1
|
Xu H, Ronson TK, Heard AW, Teeuwen PCP, Schneider L, Pracht P, Thoburn JD, Wales DJ, Nitschke JR. A pseudo-cubic metal-organic cage with conformationally switchable faces for dynamically adaptive guest encapsulation. Nat Chem 2025; 17:289-296. [PMID: 39779971 PMCID: PMC11794150 DOI: 10.1038/s41557-024-01708-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 11/28/2024] [Indexed: 01/11/2025]
Abstract
The creation of hosts capable of accommodating different guest molecules may enable these hosts to play useful roles in chemical purifications, among other applications. Metal-organic cages are excellent hosts for various guests, but they generally incorporate rigid structural units that hinder dynamic adaptation to specific guests. Here we report a conformationally adaptable pseudo-cubic cage that can dynamically increase its cavity volume to fit guests with differing sizes. This pseudo-cube incorporates a tetramine subcomponent with 2,6-naphthalene arms that cooperatively adopt a non-planar conformation, enabling the cage faces to switch between endo and exo states. A wide range of guest molecules were observed to bind within the cavity of this cage, spanning a range of sizes from 46% to 154% of the cavity volume of the empty cage. Experimental and computational evidence characterizes the flipping of cage faces from endo to exo, expanding the cavity upon binding of larger guests.
Collapse
Affiliation(s)
- Houyang Xu
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, UK
| | - Tanya K Ronson
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, UK
| | - Andrew W Heard
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, UK
| | - Paula C P Teeuwen
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, UK
| | - Laura Schneider
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, UK
- Department of Chemistry and Chemical Biology, TU Dortmund University, Dortmund, Germany
| | - Philipp Pracht
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, UK
| | - John D Thoburn
- Randolph-Macon College, Department of Chemistry, Ashland, VA, USA
| | - David J Wales
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, UK
| | - Jonathan R Nitschke
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, UK.
| |
Collapse
|
2
|
Ghosh R, Singh B, Basu S, Mondal A, Maiti PK, De M. Reversing the Trend: Deciphering Self-Assembly of Unconventional Amphiphiles Having Both Alkyl-Chain and PEG. Chempluschem 2024; 89:e202400147. [PMID: 38623044 DOI: 10.1002/cplu.202400147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 04/15/2024] [Accepted: 04/15/2024] [Indexed: 04/17/2024]
Abstract
In the field of molecular self-assembly, the core of an assembly is always made up of hydrophobic moiety like a long alkyl chain, whereas the outer part has always been a hydrophilic moiety such as poly(ethylene glycol) (PEG), or charged species. Hence, reversing the trend to manifest self-assembled structures with a PEG core and a surface consisting of alkyl chains in aqueous system is incredibly challenging. Herein, we architected a unique class of cationic bolaamphiphiles containing low molecular weight PEG and alkyl chains of different lengths. The bolaamphiphiles spontaneously form vesicles without external stimuli. These vesicles are unprecedented because PEG makes up the vesicle core, while the alkyl chains appear on the vesicles' exterior. Hence, this particular design reverses the usual trend of self-assembly formation. The vesicle size increases with the increase in alkyl chain-length. To our great surprise, we obtained large micelles for longest alkyl-chain amphiphile, which in turn act as a gemini amphiphile. The shift from a particular bolaamphiphile to gemini amphiphile with the variation of alkyl chain is also unexplored. Therefore, this specific class of self-assembled structure would compound a new paradigm in molecular self-assembly and supramolecular chemistry.
Collapse
Affiliation(s)
- Rita Ghosh
- Department of Organic Chemistry, Indian Institute of Science, Bengaluru, 560012, India
| | - Bharat Singh
- Department of Physics, Indian Institute of Science, Bengaluru, 560012, India
| | - Subhadip Basu
- Department of Physics, Indian Institute of Science, Bengaluru, 560012, India
| | - Avijit Mondal
- Department of Organic Chemistry, Indian Institute of Science, Bengaluru, 560012, India
| | - Prabal Kumar Maiti
- Department of Physics, Indian Institute of Science, Bengaluru, 560012, India
| | - Mrinmoy De
- Department of Organic Chemistry, Indian Institute of Science, Bengaluru, 560012, India
| |
Collapse
|
3
|
Haketa Y, Yamasumi K, Maeda H. π-Electronic ion pairs: building blocks for supramolecular nanoarchitectonics viaiπ- iπ interactions. Chem Soc Rev 2023; 52:7170-7196. [PMID: 37795542 DOI: 10.1039/d3cs00581j] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/06/2023]
Abstract
The pairing of charged π-electronic systems and their ordered arrangement have been achieved by iπ-iπ interactions that are derived from synergetically worked electrostatic and dispersion forces. Charged π-electronic systems that provide ion pairs as building blocks for assemblies have been prepared by diverse strategies for introducing charge in the core π-electronic systems. One method to prepare charged π-electronic systems is the use of covalent bonding that makes π-electronic ions and valence-mismatched metal complexes as well as protonated and deprotonated states. Noncovalent ion complexation is another method used to create π-electronic ions, particularly for anion binding, producing negatively charged π-electronic systems. Charged π-electronic systems afford various ion pairs, consisting of both cationic and anionic π-systems, depending on their combinations. Geometries and electronic states of the constituents in π-electronic ion pairs affect the photophysical properties and assembling modes. Recent progress in π-electronic ion pairs has revealed intriguing characteristics, including the transformation into radical pairs through electron transfer and the magnetic properties influenced by the countercations. Furthermore, the assembly states exhibit diversity as observed in crystals and soft materials including liquid-crystal mesophases. While the chemistry of ion pairs (salts) is well-established, the field of π-electronic ion pairs is relatively new; however, it holds great promise for future applications in novel materials and devices.
Collapse
Affiliation(s)
- Yohei Haketa
- Department of Applied Chemistry, College of Life Sciences, Ritsumeikan University, Kusatsu 525-8577, Japan.
| | - Kazuhisa Yamasumi
- Department of Applied Chemistry, College of Life Sciences, Ritsumeikan University, Kusatsu 525-8577, Japan.
| | - Hiromitsu Maeda
- Department of Applied Chemistry, College of Life Sciences, Ritsumeikan University, Kusatsu 525-8577, Japan.
| |
Collapse
|
4
|
Weh M, Shoyama K, Würthner F. Preferential molecular recognition of heterochiral guests within a cyclophane receptor. Nat Commun 2023; 14:243. [PMID: 36646685 PMCID: PMC9842753 DOI: 10.1038/s41467-023-35851-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 01/04/2023] [Indexed: 01/18/2023] Open
Abstract
The discrimination of enantiomers by natural receptors is a well-established phenomenon. In contrast the number of synthetic receptors with the capability for enantioselective molecular recognition of chiral substrates is scarce and for chiral cyclophanes indicative for a preferential binding of homochiral guests. Here we introduce a cyclophane composed of two homochiral core-twisted perylene bisimide (PBI) units connected by p-xylylene spacers and demonstrate its preference for the complexation of [5]helicene of opposite helicity compared to the PBI units of the host. The pronounced enantio-differentiation of this molecular receptor for heterochiral guests can be utilized for the enrichment of the P-PBI-M-helicene-P-PBI epimeric bimolecular complex. Our experimental results are supported by DFT calculations, which reveal that the sterically demanding bay substituents attached to the PBI chromophores disturb the helical shape match of the perylene core and homochiral substrates and thereby enforce the formation of syndiotactic host-guest complex structures. Hence, the most efficient substrate binding is observed for those aromatic guests, e. g. perylene, [4]helicene, phenanthrene and biphenyl, that can easily adapt in non-planar axially chiral conformations due to their inherent conformational flexibility. In all cases the induced chirality for the guest is opposed to those of the embedding PBI units, leading to heterochiral host-guest structures.
Collapse
Affiliation(s)
- Manuel Weh
- Institut für Organische Chemie, Universität Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Kazutaka Shoyama
- Center for Nanosystems Chemistry & Bavarian Polymer Institute, Universität Würzburg, Theodor-Boveri-Weg, 97074, Würzburg, Germany
| | - Frank Würthner
- Institut für Organische Chemie, Universität Würzburg, Am Hubland, 97074, Würzburg, Germany.
- Center for Nanosystems Chemistry & Bavarian Polymer Institute, Universität Würzburg, Theodor-Boveri-Weg, 97074, Würzburg, Germany.
| |
Collapse
|
5
|
Murata M, Koide T, Kobayashi O, Hiraoka S, Shimazaki T, Tachikawa M. Molecular Dynamics Study on the Structure-Property Relationship of Self-Assembled Gear-Shaped Amphiphile Molecules with/without Methyl Groups. J Phys Chem B 2023; 127:328-334. [PMID: 36542848 DOI: 10.1021/acs.jpcb.2c07444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Gaining insight into the encapsulation mechanism is important for controlling the encapsulation rate toward the self-assembly of gear-shaped amphiphile molecules (GSAs). To this aim, we conducted molecular dynamics (MD) simulations for three different hexameric nanocubes (1612+, 2612+, and 3612+) of GSAs (12+, 22+, and 32+, respectively) to elucidate the quantitative structure-property relationship between the stability of the nanocubes and the rate of encapsulation of a guest molecule. The 12+, 22+, and 32+ monomers differ from each other in the number of methyl groups, having three, zero, and two methyl groups, respectively. The 3612+ hexamer has methyl groups only on the equatorial region. In the cases of the simulations of 1612+ and 3612+, the cubic structures are maintained due to a tight triple-π stacking around the equator region. Meanwhile, 2612+ deforms easily due to the occurrence of a large fluctuation. These results indicate that the methyl groups on the equator are crucial to stabilize the nanocubes. The encapsulation of an iodide ion as a guest molecule is revealed to occur through the pole region via a gap that is easily formed in the nanocubes without methyl groups on the poles. Our study clearly suggests that self-assembled nanocubes can be designed to attain a specific stability and encapsulation efficiency simultaneously.
Collapse
Affiliation(s)
- Moe Murata
- Graduate School of Nanobioscience, Yokohama City University, 22-2 Seto, Kanazawa-ku, Yokohama236-0027, Kanagawa, Japan
| | - Takuya Koide
- Graduate School of Nanobioscience, Yokohama City University, 22-2 Seto, Kanazawa-ku, Yokohama236-0027, Kanagawa, Japan
| | - Osamu Kobayashi
- Graduate School of Nanobioscience, Yokohama City University, 22-2 Seto, Kanazawa-ku, Yokohama236-0027, Kanagawa, Japan
| | - Shuichi Hiraoka
- Department of Basic Science, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo153-8902Japan
| | - Tomomi Shimazaki
- Graduate School of Nanobioscience, Yokohama City University, 22-2 Seto, Kanazawa-ku, Yokohama236-0027, Kanagawa, Japan
| | - Masanori Tachikawa
- Graduate School of Nanobioscience, Yokohama City University, 22-2 Seto, Kanazawa-ku, Yokohama236-0027, Kanagawa, Japan
| |
Collapse
|
6
|
Jozeliu̅naitė A, Neniškis A, Bertran A, Bowen AM, Di Valentin M, Raišys S, Baronas P, Kazlauskas K, Vilčiauskas L, Orentas E. Fullerene Complexation in a Hydrogen-Bonded Porphyrin Receptor via Induced-Fit: Cooperative Action of Tautomerization and C-H···π Interactions. J Am Chem Soc 2022; 145:455-464. [PMID: 36546690 PMCID: PMC9837862 DOI: 10.1021/jacs.2c10668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
A supramolecular chiral hydrogen-bonded tetrameric aggregate possessing a large cavity and tetraarylporphyrin substituents was assembled using alternating 4H- and 2H-bonds between ureidopyrimidinone and isocytosine units, respectively. The aggregation mode was rationally shifted from social to narcissistic self-sorting by changing urea substituent size only. The H-bonded tetramer forms a strong complex with C60 guest, at the same time undergoing remarkable structural changes. Namely, the cavity adjusts to the guest via keto-to-enol tautomerization of the ureidopyrimidinone unit and as a result, porphyrin substituents move apart from each other in a scissor blade-like opening fashion. The rearrangement is accompanied by C-H···π interaction between the alkyl solubilizing groups and the nearby placed porphyrin π-systems. The latter interaction was found to be crucial for the guest complexation event, providing energetic compensation for otherwise costly tautomerization. We showed that only the systems possessing sufficiently long alkyl chains capable of interacting with a porphyrin ring are able to form a complex with C60. The structural rearrangement of the tetramer was quantitatively characterized by electron paramagnetic resonance pulsed dipolar spectroscopy measurements using photogenerated triplets of porphyrin and C60 as spin probes. Further exploring the C-H···π interaction as a decisive element for the C60 recognition, we investigated the guest-induced self-sorting phenomenon using scrambled tetramer assemblies composed of two types of monomers possessing alkyl chains of different lengths. The presence of the fullerene guest has enabled the selective scavenging of monomers capable of C-H···π interaction to form homo-tetrameric aggregates.
Collapse
Affiliation(s)
| | - Algirdas Neniškis
- Institute
of Chemistry, Vilnius University, LT-03225 Vilnius, Lithuania
| | - Arnau Bertran
- Centre
for Advanced Electron Spin Resonance and Inorganic Chemistry Laboratory,
Department of Chemistry, University of Oxford, OX1 3QR Oxford, United Kingdom
| | - Alice M. Bowen
- Department
of Chemistry, Photon Science Institute and The National EPR Research
Facility, The University of Manchester, Manchester M13 9PL, United Kingdom
| | - Marilena Di Valentin
- Department
of Chemical Sciences, University of Padova, 35131 Padova, Italy,Centro
Interdipartimentale di Ricerca “Centro Studi di Economia e
Tecnica dell’energia Giorgio Levi Cases”, 35131 Padova, Italy
| | - Steponas Raišys
- Institute
of Photonics and Nanotechnology, Vilnius
University, Saulėtekio
av. 3, LT-10257 Vilnius, Lithuania
| | - Paulius Baronas
- Institute
of Photonics and Nanotechnology, Vilnius
University, Saulėtekio
av. 3, LT-10257 Vilnius, Lithuania
| | - Karolis Kazlauskas
- Institute
of Photonics and Nanotechnology, Vilnius
University, Saulėtekio
av. 3, LT-10257 Vilnius, Lithuania
| | - Linas Vilčiauskas
- Institute
of Chemistry, Vilnius University, LT-03225 Vilnius, Lithuania,Center
for Physical Sciences and Technology (FTMC), Saulėtekio al. 3, LT-10257 Vilnius, Lithuania
| | - Edvinas Orentas
- Institute
of Chemistry, Vilnius University, LT-03225 Vilnius, Lithuania,
| |
Collapse
|
7
|
Shivanyuk A, Lagerna O, Dolgonos GA, Rozhkov V, Shishkina S, Lukin O, Poyarkov A, Fetyukhin V. Two‐ and Three‐Phase Self‐assembly of Molecular Capsules. ChemistrySelect 2022. [DOI: 10.1002/slct.202200666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Alexander Shivanyuk
- I.F. Lab Ltd. Representative of Life Chemicals Inc. in Ukraine 5 Murmanska str. Kyiv 02000 Ukraine
| | - Oleksandra Lagerna
- I.F. Lab Ltd. Representative of Life Chemicals Inc. in Ukraine 5 Murmanska str. Kyiv 02000 Ukraine
| | - Grygoriy A. Dolgonos
- I.F. Lab Ltd. Representative of Life Chemicals Inc. in Ukraine 5 Murmanska str. Kyiv 02000 Ukraine
| | - Vladimir Rozhkov
- Institute of Organic Chemistry National Academy of Science of Ukraine 5 Murmanska str. Kyiv 02000 Ukraine
| | - Svetlana Shishkina
- SSI Institute for Single Crystals National Academy of Science of Ukraine 60 Nauky ave. Kharkiv 61001 Ukraine
| | - Oleg Lukin
- I.F. Lab Ltd. Representative of Life Chemicals Inc. in Ukraine 5 Murmanska str. Kyiv 02000 Ukraine
| | - Alexey Poyarkov
- I.F. Lab Ltd. Representative of Life Chemicals Inc. in Ukraine 5 Murmanska str. Kyiv 02000 Ukraine
| | - Volodymyr Fetyukhin
- I.F. Lab Ltd. Representative of Life Chemicals Inc. in Ukraine 5 Murmanska str. Kyiv 02000 Ukraine
| |
Collapse
|
8
|
Sacristán-Martín A, Miguel D, Diez-Varga A, Barbero H, Álvarez CM. From Induced-Fit Assemblies to Ternary Inclusion Complexes with Fullerenes in Corannulene-Based Molecular Tweezers. J Org Chem 2022; 87:16691-16706. [DOI: 10.1021/acs.joc.2c02345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Affiliation(s)
- Adriana Sacristán-Martín
- GIR MIOMeT, IU CINQUIMA/Química Inorgánica, Facultad de Ciencias, Universidad de Valladolid, Valladolid E47011, Spain
| | - Daniel Miguel
- GIR MIOMeT, IU CINQUIMA/Química Inorgánica, Facultad de Ciencias, Universidad de Valladolid, Valladolid E47011, Spain
| | - Alberto Diez-Varga
- GIR MIOMeT, IU CINQUIMA/Química Inorgánica, Facultad de Ciencias, Universidad de Valladolid, Valladolid E47011, Spain
| | - Héctor Barbero
- GIR MIOMeT, IU CINQUIMA/Química Inorgánica, Facultad de Ciencias, Universidad de Valladolid, Valladolid E47011, Spain
| | - Celedonio M. Álvarez
- GIR MIOMeT, IU CINQUIMA/Química Inorgánica, Facultad de Ciencias, Universidad de Valladolid, Valladolid E47011, Spain
| |
Collapse
|
9
|
Ibáñez S. The New Di-Gold Metallotweezer Based on an Alkynylpyridine System. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27123699. [PMID: 35744825 PMCID: PMC9227567 DOI: 10.3390/molecules27123699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 06/06/2022] [Accepted: 06/07/2022] [Indexed: 11/16/2022]
Abstract
We developed a simple method to prepare one gold-based metallotweezer with two planar Au-pyrene-NHC arms bound by a 2,6-bis(3-ethynyl-5-tert-butylphenyl)pyridine unit. This metallotweezer is able to bind a series of polycyclic aromatic hydrocarbons through the π-stacking interactions between the polyaromatic guests and the pyrene moieties of the NHC ligands. The metallotweezer was also used as a host for the encapsulation of planar metal complexes, such as the Au(III) complex [Au(C^N^C)(C≡CC6H4-OCH3-p)], for which there is a large binding constant of 946 M−1.
Collapse
Affiliation(s)
- Susana Ibáñez
- Institute of Advanced Materials (INAM), Centro de Innovación en Química Avanzada (ORFEO-CINQA), Universitat Jaume I, Av. Vicente Sos Baynat s/n, 12071 Castellón, Spain
| |
Collapse
|
10
|
Betancourth JG, Castaño JA, Visbal R, Chaur MN. The versatility of the amino moiety of the hydrazone group in molecular and supramolecular systems. European J Org Chem 2022. [DOI: 10.1002/ejoc.202200228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
| | | | - Renso Visbal
- Universidad del Valle Departamento de Química COLOMBIA
| | - Manuel N. Chaur
- Universidad del Valle Chemistry Calle 13 # 100-00Departamento de QuímicaUniversidad del Valle 76000 Cali COLOMBIA
| |
Collapse
|
11
|
Sainaba AB, Venkateswarulu M, Bhandari P, Arachchige KSA, Clegg JK, Mukherjee PS. An Adaptable Water-Soluble Molecular Boat for Selective Separation of Phenanthrene from Isomeric Anthracene. J Am Chem Soc 2022; 144:7504-7513. [PMID: 35436087 DOI: 10.1021/jacs.2c02540] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Anthracene crude oil is a common source of phenanthrene for its industrial use. The isolation of phenanthrene from this source is a challenging task due to very similar physical properties to its isomer anthracene. We report here a water-soluble Pd(II) molecular boat (MB1) with unusual structural topology that was obtained by assembling a flexible tetrapyridyl donor (L) with a cis-Pd(II) acceptor. The flexible backbone of the boat enabled it to breathe in the presence of a guest optimizing the fit within the cavity. The boat binds phenanthrene more strongly than anthracene, which enabled separation of phenanthrene with an >98% purity from an equimolar mixture of the two isomers using MB1 as an extracting agent. MB1 represents a unique example of a coordination receptor suitable for selective aqueous extraction of phenanthrene from anthracene with reusability of several cycles.
Collapse
Affiliation(s)
- Arppitha Baby Sainaba
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore 560012, India
| | - Mangili Venkateswarulu
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore 560012, India
| | - Pallab Bhandari
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore 560012, India
| | | | - Jack K Clegg
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Partha Sarathi Mukherjee
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore 560012, India
| |
Collapse
|
12
|
Ronson TK, Carpenter JP, Nitschke JR. Dynamic optimization of guest binding in a library of diastereomeric heteroleptic coordination cages. Chem 2022. [DOI: 10.1016/j.chempr.2021.12.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
13
|
Zhan YY, Hiraoka S. Molecular “Hozo”: Thermally Stable Yet Conformationally Flexible Self-Assemblies Driven by Tight Molecular Meshing. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2021. [DOI: 10.1246/bcsj.20210228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Yi-Yang Zhan
- RIKEN Center for Emergent Matter Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Shuichi Hiraoka
- Department of Basic Science, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8902, Japan
| |
Collapse
|
14
|
Pavlović RZ, Lalisse RF, Hansen AL, Waudby CA, Lei Z, Güney M, Wang X, Hadad CM, Badjić JD. From Selection to Instruction and Back: Competing Conformational Selection and Induced Fit Pathways in Abiotic Hosts. Angew Chem Int Ed Engl 2021; 60:19942-19948. [PMID: 34125989 DOI: 10.1002/anie.202107091] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Indexed: 12/15/2022]
Abstract
Two limiting cases of molecular recognition, induced fit (IF) and conformational selection (CS), play a central role in allosteric regulation of natural systems. The IF paradigm states that a substrate "instructs" the host to change its shape after complexation, while CS asserts that a guest "selects" the optimal fit from an ensemble of preexisting host conformations. With no studies that quantitatively address the interplay of two limiting pathways in abiotic systems, we herein and for the first time describe the way by which twisted capsule M-1, encompassing two conformers M-1(+) and M-1(-), trap CX4 (X=Cl, Br) to give CX4 ⊂M-1(+) and CX4 ⊂M-1(-), with all four states being in thermal equilibrium. With the assistance of 2D EXSY, we found that CBr4 would, at its lower concentrations, bind M-1 via a M-1(+)→M-1(-)→CBr4 ⊂M-1(-) pathway corresponding to conformational selection. For M-1 complexing CCl4 though, data from 2D EXSY measurements and 1D NMR line-shape analysis suggested that lower CCl4 concentrations would favor CS while the IF pathway prevailed at higher proportions of the guest. Since CS and IF are not mutually exclusive, we reason that our work sets the stage for characterizing the dynamics of a wide range of already existing hosts to broaden our fundamental understanding of their action. The objective is to master the way in which encapsulation takes place for designing novel and allosteric sequestering agents, catalysts and chemosensors akin to those found in nature.
Collapse
Affiliation(s)
- Radoslav Z Pavlović
- Department of Chemistry & Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, OH, 43210, USA
| | - Remy F Lalisse
- Department of Chemistry & Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, OH, 43210, USA
| | - Alexandar L Hansen
- Campus Chemical Instrument Center, The Ohio State University, 100 West 18th Avenue, Columbus, OH, 43210, USA
| | - Christopher A Waudby
- Institute of Structural and Molecular Biology, University College London, London, WC1E 6BT, UK
| | - Zhiquan Lei
- Department of Chemistry & Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, OH, 43210, USA
| | - Murat Güney
- Agri Ibrahim Çeçen University, Department of Chemistry, 04100, Agri, Turkey
| | - Xiuze Wang
- Department of Chemistry & Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, OH, 43210, USA
| | - Christopher M Hadad
- Department of Chemistry & Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, OH, 43210, USA
| | - Jovica D Badjić
- Department of Chemistry & Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, OH, 43210, USA
| |
Collapse
|
15
|
Pavlović RZ, Lalisse RF, Hansen AL, Waudby CA, Lei Z, Güney M, Wang X, Hadad CM, Badjić JD. From Selection to Instruction and Back: Competing Conformational Selection and Induced Fit Pathways in Abiotic Hosts. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202107091] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Radoslav Z. Pavlović
- Department of Chemistry & Biochemistry The Ohio State University 100 West 18th Avenue Columbus OH 43210 USA
| | - Remy F. Lalisse
- Department of Chemistry & Biochemistry The Ohio State University 100 West 18th Avenue Columbus OH 43210 USA
| | - Alexandar L. Hansen
- Campus Chemical Instrument Center The Ohio State University 100 West 18th Avenue Columbus OH 43210 USA
| | - Christopher A. Waudby
- Institute of Structural and Molecular Biology University College London London WC1E 6BT UK
| | - Zhiquan Lei
- Department of Chemistry & Biochemistry The Ohio State University 100 West 18th Avenue Columbus OH 43210 USA
| | - Murat Güney
- Agri Ibrahim Çeçen University Department of Chemistry 04100 Agri Turkey
| | - Xiuze Wang
- Department of Chemistry & Biochemistry The Ohio State University 100 West 18th Avenue Columbus OH 43210 USA
| | - Christopher M. Hadad
- Department of Chemistry & Biochemistry The Ohio State University 100 West 18th Avenue Columbus OH 43210 USA
| | - Jovica D. Badjić
- Department of Chemistry & Biochemistry The Ohio State University 100 West 18th Avenue Columbus OH 43210 USA
| |
Collapse
|
16
|
Vicent C, Martinez‐Agramunt V, Gandhi V, Larriba‐Andaluz C, Gusev DG, Peris E. Ion Mobility Mass Spectrometry Uncovers Guest‐Induced Distortions in a Supramolecular Organometallic Metallosquare. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202100914] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Cristian Vicent
- Servei Central d'Instrumentació Científica (SCIC) Universitat Jaume I Avda. Sos Baynat s/n 12006 Castellón Spain
| | - Victor Martinez‐Agramunt
- Institute of Advanced Materials (INAM) Universitat Jaume I Av. Vicente Sos Baynat s/n 12071 Castellón Spain
| | - Viraj Gandhi
- Department of Mechanical and Energy Engineering IUPUI Indianapolis IN 46206 USA
| | | | - Dmitry G. Gusev
- Department of Chemistry and Biochemistry Wilfrid Laurier University 75 University Avenue West Waterloo Ontario N2L 3C5 Canada
| | - Eduardo Peris
- Institute of Advanced Materials (INAM) Universitat Jaume I Av. Vicente Sos Baynat s/n 12071 Castellón Spain
- Department of Mechanical and Energy Engineering IUPUI Indianapolis IN 46206 USA
| |
Collapse
|
17
|
Vicent C, Martinez‐Agramunt V, Gandhi V, Larriba‐Andaluz C, Gusev DG, Peris E. Ion Mobility Mass Spectrometry Uncovers Guest-Induced Distortions in a Supramolecular Organometallic Metallosquare. Angew Chem Int Ed Engl 2021; 60:15412-15417. [PMID: 33783064 PMCID: PMC8361979 DOI: 10.1002/anie.202100914] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Indexed: 12/21/2022]
Abstract
The encapsulation of the tetracationic palladium metallosquare with four pyrene-bis-imidazolylidene ligands [1]4+ with a series of organic molecules was studied by Electrospray ionization Travelling Wave Ion-Mobility Mass Spectrometry (ESI TWIM-MS). The method allowed to determine the Collision Cross Sections (CCSs), which were used to assess the size changes experienced by the host upon encapsulation of the guest molecules. When fullerenes were used as guests, the host is expanded ΔCCS 13 Å2 and 23 Å2 , for C60 or C70 , respectively. The metallorectangle [1]4+ was also used for the encapsulation of a series of polycyclic aromatic hydrocarbons (PAHs) and naphthalenetetracarboxylic diimide (NTCDI), to form complexes of formula [(NTCDI)2 (PAH)@1]4+ . For these host:guest adducts, the ESI IM-MS studies revealed that [1]4+ is expanded by 47-49 Å2 .. The energy-minimized structures of [1]4+ , [C60 @1]4+ , [C70 @1]4+ , [(NTCDI)2 (corannulene)@1]4+ in the gas phase were obtained by DFT calculations.Introduction.
Collapse
Affiliation(s)
- Cristian Vicent
- Servei Central d'Instrumentació Científica (SCIC)Universitat Jaume IAvda. Sos Baynat s/n12006CastellónSpain
| | - Victor Martinez‐Agramunt
- Institute of Advanced Materials (INAM)Universitat Jaume IAv. Vicente Sos Baynat s/n12071CastellónSpain
| | - Viraj Gandhi
- Department of Mechanical and Energy EngineeringIUPUIIndianapolisIN46206USA
| | | | - Dmitry G. Gusev
- Department of Chemistry and BiochemistryWilfrid Laurier University75 University Avenue WestWaterlooOntarioN2L 3C5Canada
| | - Eduardo Peris
- Institute of Advanced Materials (INAM)Universitat Jaume IAv. Vicente Sos Baynat s/n12071CastellónSpain
- Department of Mechanical and Energy EngineeringIUPUIIndianapolisIN46206USA
| |
Collapse
|
18
|
Ibáñez S, Peris E. Shape-Adaptability and Redox-Switching Properties of a Di-Gold Metallotweezer. Chemistry 2021; 27:9661-9665. [PMID: 33844341 PMCID: PMC8362111 DOI: 10.1002/chem.202100794] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Indexed: 12/24/2022]
Abstract
The use of a carbazolyl-connected di-gold(I) metallotweezer for the encapsulation of several electron-poor organic substrates, and a planar Au(III) complex containing a CNC pincer ligand, is described. The binding affinity of the receptor depends on the electron-deficient character of the planar guest, with larger association constants found for the more electron-poor guests. The X-ray diffraction molecular structures of two host:guest adducts show that the host approaches its arms in order to facilitate the optimum interaction with the surface of the planar guests, in a clear example of an guest-induced fit conformational arrangement. The electrochemical studies of the encapsulation of N,N'-dimethyl-naphthalenetetracarboxy diimide (NTCDI) show that the redox active guest is released from the receptor upon one electron reduction, thus constituting an example of redox-switchable binding.
Collapse
Affiliation(s)
- Susana Ibáñez
- Institute of Advanced Materials (INAM), Centro de Innovación en Química Avanzada (ORFEO-CINQA).Universitat Jaume I.Av. Vicente Sos Baynat s/nCastellón1271Spain
| | - Eduardo Peris
- Institute of Advanced Materials (INAM), Centro de Innovación en Química Avanzada (ORFEO-CINQA).Universitat Jaume I.Av. Vicente Sos Baynat s/nCastellón1271Spain
| |
Collapse
|
19
|
Ibáñez S, Peris E. Dimensional Matching versus Induced‐Fit Distortions: Binding Affinities of Planar and Curved Polyaromatic Hydrocarbons with a Tetragold Metallorectangle. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201915401] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Susana Ibáñez
- Institute of Advanced Materials (INAM)Universitat Jaume I Av. Vicente Sos Baynat s/n. 12071 Castellón Spain
| | - Eduardo Peris
- Institute of Advanced Materials (INAM)Universitat Jaume I Av. Vicente Sos Baynat s/n. 12071 Castellón Spain
| |
Collapse
|
20
|
Tamura Y, Takezawa H, Fujita M. A Double-Walled Knotted Cage for Guest-Adaptive Molecular Recognition. J Am Chem Soc 2020; 142:5504-5508. [DOI: 10.1021/jacs.0c00459] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Yukari Tamura
- Department of Applied Chemistry, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Hiroki Takezawa
- Department of Applied Chemistry, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Makoto Fujita
- Department of Applied Chemistry, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
- Division of Advanced Molecular Science, Institute for Molecular Science (IMS), 5-1 Higashiyama, Myodaiji, Okazaki, Aichi 444-8787, Japan
| |
Collapse
|
21
|
Ibáñez S, Peris E. Dimensional Matching versus Induced-Fit Distortions: Binding Affinities of Planar and Curved Polyaromatic Hydrocarbons with a Tetragold Metallorectangle. Angew Chem Int Ed Engl 2020; 59:6860-6865. [PMID: 32053282 DOI: 10.1002/anie.201915401] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 01/24/2020] [Indexed: 11/07/2022]
Abstract
A tetragold(I) rectangle-like metallocage containing two pyrene-bis-imidazolylidene ligands and two carbazolyl-bis-alkynyl linkers is used for the encapsulation of a series of polycyclic aromatic hydrocarbons (PAHs), including corannulene. The binding affinities obtained for the encapsulation of the planar PAHs guests in CD2 Cl2 are found to exponentially increase with the number of π-electrons of the guest (1.3 > logK >6.6). For the bowl-shaped molecule of corannulene, the association constant is much lower than the expected one according to its number of electrons. The molecular structure of the host-guest complex formed with corannulene shows that the molecule of the guest is compressed, while the host is expanded, thus showing an interesting case of artificial mutual induced-fit arrangement.
Collapse
Affiliation(s)
- Susana Ibáñez
- Institute of Advanced Materials (INAM), Universitat Jaume I, Av. Vicente Sos Baynat s/n., 12071, Castellón, Spain
| | - Eduardo Peris
- Institute of Advanced Materials (INAM), Universitat Jaume I, Av. Vicente Sos Baynat s/n., 12071, Castellón, Spain
| |
Collapse
|
22
|
Imamura K, Yamamoto T, Sato H. Coarse-grained modeling of nanocube self-assembly system and transition network analyses. Chem Phys Lett 2020. [DOI: 10.1016/j.cplett.2020.137135] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
23
|
Fujiwara T, Takashika M, Hasegawa M, Ie Y, Aso Y, Aoyagi S, Otani H, Iyoda M. Small Structural Changes in the Alkyl Substituents of Macrocyclic π-Extended Thiophene Oligomers Causes a Key Effect on Their Stacking and Functional Properties. Chempluschem 2020; 84:694-703. [PMID: 31944018 DOI: 10.1002/cplu.201900062] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 04/24/2019] [Indexed: 11/10/2022]
Abstract
Three new macrocyclic π-extended thiophene hexamers composed of four thienylene-ethynylene and two thienylene-vinylene units with or without four alkyl substituents have been synthesized. Despite similar shape-persistent structures in solution, the alkyl substituents control the solid-state structures and morphologies. The unsubstituted hexamer exhibited a planar conformation with a theoretically predicted structure in the solid state; however, the planar hexamer with four ethyl substituents formed a closely stacked columnar crystal structure to exhibit π-π interactions. Interestingly, the hexamer with four butyl substituents adopted both planar and twisted conformations in the solid state, exhibiting polymorphism based on induced-fit stacking of molecules. Thus, the butyl-substituted hexamer produces a mixture of yellow, orange, and red single crystals from toluene/acetone, and X-ray analysis revealed six different conformations. Consequently, the small structural difference in the macrocycles causes a key effect on their functional properties in the solid state, and their morphology governs electrical conductivity and organic field-effect-transistor activity. The polymorphism of the hexamers was applied to the switching of film morphology.
Collapse
Affiliation(s)
- Toshihiro Fujiwara
- Graduate School of Environment and Information Sciences, Yokohama National University Hodogaya-ku, Yokohama, Kanagawa, 240-8501, Japan
| | - Masataka Takashika
- Graduate School of Environment and Information Sciences, Yokohama National University Hodogaya-ku, Yokohama, Kanagawa, 240-8501, Japan
| | - Masashi Hasegawa
- School of Science, Kitasato University Sagamihara, Kanagawa, 252-0373, Japan
| | - Yutaka Ie
- The Institute of Scientific and Industrial Research, Osaka University Ibaraki, Osaka, 567-0047, Japan
| | - Yoshio Aso
- The Institute of Scientific and Industrial Research, Osaka University Ibaraki, Osaka, 567-0047, Japan
| | - Shinobu Aoyagi
- Department of Information and Basic Science, Nagoya City University, Nagoya, 467-8501, Japan
| | - Hiroyuki Otani
- Graduate School of Environment and Information Sciences, Yokohama National University Hodogaya-ku, Yokohama, Kanagawa, 240-8501, Japan
| | - Masahiko Iyoda
- Department of Chemistry, Graduate School of Science, Tokyo Metropolitan University Hachioji, Tokyo, 192-0397, Japan
| |
Collapse
|
24
|
Zhan YY, Jiang QC, Ishii K, Koide T, Kobayashi O, Kojima T, Takahashi S, Tachikawa M, Uchiyama S, Hiraoka S. Polarizability and isotope effects on dispersion interactions in water. Commun Chem 2019. [DOI: 10.1038/s42004-019-0242-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
AbstractTrue understanding of dispersion interaction in solution remains elusive because of difficulty in the precise evaluation of its interaction energy. Here, the effect of substituents with different polarizability on dispersion interactions in water is discussed based on the thermodynamic parameters determined by isothermal titration calorimetry for the formation of discrete aggregates from gear-shaped amphiphiles (GSAs). The substituents with higher polarizability enthalpically more stabilize the nanocube, which is due to stronger dispersion interactions and to the hydrophobic effect. The differences in the thermodynamic parameters for the nanocubes from the GSAs with CH3 and CD3 groups are also discussed to lead to the conclusion that the H/D isotope effect on dispersion interactions is negligibly small, which is due to almost perfect entropy-enthalpy compensation between the two isotopomers.
Collapse
|
25
|
Yokogawa D. Isotropic Site-Site Dispersion Potential Determined from Localized Frequency-Dependent Density Susceptibility. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2019. [DOI: 10.1246/bcsj.20190142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Daisuke Yokogawa
- Graduate School of Arts and Science, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8902, Japan
| |
Collapse
|
26
|
Zhan YY, Liao J, Kajita M, Kojima T, Takahashi S, Takaya T, Iwata K, Hiraoka S. Supramolecular fluorescence sensor for liquefied petroleum gas. Commun Chem 2019. [DOI: 10.1038/s42004-019-0212-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Abstract
Sensing systems of nonpolar gas molecules without functional groups such as natural gas and liquefied petroleum gas (LPG) remain difficult to develop because of lacking selective detection of such molecules over other gas molecules. Here we report a supramolecular fluorescence sensor for LPG using a 2-nm-sized cube-shaped molecular container i.e. a nanocube self-assembled from six molecules of gear-shaped amphiphiles (GSA) in water. The nanocube selectively encapsulates LPG, while it does not bind other gas molecules. Upon encapsulation of LPG in the nanocube, the fluorescence from the nanocube is enhanced by 3.9 times, which is caused by the restricted motion of the aromatic rings of GSA in the nanocube based on aggregation-induced emission. Besides the high selectivity, high sensitivity, quick response, high stability of the nanocube for LPG, and easy preparation of GSA satisfy the requirement for its practical use for an LPG sensor.
Collapse
|
27
|
Zeng H, Xie M, Huang Y, Zhao Y, Xie X, Bai J, Wan M, Krishna R, Lu W, Li D. Induced Fit of C
2
H
2
in a Flexible MOF Through Cooperative Action of Open Metal Sites. Angew Chem Int Ed Engl 2019; 58:8515-8519. [DOI: 10.1002/anie.201904160] [Citation(s) in RCA: 143] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Indexed: 12/27/2022]
Affiliation(s)
- Heng Zeng
- College of Chemistry and Materials ScienceJinan University Guangzhou 510632 P. R. China
| | - Mo Xie
- College of Chemistry and Materials ScienceJinan University Guangzhou 510632 P. R. China
| | - Yong‐Liang Huang
- College of Chemistry and Materials ScienceJinan University Guangzhou 510632 P. R. China
| | - Yifang Zhao
- College of Chemistry and Materials ScienceJinan University Guangzhou 510632 P. R. China
| | - Xiao‐Jing Xie
- College of Chemistry and Materials ScienceJinan University Guangzhou 510632 P. R. China
| | - Jian‐Ping Bai
- College of Chemistry and Materials ScienceJinan University Guangzhou 510632 P. R. China
| | - Meng‐Yan Wan
- College of Chemistry and Materials ScienceJinan University Guangzhou 510632 P. R. China
| | - Rajamani Krishna
- Van't Hoff Institute for Molecular SciencesUniversity of Amsterdam Science Park 904 1098 XH Amsterdam The Netherlands
| | - Weigang Lu
- College of Chemistry and Materials ScienceJinan University Guangzhou 510632 P. R. China
| | - Dan Li
- College of Chemistry and Materials ScienceJinan University Guangzhou 510632 P. R. China
| |
Collapse
|
28
|
Nishioka T, Kuroda K, Akita M, Yoshizawa M. A Polyaromatic Gemini Amphiphile That Assembles into a Well‐Defined Aromatic Micelle with Higher Stability and Host Functions. Angew Chem Int Ed Engl 2019; 58:6579-6583. [DOI: 10.1002/anie.201814624] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Revised: 02/28/2019] [Indexed: 12/28/2022]
Affiliation(s)
- Tomoya Nishioka
- Laboratory for Chemistry and Life ScienceInstitute of Innovative ResearchTokyo Institute of Technology 4259 Nagatsuta, Midori-ku Yokohama 226-8503 Japan
| | - Kiyonori Kuroda
- Laboratory for Chemistry and Life ScienceInstitute of Innovative ResearchTokyo Institute of Technology 4259 Nagatsuta, Midori-ku Yokohama 226-8503 Japan
| | - Munetaka Akita
- Laboratory for Chemistry and Life ScienceInstitute of Innovative ResearchTokyo Institute of Technology 4259 Nagatsuta, Midori-ku Yokohama 226-8503 Japan
| | - Michito Yoshizawa
- Laboratory for Chemistry and Life ScienceInstitute of Innovative ResearchTokyo Institute of Technology 4259 Nagatsuta, Midori-ku Yokohama 226-8503 Japan
| |
Collapse
|
29
|
Zeng H, Xie M, Huang Y, Zhao Y, Xie X, Bai J, Wan M, Krishna R, Lu W, Li D. Induced Fit of C
2
H
2
in a Flexible MOF Through Cooperative Action of Open Metal Sites. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201904160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Heng Zeng
- College of Chemistry and Materials ScienceJinan University Guangzhou 510632 P. R. China
| | - Mo Xie
- College of Chemistry and Materials ScienceJinan University Guangzhou 510632 P. R. China
| | - Yong‐Liang Huang
- College of Chemistry and Materials ScienceJinan University Guangzhou 510632 P. R. China
| | - Yifang Zhao
- College of Chemistry and Materials ScienceJinan University Guangzhou 510632 P. R. China
| | - Xiao‐Jing Xie
- College of Chemistry and Materials ScienceJinan University Guangzhou 510632 P. R. China
| | - Jian‐Ping Bai
- College of Chemistry and Materials ScienceJinan University Guangzhou 510632 P. R. China
| | - Meng‐Yan Wan
- College of Chemistry and Materials ScienceJinan University Guangzhou 510632 P. R. China
| | - Rajamani Krishna
- Van't Hoff Institute for Molecular SciencesUniversity of Amsterdam Science Park 904 1098 XH Amsterdam The Netherlands
| | - Weigang Lu
- College of Chemistry and Materials ScienceJinan University Guangzhou 510632 P. R. China
| | - Dan Li
- College of Chemistry and Materials ScienceJinan University Guangzhou 510632 P. R. China
| |
Collapse
|
30
|
Nishioka T, Kuroda K, Akita M, Yoshizawa M. A Polyaromatic Gemini Amphiphile That Assembles into a Well‐Defined Aromatic Micelle with Higher Stability and Host Functions. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201814624] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Tomoya Nishioka
- Laboratory for Chemistry and Life ScienceInstitute of Innovative ResearchTokyo Institute of Technology 4259 Nagatsuta, Midori-ku Yokohama 226-8503 Japan
| | - Kiyonori Kuroda
- Laboratory for Chemistry and Life ScienceInstitute of Innovative ResearchTokyo Institute of Technology 4259 Nagatsuta, Midori-ku Yokohama 226-8503 Japan
| | - Munetaka Akita
- Laboratory for Chemistry and Life ScienceInstitute of Innovative ResearchTokyo Institute of Technology 4259 Nagatsuta, Midori-ku Yokohama 226-8503 Japan
| | - Michito Yoshizawa
- Laboratory for Chemistry and Life ScienceInstitute of Innovative ResearchTokyo Institute of Technology 4259 Nagatsuta, Midori-ku Yokohama 226-8503 Japan
| |
Collapse
|
31
|
Zhan YY, Kojima T, Ishii K, Takahashi S, Haketa Y, Maeda H, Uchiyama S, Hiraoka S. Temperature-controlled repeatable scrambling and induced-sorting of building blocks between cubic assemblies. Nat Commun 2019; 10:1440. [PMID: 30926927 PMCID: PMC6441092 DOI: 10.1038/s41467-019-09495-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 03/12/2019] [Indexed: 12/28/2022] Open
Abstract
Separation of a homogeneous mixture of different components to reach an ordered out-of-equilibrium state in solution has attracted continuous attention. While this can be achieved using external chemical fuels or photo energy, an alternative energy source is heat. Here we realize a temperature-controlled cycle of transitions between ordered and disordered states based on a mixture of two kinds of building blocks that self-assemble into cubic structures (nanocubes). An almost statistical mixture of nanocubes (disordered state) is thermodynamically most stable at lower temperature (25 °C), while homoleptic assemblies composed of single components are preferentially produced at higher temperature (100 °C) followed by rapid cooling. The scrambling of the building blocks between the nanocubes takes place through the exchange of free building blocks dissociated from the nanocubes. Based on this mechanism, it is possible to accelerate, retard, and perfectly block the scrambling by the guest molecules encapsulated in the nanocubes. In this paper, the authors study the temperature-controlled dynamic behavior of a system of nanocubes self-assembled from two different building blocks. Non-intuitively, the disordered, equilibrium state (a mixture of heteroleptic cubes) and the ordered, out-of-equilibrium state (a mixture of homoleptic cubes) are cycled by heating and subsequent rapid cooling.
Collapse
Affiliation(s)
- Yi-Yang Zhan
- Department of Basic Science, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo, 153-8902, Japan
| | - Tatsuo Kojima
- Department of Basic Science, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo, 153-8902, Japan
| | - Kentaro Ishii
- Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji-cho, Okazaki, Aichi, 444-8787, Japan
| | - Satoshi Takahashi
- Department of Basic Science, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo, 153-8902, Japan
| | - Yohei Haketa
- Department of Applied Chemistry, College of Life Sciences, Ritsumeikan University, 1-1-1 Noji-higashi, Kusatsu, Shiga, 525-8577, Japan
| | - Hiromitsu Maeda
- Department of Applied Chemistry, College of Life Sciences, Ritsumeikan University, 1-1-1 Noji-higashi, Kusatsu, Shiga, 525-8577, Japan
| | - Susumu Uchiyama
- Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji-cho, Okazaki, Aichi, 444-8787, Japan.,Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Shuichi Hiraoka
- Department of Basic Science, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo, 153-8902, Japan.
| |
Collapse
|
32
|
Sapotta M, Spenst P, Saha-Möller CR, Würthner F. Guest-mediated chirality transfer in the host–guest complexes of an atropisomeric perylene bisimide cyclophane host. Org Chem Front 2019. [DOI: 10.1039/c9qo00172g] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Chirality transfer upon preferential binding of homochiral guests to one stereoisomer of a conformationally equilibrated atropisomeric cyclophane is reported.
Collapse
Affiliation(s)
- Meike Sapotta
- Institut für Organische Chemie
- Universität Würzburg
- 97074 Würzburg
- Germany
| | - Peter Spenst
- Institut für Organische Chemie
- Universität Würzburg
- 97074 Würzburg
- Germany
| | | | - Frank Würthner
- Institut für Organische Chemie
- Universität Würzburg
- 97074 Würzburg
- Germany
- Center for Nanosystems Chemistry (CNC)
| |
Collapse
|