1
|
Décout JL, Maurel MC. Purine Chemistry in the Early RNA World at the Origins of Life: From RNA and Nucleobases Lesions to Current Key Metabolic Routes. Chembiochem 2025:e2500035. [PMID: 40237374 DOI: 10.1002/cbic.202500035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 03/25/2025] [Indexed: 04/18/2025]
Abstract
In early life, RNA probably played the central role and, in the corresponding RNA world, the main produced amino acids and small peptides had to react continuously with RNA, ribonucleos(t)ides and nucleobases, especially with purines. A RNA-peptide world and key metabolic pathways have emerged from the corresponding chemical modifications such as the translation process performed by the ribosome. Some interesting reactions of the purine bicycle and of the corresponding ribonucleos(t)ides are performed under plausible prebiotic conditions and described RNA chemical lesions are reviewed with the prospect to highlight their connection with some major steps of the purine and histidine biosynthetic pathways that are, in an intriguingly way, related through two key metabolites, adenosine 5'-triphosphate and the imidazole ribonucleotide 5-aminoimidazole-4-carboxamide ribonucleotide. Ring-opening reactions of purines stand out as efficient accesses to imidazole ribonucleotides and to formamidopyrimidine (Fapy) ribonucleotides suggesting that biosynthetic pathway' first steps have emerged from RNA and ribonucleos(t)ide damages. Also, are summarized the works on the formation and catalytic properties, under plausible prebiotic conditions, of N6-derivatives of the purine base adenine as potential surrogates of histidine in catalysis accordingly to their structural relationship.
Collapse
Affiliation(s)
- Jean-Luc Décout
- Département de Pharmacochimie Moléculaire, UMR 5063, Université Grenoble Alpes, CNRS, Faculté de Pharmacie, 38000, Grenoble, France
| | - Marie-Christine Maurel
- Institut de Systématique, Evolution, Biodiversité (ISyEB), UMR 7205, CNRS, Muséum National d'Histoire Naturelle, Sorbonne Université, 75005, Paris, France
| |
Collapse
|
2
|
Ruzov AS, Ermakov AS. The non-canonical nucleotides and prebiotic evolution. Biosystems 2025; 248:105411. [PMID: 39900260 DOI: 10.1016/j.biosystems.2025.105411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 12/23/2024] [Accepted: 01/31/2025] [Indexed: 02/05/2025]
Abstract
The mystery of the origin of life has been puzzling mankind for several millenia. Starting from the second half of the 20th century, when the crucial role of nucleic acids in biological heredity became apparent, the emphasis in the field has shifted to the explanation of the origin of nucleic acids and the mechanisms of copying of macromolecules. In the 1960s, the hypothesis of the RNA World was proposed, according to which the first stages of the origin of life on Earth were associated with the appearance of self-replicating complexes based on RNA, that were akin to RNA-enzymes that catalyze critical for life chemical reactions. Currently, it has been shown that different forms of RNA include not only canonical (adenine, uracil, guanine, cytosine), but also about 170 non-canonical nucleotides. In this review, we discuss potential roles of these non-canonical nucleotides in the processes of molecular prebiotic evolution, such as the emergence of canonical RNA nucleotides and catalytic RNAs, as well as the origin of template synthesis of RNA and proteins.
Collapse
Affiliation(s)
- Alexey S Ruzov
- Institute of Bioengineering, Research Center of Biotechnology, Russian Academy of Sciences, 119071, Moscow, Russia
| | - Alexander S Ermakov
- Institute of Bioengineering, Research Center of Biotechnology, Russian Academy of Sciences, 119071, Moscow, Russia; Faculty of Biology, Lomonosov Moscow State University, 119991, Moscow, Russia.
| |
Collapse
|
3
|
Węgrzyn E, Mejdrová I, Carell T. Gradual evolution of a homo-l-peptide world on homo-d-configured RNA and DNA. Chem Sci 2024; 15:d4sc03384a. [PMID: 39129775 PMCID: PMC11306956 DOI: 10.1039/d4sc03384a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 07/26/2024] [Indexed: 08/13/2024] Open
Abstract
Modern life requires the translation of genetic information - encoded by nucleic acids - into proteins, which establishes the essential link between genotype and phenotype. During translation, exclusively l-amino acids are loaded onto transfer RNA molecules (tRNA), which are then connected at the ribosome to give homo-l-proteins. In contrast to the homo-l-configuration of amino acids and proteins, the oligonucleotides involved are all d-configured (deoxy)ribosides. Previously, others and us have shown that if peptide synthesis occurs at homo d-configured oligonucleotides, a pronounced l-amino acid selectivity is observed, which reflects the d-sugar/l-amino acid world that evolved in nature. Here we further explore this astonishing selectivity. We show a peptide-synthesis/recapture-cycle that can lead to a gradual enrichment and hence selection of a homo-l-peptide world. We show that even if peptides with a mixed l/d-stereochemistry are formed, they are not competitive against the homo-l-counterparts. We also demonstrate that this selectivity is not limited to RNA but that peptide synthesis on DNA features the same l-amino acid preference. In total, the data bring us a step closer to an understanding of how homochirality on Earth once evolved.
Collapse
Affiliation(s)
- Ewa Węgrzyn
- Department of Chemistry, Center for Nucleic Acids Therapies at the Institute for Chemical Epigenetics (ICE-M), Ludwig-Maximilians-Universität (LMU) München Butenandtstrasse 5-13 81377 Munich Germany
| | - Ivana Mejdrová
- Department of Chemistry, Center for Nucleic Acids Therapies at the Institute for Chemical Epigenetics (ICE-M), Ludwig-Maximilians-Universität (LMU) München Butenandtstrasse 5-13 81377 Munich Germany
| | - Thomas Carell
- Department of Chemistry, Center for Nucleic Acids Therapies at the Institute for Chemical Epigenetics (ICE-M), Ludwig-Maximilians-Universität (LMU) München Butenandtstrasse 5-13 81377 Munich Germany
| |
Collapse
|
4
|
Li Z, Song G, Zhu J, Mu J, Sun Y, Hong X, Choi T, Cui X, Chen HF. Excited-Ground-State Transition of the RNA Strand Slippage Mechanism Captured by the Base-Specific Force Field. J Chem Theory Comput 2024; 20:6082-6097. [PMID: 38980289 DOI: 10.1021/acs.jctc.4c00497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Excited-ground-state transition and strand slippage of RNA play key roles in transcription and translation of central dogma. Due to limitation of current experimental techniques, the dynamic structure ensembles of RNA remain inadequately understood. Molecular dynamics simulations offer a promising complementary approach, whose accuracy depends on the force field. Here, we develop the new version of RNA base-specific force field (BSFF2) to address underestimation of base pairing stability and artificial backbone conformations. Extensive evaluations on typical RNA systems have comprehensively confirmed the accuracy of BSFF2. Furthermore, BSFF2 demonstrates exceptional efficiency in de novo folding of tetraloops and reproducing base pair reshuffling transition between RNA excited and ground states. Then, we explored the RNA strand slippage mechanism with BSFF2. We conducted a comprehensive three-dimensional structural investigation into the strand slippage of the most complex r(G4C2)9 repeat element and presented the molecular details in the dynamic transition along with the underlying mechanism. Our results of capturing the strand slippage, excited-ground transition, de novo folding, and simulations for various typical RNA motifs indicate that BSFF2 should be one of valuable tools for dynamic conformation research and structure prediction of RNA, and a future contribution to RNA-targeted drug design as well as RNA therapy development.
Collapse
Affiliation(s)
- Zhengxin Li
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic Developmental Sciences, Department of Bioinformatics and Biostatistics, SJTU-Yale Joint Center for Biostatistics, National Experimental Teaching Center for Life Sciences and Biotechnology, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Ge Song
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic Developmental Sciences, Department of Bioinformatics and Biostatistics, SJTU-Yale Joint Center for Biostatistics, National Experimental Teaching Center for Life Sciences and Biotechnology, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Junjie Zhu
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic Developmental Sciences, Department of Bioinformatics and Biostatistics, SJTU-Yale Joint Center for Biostatistics, National Experimental Teaching Center for Life Sciences and Biotechnology, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Junxi Mu
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic Developmental Sciences, Department of Bioinformatics and Biostatistics, SJTU-Yale Joint Center for Biostatistics, National Experimental Teaching Center for Life Sciences and Biotechnology, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yutong Sun
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic Developmental Sciences, Department of Bioinformatics and Biostatistics, SJTU-Yale Joint Center for Biostatistics, National Experimental Teaching Center for Life Sciences and Biotechnology, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xiaokun Hong
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic Developmental Sciences, Department of Bioinformatics and Biostatistics, SJTU-Yale Joint Center for Biostatistics, National Experimental Teaching Center for Life Sciences and Biotechnology, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian 350116, China
| | - Taeyoung Choi
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic Developmental Sciences, Department of Bioinformatics and Biostatistics, SJTU-Yale Joint Center for Biostatistics, National Experimental Teaching Center for Life Sciences and Biotechnology, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xiaochen Cui
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic Developmental Sciences, Department of Bioinformatics and Biostatistics, SJTU-Yale Joint Center for Biostatistics, National Experimental Teaching Center for Life Sciences and Biotechnology, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Hai-Feng Chen
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic Developmental Sciences, Department of Bioinformatics and Biostatistics, SJTU-Yale Joint Center for Biostatistics, National Experimental Teaching Center for Life Sciences and Biotechnology, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
5
|
Thøgersen J, Madzharova F, Weidner T, Jensen F. Deep-Ultraviolet Photoexcitation of Aqueous Urea Forms Carbamic Acid/Carbamate in Less Than One Picosecond. Chemistry 2024; 30:e202400728. [PMID: 38804868 DOI: 10.1002/chem.202400728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Indexed: 05/29/2024]
Abstract
Urea is believed to have been essential to the synthesis of prebiotic nucleotides and thereby the RNA or DNA of the first lifeforms. Models suggesting that life began in wet-dry cycles around shallow aquatic ponds imply that reactants such as urea were exposed to deep ultraviolet irradiation from the young sun. Detrimental photodissociation of urea induced by deep UV excitation potentially challenges these models. We here follow the primary deep ultraviolet photochemistry of aqueous urea. The data show that urea is barely excited at 200 nm due to weak ultraviolet absorption. The likelihood of photodissociation is further reduced by strong intra-molecular coupling of the CN and CO stretch vibrations accompanied by an efficient dissipation of the excitation energy to the surrounding water molecules mitigated by urea-water hydrogen bonds. We find that 54±5 % of the excited urea molecules dissociate. Reactions between the photoproducts and surrounding solvent molecules form carbamic acid or the carbamate anions within 0.6 ps. The molecules that do not dissociate return to the electronic ground state in 2 ps. Interestingly, the photodissociation processes of urea in the aqueous phase is different from earlier reported reactions observed following the VUV photolysis of urea in noble gas matrices and highlight the potential influence of water on the prebiotic photochemistry.
Collapse
Affiliation(s)
- Jan Thøgersen
- Department of Chemistry, Aarhus University, Langelandsgade 140, Aarhus, Denmark
| | - Fani Madzharova
- Department of Chemistry, Aarhus University, Langelandsgade 140, Aarhus, Denmark
| | - Tobias Weidner
- Department of Chemistry, Aarhus University, Langelandsgade 140, Aarhus, Denmark
| | - Frank Jensen
- Department of Chemistry, Aarhus University, Langelandsgade 140, Aarhus, Denmark
| |
Collapse
|
6
|
Helm M, Bohnsack MT, Carell T, Dalpke A, Entian KD, Ehrenhofer-Murray A, Ficner R, Hammann C, Höbartner C, Jäschke A, Jeltsch A, Kaiser S, Klassen R, Leidel SA, Marx A, Mörl M, Meier JC, Meister G, Rentmeister A, Rodnina M, Roignant JY, Schaffrath R, Stadler P, Stafforst T. Experience with German Research Consortia in the Field of Chemical Biology of Native Nucleic Acid Modifications. ACS Chem Biol 2023; 18:2441-2449. [PMID: 37962075 DOI: 10.1021/acschembio.3c00586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
The chemical biology of native nucleic acid modifications has seen an intense upswing, first concerning DNA modifications in the field of epigenetics and then concerning RNA modifications in a field that was correspondingly rebaptized epitranscriptomics by analogy. The German Research Foundation (DFG) has funded several consortia with a scientific focus in these fields, strengthening the traditionally well-developed nucleic acid chemistry community and inciting it to team up with colleagues from the life sciences and data science to tackle interdisciplinary challenges. This Perspective focuses on the genesis, scientific outcome, and downstream impact of the DFG priority program SPP1784 and offers insight into how it fecundated further consortia in the field. Pertinent research was funded from mid-2015 to 2022, including an extension related to the coronavirus pandemic. Despite being a detriment to research activity in general, the pandemic has resulted in tremendously boosted interest in the field of RNA and RNA modifications as a consequence of their widespread and successful use in vaccination campaigns against SARS-CoV-2. Funded principal investigators published over 250 pertinent papers with a very substantial impact on the field. The program also helped to redirect numerous laboratories toward this dynamic field. Finally, SPP1784 spawned initiatives for several funded consortia that continue to drive the fields of nucleic acid modification.
Collapse
Affiliation(s)
- Mark Helm
- Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg-University Mainz, 55128 Mainz, Germany
| | - Markus T Bohnsack
- Department of Molecular Biology, University Medical Center Göttingen, 37073 Göttingen, Germany
| | - Thomas Carell
- Department of Chemistry, Ludwig-Maximilians-University Munich, 81377 Munich, Germany
| | - Alexander Dalpke
- Department of Infectious Diseases, Medical Microbiology and Hygiene, Heidelberg University Hospital, 69120 Heidelberg, Germany
| | - Karl-Dieter Entian
- Institute for Molecular Biosciences, Goethe-University Frankfurt am Main, 60438 Frankfurt am Main, Germany
| | | | - Ralf Ficner
- Institute for Microbiology and Genetics, Georg-August University Göttingen, 37077 Göttingen, Germany
| | - Christian Hammann
- Department of Medicine, HMU Health and Medical University, 14471 Potsdam, Germany
| | - Claudia Höbartner
- Institute for Organic Chemistry, Julius-Maximilians-University of Würzburg, 97074 Würzburg, Germany
| | - Andres Jäschke
- Institute for Pharmacy and Molecular Biotechnology, Ruprecht-Karls-University Heidelberg, 69120 Heidelberg, Germany
| | - Albert Jeltsch
- Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, 70569 Stuttgart, Germany
| | - Stefanie Kaiser
- Institute for Pharmaceutical Chemistry, Goethe University Frankfurt am Main, 60438 Frankfurt am Main, Germany
| | - Roland Klassen
- Institute for Biology - Microbiology, University of Kassel, 34132 Kassel, Germany
| | - Sebastian A Leidel
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, 3012 Bern, Switzerland
| | - Andreas Marx
- Department of Chemistry - Organic/Cellular Chemistry, University of Constance, 78457 Constance, Germany
| | - Mario Mörl
- Institute of Biochemistry, University of Leipzig, 04103 Leipzig, Germany
| | - Jochen C Meier
- Department of Cell Physiology, Technical University of Braunschweig, 38106 Brunswick, Germany
| | - Gunter Meister
- Institute of Biochemistry, Genetics and Microbiology - Biochemistry I, University of Regensburg, 93053 Regensburg, Germany
| | - Andrea Rentmeister
- Institute for Biochemistry, Westphalian Wilhelms University Münster, 48149 Münster, Germany
| | - Marina Rodnina
- Max Planck Institute for Multidisciplinary Sciences, 37077 Göttingen, Germany
| | - Jean-Yves Roignant
- Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg-University Mainz, 55128 Mainz, Germany
- Faculty of Biology and Medicine, University of Lausanne, 1015 Lausanne, Switzerland
| | - Raffael Schaffrath
- Institute for Biology - Microbiology, University of Kassel, 34132 Kassel, Germany
| | - Peter Stadler
- Institute for Computer Science - Bioinformatics, University of Leipzig, 04107 Leipzig, Germany
| | - Thorsten Stafforst
- Interfaculty Institute for Biochemistry, Eberhard Karls University Tübingen, 72074 Tübingen, Germany
| |
Collapse
|
7
|
Ross D, Deamer D. Template-Directed Replication and Chiral Resolution during Wet-Dry Cycling in Hydrothermal Pools. Life (Basel) 2023; 13:1749. [PMID: 37629605 PMCID: PMC10456050 DOI: 10.3390/life13081749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/01/2023] [Accepted: 08/03/2023] [Indexed: 08/27/2023] Open
Abstract
The commonly supposed template-based format for RNA self-replication requires both duplex assembly and disassembly. This requisite binary provision presents a challenge to the development of a serviceable self-replication model since chemical reactions are thermochemically unidirectional. We submit that a solution to this problem lies in volcanic landmasses that engage in continuous cycles of wetting and drying and thus uniquely provide the twofold state required for self-replication. Moreover, they offer conditions that initiate chain branching, and thus furnish a path to autocatalytic self-replication. The foundations of this dual thermochemical landscape arise from the broad differences in the properties of the bulk water phase on the one hand, and the air/water interfacial regions that emerge in the evaporative stages on the other. With this reaction system as a basis and employing recognized thermochemical and kinetic parameters, we present simulations displaying the spontaneous and autocatalyzed conversion of racemic and unactivated RNA monomers to necessarily homochiral duplex structures over characteristic periods of years.
Collapse
Affiliation(s)
- David Ross
- SRI International, Menlo Park, CA 94025, USA
| | - David Deamer
- Department of Biomolecular Engineering, University of California, Santa Cruz, CA 95064, USA
| |
Collapse
|
8
|
Shao X, Zhang H, Zhu Z, Ji F, He Z, Yang Z, Xia Y, Cai Z. DpCoA tagSeq: Barcoding dpCoA-Capped RNA for Direct Nanopore Sequencing via Maleimide-Thiol Reaction. Anal Chem 2023; 95:11124-11131. [PMID: 37439785 PMCID: PMC10372868 DOI: 10.1021/acs.analchem.3c02063] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 06/27/2023] [Indexed: 07/14/2023]
Abstract
Recent discoveries of noncanonical RNA caps, such as nicotinamide adenine dinucleotide (NAD+) and 3'-dephospho-coenzyme A (dpCoA), have expanded our knowledge of RNA caps. Although dpCoA has been known to cap RNAs in various species, the identities of its capped RNAs (dpCoA-RNAs) remained unknown. To fill this gap, we developed a method called dpCoA tagSeq, which utilized a thiol-reactive maleimide group to label dpCoA cap with a tag RNA serving as the 5' barcode. The barcoded RNAs were isolated using a complementary DNA strand of the tag RNA prior to direct sequencing by nanopore technology. Our validation experiments with model RNAs showed that dpCoA-RNA was efficiently tagged and captured using this protocol. To confirm that the tagged RNAs are capped by dpCoA and no other thiol-containing molecules, we used a pyrophosphatase NudC to degrade the dpCoA cap to adenosine monophosphate (AMP) moiety before performing the tagSeq protocol. We identified 44 genes that transcribe dpCoA-RNAs in mouse liver, demonstrating the method's effectiveness in identifying and characterizing the capped RNAs. This strategy provides a viable approach to identifying dpCoA-RNAs that allows for further functional investigations of the cap.
Collapse
Affiliation(s)
- Xiaojian Shao
- State
Key Laboratory of Environmental and Biological Analysis, Department
of Chemistry, Hong Kong Baptist University, Hong Kong, China
| | - Hailei Zhang
- Department
of Biology, Hong Kong Baptist University, Hong Kong, China
| | - Zhou Zhu
- School
of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| | - Fenfen Ji
- State
Key Laboratory of Environmental and Biological Analysis, Department
of Chemistry, Hong Kong Baptist University, Hong Kong, China
| | - Zhao He
- State
Key Laboratory of Environmental and Biological Analysis, Department
of Chemistry, Hong Kong Baptist University, Hong Kong, China
| | - Zhu Yang
- State
Key Laboratory of Environmental and Biological Analysis, Department
of Chemistry, Hong Kong Baptist University, Hong Kong, China
| | - Yiji Xia
- Department
of Biology, Hong Kong Baptist University, Hong Kong, China
| | - Zongwei Cai
- State
Key Laboratory of Environmental and Biological Analysis, Department
of Chemistry, Hong Kong Baptist University, Hong Kong, China
| |
Collapse
|
9
|
Tong Y, Wu X, Liu Y, Chen H, Zhou Y, Jiang L, Li M, Zhao S, Zhang Y. Alternative Z-genome biosynthesis pathway shows evolutionary progression from Archaea to phage. Nat Microbiol 2023:10.1038/s41564-023-01410-1. [PMID: 37308591 DOI: 10.1038/s41564-023-01410-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 05/11/2023] [Indexed: 06/14/2023]
Abstract
Many bacteriophages evade bacterial immune recognition by substituting adenine with 2,6-diaminopurine (Z) in their genomes. The Z-genome biosynthetic pathway involves PurZ that belongs to the PurA (adenylosuccinate synthetase) family and bears particular similarity to archaeal PurA. However, how the transition of PurA to PurZ occurred during evolution is not clear; recapturing this process may shed light on the origin of Z-containing phages. Here we describe the computer-guided identification and biochemical characterization of a naturally existing PurZ variant, PurZ0, which uses guanosine triphosphate as the phosphate donor rather than the ATP used by PurZ. The atomic resolution structure of PurZ0 reveals a guanine nucleotide binding pocket highly analogous to that of archaeal PurA. Phylogenetic analyses suggest PurZ0 as an intermediate during the evolution of archaeal PurA to phage PurZ. Maintaining the balance of different purines necessitates further evolvement of guanosine triphosphate-using PurZ0 to ATP-using PurZ in adaptation to Z-genome life.
Collapse
Affiliation(s)
- Yang Tong
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, Collaborative Innovation Center of Chemical Science and Engineering, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
- Frontiers Science Center for Synthetic Biology, Ministry of Education, Tianjin University, Tianjin, China
- Key Laboratory of Systems Bioengineering, Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
- Department of Chemistry, Tianjin University, Tianjin, China
| | - Xinying Wu
- iHuman Institute, ShanghaiTech University, Shanghai, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Yang Liu
- Archaeal Biology Center, Institute for Advanced Study, Shenzhen University, Shenzhen, China
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, China
| | - Huiyu Chen
- iHuman Institute, ShanghaiTech University, Shanghai, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Yan Zhou
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, Collaborative Innovation Center of Chemical Science and Engineering, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
| | - Li Jiang
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, Collaborative Innovation Center of Chemical Science and Engineering, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
| | - Meng Li
- Archaeal Biology Center, Institute for Advanced Study, Shenzhen University, Shenzhen, China.
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, China.
| | - Suwen Zhao
- iHuman Institute, ShanghaiTech University, Shanghai, China.
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China.
| | - Yan Zhang
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, Collaborative Innovation Center of Chemical Science and Engineering, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China.
- Frontiers Science Center for Synthetic Biology, Ministry of Education, Tianjin University, Tianjin, China.
- Key Laboratory of Systems Bioengineering, Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin, China.
- Department of Chemistry, Tianjin University, Tianjin, China.
| |
Collapse
|
10
|
Pavlinova P, Lambert CN, Malaterre C, Nghe P. Abiogenesis through gradual evolution of autocatalysis into template-based replication. FEBS Lett 2023; 597:344-379. [PMID: 36203246 DOI: 10.1002/1873-3468.14507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 09/20/2022] [Accepted: 09/29/2022] [Indexed: 11/11/2022]
Abstract
How life emerged from inanimate matter is one of the most intriguing questions posed to modern science. Central to this research are experimental attempts to build systems capable of Darwinian evolution. RNA catalysts (ribozymes) are a promising avenue, in line with the RNA world hypothesis whereby RNA pre-dated DNA and proteins. Since evolution in living organisms relies on template-based replication, the identification of a ribozyme capable of replicating itself (an RNA self-replicase) has been a major objective. However, no self-replicase has been identified to date. Alternatively, autocatalytic systems involving multiple RNA species capable of ligation and recombination may enable self-reproduction. However, it remains unclear how evolution could emerge in autocatalytic systems. In this review, we examine how experimentally feasible RNA reactions catalysed by ribozymes could implement the evolutionary properties of variation, heredity and reproduction, and ultimately allow for Darwinian evolution. We propose a gradual path for the emergence of evolution, initially supported by autocatalytic systems leading to the later appearance of RNA replicases.
Collapse
Affiliation(s)
- Polina Pavlinova
- Laboratoire de Biophysique et Evolution, UMR CNRS-ESPCI 8231 Chimie Biologie Innovation, PSL University, Paris, France
| | - Camille N Lambert
- Laboratoire de Biophysique et Evolution, UMR CNRS-ESPCI 8231 Chimie Biologie Innovation, PSL University, Paris, France
| | - Christophe Malaterre
- Laboratory of Philosophy of Science (LAPS) and Centre Interuniversitaire de Recherche sur la Science et la Technologie (CIRST), Université du Québec à Montréal (UQAM), Canada
| | - Philippe Nghe
- Laboratoire de Biophysique et Evolution, UMR CNRS-ESPCI 8231 Chimie Biologie Innovation, PSL University, Paris, France
| |
Collapse
|
11
|
Camprubi E, Harrison SA, Jordan SF, Bonnel J, Pinna S, Lane N. Do Soluble Phosphates Direct the Formose Reaction towards Pentose Sugars? ASTROBIOLOGY 2022; 22:981-991. [PMID: 35833833 DOI: 10.1089/ast.2021.0125] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The formose reaction has been a leading hypothesis for the prebiotic synthesis of sugars such as ribose for many decades but tends to produce complex mixtures of sugars and often tars. Channeling the formose reaction towards the synthesis of biologically useful sugars such as ribose has been a holy grail of origins-of-life research. Here, we tested the hypothesis that a simple, prebiotically plausible phosphorylating agent, acetyl phosphate, could direct the formose reaction towards ribose through phosphorylation of intermediates in a manner resembling gluconeogenesis and the pentose phosphate pathway. We did indeed find that addition of acetyl phosphate to a developing formose reaction stabilized pentoses, including ribose, such that after 5 h of reaction about 10-fold more ribose remained compared with control runs. But mechanistic analyses using liquid chromatography-mass spectrometry showed that, far from being directed towards ribose by phosphorylation, the formose reaction was halted by the precipitation of Ca2+ ions as phosphate minerals such as apatite and hydroxyapatite. Adding orthophosphate had the same effect. Phosphorylated sugars were only detected below the limit of quantification when adding acetyl phosphate. Nonetheless, our findings are not strictly negative. The sensitivity of the formose reaction to geochemically reasonable conditions, combined with the apparent stability of ribose under these conditions, serves as a valuable constraint on possible pathways of sugar synthesis at the origin of life.
Collapse
Affiliation(s)
- E Camprubi
- Origins Center, Department of Earth Sciences, Utrecht University, Utrecht, The Netherlands
- Centre for Life's Origins and Evolution (CLOE), Department of Genetics, Evolution and Environment, University College London, London, United Kingdom
| | - S A Harrison
- Centre for Life's Origins and Evolution (CLOE), Department of Genetics, Evolution and Environment, University College London, London, United Kingdom
| | - S F Jordan
- Centre for Life's Origins and Evolution (CLOE), Department of Genetics, Evolution and Environment, University College London, London, United Kingdom
| | - J Bonnel
- Centre for Life's Origins and Evolution (CLOE), Department of Genetics, Evolution and Environment, University College London, London, United Kingdom
| | - S Pinna
- Centre for Life's Origins and Evolution (CLOE), Department of Genetics, Evolution and Environment, University College London, London, United Kingdom
| | - N Lane
- Centre for Life's Origins and Evolution (CLOE), Department of Genetics, Evolution and Environment, University College London, London, United Kingdom
| |
Collapse
|
12
|
Whitaker D, Powner MW. Prebiotic synthesis and triphosphorylation of 3'-amino-TNA nucleosides. Nat Chem 2022; 14:766-774. [PMID: 35778563 DOI: 10.1038/s41557-022-00982-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 05/23/2022] [Indexed: 12/22/2022]
Abstract
Nucleosides are essential to the emergence of life, and so their synthesis is a key challenge for prebiotic chemistry. Although amino-nucleosides have enhanced reactivity in water compared with ribonucleosides, they are assumed to be prebiotically irrelevant due to perceived difficulties with their selective formation. Here we demonstrate that 3'-amino-TNA nucleosides (TNA, threose nucleic acid) are formed diastereoselectively and regiospecifically from prebiotic feedstocks in four high-yielding steps. Phosphate provides an unexpected resolution, leading to spontaneous purification of the genetically relevant threo-isomer. Furthermore, 3'-amino-TNA nucleosides are shown to be phosphorylated directly in water, under mild conditions with cyclic trimetaphosphate, forming a nucleoside triphosphate (NTP) in a manner not feasible for canonical nucleosides. Our results suggest 3'-amino-TNA nucleosides may have been present on the early Earth, and the ease with which these NTPs form, alongside the inherent selectivity for the Watson-Crick base-pairing threo-monomer, warrants further study of the role they could play during the emergence of life.
Collapse
Affiliation(s)
- Daniel Whitaker
- Department of Chemistry, University College London, London, UK
| | | |
Collapse
|
13
|
Salaikumaran MR, Badiger VP, Burra VLSP. 16S rRNA Methyltransferases as Novel Drug Targets Against Tuberculosis. Protein J 2022; 41:97-130. [PMID: 35112243 DOI: 10.1007/s10930-021-10029-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/28/2021] [Indexed: 11/28/2022]
Abstract
Tuberculosis (TB) is an airborne infectious disease caused by Mycobacterium tuberculosis (M.tb) whose natural history traces back to 70,000 years. TB remains a major global health burden. Methylation is a type of post-replication, post-transcriptional and post-translational epi-genetic modification involved in transcription, translation, replication, tissue specific expression, embryonic development, genomic imprinting, genome stability and chromatin structure, protein protein interactions and signal transduction indicating its indispensable role in survival of a pathogen like M.tb. The pathogens use this epigenetic mechanism to develop resistance against certain drug molecules and survive the lethality. Drug resistance has become a major challenge to tackle and also a major concern raised by WHO. Methyltransferases are enzymes that catalyze the methylation of various substrates. None of the current TB targets belong to methyltransferases which provides therapeutic opportunities to develop novel drugs through studying methyltransferases as potential novel targets against TB. Targeting 16S rRNA methyltransferases serves two purposes simultaneously: a) translation inhibition and b) simultaneous elimination of the ability to methylate its substrates hence stopping the emergence of drug resistance strains. There are ~ 40 different rRNA methyltransferases and 13 different 16S rRNA specific methyltransferases which are unexplored and provide a huge opportunity for treatment of TB.
Collapse
Affiliation(s)
- M R Salaikumaran
- Centre for Advanced Research and Innovation in Structural Biology of Diseases, K L E F (Deemed To Be) University, Vaddeswaram, Andhra Pradesh, 522 502, India
| | - Veena P Badiger
- Centre for Advanced Research and Innovation in Structural Biology of Diseases, K L E F (Deemed To Be) University, Vaddeswaram, Andhra Pradesh, 522 502, India
| | - V L S Prasad Burra
- Centre for Advanced Research and Innovation in Structural Biology of Diseases, K L E F (Deemed To Be) University, Vaddeswaram, Andhra Pradesh, 522 502, India.
| |
Collapse
|
14
|
'Whole Organism', Systems Biology, and Top-Down Criteria for Evaluating Scenarios for the Origin of Life. Life (Basel) 2021; 11:life11070690. [PMID: 34357062 PMCID: PMC8306273 DOI: 10.3390/life11070690] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 07/12/2021] [Accepted: 07/13/2021] [Indexed: 12/22/2022] Open
Abstract
While most advances in the study of the origin of life on Earth (OoLoE) are piecemeal, tested against the laws of chemistry and physics, ultimately the goal is to develop an overall scenario for life's origin(s). However, the dimensionality of non-equilibrium chemical systems, from the range of possible boundary conditions and chemical interactions, renders the application of chemical and physical laws difficult. Here we outline a set of simple criteria for evaluating OoLoE scenarios. These include the need for containment, steady energy and material flows, and structured spatial heterogeneity from the outset. The Principle of Continuity, the fact that all life today was derived from first life, suggests favoring scenarios with fewer non-analog (not seen in life today) to analog (seen in life today) transitions in the inferred first biochemical pathways. Top-down data also indicate that a complex metabolism predated ribozymes and enzymes, and that full cellular autonomy and motility occurred post-LUCA. Using these criteria, we find the alkaline hydrothermal vent microchamber complex scenario with a late evolving exploitation of the natural occurring pH (or Na+ gradient) by ATP synthase the most compelling. However, there are as yet so many unknowns, we also advocate for the continued development of as many plausible scenarios as possible.
Collapse
|
15
|
Clark BC, Kolb VM, Steele A, House CH, Lanza NL, Gasda PJ, VanBommel SJ, Newsom HE, Martínez-Frías J. Origin of Life on Mars: Suitability and Opportunities. Life (Basel) 2021; 11:539. [PMID: 34207658 PMCID: PMC8227854 DOI: 10.3390/life11060539] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 05/28/2021] [Accepted: 06/01/2021] [Indexed: 02/07/2023] Open
Abstract
Although the habitability of early Mars is now well established, its suitability for conditions favorable to an independent origin of life (OoL) has been less certain. With continued exploration, evidence has mounted for a widespread diversity of physical and chemical conditions on Mars that mimic those variously hypothesized as settings in which life first arose on Earth. Mars has also provided water, energy sources, CHNOPS elements, critical catalytic transition metal elements, as well as B, Mg, Ca, Na and K, all of which are elements associated with life as we know it. With its highly favorable sulfur abundance and land/ocean ratio, early wet Mars remains a prime candidate for its own OoL, in many respects superior to Earth. The relatively well-preserved ancient surface of planet Mars helps inform the range of possible analogous conditions during the now-obliterated history of early Earth. Continued exploration of Mars also contributes to the understanding of the opportunities for settings enabling an OoL on exoplanets. Favoring geochemical sediment samples for eventual return to Earth will enhance assessments of the likelihood of a Martian OoL.
Collapse
Affiliation(s)
| | - Vera M. Kolb
- Department of Chemistry, University of Wisconsin—Parkside, Kenosha, WI 53141, USA;
| | - Andrew Steele
- Earth and Planetary Laboratory, Carnegie Institution for Science, Washington, DC 20015, USA;
| | - Christopher H. House
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, State College, PA 16807, USA;
| | - Nina L. Lanza
- Los Alamos National Laboratory, Los Alamos, NM 87545, USA; (N.L.L.); (P.J.G.)
| | - Patrick J. Gasda
- Los Alamos National Laboratory, Los Alamos, NM 87545, USA; (N.L.L.); (P.J.G.)
| | - Scott J. VanBommel
- Department of Earth and Planetary Sciences, Washington University in St. Louis, St. Louis, MO 63130, USA;
| | - Horton E. Newsom
- Institute of Meteoritics, Department of Earth and Planetary Sciences, University of New Mexico, Albuquerque, NM 88033, USA;
| | | |
Collapse
|
16
|
Baraniak D, Boryski J. Triazole-Modified Nucleic Acids for the Application in Bioorganic and Medicinal Chemistry. Biomedicines 2021; 9:628. [PMID: 34073038 PMCID: PMC8229351 DOI: 10.3390/biomedicines9060628] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 05/26/2021] [Accepted: 05/26/2021] [Indexed: 02/07/2023] Open
Abstract
This review covers studies which exploit triazole-modified nucleic acids in the range of chemistry and biology to medicine. The 1,2,3-triazole unit, which is obtained via click chemistry approach, shows valuable and unique properties. For example, it does not occur in nature, constitutes an additional pharmacophore with attractive properties being resistant to hydrolysis and other reactions at physiological pH, exhibits biological activity (i.e., antibacterial, antitumor, and antiviral), and can be considered as a rigid mimetic of amide linkage. Herein, it is presented a whole area of useful artificial compounds, from the clickable monomers and dimers to modified oligonucleotides, in the field of nucleic acids sciences. Such modifications of internucleotide linkages are designed to increase the hybridization binding affinity toward native DNA or RNA, to enhance resistance to nucleases, and to improve ability to penetrate cell membranes. The insertion of an artificial backbone is used for understanding effects of chemically modified oligonucleotides, and their potential usefulness in therapeutic applications. We describe the state-of-the-art knowledge on their implications for synthetic genes and other large modified DNA and RNA constructs including non-coding RNAs.
Collapse
Affiliation(s)
- Dagmara Baraniak
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznan, Poland;
| | | |
Collapse
|
17
|
Scheitl CPM, Ghaem Maghami M, Lenz AK, Höbartner C. Site-specific RNA methylation by a methyltransferase ribozyme. Nature 2020; 587:663-667. [PMID: 33116304 PMCID: PMC7116789 DOI: 10.1038/s41586-020-2854-z] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Accepted: 07/27/2020] [Indexed: 12/21/2022]
Abstract
Nearly all classes of coding and non-coding RNA undergo post-transcriptional modification, including RNA methylation. Methylated nucleotides are among the evolutionarily most-conserved features of transfer (t)RNA and ribosomal (r)RNA1,2. Many contemporary methyltransferases use the universal cofactor S-adenosylmethionine (SAM) as a methyl-group donor. SAM and other nucleotide-derived cofactors are considered to be evolutionary leftovers from an RNA world, in which ribozymes may have catalysed essential metabolic reactions beyond self-replication3. Chemically diverse ribozymes seem to have been lost in nature, but may be reconstructed in the laboratory by in vitro selection. Here we report a methyltransferase ribozyme that catalyses the site-specific installation of 1-methyladenosine in a substrate RNA, using O6-methylguanine as a small-molecule cofactor. The ribozyme shows a broad RNA-sequence scope, as exemplified by site-specific adenosine methylation in various RNAs. This finding provides fundamental insights into the catalytic abilities of RNA, serves a synthetic tool to install 1-methyladenosine in RNA and may pave the way to in vitro evolution of other methyltransferase and demethylase ribozymes.
Collapse
Affiliation(s)
- Carolin P M Scheitl
- Institut für Organische Chemie, Julius-Maximilians-Universität Würzburg, Würzburg, Germany
| | - Mohammad Ghaem Maghami
- Institut für Organische Chemie, Julius-Maximilians-Universität Würzburg, Würzburg, Germany
| | - Ann-Kathrin Lenz
- Institut für Organische Chemie, Julius-Maximilians-Universität Würzburg, Würzburg, Germany
| | - Claudia Höbartner
- Institut für Organische Chemie, Julius-Maximilians-Universität Würzburg, Würzburg, Germany.
| |
Collapse
|
18
|
Martin WF. Older Than Genes: The Acetyl CoA Pathway and Origins. Front Microbiol 2020; 11:817. [PMID: 32655499 PMCID: PMC7325901 DOI: 10.3389/fmicb.2020.00817] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 04/06/2020] [Indexed: 11/13/2022] Open
Abstract
For decades, microbiologists have viewed the acetyl CoA pathway and organisms that use it for H2-dependent carbon and energy metabolism, acetogens and methanogens, as ancient. Classical evidence and newer evidence indicating the antiquity of the acetyl CoA pathway are summarized here. The acetyl CoA pathway requires approximately 10 enzymes, roughly as many organic cofactors, and more than 500 kDa of combined subunit molecular mass to catalyze the conversion of H2 and CO2 to formate, acetate, and pyruvate in acetogens and methanogens. However, a single hydrothermal vent alloy, awaruite (Ni3Fe), can convert H2 and CO2 to formate, acetate, and pyruvate under mild hydrothermal conditions on its own. The chemical reactions of H2 and CO2 to pyruvate thus have a natural tendency to occur without enzymes, given suitable inorganic catalysts. This suggests that the evolution of the enzymatic acetyl CoA pathway was preceded by-and patterned along-a route of naturally occurring exergonic reactions catalyzed by transition metal minerals that could activate H2 and CO2 by chemisorption. The principle of forward (autotrophic) pathway evolution from preexisting non-enzymatic reactions is generalized to the concept of patterned evolution of pathways. In acetogens, exergonic reduction of CO2 by H2 generates acyl phosphates by highly reactive carbonyl groups undergoing attack by inert inorganic phosphate. In that ancient reaction of biochemical energy conservation, the energy behind formation of the acyl phosphate bond resides in the carbonyl, not in phosphate. The antiquity of the acetyl CoA pathway is usually seen in light of CO2 fixation; its role in primordial energy coupling via acyl phosphates and substrate-level phosphorylation is emphasized here.
Collapse
Affiliation(s)
- William F. Martin
- Institute for Molecular Evolution, University of Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
19
|
Kim SC, Zhou L, Zhang W, O'Flaherty DK, Rondo-Brovetto V, Szostak JW. A Model for the Emergence of RNA from a Prebiotically Plausible Mixture of Ribonucleotides, Arabinonucleotides, and 2'-Deoxynucleotides. J Am Chem Soc 2020; 142:2317-2326. [PMID: 31913615 PMCID: PMC7577264 DOI: 10.1021/jacs.9b11239] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
![]()
The abiotic synthesis of ribonucleotides
is thought to have been
an essential step toward the emergence of the RNA world. However,
it is likely that the prebiotic synthesis of ribonucleotides was accompanied
by the simultaneous synthesis of arabinonucleotides, 2′-deoxyribonucleotides,
and other variations on the canonical nucleotides. In order to understand
how relatively homogeneous RNA could have emerged from such complex
mixtures, we have examined the properties of arabinonucleotides and
2′-deoxyribonucleotides in nonenzymatic template-directed primer
extension reactions. We show that nonenzymatic primer extension with
activated arabinonucleotides is much less efficient than with activated
ribonucleotides, and furthermore that once an arabinonucleotide is
incorporated, continued primer extension is strongly inhibited. As
previously shown, 2′-deoxyribonucleotides are also less efficiently
incorporated in primer extension reactions, but the difference is
more modest. Experiments with mixtures of nucleotides suggest that
the coexistence of ribo- and arabinonucleotides does not impede the
copying of RNA templates. Moreover, chimeric oligoribonucleotides
containing 2′-deoxy- or arabinonucleotides are effective templates
for RNA synthesis. We propose that the initial genetic polymers were
random sequence chimeric oligonucleotides formed by untemplated polymerization,
but that template copying chemistry favored RNA synthesis; multiple
rounds of replication may have led to pools of oligomers composed
mainly of RNA.
Collapse
Affiliation(s)
- Seohyun Chris Kim
- Howard Hughes Medical Institute, Department of Molecular Biology and Center for Computational and Integrative Biology , Massachusetts General Hospital , 185 Cambridge Street , Boston , Massachusetts 02114 , United States.,Department of Genetics , Harvard Medical School , 77 Avenue Louis Pasteur , Boston , Massachusetts 02115 , United States
| | - Lijun Zhou
- Howard Hughes Medical Institute, Department of Molecular Biology and Center for Computational and Integrative Biology , Massachusetts General Hospital , 185 Cambridge Street , Boston , Massachusetts 02114 , United States.,Department of Genetics , Harvard Medical School , 77 Avenue Louis Pasteur , Boston , Massachusetts 02115 , United States
| | - Wen Zhang
- Howard Hughes Medical Institute, Department of Molecular Biology and Center for Computational and Integrative Biology , Massachusetts General Hospital , 185 Cambridge Street , Boston , Massachusetts 02114 , United States.,Department of Genetics , Harvard Medical School , 77 Avenue Louis Pasteur , Boston , Massachusetts 02115 , United States
| | - Derek K O'Flaherty
- Howard Hughes Medical Institute, Department of Molecular Biology and Center for Computational and Integrative Biology , Massachusetts General Hospital , 185 Cambridge Street , Boston , Massachusetts 02114 , United States.,Department of Genetics , Harvard Medical School , 77 Avenue Louis Pasteur , Boston , Massachusetts 02115 , United States
| | - Valeria Rondo-Brovetto
- Howard Hughes Medical Institute, Department of Molecular Biology and Center for Computational and Integrative Biology , Massachusetts General Hospital , 185 Cambridge Street , Boston , Massachusetts 02114 , United States.,Department of Genetics , Harvard Medical School , 77 Avenue Louis Pasteur , Boston , Massachusetts 02115 , United States
| | - Jack W Szostak
- Howard Hughes Medical Institute, Department of Molecular Biology and Center for Computational and Integrative Biology , Massachusetts General Hospital , 185 Cambridge Street , Boston , Massachusetts 02114 , United States.,Department of Genetics , Harvard Medical School , 77 Avenue Louis Pasteur , Boston , Massachusetts 02115 , United States
| |
Collapse
|
20
|
Abstract
The chemistry of abiotic nucleotide synthesis of RNA and DNA in the context of their prebiotic origins on early earth is a continuing challenge. How did (or how can) the nucleotides form and assemble from the small molecule inventories and under conditions that prevailed on early earth 3.5-4 billion years ago? This review provides a background and up-to-date progress that will allow the reader to judge where the field stands currently and what remains to be achieved. We start with a brief primer on the biological synthesis of nucleotides, followed by an extensive focus on the prebiotic formation of the components of nucleotides-either via the synthesis of ribose and the canonical nucleobases and then joining them together or by building both the conjoined sugar and nucleobase, part-by-part-toward the ultimate goal of forming RNA and DNA by polymerization. The review will emphasize that there are-and will continue to be-many more questions than answers from the synthetic, mechanistic, and analytical perspectives. We wrap up the review with a cautionary note in this context about coming to conclusions as to whether the problem of chemistry of prebiotic nucleotide synthesis has been solved.
Collapse
Affiliation(s)
- Mahipal Yadav
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States.,NSF-NASA Center for Chemical Evolution, Atlanta, Georgia 30332, United States
| | - Ravi Kumar
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States.,NSF-NASA Center for Chemical Evolution, Atlanta, Georgia 30332, United States
| | - Ramanarayanan Krishnamurthy
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States.,NSF-NASA Center for Chemical Evolution, Atlanta, Georgia 30332, United States
| |
Collapse
|