1
|
Duque-Sanchez L, Qu Y, Voelcker NH, Thissen H. Tackling catheter-associated urinary tract infections with next-generation antimicrobial technologies. J Biomed Mater Res A 2024; 112:312-335. [PMID: 37881094 DOI: 10.1002/jbm.a.37630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 09/21/2023] [Accepted: 10/10/2023] [Indexed: 10/27/2023]
Abstract
Urinary catheters and other medical devices associated with the urinary tract such as stents are major contributors to nosocomial urinary tract infections (UTIs) as they provide an access path for pathogens to enter the bladder. Considering that catheter-associated urinary tract infections (CAUTIs) account for approximately 75% of UTIs and that UTIs represent the most common type of healthcare-associated infections, novel anti-infective device technologies are urgently required. The rapid rise of antimicrobial resistance in the context of CAUTIs further highlights the importance of such preventative strategies. In this review, the risk factors for pathogen colonization in the urinary tract are dissected, taking into account the nature and mechanistics of this unique environment. Moreover, the most promising next-generation preventative strategies are critically assessed, focusing in particular on anti-infective surface coatings. Finally, emerging approaches in this field and their likely clinical impact are examined.
Collapse
Affiliation(s)
- Lina Duque-Sanchez
- Department of Manufacturing, Commonwealth Scientific and Industrial Research Organization (CSIRO), Clayton, Victoria, Australia
- Faculty of Pharmacy and Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | - Yue Qu
- Infection and Immunity Program, Department of Microbiology, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
- Department of Infectious Diseases, The Alfred Hospital and Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Nicolas H Voelcker
- Faculty of Pharmacy and Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
- Melbourne Centre for Nanofabrication, Victorian Node of the Australian National Fabrication Facility, Materials Science and Engineering, Monash University, Clayton, Victoria, Australia
| | - Helmut Thissen
- Department of Manufacturing, Commonwealth Scientific and Industrial Research Organization (CSIRO), Clayton, Victoria, Australia
| |
Collapse
|
2
|
Shi Z, Zhang X, Yang X, Zhang X, Ma F, Gan H, Chen J, Wang D, Sun W, Wang J, Wang C, Lyu L, Yang K, Deng L, Qing G. Specific Clearance of Lipopolysaccharide from Blood Based on Peptide Bottlebrush Polymer for Sepsis Therapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2302560. [PMID: 37247257 DOI: 10.1002/adma.202302560] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 05/16/2023] [Indexed: 05/31/2023]
Abstract
Lipopolysaccharide (LPS) is the primary bacterial toxin that is vital to the pathogenesis and progression of sepsis associated with extremely high morbidity and mortality worldwide. However, specific clearance of LPS from circulating blood is highly challenging because of the structural complexity and its variation between/within bacterial species. Herein, a robust strategy based on phage display screening and hemocompatible peptide bottlebrush polymer design for specific clearance of targeted LPS from circulating blood is proposed. Using LPS extracted from Escherichia coli as an example, a novel peptide (HWKAVNWLKPWT) with high affinity (KD < 1.0 nм), specificity, and neutralization activity (95.9 ± 0.1%) against the targeted LPS is discovered via iterative affinity selection coupled with endotoxin detoxification screening. A hemocompatible bottlebrush polymer bearing the short peptide [poly(PEGMEA-co-PEP-1)] exhibits high LPS selectivity to reduce circulating LPS level from 2.63 ± 0.01 to 0.78 ± 0.05 EU mL-1 in sepsis rabbits via extracorporeal hemoperfusion (LPS clearance ratio > 70%), reversing the LPS-induced leukocytopenia and multiple organ damages significantly. This work provides a universal paradigm for developing a highly selective hemoadsorbent library fully covering the LPS family, which is promising to create a new era of precision medicine in sepsis therapy.
Collapse
Affiliation(s)
- Zhenqiang Shi
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, P.R. China
| | - Xiancheng Zhang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, P.R. China
| | - Xijing Yang
- Animal Experiment Center, West China Hospital, Sichuan University, Chengdu, 610041, P.R. China
| | - Xiaoyu Zhang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, P.R. China
| | - Fei Ma
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing, 100850, P.R. China
| | - Hui Gan
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing, 100850, P.R. China
| | - Junjun Chen
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, P.R. China
| | - Dongdong Wang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, P.R. China
| | - Wenjing Sun
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, P.R. China
| | - Jingxia Wang
- Radiation Chemistry Department, Sichuan Institute of Atomic Energy, Chengdu, 610101, P.R. China
| | - Cunli Wang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, P.R. China
| | - Liting Lyu
- Dalian Key Laboratory of Energy Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, P.R. China
| | - Kaiguang Yang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, P.R. China
| | - Lijing Deng
- Pediatric Intensive Care Unit, Department of Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, 610041, P.R. China
| | - Guangyan Qing
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, P.R. China
| |
Collapse
|
3
|
Tong L, Zhou M, Chen Y, Lu K, Zhang Z, Mu Y, He Z. A New Self-Healing Degradable Copolymer Based on Polylactide and Poly(p-dioxanone). Molecules 2023; 28:molecules28104021. [PMID: 37241762 DOI: 10.3390/molecules28104021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 05/09/2023] [Accepted: 05/10/2023] [Indexed: 05/28/2023] Open
Abstract
In this paper, the copolymerization of poly (p-dioxanone) (PPDO) and polylactide (PLA) was carried out via a Diels-Alder reaction to obtain a new biodegradable copolymer with self-healing abilities. By altering the molecular weights of PPDO and PLA precursors, a series of copolymers (DA2300, DA3200, DA4700 and DA5500) with various chain segment lengths were created. After verifying the structure and molecular weight by 1H NMR, FT-IR and GPC, the crystallization behavior, self-healing properties and degradation properties of the copolymers were evaluated by DSC, POM, XRD, rheological measurements and enzymatic degradation. The results show that copolymerization based on the DA reaction effectively avoids the phase separation of PPDO and PLA. Among the products, DA4700 showed a better crystallization performance than PLA, and the half-crystallization time was 2.8 min. Compared to PPDO, the heat resistance of the DA copolymers was improved and the Tm increased from 93 °C to 103 °C. Significantly, the rheological data also confirmed that the copolymer was self-healing and showed obvious self-repairing properties after simple tempering. In addition, an enzyme degradation experiment showed that the DA copolymer can be degraded by a certain amount, with the degradation rate lying between those of PPDO and PLA.
Collapse
Affiliation(s)
- Laifa Tong
- Material Science and Engineering, College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310000, China
| | - Mi Zhou
- Material Science and Engineering, College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310000, China
| | - Yulong Chen
- Material Science and Engineering, College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310000, China
| | - Kai Lu
- Material Science and Engineering, College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310000, China
| | - Zhaohua Zhang
- Material Science and Engineering, College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310000, China
| | - Yuesong Mu
- Material Science and Engineering, College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310000, China
| | - Zejian He
- Material Science and Engineering, College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310000, China
| |
Collapse
|
4
|
Yu HT, Zhang JQ, Sun MC, Chen H, Shi XM, You FP, Qiao SY. Polymeric Nanohybrids Engineered by Chitosan Nanoparticles and Antimicrobial Peptides as Novel Antimicrobials in Food Biopreservatives: Risk Assessment and Anti-Foodborne Pathogen Escherichia coli O157:H7 Infection by Immune Regulation. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:12535-12549. [PMID: 36153996 DOI: 10.1021/acs.jafc.2c05308] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Polymeric nanomaterials (APs) are gaining attention as promising clinical antimicrobials with rapidly increasing antibiotic resistance. Infections by zoonotic enterohemorrhagic Escherichia coli are a severe global threat to public health. Chitosan nanoparticles-microcin J25 (CNM), a class of APs engineered by bioactive peptides and chitosan nanoparticles, can be used as a novel antimicrobial agent against bacterial infections. However, the risk assessment of CNM on animal health or its potential immune modulation to treat serotype E. coli O157:H7 infection impacts in vivo are not well understood. Herein, our findings in mouse models uncovered that oral administration of low levels of CNM significantly increased the body weight and made beneficial effects on the lifespan or clinical signs, accompanied by a significant improvement in gut health, including enhancing the intestinal barrier, immune modulation, and changes in gut microbiota compositions or metabolites. However, high concentrations of CNM induced serious adverse effects, negatively improving intestinal health targets. Anti-infective results proved that oral 0.1% CNM enhances host defense against E. coli O157:H7 infection by improving immune functions and modulating the Th1/Th2 balance. In summary, these findings uncover an instrumental link between the dosage and toxicity risk, suggesting that APs need to be comprehensively assessed for risk before application as safe and reliable food preservatives or therapeutic agents. In addition, CNM as a promising AP may markedly enhance host immunity and therapeutic effects by oral administration.
Collapse
Affiliation(s)
- Hai-Tao Yu
- Institute of Systems Biomedicine, Department of Immunology, School of Basic Medical Sciences, Beijing Key Laboratory of Tumor Systems Biology, Peking University Health Science Center, Beijing 100191, P. R. China
| | - Jia-Qi Zhang
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing 100193, P. R. China
| | - Ming-Chao Sun
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing 100193, P. R. China
| | - Han Chen
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing 100193, P. R. China
| | - Xiu-Mei Shi
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing 100193, P. R. China
| | - Fu-Ping You
- Institute of Systems Biomedicine, Department of Immunology, School of Basic Medical Sciences, Beijing Key Laboratory of Tumor Systems Biology, Peking University Health Science Center, Beijing 100191, P. R. China
| | - Shi-Yan Qiao
- State Key Laboratory of Animal Nutrition, Ministry of Agriculture and Rural Affairs Feed Industry Center, College of Animal Science and Technology, China Agricultural University, Beijing 100193, P. R. China
| |
Collapse
|
5
|
Pranantyo D, Zhang K, Si Z, Hou Z, Chan-Park MB. Smart Multifunctional Polymer Systems as Alternatives or Supplements of Antibiotics To Overcome Bacterial Resistance. Biomacromolecules 2022; 23:1873-1891. [PMID: 35471022 DOI: 10.1021/acs.biomac.1c01614] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
In recent years, infectious diseases have again become a critical threat to global public health largely due to the challenges posed by antimicrobial resistance. Conventional antibiotics have played a crucial role in combating bacterial infections; however, their efficacy is significantly impaired by widespread drug resistance. Natural antimicrobial peptides (AMPs) and their polymeric mimics demonstrate great potential for killing bacteria with low propensity of resistance as they target the microbial membrane rather than a specific molecular target, but they are also toxic to the host eukaryotic cells. To minimize antibiotics systemic spread and the required dose that promote resistance and to advocate practical realization of the promising activity of AMPs and polymers, smart systems to target bacteria are highly sought after. This review presents bacterial recognition by various specific targeting molecules and the delivery systems of active components in supramolecules. Bacteria-induced activations of antimicrobial-based nanoformulations are also included. Recent advances in the bacteria targeting and delivery of synthetic antimicrobial agents may assist in developing new classes of highly selective antimicrobial systems which can improve bactericidal efficacy and greatly minimize the spread of bacterial resistance.
Collapse
|
6
|
Atomic-Resolution Structures and Mode of Action of Clinically Relevant Antimicrobial Peptides. Int J Mol Sci 2022; 23:ijms23094558. [PMID: 35562950 PMCID: PMC9100274 DOI: 10.3390/ijms23094558] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 04/18/2022] [Accepted: 04/18/2022] [Indexed: 02/01/2023] Open
Abstract
Global rise of infections and deaths caused by drug-resistant bacterial pathogens are among the unmet medical needs. In an age of drying pipeline of novel antibiotics to treat bacterial infections, antimicrobial peptides (AMPs) are proven to be valid therapeutics modalities. Direct in vivo applications of many AMPs could be challenging; however, works are demonstrating encouraging results for some of them. In this review article, we discussed 3-D structures of potent AMPs e.g., polymyxin, thanatin, MSI, protegrin, OMPTA in complex with bacterial targets and their mode of actions. Studies on human peptide LL37 and de novo-designed peptides are also discussed. We have focused on AMPs which are effective against drug-resistant Gram-negative bacteria. Since treatment options for the infections caused by super bugs of Gram-negative bacteria are now extremely limited. We also summarize some of the pertinent challenges in the field of clinical trials of AMPs.
Collapse
|
7
|
Zhou Q, Lyu X, Cao B, Liu X, Liu J, Zhao J, Lu S, Zhan M, Hu X. Fast Broad-Spectrum Staining and Photodynamic Inhibition of Pathogenic Microorganisms by a Water-Soluble Aggregation-Induced Emission Photosensitizer. Front Chem 2021; 9:755419. [PMID: 34796162 PMCID: PMC8593337 DOI: 10.3389/fchem.2021.755419] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 10/11/2021] [Indexed: 01/10/2023] Open
Abstract
Pathogenic microorganisms pose great challenges to public health, which is constantly urgent to develop extra strategies for the fast staining and efficient treatments. In addition, once bacteria form stubborn biofilm, extracellular polymeric substance (EPS) within biofilm can act as protective barriers to prevent external damage and inward diffusion of traditional antibiotics, which makes it frequently develop drug-resistant ones and even hard to treat. Therefore, it is imperative to develop more efficient methods for the imaging/detection and efficient inhibition of pathogenic microorganisms. Here, a water-soluble aggregation-induced emission (AIE)-active photosensitizer TPA-PyOH was employed for fast imaging and photodynamic treatment of several typical pathogens, such as S. aureus, methicillin-resistant Staphylococcus aureus, L. monocytogenes, C. albicans, and E. coli. TPA-PyOH was non-fluorescent in water, upon incubation with pathogen, positively charged TPA-PyOH rapidly adhered to pathogenic membrane, thus the molecular motion of TPA-PyOH was restricted to exhibit AIE-active fluorescence for turn-on imaging with minimal background. Upon further white light irradiation, efficient reactive oxygen species (ROS) was in-situ generated to damage the membrane and inhibit the pathogen eventually. Furthermore, S. aureus biofilm could be suppressed in vitro. Thus, water-soluble TPA-PyOH was a potent AIE-active photosensitizer for fast fluorescent imaging with minimal background and photodynamic inhibition of pathogenic microorganisms.
Collapse
Affiliation(s)
- Qi Zhou
- MOE Key Laboratory of Laser Life Science and Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Laser Life Science and Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, South China Normal University, Guangzhou, China
| | - Xiaoming Lyu
- Department of Laboratory Medicine, The Third Affiliated Hospital, Southern Medical University, Guangzhou, China
| | - Bing Cao
- MOE Key Laboratory of Laser Life Science and Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Laser Life Science and Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, South China Normal University, Guangzhou, China
| | - Xueping Liu
- MOE Key Laboratory of Laser Life Science and Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Laser Life Science and Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, South China Normal University, Guangzhou, China
| | - Jing Liu
- MOE Key Laboratory of Laser Life Science and Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Laser Life Science and Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, South China Normal University, Guangzhou, China
| | - Jiarui Zhao
- MOE Key Laboratory of Laser Life Science and Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Laser Life Science and Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, South China Normal University, Guangzhou, China
| | - Siyu Lu
- Green Catalysis Center and College of Chem, Guangzhou, China
| | - Meixiao Zhan
- Zhuhai Precision Medical Center, Zhuhai People’s Hospital, Zhuhai Hospital Affiliated with Jinan University, Jinan University, Zhuhai, China
| | - Xianglong Hu
- MOE Key Laboratory of Laser Life Science and Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Laser Life Science and Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, South China Normal University, Guangzhou, China
| |
Collapse
|
8
|
Wu Y, Deng G, Jiang K, Wang H, Song Z, Han H. Photothermally triggered nitric oxide nanogenerator targeting type IV pili for precise therapy of bacterial infections. Biomaterials 2020; 268:120588. [PMID: 33307370 DOI: 10.1016/j.biomaterials.2020.120588] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 10/27/2020] [Accepted: 11/27/2020] [Indexed: 12/24/2022]
Abstract
Nitric oxide (NO) is an important biological messenger involved in the treatment of bacterial infections, but its controlled and targeted release in bacterial infections remains a major challenge. Herein, an intelligent NO nanogenerator triggered by near-infrared (NIR) light is constructed for targeted treatment of P. aeruginosa bacterial infection. Since maleimide can recognize and attach to the pilus of T4P of P. aeruginosa, we adopt this strategy to achieve the accurate release of therapeutic drugs at the infection site, i.e., after maleimide targets Gram-negative bacteria, the SNP@MOF@Au-Mal nanogenerator will release NO and generate ROS in situ from the inorganic photosensitizer gold nanoparticles under NIR irradiation to achieve synergistic antibacterial effect. In vivo experiments proved that the bacterial burden on the wound was reduced by 97.7%. Additionally, the nanogenerator was shown to promote the secretion of growth factors, which play a key role in regulating inflammation and inducing angiogenesis. This strategy has the advantage of generating a high concentration of NO in situ to promote the transfer of more NO and its derivatives (N2O3, ONOO-) to bacteria, thereby significantly improving the antibacterial effect. The multifunctional antibacterial platform has been demonstrated as a good carrier for gas therapy because of its simple and efficient gas release performance, indicating its great potential for the treatment of drug-resistant bacterial infections.
Collapse
Affiliation(s)
- Yang Wu
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Guiyun Deng
- State Key Laboratory of Agricultural Microbiology, College of Science, Huazhong Agricultural University, Wuhan, 430070, China
| | - Kai Jiang
- State Key Laboratory of Agricultural Microbiology, College of Science, Huazhong Agricultural University, Wuhan, 430070, China
| | - Huajuan Wang
- State Key Laboratory of Agricultural Microbiology, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Zhiyong Song
- State Key Laboratory of Agricultural Microbiology, College of Science, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Heyou Han
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China; State Key Laboratory of Agricultural Microbiology, College of Science, Huazhong Agricultural University, Wuhan, 430070, China; State Key Laboratory of Agricultural Microbiology, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
9
|
Hu D, Zou L, Gao Y, Jin Q, Ji J. Emerging nanobiomaterials against bacterial infections in postantibiotic era. VIEW 2020. [DOI: 10.1002/viw.20200014] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Affiliation(s)
- Dengfeng Hu
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization of Ministry of Education Department of Polymer Science and Engineering Zhejiang University Hangzhou China
| | - Lingyun Zou
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization of Ministry of Education Department of Polymer Science and Engineering Zhejiang University Hangzhou China
| | - Yifan Gao
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization of Ministry of Education Department of Polymer Science and Engineering Zhejiang University Hangzhou China
| | - Qiao Jin
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization of Ministry of Education Department of Polymer Science and Engineering Zhejiang University Hangzhou China
| | - Jian Ji
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization of Ministry of Education Department of Polymer Science and Engineering Zhejiang University Hangzhou China
| |
Collapse
|
10
|
You Y, Huang K, Liu X, Pan X, Zhi J, He Q, Shi H, An Z, Ma X, Huang W. Hydrophilic Ultralong Organic Nanophosphors. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e1906733. [PMID: 32003926 DOI: 10.1002/smll.201906733] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 01/02/2020] [Indexed: 06/10/2023]
Abstract
Ultralong organic phosphorescence (UOP), enabling of persistent luminescence after removal of external excitation light, shows great promise in biological applications such as bioimaging in virtue of antibackground fluorescence interference. Despite of good biocompatibility and outstanding phosphorescent properties, most current organic phosphors are hydrophobic with poor water solubility in the form of bulk crystal with large size, limiting their potential in the biological field. Here, a facile and versatile approach is provided to obtain nanoscale hydrophilic phosphorescent phosphors (HPPs) by physically loading ultralong organic phosphors into hollow mesoporous silica nanoparticles. The as-prepared HPPs can be well suspended in aqueous solution and effectively internalized by HeLa cells with very low cytotoxicity. Such HPPs are successfully applied for afterglow bioimaging in living nude mice with a very high signal-to-noise ratio up to 31. The current study not only provides a universal strategy to realize UOP in aqueous media but also demonstrates their great potential for biomedical purposes as an advanced imaging indicator with long-lived emission lifetime.
Collapse
Affiliation(s)
- Yongqiang You
- State Key Laboratory of Advanced Welding and Joining (Shenzhen), Harbin Institute of Technology (Shenzhen), Xili University Town, Shenzhen, 518055, China
- Shenzhen Bay Laboratory, No. 9 Duxue Road, Shenzhen, 518055, China
| | - Kaiwei Huang
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211816, China
| | - Xiaojia Liu
- State Key Laboratory of Advanced Welding and Joining (Shenzhen), Harbin Institute of Technology (Shenzhen), Xili University Town, Shenzhen, 518055, China
- Shenzhen Bay Laboratory, No. 9 Duxue Road, Shenzhen, 518055, China
| | - Xi Pan
- State Key Laboratory of Advanced Welding and Joining (Shenzhen), Harbin Institute of Technology (Shenzhen), Xili University Town, Shenzhen, 518055, China
- Shenzhen Bay Laboratory, No. 9 Duxue Road, Shenzhen, 518055, China
| | - Jiahuan Zhi
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211816, China
| | - Qianjun He
- Guangdong Provincial Key Laboratory of Biomedical Measurements and Ultrasound Imaging, National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, School of Biomedical Engineering, Health Science Center, Shenzhen University, No. 1066 Xuyuan Road, Nanshan District, Shenzhen, 518055, China
| | - Huifang Shi
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211816, China
| | - Zhongfu An
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211816, China
| | - Xing Ma
- State Key Laboratory of Advanced Welding and Joining (Shenzhen), Harbin Institute of Technology (Shenzhen), Xili University Town, Shenzhen, 518055, China
- Shenzhen Bay Laboratory, No. 9 Duxue Road, Shenzhen, 518055, China
| | - Wei Huang
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211816, China
- Institute of Flexible Electronics (IFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, China
| |
Collapse
|
11
|
Su L, Li Y, Liu Y, An Y, Shi L. Recent Advances and Future Prospects on Adaptive Biomaterials for Antimicrobial Applications. Macromol Biosci 2019; 19:e1900289. [PMID: 31642591 DOI: 10.1002/mabi.201900289] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 09/19/2019] [Indexed: 12/15/2022]
Abstract
Bacterial infection is becoming the biggest threat to human health. The scenario is partly due to the ineffectiveness of the conventional antibiotic treatments against the emergence of multidrug-resistant bacteria and partly due to the bacteria living in biofilms or cells. Adaptive biomaterials can change their physicochemical properties in the microenvironment of bacterial infection, thereby facilitating either their interactions with bacteria or drug release. The trends in treating bacterial infections using adaptive biomaterials-based systems are flourishing and generate innumerous possibility to design novel antimicrobial therapeutics. This feature article aims to summarize the recent developments in the formulations, mechanisms, and advances of adaptive materials in bacterial infection diagnosis, contact killing of bacteria, and antimicrobial drug delivery. Also, the challenges and limitations of current antimicrobial treatments based on adaptive materials and their clinical and industrial future prospects are discussed.
Collapse
Affiliation(s)
- Linzhu Su
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Functional Polymer Materials, Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Yuanfeng Li
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Functional Polymer Materials, Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Yong Liu
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Functional Polymer Materials, Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Yingli An
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Functional Polymer Materials, Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Linqi Shi
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Functional Polymer Materials, Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, China
| |
Collapse
|