Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Yaowu He
- The Respiratory Department, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Hong Chen
- The Respiratory Department, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
- *Correspondence: Hong Chen,
| |
Collapse
|
35
|
Guo M, Li F, Zhao L, Fang Z, Yu H, Songyang Z, Xiong Y. Pan-cancer investigation of C-to-U editing reveals its important role in cancer development and new targets for cancer treatment. Front Oncol 2023; 13:1097667. [PMID: 36969056 PMCID: PMC10034049 DOI: 10.3389/fonc.2023.1097667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 02/20/2023] [Indexed: 03/11/2023] Open
Abstract
RNA editing is prevalent in the transcriptome and is important for multiple cellular processes. C-to-U RNA editing sites (RES) are relatively rare and understudied in humans, compared to A-to-I editing. However, the functional impact of C-to-U editing in human cancers also remains elusive. Here, we conducted the first comprehensive survey of pan-cancer C-to-U RESs. Surprisingly, we found that the same subset of RESs were associated with multiple features, including patient survival, cancer stemness, tumor mutation burden (TMB), and tumor-infiltrated immune cell compositions (ICC), suggesting an RES-mediated close relationship between these features. For example, editing sites for GALM or IFI6 that led to higher expression were linked to lower survival and more cancer stemness. Also, TMB was found to be lower in prostate cancer cases with ICC-associated RESs in CAVIN1 or VWA8 or higher in prostate cancer cases with thymoma. With experimental support, we also found RESs in CST3, TPI1, or TNC that are linked to immune checkpoint blockade by anti-PD1. We also confirmed through experiments that two C-to-U RESs in CSNK2B or RPS14 had different effects on colon cancer cells. Patients with CSNK2B editing, which increased the expression of the oncogene CLDN18, had a lower response to drugs. On the other hand, drugs worked better on people who had RPS14 editing, which greatly increased ribosome production. In summary, our study demonstrated the important roles of C-to-U RESs across cancers and shed light on personalized cancer therapy.
Collapse
Affiliation(s)
- Mengbiao Guo
- Key Laboratory of Gene Engineering of the Ministry of Education, Institute of Healthy Aging Research, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Feng Li
- Key Laboratory of Gene Engineering of the Ministry of Education, Institute of Healthy Aging Research, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Linghao Zhao
- Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
| | - Zhengwen Fang
- Key Laboratory of Gene Engineering of the Ministry of Education, Institute of Healthy Aging Research, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Huichuan Yu
- Department of Colorectal Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Zhou Songyang
- Key Laboratory of Gene Engineering of the Ministry of Education, Institute of Healthy Aging Research, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Yuanyan Xiong
- Key Laboratory of Gene Engineering of the Ministry of Education, Institute of Healthy Aging Research, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
36
|
Ahn R, Cui Y, White FM. Antigen discovery for the development of cancer immunotherapy. Semin Immunol 2023; 66:101733. [PMID: 36841147 DOI: 10.1016/j.smim.2023.101733] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 02/15/2023] [Accepted: 02/16/2023] [Indexed: 02/25/2023]
Abstract
Central to successful cancer immunotherapy is effective T cell antitumor immunity. Multiple targeted immunotherapies engineered to invigorate T cell-driven antitumor immunity rely on identifying the repertoire of T cell antigens expressed on the tumor cell surface. Mass spectrometry-based survey of such antigens ("immunopeptidomics") combined with other omics platforms and computational algorithms has been instrumental in identifying and quantifying tumor-derived T cell antigens. In this review, we discuss the types of tumor antigens that have emerged for targeted cancer immunotherapy and the immunopeptidomics methods that are central in MHC peptide identification and quantification. We provide an overview of the strength and limitations of mass spectrometry-driven approaches and how they have been integrated with other technologies to discover targetable T cell antigens for cancer immunotherapy. We highlight some of the emerging cancer immunotherapies that successfully capitalized on immunopeptidomics, their challenges, and mass spectrometry-based strategies that can support their development.
Collapse
Affiliation(s)
- Ryuhjin Ahn
- David H. Koch Institute for Integrative Cancer Research, Cambridge, MA 02139, USA; Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Yufei Cui
- David H. Koch Institute for Integrative Cancer Research, Cambridge, MA 02139, USA; Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Forest M White
- David H. Koch Institute for Integrative Cancer Research, Cambridge, MA 02139, USA; Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| |
Collapse
|
37
|
Long non-coding RNA-derived peptides are immunogenic and drive a potent anti-tumour response. Nat Commun 2023; 14:1078. [PMID: 36841868 PMCID: PMC9968330 DOI: 10.1038/s41467-023-36826-0] [Citation(s) in RCA: 58] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 02/15/2023] [Indexed: 02/27/2023] Open
Abstract
Protein arginine methyltransferase (PRMT) 5 is over-expressed in a variety of cancers and the master transcription regulator E2F1 is an important methylation target. We have explored the role of PRMT5 and E2F1 in regulating the non-coding genome and report here a striking effect on long non-coding (lnc) RNA gene expression. Moreover, many MHC class I protein-associated peptides were derived from small open reading frames in the lncRNA genes. Pharmacological inhibition of PRMT5 or adjusting E2F1 levels qualitatively altered the repertoire of lncRNA-derived peptide antigens displayed by tumour cells. When presented to the immune system as either ex vivo-loaded dendritic cells or expressed from a viral vector, lncRNA-derived peptides drove a potent antigen-specific CD8 T lymphocyte response, which translated into a significant delay in tumour growth. Thus, lncRNA genes encode immunogenic peptides that can be deployed as a cancer vaccine.
Collapse
|
38
|
He Y, Zhang X, Zhang S, Zhang Y, Xie B, Huang M, Zhang J, Shen L, Long W, Liu Q. Prognostic RNA-editing signature predicts immune functions and therapy responses in gliomas. Front Genet 2023; 14:1120354. [PMID: 36845382 PMCID: PMC9945230 DOI: 10.3389/fgene.2023.1120354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 01/30/2023] [Indexed: 02/11/2023] Open
Abstract
Background: RNA-editing refers to post-transcriptional transcript alterations that lead to the formation of protein isoforms and the progression of various tumors. However, little is known about its roles in gliomas. Aim: The aim of this study is to identify prognosis-related RNA-editing sites (PREs) in glioma, and to explore their specific effects on glioma and potential mechanisms of action. Methods: Glioma genomic and clinical data were obtained from TCGA database and SYNAPSE platform. The PREs was identified with regression analyses and the corresponding prognostic model was evaluated with survival analysis and receiver operating characteristic curve. Functional enrichment of differentially expressed genes between risk groups was performed to explore action mechanisms. The CIBERSORT, ssGSEA, gene set variation analysis, and ESTIMATE algorithms were employed to assess the association between PREs risk score and variations of tumor microenvironment, immune cell infiltration, immune checkpoints, and immune responses. The maftools and pRRophetic packages were used to evaluate tumor mutation burden and predict drug sensitivity. Results: A total of thirty-five RNA-editing sites were identified as prognosis-related in glioma. Functional enrichment implied variation of immune-related pathways between groups. Notably, glioma samples with higher PREs risk score exhibited higher immune score, lower tumor purity, increased infiltration of macrophage and regulatory T cells, suppressed NK cell activation, elevated immune function score, upregulated immune checkpoint gene expression, and higher tumor mutation burden, all of which implied worse response to immune therapy. Finally, high-risk glioma samples are more sensitive to Z-LLNle-CHO and temozolomide, while the low-risk ones respond better to Lisitinib. Conclusion: We identified a PREs signature of thirty-five RNA editing sites and calculated their corresponding risk coefficients. Higher total signature risk score indicates worse prognosis and worse immune response and lower sensitivity to immune therapy. The novel PREs signature could help risk stratification, immunotherapy response prediction, individualized treatment strategy-making for glioma patients, and development of novel therapeutic approaches.
Collapse
Affiliation(s)
- Yi He
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, China,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Xingshu Zhang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, China,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Sen Zhang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, China,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Yi Zhang
- Department of Neurosurgery, People’s Hospital of Dengzhou, Dengzhou, Henan, China
| | - Bo Xie
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, China,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Meng Huang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, China,Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China,Guangdong Cardiovascular Institute, Guangzhou, China
| | - Junjie Zhang
- Department of Thoracic Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Lili Shen
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Wenyong Long
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, China,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China,*Correspondence: Wenyong Long, ; Qing Liu,
| | - Qing Liu
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, China,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China,*Correspondence: Wenyong Long, ; Qing Liu,
| |
Collapse
|
39
|
Chan TW, Dodson JP, Arbet J, Boutros PC, Xiao X. Single-Cell Analysis in Lung Adenocarcinoma Implicates RNA Editing in Cancer Innate Immunity and Patient Prognosis. Cancer Res 2023; 83:374-385. [PMID: 36449563 PMCID: PMC9898195 DOI: 10.1158/0008-5472.can-22-1062] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 10/08/2022] [Accepted: 11/23/2022] [Indexed: 12/05/2022]
Abstract
RNA editing modifies single nucleotides of RNAs, regulating primary protein structure and protein abundance. In recent years, the diversity of proteins and complexity of gene regulation associated with RNA editing dysregulation has been increasingly appreciated in oncology. Large-scale shifts in editing have been observed in bulk tumors across various cancer types. However, RNA editing in single cells and individual cell types within tumors has not been explored. By profiling editing in single cells from lung adenocarcinoma biopsies, we found that the increased editing trend of bulk lung tumors was unique to cancer cells. Elevated editing levels were observed in cancer cells resistant to targeted therapy, and editing sites associated with drug response were enriched. Consistent with the regulation of antiviral pathways by RNA editing, higher editing levels in cancer cells were associated with reduced antitumor innate immune response, especially levels of natural killer cell infiltration. In addition, the level of RNA editing in cancer cells was positively associated with somatic point mutation burden. This observation motivated the definition of a new metric, RNA editing load, reflecting the amount of RNA mutations created by RNA editing. Importantly, in lung cancer, RNA editing load was a stronger predictor of patient survival than DNA mutations. This study provides the first single cell dissection of editing in cancer and highlights the significance of RNA editing load in cancer prognosis. SIGNIFICANCE RNA editing analysis in single lung adenocarcinoma cells uncovers RNA mutations that correlate with tumor mutation burden and cancer innate immunity and reveals the amount of RNA mutations that strongly predicts patient survival. See related commentary by Luo and Liang, p. 351.
Collapse
Affiliation(s)
- Tracey W. Chan
- Bioinformatics interdepartmental program, University of California, Los Angeles, CA, USA
| | - Jack P. Dodson
- Bioinformatics interdepartmental program, University of California, Los Angeles, CA, USA,Jonsson Comprehensive Cancer Center, University of California, Los Angeles, California, CA, USA,Department of Integrative Biology and Physiology, University of California, Los Angeles, California, CA, USA
| | - Jaron Arbet
- Department of Urology, David Geffen School of Medicine, University of California, Los Angeles, CA, USA.,Department of Human Genetics, University of California, Los Angeles, CA, USA.,Jonsson Comprehensive Cancer Center, University of California, Los Angeles, California, CA, USA
| | - Paul C. Boutros
- Bioinformatics interdepartmental program, University of California, Los Angeles, CA, USA,Department of Urology, David Geffen School of Medicine, University of California, Los Angeles, CA, USA.,Department of Human Genetics, University of California, Los Angeles, CA, USA.,Jonsson Comprehensive Cancer Center, University of California, Los Angeles, California, CA, USA,Molecular Biology Institute, University of California, Los Angeles, California, CA, USA,Institute for Quantitative and Computational Sciences, University of California, Los Angeles, California, CA, USA,Institute for Precision Health, University of California, Los Angeles, California, CA
| | - Xinshu Xiao
- Bioinformatics interdepartmental program, University of California, Los Angeles, CA, USA,Jonsson Comprehensive Cancer Center, University of California, Los Angeles, California, CA, USA,Molecular Biology Institute, University of California, Los Angeles, California, CA, USA,Department of Integrative Biology and Physiology, University of California, Los Angeles, California, CA, USA,Correspondence: Xinshu Xiao, ; 310-206-6522, 611 Charles E. Young Drive South, Terasaki Life Sciences Building, 2000E, UCLA, Los Angeles, CA, 90095
| |
Collapse
|
40
|
The fidelity of transcription in human cells. Proc Natl Acad Sci U S A 2023; 120:e2210038120. [PMID: 36696440 PMCID: PMC9945944 DOI: 10.1073/pnas.2210038120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
To determine the error rate of transcription in human cells, we analyzed the transcriptome of H1 human embryonic stem cells with a circle-sequencing approach that allows for high-fidelity sequencing of the transcriptome. These experiments identified approximately 100,000 errors distributed over every major RNA species in human cells. Our results indicate that different RNA species display different error rates, suggesting that human cells prioritize the fidelity of some RNAs over others. Cross-referencing the errors that we detected with various genetic and epigenetic features of the human genome revealed that the in vivo error rate in human cells changes along the length of a transcript and is further modified by genetic context, repetitive elements, epigenetic markers, and the speed of transcription. Our experiments further suggest that BRCA1, a DNA repair protein implicated in breast cancer, has a previously unknown role in the suppression of transcription errors. Finally, we analyzed the distribution of transcription errors in multiple tissues of a new mouse model and found that they occur preferentially in neurons, compared to other cell types. These observations lend additional weight to the idea that transcription errors play a key role in the progression of various neurological disorders, including Alzheimer's disease.
Collapse
|
41
|
Hannani D, Leplus E, Laulagnier K, Chaperot L, Plumas J. Leveraging a powerful allogeneic dendritic cell line towards neoantigen-based cancer vaccines. Genes Cancer 2023; 14:3-11. [PMID: 36726965 PMCID: PMC9886307 DOI: 10.18632/genesandcancer.229] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 01/20/2023] [Indexed: 01/31/2023] Open
Abstract
In recent years, immunotherapy has finally found its place in the anti-cancer therapeutic arsenal, even becoming standard of care as first line treatment for metastatic forms. The clinical benefit provided by checkpoint blockers such as anti-PD-1/PD-L1 in many cancers revolutionized the field. However, too many patients remain refractory to these treatments due to weak baseline anti-cancer immunity. There is therefore a need to boost the frequency and function of patients' cytotoxic CD8+ cellular effectors by targeting immunogenic and tumor-restricted antigens, such as neoantigens using an efficient vaccination platform. Dendritic cells (DC) are the most powerful immune cell subset for triggering cellular immune response. However, autologous DC-based vaccines display several limitations, such as the lack of reproducibility and the limited number of cells that can be manufactured. Here we discuss the advantages of a new therapeutic vaccine based on an allogeneic Plasmacytoid DC cell line, which is easy to produce and represents a powerful platform for priming and expanding anti-neoantigen cytotoxic CD8+ T-cells.
Collapse
Affiliation(s)
| | | | | | - Laurence Chaperot
- 2R&D Laboratory, Etablissement Français du Sang Auvergne Rhône-Alpes (EFS AURA), Grenoble, France
| | - Joël Plumas
- 1PDC*line Pharma, Grenoble, France,2R&D Laboratory, Etablissement Français du Sang Auvergne Rhône-Alpes (EFS AURA), Grenoble, France,Correspondence to:Joël Plumas, email:
| |
Collapse
|
42
|
Wang SY, Zhang LJ, Chen GJ, Ni QQ, Huang Y, Zhang D, Han FY, He WF, He LL, Ding YQ, Jiao HL, Ye YP. COPA A-to-I RNA editing hijacks endoplasmic reticulum stress to promote metastasis in colorectal cancer. Cancer Lett 2023; 553:215995. [PMID: 36336148 DOI: 10.1016/j.canlet.2022.215995] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 10/29/2022] [Accepted: 10/31/2022] [Indexed: 11/06/2022]
Abstract
RNA editing is among the most common RNA level modifications for generating amino acid changes. We identified a COPA A-to-I RNA editing event in CRC metastasis. Our results showed that the COPA A-to-I RNA editing rate was significantly increased in metastatic CRC tissues and was closely associated with aggressive tumors in the T and N stages. The COPA I164V protein damaged the Golgi-ER reverse transport function, induced ER stress, promoted the translocation of the transcription factors ATF6, XBP1 and ATF4 into the nucleus, and activated the expression of MALAT1, MET, ZEB1, and lead to CRC cell invasion and metastasis. Moreover, the COPA A-to-I RNA editing rate was positively correlated with the immune infiltration score. Collectively, the COPA I164V protein hijacked ER stress to promote the metastasis of CRC, and the COPA A-to-I RNA editing rate may be a potential predictor for patient response to immune checkpoint inhibitor (ICIs) treatment.
Collapse
Affiliation(s)
- Shu-Yang Wang
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China; Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China; Guangdong Province Key Laboratory of Molecular Tumor Pathology, China
| | - Ling-Jie Zhang
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China; Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China; Guangdong Province Key Laboratory of Molecular Tumor Pathology, China
| | - Guo-Jun Chen
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China; Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China; Guangdong Province Key Laboratory of Molecular Tumor Pathology, China
| | - Qi-Qi Ni
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China; Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China; Guangdong Province Key Laboratory of Molecular Tumor Pathology, China
| | - Yuan Huang
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China; Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China; Guangdong Province Key Laboratory of Molecular Tumor Pathology, China
| | - Dan Zhang
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China; Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China; Guangdong Province Key Laboratory of Molecular Tumor Pathology, China
| | - Fang-Yi Han
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China; Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China; Guangdong Province Key Laboratory of Molecular Tumor Pathology, China
| | - Wen-Feng He
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China; Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China; Guangdong Province Key Laboratory of Molecular Tumor Pathology, China
| | - Li-Ling He
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China; Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China; Guangdong Province Key Laboratory of Molecular Tumor Pathology, China
| | - Yan-Qing Ding
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China; Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China; Guangdong Province Key Laboratory of Molecular Tumor Pathology, China.
| | - Hong-Li Jiao
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China; Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China; Guangdong Province Key Laboratory of Molecular Tumor Pathology, China.
| | - Ya-Ping Ye
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China; Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China; Guangdong Province Key Laboratory of Molecular Tumor Pathology, China.
| |
Collapse
|
43
|
Neoantigens: promising targets for cancer therapy. Signal Transduct Target Ther 2023; 8:9. [PMID: 36604431 PMCID: PMC9816309 DOI: 10.1038/s41392-022-01270-x] [Citation(s) in RCA: 371] [Impact Index Per Article: 185.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/14/2022] [Accepted: 11/27/2022] [Indexed: 01/07/2023] Open
Abstract
Recent advances in neoantigen research have accelerated the development and regulatory approval of tumor immunotherapies, including cancer vaccines, adoptive cell therapy and antibody-based therapies, especially for solid tumors. Neoantigens are newly formed antigens generated by tumor cells as a result of various tumor-specific alterations, such as genomic mutation, dysregulated RNA splicing, disordered post-translational modification, and integrated viral open reading frames. Neoantigens are recognized as non-self and trigger an immune response that is not subject to central and peripheral tolerance. The quick identification and prediction of tumor-specific neoantigens have been made possible by the advanced development of next-generation sequencing and bioinformatic technologies. Compared to tumor-associated antigens, the highly immunogenic and tumor-specific neoantigens provide emerging targets for personalized cancer immunotherapies, and serve as prospective predictors for tumor survival prognosis and immune checkpoint blockade responses. The development of cancer therapies will be aided by understanding the mechanism underlying neoantigen-induced anti-tumor immune response and by streamlining the process of neoantigen-based immunotherapies. This review provides an overview on the identification and characterization of neoantigens and outlines the clinical applications of prospective immunotherapeutic strategies based on neoantigens. We also explore their current status, inherent challenges, and clinical translation potential.
Collapse
|
44
|
Cuddleston WH, Fan X, Sloofman L, Liang L, Mossotto E, Moore K, Zipkowitz S, Wang M, Zhang B, Wang J, Sestan N, Devlin B, Roeder K, Sanders SJ, Buxbaum JD, Breen MS. Spatiotemporal and genetic regulation of A-to-I editing throughout human brain development. Cell Rep 2022; 41:111585. [PMID: 36323256 PMCID: PMC9704047 DOI: 10.1016/j.celrep.2022.111585] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 07/06/2022] [Accepted: 10/07/2022] [Indexed: 11/06/2022] Open
Abstract
Posttranscriptional RNA modifications by adenosine-to-inosine (A-to-I) editing are abundant in the brain, yet elucidating functional sites remains challenging. To bridge this gap, we investigate spatiotemporal and genetically regulated A-to-I editing sites across prenatal and postnatal stages of human brain development. More than 10,000 spatiotemporally regulated A-to-I sites were identified that occur predominately in 3' UTRs and introns, as well as 37 sites that recode amino acids in protein coding regions with precise changes in editing levels across development. Hyper-edited transcripts are also enriched in the aging brain and stabilize RNA secondary structures. These features are conserved in murine and non-human primate models of neurodevelopment. Finally, thousands of cis-editing quantitative trait loci (edQTLs) were identified with unique regulatory effects during prenatal and postnatal development. Collectively, this work offers a resolved atlas linking spatiotemporal variation in editing levels to genetic regulatory effects throughout distinct stages of brain maturation.
Collapse
Affiliation(s)
- Winston H Cuddleston
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Pamela Sklar Division of Psychiatric Genomics, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Xuanjia Fan
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Pamela Sklar Division of Psychiatric Genomics, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Laura Sloofman
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Pamela Sklar Division of Psychiatric Genomics, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Lindsay Liang
- Department of Psychiatry and Behavioral Sciences and UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Enrico Mossotto
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Pamela Sklar Division of Psychiatric Genomics, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Kendall Moore
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Pamela Sklar Division of Psychiatric Genomics, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Sarah Zipkowitz
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Pamela Sklar Division of Psychiatric Genomics, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Minghui Wang
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Mount Sinai Center for Transformative Disease Modeling, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA; Icahn Institute for Genomics, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
| | - Bin Zhang
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Mount Sinai Center for Transformative Disease Modeling, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA; Icahn Institute for Genomics, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
| | - Jiebiao Wang
- Department of Biostatistics, University of Pittsburgh, 130 De Soto Street, Pittsburgh, PA 15261, USA
| | - Nenad Sestan
- Department of Neuroscience and Kavli Institute for Neuroscience, Yale School of Medicine, New Haven, CT 06510, USA; Program in Cellular Neuroscience, Neurodegeneration, and Repair and Yale Child Study Center, Yale School of Medicine, New Haven, CT 06510, USA; Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06520, USA; Department of Genetics, Yale University School of Medicine, New Haven, CT 06520, USA; Department of Comparative Medicine, Program in Integrative Cell Signaling and Neurobiology of Metabolism, Yale School of Medicine, New Haven, CT 06510, USA
| | - Bernie Devlin
- Department of Psychiatry, University of Pittsburgh School of Medicine, 3811 O'Hara Street, Pittsburgh, PA 15213, USA
| | - Kathryn Roeder
- Carnegie Mellon University, Statistics & Data Science Department, Pittsburgh, PA 15213, USA
| | - Stephan J Sanders
- Department of Psychiatry and Behavioral Sciences and UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Joseph D Buxbaum
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Pamela Sklar Division of Psychiatric Genomics, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Michael S Breen
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Pamela Sklar Division of Psychiatric Genomics, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| |
Collapse
|
45
|
Nagel R, Pataskar A, Champagne J, Agami R. Boosting Antitumor Immunity with an Expanded Neoepitope Landscape. Cancer Res 2022; 82:3637-3649. [PMID: 35904353 PMCID: PMC9574376 DOI: 10.1158/0008-5472.can-22-1525] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 07/07/2022] [Accepted: 07/21/2022] [Indexed: 01/07/2023]
Abstract
Immune-checkpoint blockade therapy has been successfully applied to many cancers, particularly tumors that harbor a high mutational burden and consequently express a high abundance of neoantigens. However, novel approaches are needed to improve the efficacy of immunotherapy for treating tumors that lack a high load of classic genetically derived neoantigens. Recent discoveries of broad classes of nongenetically encoded and inducible neoepitopes open up new avenues for therapeutic development to enhance sensitivity to immunotherapies. In this review, we discuss recent work on neoantigen discovery, with an emphasis on novel classes of noncanonical neoepitopes.
Collapse
Affiliation(s)
- Remco Nagel
- Division of Oncogenomics, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Abhijeet Pataskar
- Division of Oncogenomics, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Julien Champagne
- Division of Oncogenomics, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Reuven Agami
- Division of Oncogenomics, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, the Netherlands
- Erasmus MC, Rotterdam University, Rotterdam, the Netherlands
| |
Collapse
|
46
|
Li H, Wang J, Tu J. A-to-I nonsynonymous RNA editing was significantly enriched in the ubiquitination site and correlated with clinical features and immune response. Sci Rep 2022; 12:15079. [PMID: 36064557 PMCID: PMC9445000 DOI: 10.1038/s41598-022-18926-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 08/22/2022] [Indexed: 11/09/2022] Open
Abstract
RNA editing is a post-transcriptional process that alters RNA sequence in a site-specific manner. A-to-I editing is the most abundant as well as the most well-studied type of RNA editing. About 0.5% of A-to-I editing sites were located in the coding regions. Despite of thousands of identified A-to-I nonsynonymous editing sites, the function of nonsynonymous editing was poorly studied. Here, we found that the nonsynonymous editing was significantly enriched in the ubiquitination site, compared to the synonymous editing. This enrichment was also in a modification type dependent manner, since it was not significantly enriched in other modification types. This observation was consistent with previous study that the codons for lysine (AAG and AAA) were enriched in the preferred deamination site for RNA editing. The peptides from proteomic data in CPTAC supported that mRNAs harboring edited ubiquitination sites can be translated into protein in cells. We identified the editing sites on ubiquitination site were significantly differential edited between tumor and para-tumor samples as well as among different subtypes in TCGA datasets and also correlated with clinical outcome, especially for the nonsynonymous editing sites on GSTM5, WDR1, SSR4 and PSMC4. Finally, the enrichment analysis revealed that the function of these above genes was specifically enriched in the immune response pathway. Our study shed a light on understanding the functions of nonsynonymous editing in tumorigenesis and provided nonsynonymous editing targets for potential cancer diagnosis and therapy.
Collapse
Affiliation(s)
- Haixia Li
- Department of Obstetrics and Gynecology, Beijing Tiantan Hospital, Capital Medical University, Bejing, China
| | - Jianjun Wang
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Juchuanli Tu
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences; Cancer Institutes; Key Laboratory of Breast Cancer in Shanghai; The Shanghai Key Laboratory of Medical Epigenetics; The International Co-Laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology; Shanghai Medical College, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
47
|
Kim GB, Fritsche J, Bunk S, Mahr A, Unverdorben F, Tosh K, Kong H, Maldini CR, Lau C, Srivatsa S, Jiang S, Glover J, Dopkin D, Zhang CX, Schuster H, Kowalewski DJ, Goldfinger V, Ott M, Fuhrmann D, Baues M, Boesmueller H, Schraeder C, Schimmack G, Song C, Hoffgaard F, Roemer M, Tsou CC, Hofmann M, Treiber T, Hutt M, Alten L, Jaworski M, Alpert A, Missel S, Reinhardt C, Singh H, Schoor O, Walter S, Wagner C, Maurer D, Weinschenk T, Riley JL. Quantitative immunopeptidomics reveals a tumor stroma-specific target for T cell therapy. Sci Transl Med 2022; 14:eabo6135. [PMID: 36044599 PMCID: PMC10130759 DOI: 10.1126/scitranslmed.abo6135] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
T cell receptor (TCR)-based immunotherapy has emerged as a promising therapeutic approach for the treatment of patients with solid cancers. Identifying peptide-human leukocyte antigen (pHLA) complexes highly presented on tumors and rarely expressed on healthy tissue in combination with high-affinity TCRs that when introduced into T cells can redirect T cells to eliminate tumor but not healthy tissue is a key requirement for safe and efficacious TCR-based therapies. To discover promising shared tumor antigens that could be targeted via TCR-based adoptive T cell therapy, we employed population-scale immunopeptidomics using quantitative mass spectrometry across ~1500 tumor and normal tissue samples. We identified an HLA-A*02:01-restricted pan-cancer epitope within the collagen type VI α-3 (COL6A3) gene that is highly presented on tumor stroma across multiple solid cancers due to a tumor-specific alternative splicing event that rarely occurs outside the tumor microenvironment. T cells expressing natural COL6A3-specific TCRs demonstrated only modest activity against cells presenting high copy numbers of COL6A3 pHLAs. One of these TCRs was affinity-enhanced, enabling transduced T cells to specifically eliminate tumors in vivo that expressed similar copy numbers of pHLAs as primary tumor specimens. The enhanced TCR variants exhibited a favorable safety profile with no detectable off-target reactivity, paving the way to initiate clinical trials using COL6A3-specific TCRs to target an array of solid tumors.
Collapse
Affiliation(s)
- Gloria B Kim
- Department of Microbiology, Center for Cellular Immunotherapies, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jens Fritsche
- Immatics Biotechnologies GmbH, Paul-Ehrlich-Str. 15, 72076 Tuebingen, Germany
| | - Sebastian Bunk
- Immatics Biotechnologies GmbH, Paul-Ehrlich-Str. 15, 72076 Tuebingen, Germany
| | - Andrea Mahr
- Immatics Biotechnologies GmbH, Paul-Ehrlich-Str. 15, 72076 Tuebingen, Germany
| | - Felix Unverdorben
- Immatics Biotechnologies GmbH, Paul-Ehrlich-Str. 15, 72076 Tuebingen, Germany
| | - Kevin Tosh
- Department of Microbiology, Center for Cellular Immunotherapies, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Hong Kong
- Department of Microbiology, Center for Cellular Immunotherapies, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Colby R Maldini
- Department of Microbiology, Center for Cellular Immunotherapies, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Chui Lau
- Department of Microbiology, Center for Cellular Immunotherapies, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Sriram Srivatsa
- Department of Microbiology, Center for Cellular Immunotherapies, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Shuguang Jiang
- Department of Microbiology, Center for Cellular Immunotherapies, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Joshua Glover
- Department of Microbiology, Center for Cellular Immunotherapies, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Derek Dopkin
- Department of Microbiology, Center for Cellular Immunotherapies, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Carolyn X Zhang
- Department of Microbiology, Center for Cellular Immunotherapies, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Heiko Schuster
- Immatics Biotechnologies GmbH, Paul-Ehrlich-Str. 15, 72076 Tuebingen, Germany
| | - Daniel J Kowalewski
- Immatics Biotechnologies GmbH, Paul-Ehrlich-Str. 15, 72076 Tuebingen, Germany
| | | | - Martina Ott
- Immatics Biotechnologies GmbH, Paul-Ehrlich-Str. 15, 72076 Tuebingen, Germany
| | - David Fuhrmann
- Immatics Biotechnologies GmbH, Paul-Ehrlich-Str. 15, 72076 Tuebingen, Germany
| | - Maike Baues
- Immatics Biotechnologies GmbH, Paul-Ehrlich-Str. 15, 72076 Tuebingen, Germany
| | - Hans Boesmueller
- Institute of Pathology and Neuropathology, Eberhard Karls University, 72076 Tuebingen, Germany
| | - Christoph Schraeder
- Immatics Biotechnologies GmbH, Paul-Ehrlich-Str. 15, 72076 Tuebingen, Germany
| | - Gisela Schimmack
- Immatics Biotechnologies GmbH, Paul-Ehrlich-Str. 15, 72076 Tuebingen, Germany
| | - Colette Song
- Immatics Biotechnologies GmbH, Paul-Ehrlich-Str. 15, 72076 Tuebingen, Germany
| | - Franziska Hoffgaard
- Immatics Biotechnologies GmbH, Paul-Ehrlich-Str. 15, 72076 Tuebingen, Germany
| | - Michael Roemer
- Immatics Biotechnologies GmbH, Paul-Ehrlich-Str. 15, 72076 Tuebingen, Germany
| | - Chih-Chiang Tsou
- Immatics US, 2201 W. Holcombe Blvd., Suite 205, Houston, TX 77030, USA
| | - Martin Hofmann
- Immatics Biotechnologies GmbH, Paul-Ehrlich-Str. 15, 72076 Tuebingen, Germany
| | - Thomas Treiber
- Immatics Biotechnologies GmbH, Paul-Ehrlich-Str. 15, 72076 Tuebingen, Germany
| | - Meike Hutt
- Immatics Biotechnologies GmbH, Paul-Ehrlich-Str. 15, 72076 Tuebingen, Germany
| | - Leonie Alten
- Immatics Biotechnologies GmbH, Paul-Ehrlich-Str. 15, 72076 Tuebingen, Germany
| | - Maike Jaworski
- Immatics Biotechnologies GmbH, Paul-Ehrlich-Str. 15, 72076 Tuebingen, Germany
| | - Amir Alpert
- Immatics US, 2201 W. Holcombe Blvd., Suite 205, Houston, TX 77030, USA
| | - Sarah Missel
- Immatics Biotechnologies GmbH, Paul-Ehrlich-Str. 15, 72076 Tuebingen, Germany
| | - Carsten Reinhardt
- Immatics Biotechnologies GmbH, Paul-Ehrlich-Str. 15, 72076 Tuebingen, Germany
| | - Harpreet Singh
- Immatics Biotechnologies GmbH, Paul-Ehrlich-Str. 15, 72076 Tuebingen, Germany.,Immatics US, 2201 W. Holcombe Blvd., Suite 205, Houston, TX 77030, USA
| | - Oliver Schoor
- Immatics Biotechnologies GmbH, Paul-Ehrlich-Str. 15, 72076 Tuebingen, Germany
| | - Steffen Walter
- Immatics US, 2201 W. Holcombe Blvd., Suite 205, Houston, TX 77030, USA
| | - Claudia Wagner
- Immatics Biotechnologies GmbH, Paul-Ehrlich-Str. 15, 72076 Tuebingen, Germany
| | - Dominik Maurer
- Immatics Biotechnologies GmbH, Paul-Ehrlich-Str. 15, 72076 Tuebingen, Germany
| | - Toni Weinschenk
- Immatics Biotechnologies GmbH, Paul-Ehrlich-Str. 15, 72076 Tuebingen, Germany.,Immatics US, 2201 W. Holcombe Blvd., Suite 205, Houston, TX 77030, USA
| | - James L Riley
- Department of Microbiology, Center for Cellular Immunotherapies, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
48
|
Liu J, Hong S, Yang J, Zhang X, Wang Y, Wang H, Peng J, Hong L. Targeting purine metabolism in ovarian cancer. J Ovarian Res 2022; 15:93. [PMID: 35964092 PMCID: PMC9375293 DOI: 10.1186/s13048-022-01022-z] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 07/17/2022] [Indexed: 11/10/2022] Open
Abstract
Purine, an abundant substrate in organisms, is a critical raw material for cell proliferation and an important factor for immune regulation. The purine de novo pathway and salvage pathway are tightly regulated by multiple enzymes, and dysfunction in these enzymes leads to excessive cell proliferation and immune imbalance that result in tumor progression. Maintaining the homeostasis of purine pools is an effective way to control cell growth and tumor evolution, and exploiting purine metabolism to suppress tumors suggests interesting directions for future research. In this review, we describe the process of purine metabolism and summarize the role and potential therapeutic effects of the major purine-metabolizing enzymes in ovarian cancer, including CD39, CD73, adenosine deaminase, adenylate kinase, hypoxanthine guanine phosphoribosyltransferase, inosine monophosphate dehydrogenase, purine nucleoside phosphorylase, dihydrofolate reductase and 5,10-methylenetetrahydrofolate reductase. Purinergic signaling is also described. We then provide an overview of the application of purine antimetabolites, comprising 6-thioguanine, 6-mercaptopurine, methotrexate, fludarabine and clopidogrel. Finally, we discuss the current challenges and future opportunities for targeting purine metabolism in the treatment-relevant cellular mechanisms of ovarian cancer.
Collapse
Affiliation(s)
- Jingchun Liu
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Shasha Hong
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Jiang Yang
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Xiaoyi Zhang
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Ying Wang
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Haoyu Wang
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Jiaxin Peng
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Li Hong
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, China.
| |
Collapse
|
49
|
Komatsu Y, Shigeyasu K, Yano S, Takeda S, Takahashi K, Hata N, Umeda H, Yoshida K, Mori Y, Yasui K, Yoshida R, Kondo Y, Kishimoto H, Teraishi F, Umeda Y, Kagawa S, Michiue H, Tazawa H, Goel A, Fujiwara T. RNA editing facilitates the enhanced production of neoantigens during the simultaneous administration of oxaliplatin and radiotherapy in colorectal cancer. Sci Rep 2022; 12:13540. [PMID: 35941214 PMCID: PMC9360398 DOI: 10.1038/s41598-022-17773-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 07/30/2022] [Indexed: 11/09/2022] Open
Abstract
Most cases of colorectal cancers (CRCs) are microsatellite stable (MSS), which frequently demonstrate lower response rates to immune checkpoint inhibitors (ICIs). RNA editing produces neoantigens by altering amino acid sequences. In this study, RNA editing was induced artificially by chemoradiation therapy (CRT) to generate neoantigens in MSS CRCs. Altogether, 543 CRC specimens were systematically analyzed, and the expression pattern of ADAR1 was investigated. In vitro and in vivo experiments were also performed. The RNA editing enzyme ADAR1 was upregulated in microsatellite instability-high CRCs, leading to their high affinity for ICIs. Although ADAR1 expression was low in MSS CRC, CRT including oxaliplatin (OX) treatment upregulated RNA editing levels by inducing ADAR1. Immunohistochemistry analyses showed the upregulation of ADAR1 in patients with CRC treated with CAPOX (capecitabine + OX) radiation therapy relative to ADAR1 expression in patients with CRC treated only by surgery (p < 0.001). Compared with other regimens, CRT with OX effectively induced RNA editing in MSS CRC cell lines (HT29 and Caco2, p < 0.001) via the induction of type 1 interferon-triggered ADAR1 expression. CRT with OX promoted the RNA editing of cyclin I, a neoantigen candidate. Neoantigens can be artificially induced by RNA editing via an OX-CRT regimen. CRT can promote proteomic diversity via RNA editing.
Collapse
Affiliation(s)
- Yasuhiro Komatsu
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8558, Japan
| | - Kunitoshi Shigeyasu
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8558, Japan.
| | - Shuya Yano
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8558, Japan
| | - Sho Takeda
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8558, Japan
| | - Kazutaka Takahashi
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8558, Japan
| | - Nanako Hata
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8558, Japan
| | - Hibiki Umeda
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8558, Japan
| | - Kazuhiro Yoshida
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8558, Japan
| | - Yoshiko Mori
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8558, Japan
| | - Kazuya Yasui
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8558, Japan
| | - Ryuichi Yoshida
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8558, Japan
| | - Yoshitaka Kondo
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8558, Japan
| | - Hiroyuki Kishimoto
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8558, Japan
| | - Fuminori Teraishi
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8558, Japan
| | - Yuzo Umeda
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8558, Japan
| | - Shunsuke Kagawa
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8558, Japan
| | - Hiroyuki Michiue
- Neutron Therapy Research Center, Okayama University, Okayama, Japan
| | - Hiroshi Tazawa
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8558, Japan
| | - Ajay Goel
- Department of Molecular Diagnostics and Experimental Therapeutics, Beckman Research Institute, City of Hope Biomedical Research Center, Monrovia, CA, USA.,City of Hope Comprehensive Cancer Center, Duarte, CA, USA
| | - Toshiyoshi Fujiwara
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8558, Japan
| |
Collapse
|
50
|
ADAR3 activates NF-κB signaling and promotes glioblastoma cell resistance to temozolomide. Sci Rep 2022; 12:13362. [PMID: 35922651 DOI: 10.1038/s41598-022-17559-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 07/27/2022] [Indexed: 11/08/2022] Open
Abstract
The RNA binding protein ADAR3 is expressed exclusively in the brain and reported to have elevated expression in tumors of patients suffering from glioblastoma compared to adjacent brain tissue. Yet, other studies have indicated that glioblastoma tumors exhibit hemizygous deletions of the genomic region encompassing ADAR3 (10p15.3). As the molecular and cellular consequences of altered ADAR3 expression are largely unknown, here we directly examined the impacts of elevated ADAR3 in a glioblastoma cell line model. Transcriptome-wide sequencing revealed 641 differentially expressed genes between control and ADAR3-expressing U87-MG glioblastoma cells. A vast majority of these genes belong to pathways involved in glioblastoma progression and are regulated by NF-κB signaling. Biochemical and molecular analysis indicated that ADAR3-expressing U87-MG cells exhibit increased NF-κB activation, and treatment with an NF-κB inhibitor abrogated the impacts of ADAR3 on gene expression. Similarly, we found that increased cell survival of ADAR3-expressing cells to temozolomide, the preferred chemotherapeutic for glioblastoma, was due to increased NF-κB activity. Aberrant constitutive NF-κB activation is a common event in glioblastoma and can impact both tumor progression and resistance to treatment. Our results suggest that elevated ADAR3 promotes NF-κB activation and a gene expression program that provides a growth advantage to glioblastoma cells.
Collapse
|