1
|
Vann KR, Sharma R, Hsu CC, Devoucoux M, Tencer AH, Zeng L, Lin K, Zhu L, Li Q, Lachance C, Ospina RR, Tong Q, Cheung KL, Yang S, Biswas S, Xuan H, Gatchalian J, Alamillo L, Wang J, Jang SM, Klein BJ, Lu Y, Ernst P, Strahl BD, Rothbart SB, Walsh MJ, Cleary ML, Côté J, Shi X, Zhou MM, Kutateladze TG. Structure-function relationship of ASH1L and histone H3K36 and H3K4 methylation. Nat Commun 2025; 16:2235. [PMID: 40044670 PMCID: PMC11883000 DOI: 10.1038/s41467-025-57556-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 02/20/2025] [Indexed: 03/09/2025] Open
Abstract
The histone H3K36-specific methyltransferase ASH1L plays a critical role in development and is frequently dysregulated in human diseases, particularly cancer. Here, we report on the biological functions of the C-terminal region of ASH1L encompassing a bromodomain (ASH1LBD), a plant homeodomain (ASH1LPHD) finger, and a bromo-adjacent homology (ASH1LBAH) domain, structurally characterize these domains, describe their mechanisms of action, and explore functional crosstalk between them. We find that ASH1LPHD recognizes H3K4me2/3, whereas the neighboring ASH1LBD and ASH1LBAH have DNA binding activities. The DNA binding function of ASH1LBAH is a driving force for the association of ASH1L with the linker DNA in the nucleosome, and the large interface with ASH1LPHD stabilizes the ASH1LBAH fold, merging two domains into a single module. We show that ASH1L is involved in embryonic stem cell differentiation and co-localizes with H3K4me3 but not with H3K36me2 at transcription start sites of target genes and genome wide, and that the interaction of ASH1LPHD with H3K4me3 is inhibitory to the H3K36me2-specific catalytic activity of ASH1L. Our findings shed light on the mechanistic details by which the C-terminal domains of ASH1L associate with chromatin and regulate the enzymatic function of ASH1L.
Collapse
Affiliation(s)
- Kendra R Vann
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO, 80045, USA
| | - Rajal Sharma
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Chih-Chao Hsu
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Maeva Devoucoux
- St-Patrick Research Group in Basic Oncology, Oncology Division of CHU de Québec-Université Laval Research, Laval University Cancer Research Center, Quebec City, Québec, G1R 3S3, Canada
| | - Adam H Tencer
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO, 80045, USA
| | - Lei Zeng
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Kevin Lin
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Li Zhu
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Qin Li
- Department of Genetics, University of Pennsylvania, Philadelphia, PA, USA
| | - Catherine Lachance
- St-Patrick Research Group in Basic Oncology, Oncology Division of CHU de Québec-Université Laval Research, Laval University Cancer Research Center, Quebec City, Québec, G1R 3S3, Canada
| | - Ruben Rosas Ospina
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO, 80045, USA
| | - Qiong Tong
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO, 80045, USA
| | - Ka Lung Cheung
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Shuai Yang
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Soumi Biswas
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO, 80045, USA
| | - Hongwen Xuan
- Department of Epigenetics, Van Andel Research Institute, Grand Rapids, MI, 49503, USA
| | - Jovylyn Gatchalian
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO, 80045, USA
| | - Lorena Alamillo
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO, 80045, USA
| | - Jianlong Wang
- Department of Medicine, Columbia Center for Human Development, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Suk Min Jang
- St-Patrick Research Group in Basic Oncology, Oncology Division of CHU de Québec-Université Laval Research, Laval University Cancer Research Center, Quebec City, Québec, G1R 3S3, Canada
| | - Brianna J Klein
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO, 80045, USA
| | - Yue Lu
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Patricia Ernst
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO, 80045, USA
| | - Brian D Strahl
- Department of Biochemistry & Biophysics, The University of North Carolina School of Medicine, Chapel Hill, NC, 27599, USA
| | - Scott B Rothbart
- Department of Epigenetics, Van Andel Research Institute, Grand Rapids, MI, 49503, USA
- Department of Biochemistry & Biophysics, The University of North Carolina School of Medicine, Chapel Hill, NC, 27599, USA
| | - Martin J Walsh
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Michael L Cleary
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Jacques Côté
- St-Patrick Research Group in Basic Oncology, Oncology Division of CHU de Québec-Université Laval Research, Laval University Cancer Research Center, Quebec City, Québec, G1R 3S3, Canada
| | - Xiaobing Shi
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
- Department of Epigenetics, Van Andel Research Institute, Grand Rapids, MI, 49503, USA
| | - Ming-Ming Zhou
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
| | - Tatiana G Kutateladze
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO, 80045, USA.
| |
Collapse
|
2
|
Deng Z, Ran Q, Chang W, Li C, Li B, Huang S, Huang J, Zhang K, Li Y, Liu X, Liang Y, Guo Z, Huang S. Cdon is essential for organ left-right patterning by regulating dorsal forerunner cells clustering and Kupffer's vesicle morphogenesis. Front Cell Dev Biol 2024; 12:1429782. [PMID: 39239564 PMCID: PMC11374761 DOI: 10.3389/fcell.2024.1429782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 08/02/2024] [Indexed: 09/07/2024] Open
Abstract
Cdon and boc are members of the cell adhesion molecule subfamily III Ig/fibronectin. Although they have been reported to be involved in muscle and neural development at late developmental stage, their early roles in embryonic development remain unknown. Here, we discovered that in zebrafish, cdon, but not boc, is expressed in dorsal forerunner cells (DFCs) and the epithelium of Kupffer's vesicle (KV), suggesting a potential role for cdon in organ left-right (LR) patterning. Further data showed that liver and heart LR patterning were disrupted in cdon morphants and cdon mutants. Mechanistically, we found that loss of cdon function led to defect in DFCs clustering, reduced KV lumen, and defective cilia, resulting in randomized Nodal/spaw signaling and subsequent organ LR patterning defects. Additionally, predominant distribution of a cdon morpholino (MO) in DFCs caused defects in DFC clustering, KV morphogenesis, cilia number/length, Nodal/spaw signaling, and organ LR asymmetry, similar to those observed in cdon morphants and cdon -/- embryos, indicating a cell-autonomous role for cdon in regulating KV formation during LR patterning. In conclusion, our data demonstrate that during gastrulation and early somitogenesis, cdon is essential for proper DFC clustering, KV formation, and normal cilia, thereby playing a critical role in establishing organ LR asymmetry.
Collapse
Affiliation(s)
- Zhilin Deng
- Development and Regeneration Key Laboratory of Sichuan Province, Department of Anatomy and Histology and Embryology, School of Basic Medical Sciences, Chengdu Medical College, Chengdu, China
- Department of Ultrasound, Luzhou People's Hospital, Luzhou, China
| | - Qin Ran
- Department of Cardiology, Chengdu Seventh People's Hospital, Chengdu, Sichuan, China
| | - Wenqi Chang
- Development and Regeneration Key Laboratory of Sichuan Province, Department of Anatomy and Histology and Embryology, School of Basic Medical Sciences, Chengdu Medical College, Chengdu, China
| | - Chengni Li
- Development and Regeneration Key Laboratory of Sichuan Province, Department of Anatomy and Histology and Embryology, School of Basic Medical Sciences, Chengdu Medical College, Chengdu, China
| | - Botong Li
- Development and Regeneration Key Laboratory of Sichuan Province, Department of Anatomy and Histology and Embryology, School of Basic Medical Sciences, Chengdu Medical College, Chengdu, China
| | - Shuying Huang
- Development and Regeneration Key Laboratory of Sichuan Province, Department of Anatomy and Histology and Embryology, School of Basic Medical Sciences, Chengdu Medical College, Chengdu, China
| | - Jingtong Huang
- Development and Regeneration Key Laboratory of Sichuan Province, Department of Anatomy and Histology and Embryology, School of Basic Medical Sciences, Chengdu Medical College, Chengdu, China
| | - Ke Zhang
- Development and Regeneration Key Laboratory of Sichuan Province, Department of Anatomy and Histology and Embryology, School of Basic Medical Sciences, Chengdu Medical College, Chengdu, China
| | - Yuanyuan Li
- Department of Neurology, The Second Affiliated Hospital of Chengdu Medical College, (China National Nuclear Corporation 416 Hospital), Chengdu, China
| | - Xingdong Liu
- Department of Neurology, The Second Affiliated Hospital of Chengdu Medical College, (China National Nuclear Corporation 416 Hospital), Chengdu, China
| | - Yundan Liang
- Department of Pathology and Pathophysiology, School of Basic Medical Sciences, Chengdu Medical College, Chengdu, China
| | - Zhenhua Guo
- Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, National Clinical Research Center for Child Health and Disorders, Chongqing Key Laboratory of Pediatrics, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Sizhou Huang
- Development and Regeneration Key Laboratory of Sichuan Province, Department of Anatomy and Histology and Embryology, School of Basic Medical Sciences, Chengdu Medical College, Chengdu, China
- Department of Neurology, The Second Affiliated Hospital of Chengdu Medical College, (China National Nuclear Corporation 416 Hospital), Chengdu, China
| |
Collapse
|
3
|
Kanaan MN, Pileggi CA, Karam CY, Kennedy LS, Fong-McMaster C, Cuperlovic-Culf M, Harper ME. Cystine/glutamate antiporter xCT controls skeletal muscle glutathione redox, bioenergetics and differentiation. Redox Biol 2024; 73:103213. [PMID: 38815331 PMCID: PMC11167394 DOI: 10.1016/j.redox.2024.103213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 05/22/2024] [Accepted: 05/24/2024] [Indexed: 06/01/2024] Open
Abstract
Cysteine, the rate-controlling amino acid in cellular glutathione synthesis is imported as cystine, by the cystine/glutamate antiporter, xCT, and subsequently reduced to cysteine. As glutathione redox is important in muscle regeneration in aging, we hypothesized that xCT exerts upstream control over skeletal muscle glutathione redox, metabolism and regeneration. Bioinformatic analyses of publicly available datasets revealed that expression levels of xCT and GSH-related genes are inversely correlated with myogenic differentiation genes. Muscle satellite cells (MuSCs) isolated from Slc7a11sut/sut mice, which harbour a mutation in the Slc7a11 gene encoding xCT, required media supplementation with 2-mercaptoethanol to support cell proliferation but not myotube differentiation, despite persistently lower GSH. Slc7a11sut/sut primary myotubes were larger compared to WT myotubes, and also exhibited higher glucose uptake and cellular oxidative capacities. Immunostaining of myogenic markers (Pax7, MyoD, and myogenin) in cardiotoxin-damaged tibialis anterior muscle fibres revealed greater MuSC activation and commitment to differentiation in Slc7a11sut/sut muscle compared to WT mice, culminating in larger myofiber cross-sectional areas at 21 days post-injury. Slc7a11sut/sut mice subjected to a 5-week exercise training protocol demonstrated enhanced insulin tolerance compared to WT mice, but blunted muscle mitochondrial biogenesis and respiration in response to exercise training. Our results demonstrate that the absence of xCT inhibits cell proliferation but promotes myotube differentiation by regulating cellular metabolism and glutathione redox. Altogether, these results support the notion that myogenesis is a redox-regulated process and may help inform novel therapeutic approaches for muscle wasting and dysfunction in aging and disease.
Collapse
Affiliation(s)
- Michel N Kanaan
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada; Ottawa Institute of Systems Biology, University of Ottawa, ON, K1H 8M5, Canada; Dr. Eric Poulin Centre for Neuromuscular Disease (CNMD), University of Ottawa, ON, K1H 8M5, Canada
| | - Chantal A Pileggi
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada; Ottawa Institute of Systems Biology, University of Ottawa, ON, K1H 8M5, Canada
| | - Charbel Y Karam
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada; Ottawa Institute of Systems Biology, University of Ottawa, ON, K1H 8M5, Canada
| | - Luke S Kennedy
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada; Ottawa Institute of Systems Biology, University of Ottawa, ON, K1H 8M5, Canada
| | - Claire Fong-McMaster
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada; Ottawa Institute of Systems Biology, University of Ottawa, ON, K1H 8M5, Canada
| | - Miroslava Cuperlovic-Culf
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada; Ottawa Institute of Systems Biology, University of Ottawa, ON, K1H 8M5, Canada; National Research Council of Canada, Digital Technologies Research Centre, 1200 Montreal Road, Ottawa, ON, K1A 0R6, Canada
| | - Mary-Ellen Harper
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada; Ottawa Institute of Systems Biology, University of Ottawa, ON, K1H 8M5, Canada.
| |
Collapse
|
4
|
Dehghanian Reyhan V, Ghafouri F, Sadeghi M, Miraei-Ashtiani SR, Kastelic JP, Barkema HW, Shirali M. Integrated Comparative Transcriptome and circRNA-lncRNA-miRNA-mRNA ceRNA Regulatory Network Analyses Identify Molecular Mechanisms Associated with Intramuscular Fat Content in Beef Cattle. Animals (Basel) 2023; 13:2598. [PMID: 37627391 PMCID: PMC10451991 DOI: 10.3390/ani13162598] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 08/05/2023] [Accepted: 08/08/2023] [Indexed: 08/27/2023] Open
Abstract
Intramuscular fat content (IMF), one of the most important carcass traits in beef cattle, is controlled by complex regulatory factors. At present, molecular mechanisms involved in regulating IMF and fat metabolism in beef cattle are not well understood. Our objective was to integrate comparative transcriptomic and competing endogenous RNA (ceRNA) network analyses to identify candidate messenger RNAs (mRNAs) and regulatory RNAs involved in molecular regulation of longissimus dorsi muscle (LDM) tissue for IMF and fat metabolism of 5 beef cattle breeds (Angus, Chinese Simmental, Luxi, Nanyang, and Shandong Black). In total, 34 circRNAs, 57 lncRNAs, 15 miRNAs, and 374 mRNAs were identified by integrating gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses. Furthermore, 7 key subnets with 16 circRNAs, 43 lncRNAs, 7 miRNAs, and 237 mRNAs were detected through clustering analyses, whereas GO enrichment analysis of identified RNAs revealed 48, 13, and 28 significantly enriched GO terms related to IMF in biological process, molecular function, and cellular component categories, respectively. The main metabolic-signaling pathways associated with IMF and fat metabolism that were enriched included metabolic, calcium, cGMP-PKG, thyroid hormone, and oxytocin signaling pathways. Moreover, MCU, CYB5R1, and BAG3 genes were common among the 10 comparative groups defined as important candidate marker genes for fat metabolism in beef cattle. Contributions of transcriptome profiles from various beef breeds and a competing endogenous RNA (ceRNA) regulatory network underlying phenotypic differences in IMF provided novel insights into molecular mechanisms associated with meat quality.
Collapse
Affiliation(s)
- Vahid Dehghanian Reyhan
- Department of Animal Science, University College of Agriculture and Natural Resources, University of Tehran, Karaj 77871-31587, Iran; (V.D.R.); (F.G.); (S.R.M.-A.)
| | - Farzad Ghafouri
- Department of Animal Science, University College of Agriculture and Natural Resources, University of Tehran, Karaj 77871-31587, Iran; (V.D.R.); (F.G.); (S.R.M.-A.)
| | - Mostafa Sadeghi
- Department of Animal Science, University College of Agriculture and Natural Resources, University of Tehran, Karaj 77871-31587, Iran; (V.D.R.); (F.G.); (S.R.M.-A.)
| | - Seyed Reza Miraei-Ashtiani
- Department of Animal Science, University College of Agriculture and Natural Resources, University of Tehran, Karaj 77871-31587, Iran; (V.D.R.); (F.G.); (S.R.M.-A.)
| | - John P. Kastelic
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada; (J.P.K.); (H.W.B.)
| | - Herman W. Barkema
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada; (J.P.K.); (H.W.B.)
| | - Masoud Shirali
- Agri-Food and Biosciences Institute, Hillsborough BT26 6DR, UK
- School of Biological Sciences, Queen’s University Belfast, Belfast BT9 5AJ, UK
| |
Collapse
|
5
|
Zhao L, Liu Y, Ma B, Liu X, Wei R, Nian H. METTL3 inhibits autoreactive Th17 cell responses in experimental autoimmune uveitis via stabilizing ASH1L mRNA. FASEB J 2023; 37:e22803. [PMID: 36753389 DOI: 10.1096/fj.202201548r] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 01/06/2023] [Accepted: 01/23/2023] [Indexed: 02/09/2023]
Abstract
Methyltransferase like 3 (METTL3), a primary N6-methyladenosine (m6A) methyltransferase, has been implicated in various biological and pathological processes including immune responses. However, the functions and mechanisms of METTL3 in pathogenic T helper (Th)17 cells are poorly understood. Here we found significantly decreased METTL3 expression along with reduced m6A levels in eyeballs and T cells of experimental autoimmune uveitis (EAU). Overexpression of METTL3 ameliorated the development of EAU and suppressed pathogenic Th17 cell responses in vivo and in vitro. Mechanistically, METTL3 promoted the expression of absent, small, or homeotic-like 1 (ASH1L) via enhancing its stability in a YT521-B homology domain containing 2 (YTHDC2)-dependent manner, which further decreased the expression of IL-17 and IL-23 receptor (IL-23R), resulting in reduced pathogenic Th17 responses. Together, our data reveal a pivotal role of METTL3 in regulating pathogenic Th17 responses, which may contribute to human uveitis therapy.
Collapse
Affiliation(s)
- Lu Zhao
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, China
| | - Yuling Liu
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, China
| | - Binyun Ma
- Department of Medicine/Hematology, Keck School of Medicine of the University of Southern California, Los Angeles, California, USA
| | - Xun Liu
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, China
| | - Ruihua Wei
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, China
| | - Hong Nian
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, China
| |
Collapse
|
6
|
Barutcu AR, Elizalde G, Gonzalez AE, Soni K, Rinn JL, Wagers AJ, Almada AE. Prolonged FOS activity disrupts a global myogenic transcriptional program by altering 3D chromatin architecture in primary muscle progenitor cells. Skelet Muscle 2022; 12:20. [PMID: 35971133 PMCID: PMC9377060 DOI: 10.1186/s13395-022-00303-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 08/04/2022] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND The AP-1 transcription factor, FBJ osteosarcoma oncogene (FOS), is induced in adult muscle satellite cells (SCs) within hours following muscle damage and is required for effective stem cell activation and muscle repair. However, why FOS is rapidly downregulated before SCs enter cell cycle as progenitor cells (i.e., transiently expressed) remains unclear. Further, whether boosting FOS levels in the proliferating progeny of SCs can enhance their myogenic properties needs further evaluation. METHODS We established an inducible, FOS expression system to evaluate the impact of persistent FOS activity in muscle progenitor cells ex vivo. We performed various assays to measure cellular proliferation and differentiation, as well as uncover changes in RNA levels and three-dimensional (3D) chromatin interactions. RESULTS Persistent FOS activity in primary muscle progenitor cells severely antagonizes their ability to differentiate and form myotubes within the first 2 weeks in culture. RNA-seq analysis revealed that ectopic FOS activity in muscle progenitor cells suppressed a global pro-myogenic transcriptional program, while activating a stress-induced, mitogen-activated protein kinase (MAPK) transcriptional signature. Additionally, we observed various FOS-dependent, chromosomal re-organization events in A/B compartments, topologically associated domains (TADs), and genomic loops near FOS-regulated genes. CONCLUSIONS Our results suggest that elevated FOS activity in recently activated muscle progenitor cells perturbs cellular differentiation by altering the 3D chromosome organization near critical pro-myogenic genes. This work highlights the crucial importance of tightly controlling FOS expression in the muscle lineage and suggests that in states of chronic stress or disease, persistent FOS activity in muscle precursor cells may disrupt the muscle-forming process.
Collapse
Affiliation(s)
- A Rasim Barutcu
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
- Present address: Donnelly Centre, University of Toronto, Toronto, ON, Canada
| | - Gabriel Elizalde
- Department of Orthopaedic Surgery, University of Southern California, Los Angeles, CA, USA
- Department of Stem Cell Biology and Regenerative Medicine, University of Southern California, Los Angeles, CA, USA
| | - Alfredo E Gonzalez
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
| | - Kartik Soni
- Department of Orthopaedic Surgery, University of Southern California, Los Angeles, CA, USA
- Department of Stem Cell Biology and Regenerative Medicine, University of Southern California, Los Angeles, CA, USA
| | - John L Rinn
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
- Present address: BioFrontiers and Department of Biochemistry, University of Colorado Boulder, Boulder, CO, 80303, USA
| | - Amy J Wagers
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
| | - Albert E Almada
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA.
- Department of Orthopaedic Surgery, University of Southern California, Los Angeles, CA, USA.
- Department of Stem Cell Biology and Regenerative Medicine, University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
7
|
Yu M, Jia Y, Ma Z, Ji D, Wang C, Liang Y, Zhang Q, Yi H, Zeng L. Structural insight into ASH1L PHD finger recognizing methylated histone H3K4 and promoting cell growth in prostate cancer. Front Oncol 2022; 12:906807. [PMID: 36033518 PMCID: PMC9399681 DOI: 10.3389/fonc.2022.906807] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 07/19/2022] [Indexed: 11/17/2022] Open
Abstract
ASH1L is a member of the Trithorax-group protein and acts as a histone methyltransferase for gene transcription activation. It is known that ASH1L modulates H3K4me3 and H3K36me2/3 at its gene targets, but its specific mechanism of histone recognition is insufficiently understood. In this study, we found that the ASH1L plant homeodomain (PHD) finger interacts with mono-, di-, and trimethylated states of H3K4 peptides with comparable affinities, indicating that ASH1L PHD non-selectively binds to all three methylation states of H3K4. We solved nuclear magnetic resonance structures picturing the ASH1L PHD finger binding to the dimethylated H3K4 peptide and found that a narrow binding groove and residue composition in the methylated-lysine binding pocket restricts the necessary interaction with the dimethyl-ammonium moiety of K4. In addition, we found that the ASH1L protein is overexpressed in castrate-resistant prostate cancer (PCa) PC3 and DU145 cells in comparison to PCa LNCaP cells. The knockdown of ASH1L modulated gene expression and cellular pathways involved in apoptosis and cell cycle regulation and consequently induced cell cycle arrest, cell apoptosis, and reduced colony-forming abilities in PC3 and DU145 cells. The overexpression of the C-terminal core of ASH1L but not the PHD deletion mutant increased the overall H3K36me2 level but had no effect on the H3K4me2/3 level. Overall, our study identifies the ASH1L PHD finger as the first native reader that non-selectively recognizes the three methylation states of H3K4. Additionally, ASH1L is required for the deregulation of cell cycle and survival in PCas.
Collapse
Affiliation(s)
- Miaomiao Yu
- Bethune Institute of Epigenetic Medicine, The First Hospital, Jilin University, Changchun, China
- International Center of Future Science, Jilin University, Changchun, China
| | - Yanjie Jia
- Bethune Institute of Epigenetic Medicine, The First Hospital, Jilin University, Changchun, China
| | - Zhanchuan Ma
- Central Laboratory, The First Hospital, Jilin University, Changchun, China
| | - Donglei Ji
- Bethune Institute of Epigenetic Medicine, The First Hospital, Jilin University, Changchun, China
- International Center of Future Science, Jilin University, Changchun, China
| | - Chunyu Wang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, China
| | - Yingying Liang
- Bethune Institute of Epigenetic Medicine, The First Hospital, Jilin University, Changchun, China
- International Center of Future Science, Jilin University, Changchun, China
| | - Qiang Zhang
- Bethune Institute of Epigenetic Medicine, The First Hospital, Jilin University, Changchun, China
| | - Huanfa Yi
- Central Laboratory, The First Hospital, Jilin University, Changchun, China
- *Correspondence: Huanfa Yi, ; Lei Zeng,
| | - Lei Zeng
- Bethune Institute of Epigenetic Medicine, The First Hospital, Jilin University, Changchun, China
- International Center of Future Science, Jilin University, Changchun, China
- *Correspondence: Huanfa Yi, ; Lei Zeng,
| |
Collapse
|
8
|
Zhang S, Zhang Y, Chen C, Hu Q, Fu Y, Xu L, Wang C, Liu Y. Identification of Robust and Key Differentially Expressed Genes during C2C12 Cell Myogenesis Based on Multiomics Data. Int J Mol Sci 2022; 23:ijms23116002. [PMID: 35682680 PMCID: PMC9180599 DOI: 10.3390/ijms23116002] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 05/22/2022] [Accepted: 05/24/2022] [Indexed: 02/01/2023] Open
Abstract
Myogenesis is a central step in prenatal myofiber formation, postnatal myofiber hypertrophy, and muscle damage repair in adulthood. RNA-Seq technology has greatly helped reveal the molecular mechanism of myogenesis, but batch effects in different experiments inevitably lead to misinterpretation of differentially expressed genes (DEGs). We previously applied the robust rank aggregation (RRA) method to effectively circumvent batch effects across multiple RNA-Seq datasets from 3T3-L1 cells. Here, we also used the RRA method to integrate nine RNA-Seq datasets from C2C12 cells and obtained 3140 robust DEGs between myoblasts and myotubes, which were then validated with array expression profiles and H3K27ac signals. The upregulated robust DEGs were highly enriched in gene ontology (GO) terms related to muscle cell differentiation and development. Considering that the cooperative binding of transcription factors (TFs) to enhancers to regulate downstream gene expression is a classical epigenetic mechanism, differentially expressed TFs (DETFs) were screened, and potential novel myogenic factors (MAF, BCL6, and ESR1) with high connection degree in protein-protein interaction (PPI) network were presented. Moreover, KLF5 cooperatively binds with the three key myogenic factors (MYOD, MYOG, and MEF2D) in C2C12 cells. Motif analysis speculates that the binding of MYOD and MYOG is KLF5-independent, while MEF2D is KLF5-dependent. It was revealed that KLF5-binding sites could be exploited to filter redundant MYOD-, MYOG-, and MEF2D-binding sites to focus on key enhancers for myogenesis. Further functional annotation of KLF5-binding sites suggested that KLF5 may regulate myogenesis through the PI3K-AKt signaling pathway, Rap1 signaling pathway, and the Hippo signaling pathway. In general, our study provides a wealth of untapped candidate targets for myogenesis and contributes new insights into the core regulatory mechanisms of myogenesis relying on KLF5-binding signal.
Collapse
Affiliation(s)
- Song Zhang
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory of Livestock and Poultry Multi-Omics of MARA, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China; (S.Z.); (Y.Z.); (C.C.); (Q.H.); (Y.F.); (L.X.); (C.W.)
- Innovation Group of Pig Genome Design and Breeding, Research Centre for Animal Genome, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China
| | - Yuanyuan Zhang
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory of Livestock and Poultry Multi-Omics of MARA, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China; (S.Z.); (Y.Z.); (C.C.); (Q.H.); (Y.F.); (L.X.); (C.W.)
- Innovation Group of Pig Genome Design and Breeding, Research Centre for Animal Genome, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China
- School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Choulin Chen
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory of Livestock and Poultry Multi-Omics of MARA, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China; (S.Z.); (Y.Z.); (C.C.); (Q.H.); (Y.F.); (L.X.); (C.W.)
- Innovation Group of Pig Genome Design and Breeding, Research Centre for Animal Genome, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education and Key Laboratory of Swine Genetics and Breeding of Ministry of Agriculture, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Qingqing Hu
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory of Livestock and Poultry Multi-Omics of MARA, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China; (S.Z.); (Y.Z.); (C.C.); (Q.H.); (Y.F.); (L.X.); (C.W.)
- Innovation Group of Pig Genome Design and Breeding, Research Centre for Animal Genome, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education and Key Laboratory of Swine Genetics and Breeding of Ministry of Agriculture, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Yang Fu
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory of Livestock and Poultry Multi-Omics of MARA, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China; (S.Z.); (Y.Z.); (C.C.); (Q.H.); (Y.F.); (L.X.); (C.W.)
- Innovation Group of Pig Genome Design and Breeding, Research Centre for Animal Genome, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China
| | - Lingna Xu
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory of Livestock and Poultry Multi-Omics of MARA, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China; (S.Z.); (Y.Z.); (C.C.); (Q.H.); (Y.F.); (L.X.); (C.W.)
- Innovation Group of Pig Genome Design and Breeding, Research Centre for Animal Genome, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China
| | - Chao Wang
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory of Livestock and Poultry Multi-Omics of MARA, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China; (S.Z.); (Y.Z.); (C.C.); (Q.H.); (Y.F.); (L.X.); (C.W.)
- Innovation Group of Pig Genome Design and Breeding, Research Centre for Animal Genome, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education and Key Laboratory of Swine Genetics and Breeding of Ministry of Agriculture, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Yuwen Liu
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory of Livestock and Poultry Multi-Omics of MARA, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China; (S.Z.); (Y.Z.); (C.C.); (Q.H.); (Y.F.); (L.X.); (C.W.)
- Innovation Group of Pig Genome Design and Breeding, Research Centre for Animal Genome, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China
- Kunpeng Institute of Modern Agriculture at Foshan, Chinese Academy of Agricultural Sciences, Foshan 528226, China
- Correspondence:
| |
Collapse
|
9
|
Drosophila melanogaster: A Model System to Study Distinct Genetic Programs in Myoblast Fusion. Cells 2022; 11:cells11030321. [PMID: 35159130 PMCID: PMC8834112 DOI: 10.3390/cells11030321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 01/04/2022] [Accepted: 01/05/2022] [Indexed: 11/25/2022] Open
Abstract
Muscle fibers are multinucleated cells that arise during embryogenesis through the fusion of mononucleated myoblasts. Myoblast fusion is a lifelong process that is crucial for the growth and regeneration of muscles. Understanding the molecular mechanism of myoblast fusion may open the way for novel therapies in muscle wasting and weakness. Recent reports in Drosophila and mammals have provided new mechanistic insights into myoblast fusion. In Drosophila, muscle formation occurs twice: during embryogenesis and metamorphosis. A fundamental feature is the formation of a cell–cell communication structure that brings the apposing membranes into close proximity and recruits possible fusogenic proteins. However, genetic studies suggest that myoblast fusion in Drosophila is not a uniform process. The complexity of the players involved in myoblast fusion can be modulated depending on the type of muscle that is formed. In this review, we introduce the different types of multinucleated muscles that form during Drosophila development and provide an overview in advances that have been made to understand the mechanism of myoblast fusion. Finally, we will discuss conceptual frameworks in cell–cell fusion in Drosophila and mammals.
Collapse
|
10
|
Liu H, Liu DT, Lan S, Yang Y, Huang J, Huang J, Fang L. ASH1L mutation caused seizures and intellectual disability in twin sisters. J Clin Neurosci 2021; 91:69-74. [PMID: 34373061 DOI: 10.1016/j.jocn.2021.06.038] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 03/23/2021] [Accepted: 06/20/2021] [Indexed: 11/18/2022]
Abstract
ASH1L mutations have been identified with variable phenotypes, including intellectual disability, autism spectrum disorder (ASD), and multiple congenital anomalies (MCA). However, the mechanisms underlying this phenotypic variation remain unknown. Here, we present twin sisters exhibiting mild intellectual disability and seizures. Whole-exome sequencing of the family revealed a novel de novo heterozygous sequence variant, NM_018489.2: c.2678dup (p.Lys894*) in exon 3 of ASH1L which was estimated to be pathogenic. Furthermore, we reviewed previously reported ASH1L mutations in order to evaluate genotype-phenotype correlations for ASH1L variants. We found that patients with missense mutations in ASH1L appeared to present with more severe phenotypes and a higher likelihood of ASD than those with truncating mutations. The relationship between phenotype and genotype reported across several patients may help to explain the mechanisms underlying the phenotypic variation commonly observed between ASH1L mutations.
Collapse
Affiliation(s)
- Hailing Liu
- Department of Neurology, Maoming People's Hospital, Maoming, Guangdong, China.
| | - De-Tian Liu
- Department of Neurology, Longgang District Central Hospital of Shenzhen, Guangdong, China
| | - Song Lan
- Department of Neurology, Maoming People's Hospital, Maoming, Guangdong, China.
| | - Yan Yang
- Department of Neurology, Maoming People's Hospital, Maoming, Guangdong, China
| | - Jingjing Huang
- Department of Neurology, Maoming People's Hospital, Maoming, Guangdong, China
| | - Jinbo Huang
- Department of Neurology, Maoming People's Hospital, Maoming, Guangdong, China
| | - Ling Fang
- Department of Neurology, Maoming People's Hospital, Maoming, Guangdong, China
| |
Collapse
|
11
|
Jansky S, Sharma AK, Körber V, Quintero A, Toprak UH, Wecht EM, Gartlgruber M, Greco A, Chomsky E, Grünewald TGP, Henrich KO, Tanay A, Herrmann C, Höfer T, Westermann F. Single-cell transcriptomic analyses provide insights into the developmental origins of neuroblastoma. Nat Genet 2021; 53:683-693. [PMID: 33767450 DOI: 10.1038/s41588-021-00806-1] [Citation(s) in RCA: 159] [Impact Index Per Article: 39.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 01/29/2021] [Indexed: 01/31/2023]
Abstract
Neuroblastoma is a pediatric tumor of the developing sympathetic nervous system. However, the cellular origin of neuroblastoma has yet to be defined. Here we studied the single-cell transcriptomes of neuroblastomas and normal human developing adrenal glands at various stages of embryonic and fetal development. We defined normal differentiation trajectories from Schwann cell precursors over intermediate states to neuroblasts or chromaffin cells and showed that neuroblastomas transcriptionally resemble normal fetal adrenal neuroblasts. Importantly, neuroblastomas with varying clinical phenotypes matched different temporal states along normal neuroblast differentiation trajectories, with the degree of differentiation corresponding to clinical prognosis. Our work highlights the roles of oncogenic MYCN and loss of TFAP2B in blocking differentiation and may provide the basis for designing therapeutic interventions to overcome differentiation blocks.
Collapse
Affiliation(s)
- Selina Jansky
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany.,Division of Neuroblastoma Genomics, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | - Ashwini Kumar Sharma
- Health Data Science Unit, Medical Faculty University Heidelberg and BioQuant, Heidelberg, Germany
| | - Verena Körber
- Division of Theoretical Systems Biology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Andrés Quintero
- Faculty of Biosciences, Heidelberg University, Heidelberg, Germany.,Health Data Science Unit, Medical Faculty University Heidelberg and BioQuant, Heidelberg, Germany
| | - Umut H Toprak
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany.,Division of Neuroblastoma Genomics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Elisa M Wecht
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany.,Division of Neuroblastoma Genomics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Moritz Gartlgruber
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany.,Division of Neuroblastoma Genomics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Alessandro Greco
- Faculty of Biosciences, Heidelberg University, Heidelberg, Germany.,Division of Theoretical Systems Biology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Elad Chomsky
- Department of Computer Science and Applied Mathematics and Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Thomas G P Grünewald
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany.,Division of Translational Pediatric Sarcoma Research, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany
| | - Kai-Oliver Henrich
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany.,Division of Neuroblastoma Genomics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Amos Tanay
- Department of Computer Science and Applied Mathematics and Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Carl Herrmann
- Health Data Science Unit, Medical Faculty University Heidelberg and BioQuant, Heidelberg, Germany
| | - Thomas Höfer
- Division of Theoretical Systems Biology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Frank Westermann
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany. .,Division of Neuroblastoma Genomics, German Cancer Research Center (DKFZ), Heidelberg, Germany.
| |
Collapse
|
12
|
Massenet J, Gardner E, Chazaud B, Dilworth FJ. Epigenetic regulation of satellite cell fate during skeletal muscle regeneration. Skelet Muscle 2021; 11:4. [PMID: 33431060 PMCID: PMC7798257 DOI: 10.1186/s13395-020-00259-w] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 12/20/2020] [Indexed: 12/13/2022] Open
Abstract
In response to muscle injury, muscle stem cells integrate environmental cues in the damaged tissue to mediate regeneration. These environmental cues are tightly regulated to ensure expansion of muscle stem cell population to repair the damaged myofibers while allowing repopulation of the stem cell niche. These changes in muscle stem cell fate result from changes in gene expression that occur in response to cell signaling from the muscle environment. Integration of signals from the muscle environment leads to changes in gene expression through epigenetic mechanisms. Such mechanisms, including post-translational modification of chromatin and nucleosome repositioning, act to make specific gene loci more, or less, accessible to the transcriptional machinery. In youth, the muscle environment is ideally structured to allow for coordinated signaling that mediates efficient regeneration. Both age and disease alter the muscle environment such that the signaling pathways that shape the healthy muscle stem cell epigenome are altered. Altered epigenome reduces the efficiency of cell fate transitions required for muscle repair and contributes to muscle pathology. However, the reversible nature of epigenetic changes holds out potential for restoring cell fate potential to improve muscle repair in myopathies. In this review, we will describe the current knowledge of the mechanisms allowing muscle stem cell fate transitions during regeneration and how it is altered in muscle disease. In addition, we provide some examples of how epigenetics could be harnessed therapeutically to improve regeneration in various muscle pathologies.
Collapse
Affiliation(s)
- Jimmy Massenet
- Sprott Center for Stem Cell Research, Regenerative Medicine Program, Ottawa Hospital Research Institute, 501 Smyth Rd, Mailbox 511, Ottawa, ON, K1H 8L6, Canada.,Institut NeuroMyoGène, Université Claude Bernard Lyon 1, CNRS 5310, INSERM U1217, 8 Rockefeller Ave, 69008, Lyon, France
| | - Edward Gardner
- Sprott Center for Stem Cell Research, Regenerative Medicine Program, Ottawa Hospital Research Institute, 501 Smyth Rd, Mailbox 511, Ottawa, ON, K1H 8L6, Canada.,Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, K1H 8L6, Canada
| | - Bénédicte Chazaud
- Institut NeuroMyoGène, Université Claude Bernard Lyon 1, CNRS 5310, INSERM U1217, 8 Rockefeller Ave, 69008, Lyon, France
| | - F Jeffrey Dilworth
- Sprott Center for Stem Cell Research, Regenerative Medicine Program, Ottawa Hospital Research Institute, 501 Smyth Rd, Mailbox 511, Ottawa, ON, K1H 8L6, Canada. .,Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, K1H 8L6, Canada. .,LIFE Research Institute, University of Ottawa, Ottawa, ON, K1H 8L6, Canada.
| |
Collapse
|
13
|
Segatto M, Szokoll R, Fittipaldi R, Bottino C, Nevi L, Mamchaoui K, Filippakopoulos P, Caretti G. BETs inhibition attenuates oxidative stress and preserves muscle integrity in Duchenne muscular dystrophy. Nat Commun 2020; 11:6108. [PMID: 33257646 PMCID: PMC7705749 DOI: 10.1038/s41467-020-19839-x] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 10/31/2020] [Indexed: 12/22/2022] Open
Abstract
Duchenne muscular dystrophy (DMD) affects 1 in 3500 live male births. To date, there is no effective cure for DMD, and the identification of novel molecular targets involved in disease progression is important to design more effective treatments and therapies to alleviate DMD symptoms. Here, we show that protein levels of the Bromodomain and extra-terminal domain (BET) protein BRD4 are significantly increased in the muscle of the mouse model of DMD, the mdx mouse, and that pharmacological inhibition of the BET proteins has a beneficial outcome, tempering oxidative stress and muscle damage. Alterations in reactive oxygen species (ROS) metabolism are an early event in DMD onset and they are tightly linked to inflammation, fibrosis, and necrosis in skeletal muscle. By restoring ROS metabolism, BET inhibition ameliorates these hallmarks of the dystrophic muscle, translating to a beneficial effect on muscle function. BRD4 direct association to chromatin regulatory regions of the NADPH oxidase subunits increases in the mdx muscle and JQ1 administration reduces BRD4 and BRD2 recruitment at these regions. JQ1 treatment reduces NADPH subunit transcript levels in mdx muscles, isolated myofibers and DMD immortalized myoblasts. Our data highlight novel functions of the BET proteins in dystrophic skeletal muscle and suggest that BET inhibitors may ameliorate the pathophysiology of DMD.
Collapse
Affiliation(s)
- Marco Segatto
- Department of Biosciences, Università degli Studi di Milano, Via Celoria 26, 20133, Milan, Italy.,Department of Biosciences and Territory, University of Molise, Contrada Fonte Lappone, Pesche (Is), Italy
| | - Roberta Szokoll
- Department of Biosciences, Università degli Studi di Milano, Via Celoria 26, 20133, Milan, Italy
| | - Raffaella Fittipaldi
- Department of Biosciences, Università degli Studi di Milano, Via Celoria 26, 20133, Milan, Italy
| | - Cinzia Bottino
- Department of Biosciences, Università degli Studi di Milano, Via Celoria 26, 20133, Milan, Italy
| | - Lorenzo Nevi
- Department of Biosciences, Università degli Studi di Milano, Via Celoria 26, 20133, Milan, Italy
| | - Kamel Mamchaoui
- Sorbonne Université, Inserm, Institut de Myologie, U974, Center for Research in Myology, 47 Boulevard de l'hôpital, 75013, Paris, France
| | - Panagis Filippakopoulos
- Structural Genomics Consortium, Old Road Campus Research Building, Nuffield Department of Medicine, Oxford, OX3 7DQ, UK
| | - Giuseppina Caretti
- Department of Biosciences, Università degli Studi di Milano, Via Celoria 26, 20133, Milan, Italy.
| |
Collapse
|
14
|
Cui LX, Tian YQ, Hao HS, Zou HY, Pang YW, Zhao SJ, Zhao XM, Zhu HB, Du WH. Knockdown of ASH1L methyltransferase induced apoptosis inhibiting proliferation and H3K36 methylation in bovine cumulus cells. Theriogenology 2020; 161:65-73. [PMID: 33296745 DOI: 10.1016/j.theriogenology.2020.11.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 11/11/2020] [Accepted: 11/14/2020] [Indexed: 12/19/2022]
Abstract
This study aims to investigate the expression and function of absent, small, or homeotic 1-like (ASH1L) methyltransferase in bovine cumulus cells in order to reveal by which mechanisms ASH1L regulates epigenetic modification and apoptosis in cumulus cells. The location of ASH1L and the methylation pattern of H3K36 were detected using immunofluorescence staining in cumulus cells. Quantitative PCR (qPCR) and western blotting were used to screen for effective siRNA targeting the ASH1L gene. Also, the mRNA expression levels of apoptosis-related genes and polycomb inhibitory complex genes were estimated by qPCR after knocking down the ASH1L gene in bovine cumulus cells. Cell proliferation and apoptosis were measured with the CCK-8 method and Annexin V-FITC by flow cytometry, respectively. The results of immunofluorescence analysis showed that ASH1L is located in the nucleus of bovine cumulus cells and is distributed in a dotted pattern. ASH1L knockdown in cumulus cells induced a decrease in the levels of H3K36me1/2/3 methylation (P < 0.05). Additionally, ASH1L knockdown inhibited cell proliferation, increased the apoptosis rate, and upregulated the expression of apoptosis genes CASPASE-3, BAX and BAX/BCL-2 ratio (P < 0.05). Meanwhile, the mRNA expression levels of EZH2 and SUZ12, two subunits of PRC2 protein, were increased in cells with ASH1L knockdown (P < 0.05). Therefore, the expression of ASH1L methyltransferase and its function in on the apoptosis of bovine cumulus cells were first studied. The mechanism by which ASH1L regulates the histone methylation and apoptosis in cumulus cells was also revealed.
Collapse
Affiliation(s)
- Li-Xin Cui
- Embryo Biotechnology and Reproduction Laboratory, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Ya-Qing Tian
- Embryo Biotechnology and Reproduction Laboratory, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Hai-Sheng Hao
- Embryo Biotechnology and Reproduction Laboratory, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Hui-Ying Zou
- Embryo Biotechnology and Reproduction Laboratory, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yun-Wei Pang
- Embryo Biotechnology and Reproduction Laboratory, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Shan-Jiang Zhao
- Embryo Biotechnology and Reproduction Laboratory, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xue-Ming Zhao
- Embryo Biotechnology and Reproduction Laboratory, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Hua-Bin Zhu
- Embryo Biotechnology and Reproduction Laboratory, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Wei-Hua Du
- Embryo Biotechnology and Reproduction Laboratory, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China.
| |
Collapse
|
15
|
Qu Z, Liu C, Li P, Xiong W, Zeng Z, Liu A, Xiao W, Huang J, Liu Z, Zhang S. Theaflavin Promotes Myogenic Differentiation by Regulating the Cell Cycle and Surface Mechanical Properties of C2C12 Cells. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:9978-9992. [PMID: 32830510 DOI: 10.1021/acs.jafc.0c03744] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Aging and muscle diseases often lead to a decline in the differentiation capacity of myoblasts, which in turn results in the deterioration of skeletal muscle (SkM) function and impairment of regeneration ability after injury. Theaflavins, the "gold molecules" found in black tea, have been reported to possess various biological activities and have a positive effect on maintaining human health. In this study, we found that among the four theaflavins (theaflavin (TF1), theaflavin-3-gallate (TF2A), theaflavin-3'-gallate (TF2B), and theaflavin-3,3'-digallate (TF3) monomers), TF1 (20 μM) significantly promoted the fusion index of myoblasts, number of mature myotubes, and degree of myotube development. By combining transcriptomics, bioinformatics, and molecular biology experiments, we showed that TF1 may promote myoblast differentiation by (1) regulating the withdrawal of myoblasts from the cell cycle, inducing the release of myogenic factors (MyoD, MyoG, and MyHC) and accelerating myogenic differentiation and (2) regulating the adhesion force of myoblasts and mechanical properties of mature myotubes and promoting the migration, fusion, and development of myoblasts. In conclusion, our study outcomes show that TF1 can promote myoblast differentiation and regulate myotube mechanical properties. It is a potential dietary supplement for the elderly. Our findings provide a new scientific basis for the relationship between tea drinking and aging.
Collapse
Affiliation(s)
- Zhihao Qu
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, Hunan 410128, China
- National Research Center of Engineering Technology for Utilization of Functional Ingredients from Botanicals, Collaborative Innovation Centre of Utilization of Functional Ingredients from Botanicals, Hunan Agricultural University, Changsha, Hunan 410128, China
| | - Changwei Liu
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, Hunan 410128, China
- National Research Center of Engineering Technology for Utilization of Functional Ingredients from Botanicals, Collaborative Innovation Centre of Utilization of Functional Ingredients from Botanicals, Hunan Agricultural University, Changsha, Hunan 410128, China
| | - Penghui Li
- School of Life Sciences, Fudan University, Shanghai 200433, China
| | - Wei Xiong
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan 410008, China
| | - Zhaoyang Zeng
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan 410008, China
| | - Ailing Liu
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, Hunan 410128, China
| | - Wenjun Xiao
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, Hunan 410128, China
- National Research Center of Engineering Technology for Utilization of Functional Ingredients from Botanicals, Collaborative Innovation Centre of Utilization of Functional Ingredients from Botanicals, Hunan Agricultural University, Changsha, Hunan 410128, China
| | - Jianan Huang
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, Hunan 410128, China
- National Research Center of Engineering Technology for Utilization of Functional Ingredients from Botanicals, Collaborative Innovation Centre of Utilization of Functional Ingredients from Botanicals, Hunan Agricultural University, Changsha, Hunan 410128, China
| | - Zhonghua Liu
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, Hunan 410128, China
- National Research Center of Engineering Technology for Utilization of Functional Ingredients from Botanicals, Collaborative Innovation Centre of Utilization of Functional Ingredients from Botanicals, Hunan Agricultural University, Changsha, Hunan 410128, China
| | - Sheng Zhang
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, Hunan 410128, China
- National Research Center of Engineering Technology for Utilization of Functional Ingredients from Botanicals, Collaborative Innovation Centre of Utilization of Functional Ingredients from Botanicals, Hunan Agricultural University, Changsha, Hunan 410128, China
| |
Collapse
|
16
|
Zhu X, Lan B, Yi X, He C, Dang L, Zhou X, Lu Y, Sun Y, Liu Z, Bai X, Zhang K, Li B, Li MJ, Chen Y, Zhang L. HRP2-DPF3a-BAF complex coordinates histone modification and chromatin remodeling to regulate myogenic gene transcription. Nucleic Acids Res 2020; 48:6563-6582. [PMID: 32459350 PMCID: PMC7337902 DOI: 10.1093/nar/gkaa441] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 05/07/2020] [Accepted: 05/12/2020] [Indexed: 12/17/2022] Open
Abstract
Functional crosstalk between histone modifications and chromatin remodeling has emerged as a key regulatory mode of transcriptional control during cell fate decisions, but the underlying mechanisms are not fully understood. Here we discover an HRP2-DPF3a-BAF epigenetic pathway that coordinates methylated histone H3 lysine 36 (H3K36me) and ATP-dependent chromatin remodeling to regulate chromatin dynamics and gene transcription during myogenic differentiation. Using siRNA screening targeting epigenetic modifiers, we identify hepatoma-derived growth factor-related protein 2 (HRP2) as a key regulator of myogenesis. Knockout of HRP2 in mice leads to impaired muscle regeneration. Mechanistically, through its HIV integrase binding domain (IBD), HRP2 associates with the BRG1/BRM-associated factor (BAF) chromatin remodeling complex by interacting directly with the BAF45c (DPF3a) subunit. Through its Pro-Trp-Trp-Pro (PWWP) domain, HRP2 preferentially binds to H3K36me2. Consistent with the biochemical studies, ChIP-seq analyses show that HRP2 colocalizes with DPF3a across the genome and that the recruitment of HRP2/DPF3a to chromatin is dependent on H3K36me2. Integrative transcriptomic and cistromic analyses, coupled with ATAC-seq, reveal that HRP2 and DPF3a activate myogenic genes by increasing chromatin accessibility through recruitment of BRG1, the ATPase subunit of the BAF complex. Taken together, these results illuminate a key role for the HRP2-DPF3a-BAF complex in the epigenetic coordination of gene transcription during myogenic differentiation.
Collapse
Affiliation(s)
- Xu Zhu
- 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Key Laboratory of Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Bingxue Lan
- 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Key Laboratory of Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Xianfu Yi
- School of Biomedical Engineering and Technology, Tianjin Medical University, Tianjin 300070, China
| | - Chaoran He
- 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Key Laboratory of Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Lin Dang
- 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Key Laboratory of Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Xingquan Zhou
- 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Key Laboratory of Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Yumei Lu
- 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Key Laboratory of Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Yongzhan Sun
- 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Key Laboratory of Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Zhiheng Liu
- 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Key Laboratory of Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Xue Bai
- 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Key Laboratory of Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Kai Zhang
- 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Key Laboratory of Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Bing Li
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Mulin Jun Li
- 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Key Laboratory of Medical Epigenetics, Department of Pharmacology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Yupeng Chen
- 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Key Laboratory of Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Lirong Zhang
- 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Key Laboratory of Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| |
Collapse
|