1
|
Levin AW. Hemispheric annealing and lateralization under psychedelics (HEALS): A novel hypothesis of psychedelic action in the brain. J Psychopharmacol 2025; 39:416-430. [PMID: 39704335 DOI: 10.1177/02698811241303599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2024]
Abstract
Current models of psychedelic action in the brain propose changes along the dorsal-ventral and anterior-posterior axes but neglect to address the lateral axis. This article proposes a novel model of psychedelic action called HEALS (Hemispheric Annealing and Lateralization Under Psychedelics) which involves the reversal of the typical hierarchical relationship between the two hemispheres of the brain. In typical modes of consciousness, the hemispheres act in parallel process with the left predominating. Under psychedelics, as well as in other altered states of consciousness (ASCs), this hierarchy is reversed, with the right hemisphere released from inhibition by the left. In support of this model, the available neuroimaging evidence for lateralization under psychedelics is reviewed. Then, various cognitive and emotional changes observed under psychedelics are contrasted with those same functions in each hemisphere. These include attention; social and emotional intelligence; creativity and insight; and language. The article concludes with a review of laterality in other ASCs, such as meditative and trance states, and suggests that many phenomena associated with psychedelics, and other ASCs, might be explained by an atypical annealing between the hemispheres toward right hemisphere predominance.
Collapse
Affiliation(s)
- Adam W Levin
- Center for Psychedelic Drug Research and Education, College of Social Work, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
2
|
Zhang N, Ye H. Bridging Species Differences in Rule Switching: How Humans and Monkeys Solve the Same Wisconsin Card Sorting Task. J Neurosci 2025; 45:e2288242025. [PMID: 40246527 PMCID: PMC12005354 DOI: 10.1523/jneurosci.2288-24.2025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 02/28/2025] [Accepted: 03/04/2025] [Indexed: 04/19/2025] Open
Affiliation(s)
- Ningyu Zhang
- Institute of Neuroscience, Key Laboratory of Brain Cognition and Brain-inspired Intelligence Technology, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Huanghe Ye
- Institute of Neuroscience, Key Laboratory of Brain Cognition and Brain-inspired Intelligence Technology, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
3
|
Marzuki AA, Wong KY, Chan JK, Na SY, Thanaraju A, Phon-Amnuaisuk P, Vafa S, Yap J, Lim WG, Yip WZ, Arokiaraj AS, Shee D, Lee LGL, Chia YC, Jenkins M, Schaefer A. Mapping computational cognitive profiles of aging to dissociable brain and sociodemographic factors. NPJ AGING 2024; 10:50. [PMID: 39482289 PMCID: PMC11527976 DOI: 10.1038/s41514-024-00171-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 09/24/2024] [Indexed: 11/03/2024]
Abstract
Aging is associated with declines in cognition and brain structural integrity. However, there is equivocality over (1) the specificity of affected domains in different people, (2) the location of associated patterns of brain structural deterioration, and (3) the sociodemographic factors contributing to 'unhealthy' cognition. We aimed to identify cognitive profiles displayed by older adults and determine brain and sociodemographic features potentially shaping these profiles. A sample of Southeast-Asian older adults (N = 386) participated in a multi-session study comprising cognitive testing, neuroimaging, and a structured interview. We used computational models to extract latent mechanisms underlying cognitive flexibility and response inhibition. Data-driven methods were used to construct cognitive profiles based on standard performance measures and model parameters. We also investigated grey matter volume and machine-learning derived 'brain-ages'. A profile associated with poor set-shifting and rigid focusing was associated with widespread grey matter reduction in cognitive control regions. A slow responding profile was associated with advanced brain-age. Both profiles were correlated with poor socioeconomic standing and cognitive reserve. We found that the impact of sociodemographic factors on cognitive profiles was partially mediated by total grey and white matter, and dorsolateral prefrontal and cerebellar volumes. This study furthers understanding of how distinct aging profiles of cognitive impairment uniquely correspond to specific vs. global brain deterioration and the significance of socioeconomic factors in informing cognitive performance in older age.
Collapse
Affiliation(s)
- Aleya A Marzuki
- Department of Psychiatry and Psychotherapy, Medical School and University Hospital, Eberhard Karls University of Tübingen, Tübingen, Germany.
- German Center for Mental Health (DZPG), Tübingen, Germany.
- Department of Psychology, School of Medical and Life Sciences, Sunway University, Subang Jaya, Selangor, Malaysia.
| | - Kean Yung Wong
- Sensory Neuroscience and Nutrition Lab, University of Otago, Dunedin, New Zealand
| | - Jee Kei Chan
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University, Subang Jaya, Malaysia
| | - Sze Yie Na
- School of Liberal Arts and Sciences, Taylor's University, Subang Jaya, Malaysia
| | - Arjun Thanaraju
- Department of Biological Sciences, School of Medical and Life Sciences, Sunway University, Subang Jaya, Malaysia
| | | | - Samira Vafa
- Department of Psychology, School of Medical and Life Sciences, Sunway University, Subang Jaya, Selangor, Malaysia
| | - Jie Yap
- Department of Psychology, School of Medical and Life Sciences, Sunway University, Subang Jaya, Selangor, Malaysia
| | - Wei Gene Lim
- Department of Biological Sciences, School of Medical and Life Sciences, Sunway University, Subang Jaya, Malaysia
| | - Wei Zern Yip
- Department of Psychology, School of Medical and Life Sciences, Sunway University, Subang Jaya, Selangor, Malaysia
| | - Annette Shamala Arokiaraj
- Centre for Research in Psychology and Human Well-Being, Faculty of Social Sciences and Humanities, National University of Malaysia, Subang Jaya, Malaysia
| | - Dexter Shee
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University, Subang Jaya, Malaysia
| | - Louisa Gee Ling Lee
- Department of Psychology, School of Medical and Life Sciences, Sunway University, Subang Jaya, Selangor, Malaysia
| | - Yook Chin Chia
- Department of Medical Sciences, School of Medical and Life Sciences, Sunway University, Subang Jaya, Malaysia
- Department of Primary Care Medicine, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Michael Jenkins
- Department of Psychology, School of Medical and Life Sciences, Sunway University, Subang Jaya, Selangor, Malaysia.
| | - Alexandre Schaefer
- Department of Psychology, School of Medical and Life Sciences, Sunway University, Subang Jaya, Selangor, Malaysia
| |
Collapse
|
4
|
Al Qasem W, Abubaker M, Pilátová K, Ježdík P, Kvašňák E. Improving working memory by electrical stimulation and cross-frequency coupling. Mol Brain 2024; 17:72. [PMID: 39354549 PMCID: PMC11446076 DOI: 10.1186/s13041-024-01142-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Accepted: 09/12/2024] [Indexed: 10/03/2024] Open
Abstract
Working memory (WM) is essential for the temporary storage and processing of information required for complex cognitive tasks and relies on neuronal theta and gamma oscillations. Given the limited capacity of WM, researchers have investigated various methods to improve it, including transcranial alternating current stimulation (tACS), which modulates brain activity at specific frequencies. One particularly promising approach is theta-gamma peak-coupled-tACS (TGCp-tACS), which simulates the natural interaction between theta and gamma oscillations that occurs during cognitive control in the brain. The aim of this study was to improve WM in healthy young adults with TGCp-tACS, focusing on both behavioral and neurophysiological outcomes. Thirty-one participants completed five WM tasks under both sham and verum stimulation conditions. Electroencephalography (EEG) recordings before and after stimulation showed that TGCp-tACS increased power spectral density (PSD) in the high-gamma region at the stimulation site, while PSD decreased in the theta and delta regions throughout the cortex. From a behavioral perspective, although no significant changes were observed in most tasks, there was a significant improvement in accuracy in the 14-item Sternberg task, indicating an improvement in phonological WM. In conclusion, TGCp-tACS has the potential to promote and improve the phonological component of WM. To fully realize the cognitive benefits, further research is needed to refine the stimulation parameters and account for individual differences, such as baseline cognitive status and hormonal factors.
Collapse
Affiliation(s)
- Wiam Al Qasem
- Department of Medical Biophysics and Medical Informatics, Third Faculty of Medicine, Charles University in Prague, Prague, Czechia.
| | - Mohammed Abubaker
- Department of Medical Biophysics and Medical Informatics, Third Faculty of Medicine, Charles University in Prague, Prague, Czechia
| | - Kateřina Pilátová
- Department of Information and Communication Technology in Medicine, Faculty of Biomedical Engineering, Czech Technical University in Prague, Prague, Czechia
| | - Petr Ježdík
- Department of Circuit Theory, Faculty of Electrical Engineering, Czech Technical University in Prague, Prague, Czechia
| | - Eugen Kvašňák
- Department of Medical Biophysics and Medical Informatics, Third Faculty of Medicine, Charles University in Prague, Prague, Czechia
| |
Collapse
|
5
|
Corvalan N, Crivelli L, Allegri RF, Pedreira ME, Fernández RS. The impact of reward and punishment sensitivity on memory and executive performance in individuals with amnestic mild cognitive impairment. Behav Brain Res 2024; 471:115099. [PMID: 38866138 DOI: 10.1016/j.bbr.2024.115099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 06/05/2024] [Accepted: 06/06/2024] [Indexed: 06/14/2024]
Abstract
Amnestic mild cognitive impairment (aMCI) is defined by memory impairment but executive function (EF) deficits could be also a common feature. This study examined the underlying neurocognitive processes associated with executive function (EF) deficits in patients with aMCI using the Wisconsin Card Sorting Test (WCST) and computational modeling. Forty-two patients with aMCI and thirty-eight matched Controls performed the WSCT and underwent neurocognitive assessment. The Attentional Learning Model was applied the WCST. Patients with aMCI demonstrated deficits in feedback-learning. More specifically, patients showed increased Reward-Sensitivity and reduced Punishment-Sensitivity. These alterations were associated with poor WSCT performance and deficits in EF and Memory. Goal-directed deficits in aMCI, as observed in the WCST, are associated with difficulties in updating attention after feedback as its changes too rapidly following positive feedback and too slowly following negative feedback. Consequently, memory and EF deficits interact and reinforce each other generating performance deficits in patients with aMCI.
Collapse
Affiliation(s)
- Nicolas Corvalan
- Department of Cognitive Neurology, Fleni, Montañeses 2325, Buenos Aires C.P. C1428AQK, Argentina
| | - Lucia Crivelli
- Department of Cognitive Neurology, Fleni, Montañeses 2325, Buenos Aires C.P. C1428AQK, Argentina
| | - Ricardo F Allegri
- Department of Cognitive Neurology, Fleni, Montañeses 2325, Buenos Aires C.P. C1428AQK, Argentina
| | - Maria E Pedreira
- Instituto de Fisiología, Biología Molecular y Neurociencias (IFIByNE)-CONICET, Intendente Güiraldes 2160, Buenos Aires C.P. C1428EGA, Argentina
| | - Rodrigo S Fernández
- Instituto de Fisiología, Biología Molecular y Neurociencias (IFIByNE)-CONICET, Intendente Güiraldes 2160, Buenos Aires C.P. C1428EGA, Argentina.
| |
Collapse
|
6
|
Ouerchefani R, Ouerchefani N, Ben Rejeb MR, Le Gall D. Exploring behavioural and cognitive dysexecutive syndrome in patients with focal prefrontal cortex damage. APPLIED NEUROPSYCHOLOGY. ADULT 2024; 31:443-463. [PMID: 35244518 DOI: 10.1080/23279095.2022.2036152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
This study's objectives were to characterize the frequency and profile of behavioral and cognitive dysexecutive syndromes in patients with focal prefrontal cortex damage and how these syndromes overlap. We also examined the contribution of the prefrontal brain regions to these syndromes. Therefore, thirty patients with prefrontal cortex damage and thirty control subjects were compared on their performances using the GREFEX battery assessing the dysexecutive syndromes. The results showed that combined behavioral and cognitive dysexecutive syndrome was observed in 53.33%, while pure cognitive dysexecutive syndrome was observed in 20% and behavioral in 26.67%. Also, almost all behavioral and cognitive dysexecutive disorders discriminated frontal patients from controls. Moreover, correlations and regression analyses between task scores in both domains of dysexecutive syndromes showed that the spectrum of behavioral disorders was differentially associated with cognitive impairment of initiation, inhibition, generation, deduction, coordination, flexibility and the planning process. Furthermore, the patterns of cognitive and behavioral dysexecutive syndrome were both predictors of impairment in daily living activities and loss of autonomy. Finally, frontal regions contributing to different dysexecutive syndromes assessed by MRI voxel lesion symptom analysis indicate several overlapping regions centered on the ventromedial and dorsomedial prefrontal cortex for both domains of dysexecutive syndrome. This study concludes that damage to the frontal structures may lead to a diverse set of changes in both cognitive and behavioral domains which both contribute to loss of autonomy. The association of the ventromedial and dorsomedial prefrontal regions to both domains of dysexecutive syndrome suggests a higher integrative role of these regions in processing cognition and behavior.
Collapse
Affiliation(s)
- Riadh Ouerchefani
- High Institute of Human Sciences, Department of Psychology, University of Tunis El Manar, Tunis, Tunisia
- Univ Angers, Université de Nantes, LPPL, SFR Confluences, Angers, France
| | | | - Mohamed Riadh Ben Rejeb
- Faculty of Human and Social Science of Tunisia, Department of Psychology, University of Tunis I, Tunis, Tunisia
| | - Didier Le Gall
- Univ Angers, Université de Nantes, LPPL, SFR Confluences, Angers, France
| |
Collapse
|
7
|
Coltheart M, Davies M. Delusional belief about location ("reduplicative paramnesia"). Cogn Neuropsychiatry 2024; 29:268-285. [PMID: 39714352 DOI: 10.1080/13546805.2024.2443057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 12/10/2024] [Indexed: 12/24/2024]
Abstract
INTRODUCTION People admitted to hospital as inpatients following head injury or stroke sometimes form the delusional belief that they are located somewhere else-often, near or in their home. This delusion was first described by Pick, who named it "reduplicative paramnesia"; we argue instead for the term "location delusion". METHODS We carried out a literature search and identified 112 cases of location delusion published since Pick's original 1903 case. RESULTS We found that, in this cohort of patients, the belief about being located elsewhere than the hospital is elaborated into more specific delusional beliefs about just where the patient is located (e.g., beliefs that involve mislocation of the hospital). We identified eight specific location beliefs and offered a two-factor motivational explanation of these eight forms of location delusion. The patient wishes to be somewhere more congenial, that wish becomes a hypothesis (as occurs in normal belief formation), and then, because these patients have impaired ability to evaluate hypotheses, the hypothesis is accepted and maintained as a (delusional) belief. CONCLUSION Our previous papers on the two-factor theory of delusional belief focussed on fully neuropsychological delusions. Here we propose that this theory can also explain delusions generated by motivational influences.
Collapse
Affiliation(s)
- Max Coltheart
- Emeritus Professor of Cognitive Science, Macquarie University, Sydney, Australia
| | - Martin Davies
- Emeritus Wilde Professor of Mental Philosophy, Corpus Christi College, Oxford, UK
- Philosophy Department, Monash University, Clayton, Australia
| |
Collapse
|
8
|
Toba MN, Malkinson TS, Howells H, Mackie MA, Spagna A. Same, Same but Different? A Multi-Method Review of the Processes Underlying Executive Control. Neuropsychol Rev 2024; 34:418-454. [PMID: 36967445 DOI: 10.1007/s11065-023-09577-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 09/26/2022] [Indexed: 03/29/2023]
Abstract
Attention, working memory, and executive control are commonly considered distinct cognitive functions with important reciprocal interactions. Yet, longstanding evidence from lesion studies has demonstrated both overlap and dissociation in their behavioural expression and anatomical underpinnings, suggesting that a lower dimensional framework could be employed to further identify processes supporting goal-directed behaviour. Here, we describe the anatomical and functional correspondence between attention, working memory, and executive control by providing an overview of cognitive models, as well as recent data from lesion studies, invasive and non-invasive multimodal neuroimaging and brain stimulation. We emphasize the benefits of considering converging evidence from multiple methodologies centred on the identification of brain mechanisms supporting goal-driven behaviour. We propose that expanding on this approach should enable the construction of a comprehensive anatomo-functional framework with testable new hypotheses, and aid clinical neuroscience to intervene on impairments of executive functions.
Collapse
Affiliation(s)
- Monica N Toba
- Laboratory of Functional Neurosciences (UR UPJV 4559), University Hospital of Amiens and University of Picardie Jules Verne, Amiens, France.
- CHU Amiens Picardie - Site Sud, Centre Universitaire de Recherche en Santé, Avenue René Laënnec, 80054, Amiens Cedex 1, France.
| | - Tal Seidel Malkinson
- Paris Brain Institute, ICM, Hôpital de La Pitié-Salpêtrière, Sorbonne Université, Inserm U 1127, CNRS UMR 7225, 75013, Paris, France
- Université de Lorraine, CRAN, F-54000, Nancy, France
| | - Henrietta Howells
- Laboratory of Motor Control, Department of Medical Biotechnologies and Translational Medicine, Humanitas Research Hospital, IRCCS, Università Degli Studi Di Milano, Milan, Italy
| | - Melissa-Ann Mackie
- Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Alfredo Spagna
- Department of Psychology, Columbia University, New York, NY, 10025, USA.
| |
Collapse
|
9
|
Britten RA, Fesshaye A, Tidmore A, Liu A, Blackwell AA. Loss of Cognitive Flexibility Practice Effects in Female Rats Exposed to Simulated Space Radiation. Radiat Res 2023; 200:256-265. [PMID: 37527363 DOI: 10.1667/rade-22-00196.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 06/27/2023] [Indexed: 08/03/2023]
Abstract
During the planned missions to Mars, astronauts will be faced with many potential health hazards including prolonged exposure to space radiation. Ground-based studies have shown that exposure to space radiation impairs the performance of male rats in cognitive flexibility tasks which involve processes that are essential to rapidly and efficiently adapting to different situations. However, there is presently a paucity of information on the effects of space radiation on cognitive flexibility in female rodents. This study has determined the impact that exposure to a low (10 cGy) dose of ions from the simplified 5-ion galactic cosmic ray simulation [https://www.bnl.gov/nsrl/userguide/SimGCRSim.php (07/2023)] (GCRSim) beam or 250 MeV/n 4He ions has on the ability of female Wistar rats to perform in constrained [attentional set shifting (ATSET)] and unconstrained cognitive flexibility (UCFlex) tasks. Female rats exposed to GCRSim exhibited multiple decrements in ATSET performance. Firstly, GCRSim exposure impaired performance in the compound discrimination (CD) stage of the ATSET task. While the ability of rats to identify the rewarded cue was not compromised, the time the rats required to do so significantly increased. Secondly, both 4He and GCRSim exposure reduced the ability of rats to reach criterion in the compound discrimination reversal (CDR) stage. Approximately 20% of the irradiated rats were unable to complete the CDR task; furthermore, the irradiated rats that did reach criterion took more attempts to do so than did the sham-treated animals. Radiation exposure also altered the magnitude and/or nature of practice effects. A comparison of performance metrics from the pre-screen and post-exposure ATSET task revealed that while the sham-treated rats completed the post-exposure CD stage of the ATSET task in 30% less time than for completion of the pre-screen ATSET task, the irradiated rats took 30-50% longer to do so. Similarly, while sham-treated rats completed the CDR stage in ∼10% fewer attempts in the post-exposure task compared to the pre-screen task, in contrast, the 4He- and GCRSim-exposed cohorts took more (∼2-fold) attempts to reach criterion in the post-exposure task than in the pre-screen task. In conclusion, this study demonstrates that female rats are susceptible to radiation-induced loss of performance in the constrained ATSET cognitive flexibility task. Moreover, exposure to radiation leads to multiple performance decrements, including loss of practice effects, an increase in anterograde interference and reduced ability or unwillingness to switch attention. Should similar effects occur in humans, astronauts may have a compromised ability to perform complex tasks.
Collapse
Affiliation(s)
- Richard A Britten
- EVMS Radiation Oncology, Eastern Virginia Medical School, Norfolk, Virginia 23507
- EVMS Microbiology and Molecular Cell Biology, Eastern Virginia Medical School, Norfolk, Virginia 23507
- Center for Integrative Neuroscience and Inflammatory diseases, Eastern Virginia Medical School, Norfolk, Virginia 23507
| | - Arriyam Fesshaye
- EVMS Radiation Oncology, Eastern Virginia Medical School, Norfolk, Virginia 23507
| | - Alyssa Tidmore
- EVMS Radiation Oncology, Eastern Virginia Medical School, Norfolk, Virginia 23507
| | - Aiyi Liu
- EVMS Radiation Oncology, Eastern Virginia Medical School, Norfolk, Virginia 23507
| | - Ashley A Blackwell
- EVMS Radiation Oncology, Eastern Virginia Medical School, Norfolk, Virginia 23507
- Center for Integrative Neuroscience and Inflammatory diseases, Eastern Virginia Medical School, Norfolk, Virginia 23507
| |
Collapse
|
10
|
Magnotti JF, Patterson JS, Schnur TT. Using predictive validity to compare associations between brain damage and behavior. Hum Brain Mapp 2023; 44:4738-4753. [PMID: 37417774 PMCID: PMC10400786 DOI: 10.1002/hbm.26413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 05/15/2023] [Accepted: 06/19/2023] [Indexed: 07/08/2023] Open
Abstract
Lesion-behavior mapping (LBM) provides a statistical map of the association between voxel-wise brain damage and individual differences in behavior. To understand whether two behaviors are mediated by damage to distinct regions, researchers often compare LBM weight outputs by either the Overlap method or the Correlation method. However, these methods lack statistical criteria to determine whether two LBM are distinct versus the same and are disconnected from a major goal of LBMs: predicting behavior from brain damage. Without such criteria, researchers may draw conclusions from numeric differences between LBMs that are irrelevant to predicting behavior. We developed and validated a predictive validity comparison method (PVC) that establishes a statistical criterion for comparing two LBMs using predictive accuracy: two LBMs are distinct if and only if they provide unique predictive power for the behaviors being assessed. We applied PVC to two lesion-behavior stroke data sets, demonstrating its utility for determining when behaviors arise from the same versus different lesion patterns. Using region-of-interest-based simulations derived from proportion damage from a large data set (n = 131), PVC accurately detected when behaviors were mediated by different regions (high sensitivity) versus the same region (high specificity). Both the Overlap method and Correlation method performed poorly on the simulated data. By objectively determining whether two behavioral deficits can be explained by single versus distinct patterns of brain damage, PVC provides a critical advance in establishing the brain bases of behavior. We have developed and released a GUI-driven web app to encourage widespread adoption.
Collapse
Affiliation(s)
- John F. Magnotti
- Department of NeurosurgeryBaylor College of MedicineHoustonTexasUSA
- Department of NeurosurgeryPerelman School of Medicine at the University of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | | | - Tatiana T. Schnur
- Department of NeurosurgeryBaylor College of MedicineHoustonTexasUSA
- Department of NeuroscienceBaylor College of MedicineHoustonTexasUSA
| |
Collapse
|
11
|
Le NM, Yildirim M, Wang Y, Sugihara H, Jazayeri M, Sur M. Mixtures of strategies underlie rodent behavior during reversal learning. PLoS Comput Biol 2023; 19:e1011430. [PMID: 37708113 PMCID: PMC10501641 DOI: 10.1371/journal.pcbi.1011430] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 08/09/2023] [Indexed: 09/16/2023] Open
Abstract
In reversal learning tasks, the behavior of humans and animals is often assumed to be uniform within single experimental sessions to facilitate data analysis and model fitting. However, behavior of agents can display substantial variability in single experimental sessions, as they execute different blocks of trials with different transition dynamics. Here, we observed that in a deterministic reversal learning task, mice display noisy and sub-optimal choice transitions even at the expert stages of learning. We investigated two sources of the sub-optimality in the behavior. First, we found that mice exhibit a high lapse rate during task execution, as they reverted to unrewarded directions after choice transitions. Second, we unexpectedly found that a majority of mice did not execute a uniform strategy, but rather mixed between several behavioral modes with different transition dynamics. We quantified the use of such mixtures with a state-space model, block Hidden Markov Model (block HMM), to dissociate the mixtures of dynamic choice transitions in individual blocks of trials. Additionally, we found that blockHMM transition modes in rodent behavior can be accounted for by two different types of behavioral algorithms, model-free or inference-based learning, that might be used to solve the task. Combining these approaches, we found that mice used a mixture of both exploratory, model-free strategies and deterministic, inference-based behavior in the task, explaining their overall noisy choice sequences. Together, our combined computational approach highlights intrinsic sources of noise in rodent reversal learning behavior and provides a richer description of behavior than conventional techniques, while uncovering the hidden states that underlie the block-by-block transitions.
Collapse
Affiliation(s)
- Nhat Minh Le
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Murat Yildirim
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
- Department of Neurosciences, Cleveland Clinic Lerner Research Institute, Cleveland, Ohio, United States of America
| | - Yizhi Wang
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Hiroki Sugihara
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Mehrdad Jazayeri
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Mriganka Sur
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| |
Collapse
|
12
|
Yu L, Wu Z, Wang D, Guo C, Teng X, Zhang G, Fang X, Zhang C. Increased cortical structural covariance correlates with anhedonia in schizophrenia. SCHIZOPHRENIA (HEIDELBERG, GERMANY) 2023; 9:19. [PMID: 37015933 PMCID: PMC10073085 DOI: 10.1038/s41537-023-00350-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 03/17/2023] [Indexed: 04/06/2023]
Abstract
Anhedonia is a common symptom in schizophrenia and is closely related to poor functional outcomes. Several lines of evidence reveal that the orbitofrontal cortex plays an important role in anhedonia. In the present study, we aimed to investigate abnormalities in structural covariance within the orbitofrontal subregions, and to further study their role in anticipatory and consummatory anhedonia in schizophrenia. T1 images of 35 schizophrenia patients and 45 healthy controls were obtained. The cortical thickness of 68 cerebral regions parcellated by the Desikan-Killiany (DK) atlas was calculated. The structural covariance within the orbitofrontal subregions was calculated in both schizophrenia and healthy control groups. Stepwise linear regression was performed to examine the relationship between structural covariance and anhedonia in schizophrenia patients. Patients with schizophrenia exhibited higher structural covariance between the left and right medial orbitofrontal thickness, the left lateral orbitofrontal thickness and left pars orbitalis thickness compared to healthy controls (p < 0.05, FDR corrected). This results imply that the increased structural covariance in orbitofrontal thickness may be involved in the process of developing anhedonia in schizophrenia. The result indicated that the increased structural covariance between the left and right medial orbitofrontal thickness might be a protective factor for anticipatory pleasure (B' = 0.420, p = 0.012).
Collapse
Affiliation(s)
- Lingfang Yu
- Schizophrenia Program, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
| | - Zenan Wu
- Schizophrenia Program, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
| | - Dandan Wang
- Schizophrenia Program, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
| | - Chaoyue Guo
- Schizophrenia Program, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
| | - Xinyue Teng
- Schizophrenia Program, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
| | - Guofu Zhang
- The Affiliated Wuxi Mental Health Center of Jiangnan University, Wuxi, 214151, China
| | - Xinyu Fang
- The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, 210029, China.
| | - Chen Zhang
- Schizophrenia Program, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China.
| |
Collapse
|
13
|
Ossola P, Garrett N, Biso L, Bishara A, Marchesi C. Anhedonia and sensitivity to punishment in schizophrenia, depression and opiate use disorder. J Affect Disord 2023; 330:319-328. [PMID: 36889442 DOI: 10.1016/j.jad.2023.02.120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 02/21/2023] [Accepted: 02/22/2023] [Indexed: 03/10/2023]
Abstract
BACKGROUND From a behavioural perspective anhedonia is defined as diminished interest in the engagement of pleasurable activities. Despite its presence across a range of psychiatric disorders, the cognitive processes that give rise to anhedonia remain unclear. METHODS Here we examine whether anhedonia is associated with learning from positive and negative outcomes in patients diagnosed with major depression, schizophrenia and opiate use disorder alongside a healthy control group. Responses in the Wisconsin Card Sorting Test - a task associated with healthy prefrontal cortex function - were fitted to the Attentional Learning Model (ALM) which separates learning from positive and negative feedback. RESULTS Learning from punishment, but not from reward, was negatively associated with anhedonia beyond other socio-demographic, cognitive and clinical variables. This impairment in punishment sensitivity was also associated with faster responses following negative feedback, independently of the degree of surprise. LIMITATIONS Future studies should test the longitudinal association between punishment sensitivity and anhedonia also in other clinical populations controlling for the effect of specific medications. CONCLUSIONS Together the results reveal that anhedonic subjects, because of their negative expectations, are less sensitive to negative feedbacks; this might lead them to persist in actions leading to negative outcomes.
Collapse
Affiliation(s)
- Paolo Ossola
- Department of Medicine and Surgery, University of Parma, Parma, Italy; Department of Mental Health, AUSL of Parma, Parma, Italy.
| | - Neil Garrett
- School of Psychology, University of East Anglia, Norfolk, UK
| | - Letizia Biso
- Department of Mental Health, AUSL of Parma, Parma, Italy
| | - Anthony Bishara
- Department of Psychology, College of Charleston, Charleston, SC, USA
| | - Carlo Marchesi
- Department of Medicine and Surgery, University of Parma, Parma, Italy; Department of Mental Health, AUSL of Parma, Parma, Italy
| |
Collapse
|
14
|
Increase in cerebral microbleeds and cognitive decline. Neurol Sci 2023:10.1007/s10072-023-06709-9. [PMID: 36849697 DOI: 10.1007/s10072-023-06709-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 02/20/2023] [Indexed: 03/01/2023]
Abstract
BACKGROUND In spite of increasing evidence of the clinical importance of cerebral microbleeds (CMBs), the relationship between CMBs and cognitive impairment is still controversial. In addition, there are very limited prior data regarding the prospective association of additional CMBs over time with a decline in cognitive function. This study thus aimed to investigate the effects of newly detected CMBs on cognitive decline in a Japanese health examination cohort. PATIENTS AND METHODS We performed a prospective cohort study involving 769 Japanese participants (mean age, 61.6 years) with a mean follow-up of 7.3 ± 3.5 years. CMBs were classified according to their locations. Cognitive functions were evaluated using Okabe's Intelligence Scale, Koh's block design test, and the Wisconsin Card Sorting Test. Multiple linear regression analyses were performed to examine the relationship between the newly detected CMBs and cognitive decline. RESULTS Fifty-six (7.3%) participants (16 had new strictly lobar cerebral microbleeds and 40 had new deep or infratentorial cerebral microbleeds) developed new CMBs during the follow-up period. In multivariable analysis, newly detected strictly lobar CMBs were associated with a greater decline in the Wisconsin Card Sorting Test in the categories achieved (β: - 0.862 [95% CI: - 1.325, - 0.399]; P < 0.0001), greater increase in perseverative errors of Nelson (β: 0.603 [95% CI: 0.023, 1.183]; P = 0.04), and greater increase in the difficulty with maintaining set (β: 1.321 [95% CI: 0.801, 1.842]; P < 0.0001). CONCLUSIONS Strictly lobar CMBs over time were associated with a decline in executive function.
Collapse
|
15
|
Risk Decision Making and Executive Function among Adolescents and Young Adults. Behav Sci (Basel) 2023; 13:bs13020142. [PMID: 36829371 PMCID: PMC9952781 DOI: 10.3390/bs13020142] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 02/03/2023] [Accepted: 02/04/2023] [Indexed: 02/10/2023] Open
Abstract
The dual theory establishes that the decision-making process relies on two different systems, the affective system and the executive function (EF), developed during adolescence. This study analyzes the relationship between the decision-making and EF processes in a group of early adolescents (mean age = 12.51 years, SD = 0.61), where more affective impulse processes are developed, and in young adults (mean age = 19.38 years, SD = 1.97), where cognitive control processes have already matured. For this purpose, 140 participants in Spain completed the Iowa Gambling Task (IGT) to measure their risky decisions and the Wisconsin Card Sorting Task (WCST) to measure their EF. Performance on the IGT improves over blocks; however, adolescents received lower mean scores than young adults. However, controlling for age, perseverative errors were negatively associated with the mean net score on the risky blocks of IGT; thus, those who committed more perseverative errors in the WCST were more likely to take cards from the disadvantageous decks on the last blocks of the IGT. The current study shows that adolescents and adults solve ambiguous decisions by trial and error; however, adolescents are more likely to make risky decisions without attending to the long-term consequences. Following the dual theory hypothesis, the maturation of EF with age partly accounts for this difference in risky decision-making between adolescents and adults.
Collapse
|
16
|
Oguchi M, Li Y, Matsumoto Y, Kiyonari T, Yamamoto K, Sugiura S, Sakagami M. Proselfs depend more on model-based than model-free learning in a non-social probabilistic state-transition task. Sci Rep 2023; 13:1419. [PMID: 36697448 PMCID: PMC9876908 DOI: 10.1038/s41598-023-27609-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 01/04/2023] [Indexed: 01/26/2023] Open
Abstract
Humans form complex societies in which we routinely engage in social decision-making regarding the allocation of resources among ourselves and others. One dimension that characterizes social decision-making in particular is whether to prioritize self-interest or respect for others-proself or prosocial. What causes this individual difference in social value orientation? Recent developments in the social dual-process theory argue that social decision-making is characterized by its underlying domain-general learning systems: the model-free and model-based systems. In line with this "learning" approach, we propose and experimentally test the hypothesis that differences in social preferences stem from which learning system is dominant in an individual. Here, we used a non-social state transition task that allowed us to assess the balance between model-free/model-based learning and investigate its relation to the social value orientations. The results showed that proselfs depended more on model-based learning, whereas prosocials depended more on model-free learning. Reward amount and reaction time analyses showed that proselfs learned the task structure earlier in the session than prosocials, reflecting their difference in model-based/model-free learning dependence. These findings support the learning hypothesis on what makes differences in social preferences and have implications for understanding the mechanisms of prosocial behavior.
Collapse
Affiliation(s)
- Mineki Oguchi
- Brain Science Institute, Tamagawa University, 6-1-1, Tamagawagakuen, Machida, Tokyo, Japan
| | - Yang Li
- Brain Science Institute, Tamagawa University, 6-1-1, Tamagawagakuen, Machida, Tokyo, Japan.,Graduate School of Informatics, Nagoya University, Nagoya, Japan
| | - Yoshie Matsumoto
- Brain Science Institute, Tamagawa University, 6-1-1, Tamagawagakuen, Machida, Tokyo, Japan.,Department of Psychology, Faculty of Human Sciences, Seinan Gakuin University, Fukuoka, Japan
| | - Toko Kiyonari
- School of Social Informatics, Aoyama Gakuin University, Kanagawa, Japan
| | | | | | - Masamichi Sakagami
- Brain Science Institute, Tamagawa University, 6-1-1, Tamagawagakuen, Machida, Tokyo, Japan.
| |
Collapse
|
17
|
Goudar V, Kim JW, Liu Y, Dede AJO, Jutras MJ, Skelin I, Ruvalcaba M, Chang W, Fairhall AL, Lin JJ, Knight RT, Buffalo EA, Wang XJ. Comparing rapid rule-learning strategies in humans and monkeys. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.10.523416. [PMID: 36711889 PMCID: PMC9882042 DOI: 10.1101/2023.01.10.523416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Inter-species comparisons are key to deriving an understanding of the behavioral and neural correlates of human cognition from animal models. We perform a detailed comparison of macaque monkey and human strategies on an analogue of the Wisconsin Card Sort Test, a widely studied and applied multi-attribute measure of cognitive function, wherein performance requires the inference of a changing rule given ambiguous feedback. We found that well-trained monkeys rapidly infer rules but are three times slower than humans. Model fits to their choices revealed hidden states akin to feature-based attention in both species, and decision processes that resembled a Win-stay lose-shift strategy with key differences. Monkeys and humans test multiple rule hypotheses over a series of rule-search trials and perform inference-like computations to exclude candidates. An attention-set based learning stage categorization revealed that perseveration, random exploration and poor sensitivity to negative feedback explain the under-performance in monkeys.
Collapse
Affiliation(s)
- Vishwa Goudar
- Center for Neural Science, New York University, NY, USA
| | - Jeong-Woo Kim
- Center for Neural Science, New York University, NY, USA
| | - Yue Liu
- Center for Neural Science, New York University, NY, USA
| | - Adam J. O. Dede
- Department of Physiology and Biophysics, University of Washington, Seattle, WA, USA
| | - Michael J. Jutras
- Department of Physiology and Biophysics, University of Washington, Seattle, WA, USA
| | - Ivan Skelin
- Department of Neurology, University of California, Davis, Davis, CA, USA
- The Center for Mind and Brain, University of California, Davis, Davis, CA, USA
| | - Michael Ruvalcaba
- Helen Wills Neuroscience Institute, University of California Berkeley, Berkeley, CA, USA
| | - William Chang
- Helen Wills Neuroscience Institute, University of California Berkeley, Berkeley, CA, USA
| | - Adrienne L. Fairhall
- Department of Physiology and Biophysics, University of Washington, Seattle, WA, USA
| | - Jack J. Lin
- Department of Neurology, University of California, Davis, Davis, CA, USA
- The Center for Mind and Brain, University of California, Davis, Davis, CA, USA
| | - Robert T. Knight
- Department of Psychology, University of California Berkeley, Berkeley, CA, USA
- Helen Wills Neuroscience Institute, University of California Berkeley, Berkeley, CA, USA
| | - Elizabeth A. Buffalo
- Department of Physiology and Biophysics, University of Washington, Seattle, WA, USA
- Washington Primate Research Center, University of Washington, Seattle, WA, USA
| | | |
Collapse
|
18
|
Kraiwattanapirom N, Siripornpanich V, Suwannapu W, Unaharassamee W, Chawang O, Lomwong N, Vittayatavornwong L, Chetsawang B. The quantitative analysis of EEG during resting and cognitive states related to neurological dysfunctions and cognitive impairments in methamphetamine abusers. Neurosci Lett 2022; 789:136870. [PMID: 36100041 DOI: 10.1016/j.neulet.2022.136870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 08/18/2022] [Accepted: 09/06/2022] [Indexed: 11/16/2022]
Abstract
Several lines of evidence demonstrated the deleterious effect of methamphetamine (MA) on neurological and psychological functions. However, recent evidence on the neurological dysfunctions related to cognitive performance and psychosis in MA abusers needs to be elucidated. Therefore, the present study aimed to investigate the neurological functions using EEG measurement during cognitive tests in MA abusers with (MWP) or without (MWOP) psychosis compared to age-matched normal participants. The quantitative EEG (qEEG) was used to reveal the absolute power in 4 brain-wave frequencies including delta, theta, alpha, and beta waves. The results demonstrated poor attention in both groups of MA abusers. The deficit in mental flexibility was observed in MWP. The deficit in inhibition control and working memory were observed in MWOP. The greater delta, alpha and beta brain waves in multiple brain areas were observed in MWP during the resting (eyes-open) state. The greater alpha wave in multiple brain areas of MWP correlated with poor attention. The greater delta wave and lesser beta wave in the frontal brain correlated with poor inhibition and working memory in MWOP respectively. These findings demonstrated the applicability of EEG to determine neurological dysfunction related to cognitive impairments in MA abusers.
Collapse
Affiliation(s)
- Natcharee Kraiwattanapirom
- Research Center for Neuroscience, Institute of Molecular Biosciences, Mahidol University, Salaya, Nakhon Pathom, Thailand
| | - Vorasith Siripornpanich
- Research Center for Neuroscience, Institute of Molecular Biosciences, Mahidol University, Salaya, Nakhon Pathom, Thailand
| | - Wichulada Suwannapu
- Research Center for Neuroscience, Institute of Molecular Biosciences, Mahidol University, Salaya, Nakhon Pathom, Thailand
| | - Weerapon Unaharassamee
- Neuropsychiatry Subdivision, Somdet Chaopraya Institute of Psychiatry, Bangkok, Thailand
| | - Orasa Chawang
- Neuropsychiatry Subdivision, Somdet Chaopraya Institute of Psychiatry, Bangkok, Thailand
| | - Nalitipan Lomwong
- Neuropsychiatry Subdivision, Somdet Chaopraya Institute of Psychiatry, Bangkok, Thailand
| | | | - Banthit Chetsawang
- Research Center for Neuroscience, Institute of Molecular Biosciences, Mahidol University, Salaya, Nakhon Pathom, Thailand.
| |
Collapse
|
19
|
Vilca LW. The moderating role of sex in the relationship between executive functions and academic procrastination in undergraduate students. Front Psychol 2022; 13:928425. [PMID: 36072020 PMCID: PMC9444057 DOI: 10.3389/fpsyg.2022.928425] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 07/29/2022] [Indexed: 12/04/2022] Open
Abstract
The objective of the study was to determine if sex plays a moderating role in the relationship between executive functions and academic procrastination in 106 university students of both genders (28.3% male and 71.7% female) between the ages of 18 and 30 years (M = 19.7; SD = 2.7). The Academic Procrastination Scale and the Neuropsychological Battery of Executive Functions and Frontal Lobes (BANFE-2) were used to measure the variables. The results of the study showed that the degree of prediction of the tasks linked to the orbitomedial cortex (involves the orbitofrontal cortex [OFC] and the medial prefrontal cortex [mPFC]) on academic procrastination is significantly moderated by the sex of the university students (β3 = 0.53; p < 0.01). For men, the estimated effect of the tasks linked to the orbitomedial cortex on the degree of academic procrastination is −0.81. For women, the estimated effect of the tasks linked to the orbitomedial cortex on the degree of academic procrastination is −0.28. In addition, it was shown that sex does not play a moderating role in the relationship between the tasks linked to the dorsolateral prefrontal cortex (dlPFC) and academic procrastination (β3 = 0.12; p > 0.05). It was also determined that sex does not play a moderating role in the relationship between the tasks linked to the anterior prefrontal cortex (aPFC) and academic procrastination (β3 = 0.05; p > 0.05). It is concluded that only the executive functions associated with the orbitomedial cortex are moderated by the sex of the university students, where the impact of the tasks linked to the orbitomedial cortex on academic procrastination in men is significantly greater than in women.
Collapse
|
20
|
Far transfer effects of executive working memory training on cognitive flexibility. CURRENT PSYCHOLOGY 2022. [DOI: 10.1007/s12144-022-03363-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
21
|
Jiang X, Dahmani S, Bronshteyn M, Yang FN, Ryan JP, Gallagher RC, Damera SR, Kumar PN, Moore DJ, Ellis RJ, Turkeltaub PE. Cingulate transcranial direct current stimulation in adults with HIV. PLoS One 2022; 17:e0269491. [PMID: 35658059 PMCID: PMC9165807 DOI: 10.1371/journal.pone.0269491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Accepted: 05/22/2022] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Neuronal dysfunction plays an important role in the high prevalence of HIV-associated neurocognitive disorders (HAND) in people with HIV (PWH). Transcranial direct current stimulation (tDCS)-with its capability to improve neuronal function-may have the potential to serve as an alternative therapeutic approach for HAND. Brain imaging and neurobehavioral studies provide converging evidence that injury to the anterior cingulate cortex (ACC) is highly prevalent and contributes to HAND in PWH, suggesting that ACC may serve as a potential neuromodulation target for HAND. Here we conducted a randomized, double-blind, placebo-controlled, partial crossover pilot study to test the safety, tolerability, and potential efficacy of anodal tDCS over cingulate cortex in adults with HIV, with a focus on the dorsal ACC (dACC). METHODS Eleven PWH (47-69 years old, 2 females, 100% African Americans, disease duration 16-36 years) participated in the study, which had two phases, Phase 1 and Phase 2. During Phase 1, participants were randomized to receive ten sessions of sham (n = 4) or cingulate tDCS (n = 7) over the course of 2-3 weeks. Treatment assignments were unknown to the participants and the technicians. Neuropsychology and MRI data were collected from four additional study visits to assess treatment effects, including one baseline visit (BL, prior to treatment) and three follow-up visits (FU1, FU2, and FU3, approximately 1 week, 3 weeks, and 3 months after treatment, respectively). Treatment assignment was unblinded after FU3. Participants in the sham group repeated the study with open-label cingulate tDCS during Phase 2. Statistical analysis was limited to data from Phase 1. RESULTS Compared to sham tDCS, cingulate tDCS led to a decrease in Perseverative Errors in Wisconsin Card Sorting Test (WCST), but not Non-Perseverative Errors, as well as a decrease in the ratio score of Trail Making Test-Part B (TMT-B) to TMT-Part A (TMT-A). Seed-to-voxel analysis with resting state functional MRI data revealed an increase in functional connectivity between the bilateral dACC and a cluster in the right dorsal striatum after cingulate tDCS. There were no differences in self-reported discomfort ratings between sham and cingulate tDCS. CONCLUSIONS Cingulate tDCS is safe and well-tolerated in PWH, and may have the potential to improve cognitive performance and brain function. A future study with a larger sample is warranted.
Collapse
Affiliation(s)
- Xiong Jiang
- Department of Neuroscience, Georgetown University Medical Center, Washington, DC, United States of America
| | - Sophia Dahmani
- Department of Neuroscience, Georgetown University Medical Center, Washington, DC, United States of America
| | - Margarita Bronshteyn
- Department of Neuroscience, Georgetown University Medical Center, Washington, DC, United States of America
| | - Fan Nils Yang
- Department of Neuroscience, Georgetown University Medical Center, Washington, DC, United States of America
| | - John Paul Ryan
- Department of Neuroscience, Georgetown University Medical Center, Washington, DC, United States of America
| | - R. Craig Gallagher
- Department of Neuroscience, Georgetown University Medical Center, Washington, DC, United States of America
| | - Srikanth R. Damera
- Department of Neuroscience, Georgetown University Medical Center, Washington, DC, United States of America
| | - Princy N. Kumar
- Department of Medicine, Georgetown University Medical Center, Washington, DC, United States of America
| | - David J. Moore
- Department of Psychiatry, University of California, San Diego, CA, United States of America
| | - Ronald J. Ellis
- Department of Psychiatry, University of California, San Diego, CA, United States of America
- Department of Neurosciences, University of California, San Diego, CA, United States of America
| | - Peter E. Turkeltaub
- Department of Neurology and Center for Brain Plasticity and Recovery, Georgetown University Medical Center, Washington, DC, United States of America
| |
Collapse
|
22
|
Chan MMY, Chan MC, Lai OLH, Krishnamurthy K, Han YMY. Abnormal Prefrontal Functional Connectivity Is Associated with Inflexible Information Processing in Patients with Autism Spectrum Disorder (ASD): An fNIRS Study. Biomedicines 2022; 10:1132. [PMID: 35625869 PMCID: PMC9139038 DOI: 10.3390/biomedicines10051132] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 05/05/2022] [Accepted: 05/12/2022] [Indexed: 01/15/2023] Open
Abstract
Individuals with autism spectrum disorder (ASD) are characterized by impairments in flexibly acquiring and maintaining new information, as well as in applying learned information for problem solving. However, the neural mechanism underpinning such impairments remains unclear. This study investigated the flexibility in the acquisition and application of visual information in ASD (aged 14−21) when they performed the Wisconsin Card Sorting Test (WCST). Behavioral data including response accuracy and latency, and prefrontal hemodynamic data measured by functional near-infrared spectroscopy (fNIRS), were collected when individuals performed WCST. Canonical general linear model and functional connectivity analyses were performed to examine the prefrontal activation and synchronization patterns, respectively. Results showed that although ASD individuals (n = 29) achieved comparable accuracy rates when compared with age- and intelligence quotient (IQ)-matched typically developing (TD; n = 26) individuals (F1,53 = 3.15, p = 0.082), ASD individuals needed significantly more time to acquire and apply WCST card sorting rules (F1,53 = 17.92, p < 0.001). Moreover, ASD individuals showed significantly lower prefrontal functional connectivity than TD individuals during WCST (F1,42 = 9.99, p = 0.003). The hypoconnectivity in ASD individuals was highly significant in the right lateral PFC in the acquisition condition (p = 0.005) and in the bilateral lateral PFC in the application condition (ps = 0.006). Furthermore, slower WCST reaction time was correlated with lower bilateral lateral PFC functional connectivity only in the application condition (ps = 0.003) but not the acquisition condition. Impairment in information acquisition and application is evident in ASD individuals and is mediated by processing speed, which is associated with lower functional connectivity in the bilateral lateral PFC when these individuals apply learned rules to solve novel problems.
Collapse
Affiliation(s)
- Melody M. Y. Chan
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong, China; (M.M.Y.C.); (M.-C.C.); (O.L.-H.L.); (K.K.)
| | - Ming-Chung Chan
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong, China; (M.M.Y.C.); (M.-C.C.); (O.L.-H.L.); (K.K.)
| | - Oscar Long-Hin Lai
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong, China; (M.M.Y.C.); (M.-C.C.); (O.L.-H.L.); (K.K.)
| | - Karthikeyan Krishnamurthy
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong, China; (M.M.Y.C.); (M.-C.C.); (O.L.-H.L.); (K.K.)
| | - Yvonne M. Y. Han
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong, China; (M.M.Y.C.); (M.-C.C.); (O.L.-H.L.); (K.K.)
- University Research Facility in Behavioral and Systems Neuroscience (UBSN), The Hong Kong Polytechnic University, Hong Kong, China
| |
Collapse
|
23
|
Vaidya AR, Badre D. Abstract task representations for inference and control. Trends Cogn Sci 2022; 26:484-498. [DOI: 10.1016/j.tics.2022.03.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 03/18/2022] [Accepted: 03/23/2022] [Indexed: 11/29/2022]
|
24
|
Kassel MT, Lositsky O, Vaidya AR, Badre D, Malloy PF, Greenberg BD, Marsland R, Noren G, Sherman A, Rasmussen SA, McLaughlin NC. Differential assessment of frontally-mediated behaviors between self- and informant-report in patients with obsessive-compulsive disorder following gamma ventral capsulotomy. Neuropsychologia 2022; 170:108211. [DOI: 10.1016/j.neuropsychologia.2022.108211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 02/02/2022] [Accepted: 03/08/2022] [Indexed: 10/18/2022]
|
25
|
Liu R, Tang W, Wang W, Xu F, Fan W, Zhang Y, Zhang C. NLRP3 Influences Cognitive Function in Schizophrenia in Han Chinese. Front Genet 2021; 12:781625. [PMID: 34956329 PMCID: PMC8702823 DOI: 10.3389/fgene.2021.781625] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 11/19/2021] [Indexed: 12/14/2022] Open
Abstract
It has been proposed that immune abnormalities may be implicated with pathophysiology of schizophrenia. The nod-like receptor pyrin domain-contraining protein 3 (NLRP3) can trigger immune-inflammatory cascade reactions. In this study, we intended to identify the role of gene encoding NLRP3 (NLRP3) in susceptibility to schizophrenia and its clinical features. For the NLRP3 mRNA expression analysis, 53 drug-naïve patients with first-episode schizophrenia and 56 healthy controls were enrolled. For the genetic study, a total of 823 schizophrenia patients and 859 controls were recruited. Among them, 239 drug-naïve patients with first-episode schizophrenia were enrolled for clinical evaluation. There is no significant difference in NLRP3 mRNA levels between patients with schizophrenia and healthy controls (p = 0.07). We did not observe any significant differences in allele and genotype frequencies of rs10754558 polymorphism between the schizophrenia and control groups. We noticed significant differences in the scores of RBANS attention and total scores between the patients with different genotypes of rs10754558 polymorphism (p = 0.001 and p < 0.01, respectively). Further eQTL analysis presented a significant association between the rs10754558 polymorphism and NLRP3 in frontal cortex (p = 0.0028, p = 0.028 after Bonferroni correction). Although our findings did not support NLRP3 confer susceptibility to schizophrenia, NLRP3 may be a risk factor for cognitive impairment, especially attention deficit in this disorder.
Collapse
Affiliation(s)
- Ruimei Liu
- Schizophrenia Program, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wei Tang
- Department of Psychiatry, The Affiliated Kangning Hospital of Wenzhou Medical University, Wenzhou, China
| | - Weiping Wang
- Department of Psychiatry, Jinhua Second Hospital, Jinhua, China
| | - Feikang Xu
- Schizophrenia Program, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Weixing Fan
- Department of Psychiatry, Jinhua Second Hospital, Jinhua, China
| | - Yi Zhang
- Schizophrenia Program, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chen Zhang
- Schizophrenia Program, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
26
|
Maier I, Ruegger PM, Deutschmann J, Helbich TH, Pietschmann P, Schiestl RH, Borneman J. Particle Radiation Side-Effects: Intestinal Microbiota Composition Shapes Interferon-γ-Induced Osteo-Immunogenicity. Radiat Res 2021; 197:289-297. [PMID: 34905619 DOI: 10.1667/rade-21-00068.1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 11/09/2021] [Indexed: 11/03/2022]
Abstract
Microbiota can both negatively and positively impact radiation-induced bone loss. Our prior research showed that compared to mice with conventional gut microbiota (CM), mice with restricted gut microbiota (RM) reduced inflammatory tumor necrosis factor (TNF) in bone marrow, interleukin (IL)-17 in blood, and chemokine (C-C motif) ligand 20 (CCL20) in bone marrow under anti-IL-17 treatment. We showed that Muribaculum intestinale was more abundant in intestinal epithelial cells (IECs) from the small intestine of female RM mice and positively associated with augmented skeletal bone structure. Female C57BL/6J pun RM mice, which were injected with anti-IL-17 antibody one day before exposure to 1.5 Gy 28Si ions of 850 MeV/u, showed high trabecular numbers in tibiae at 6 weeks postirradiation. Irradiated CM mice were investigated for lower interferon-γ and IL-17 levels in the small intestine than RM mice. IL-17 blockage resulted in bacterial indicator phylotypes being different between both microbiota groups before and after irradiation. Analysis of the fecal bacteria were performed in relation to bone quality and body weight, showing reduced tibia cortical thickness in irradiated CM mice (-15%) vs. irradiated RM mice (-9.2%). Correlation analyses identified relationships among trabecular bone parameters (TRI-BV/TV, Tb.N, Tb.Th, Tb.Sp) and Bacteroides massiliensis, Muribaculum sp. and Prevotella denticola. Turicibacter sp. was found directly correlated with trabecular separation in anti-IL-17 treated mice, whereas an unidentified Bacteroidetes correlated with trabecular thickness in anti-IL-17 neutralized and radiation-exposed mice. We demonstrated radiation-induced osteolytic damage to correlate with bacterial indicator phylotypes of the intestinal microbiota composition, and these relationships were determined from the previously discovered dose-dependent particle radiation effects on cell proliferation in bone tissue. New translational approaches were designed to investigate dynamic changes of gut microbiota in correlation with conditions of treatment and disease as well as mechanisms of systemic side-effects in radiotherapy.
Collapse
Affiliation(s)
- Irene Maier
- Department of Environmental Health Sciences, Fielding School of Public Health, University of California, Los Angeles, Los Angeles, California
| | - Paul M Ruegger
- Department of Microbiology and Plant Pathology, University of California, Riverside, Riverside, California
| | - Julia Deutschmann
- Department for Radiologic Technology, University of Applied Sciences Wiener Neustadt for Business and Engineering Ltd., Lower Austria, Austria
| | - Thomas H Helbich
- Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Peter Pietschmann
- Institute of Pathophysiology and Allergy Research, Medical University of Vienna, Waehringer Guertel 18-20, A-1090 Vienna, Austria
| | - Robert H Schiestl
- Departments of Pathology and Environmental Health Sciences, University of California, Los Angeles, Los Angeles, California
| | - James Borneman
- Department of Microbiology and Plant Pathology, University of California, Riverside, Riverside, California
| |
Collapse
|
27
|
Abstract
PURPOSE OF REVIEW This article summarizes the cognitive and behavioral functions of the prefrontal cortex with an emphasis on executive cognitive functions and the clinical consequences associated with executive dysfunction. The clinical manifestations of lesions to the lateral prefrontal, orbitofrontal, medial prefrontal, and frontopolar cortex are reviewed. RECENT FINDINGS Traditional lesion studies have emphasized the role of a brain region in controlling a cognitive function. With advances in neurology, neuropsychology, and neuroimaging, the participation of the prefrontal cortex in large-scale networks has been established with recognition that cognitive dysfunction can arise not only from a lesion within a network but also from degenerative disease targeting these large-scale, dynamic neural networks. Although executive dysfunction can result from frontal lobe injury, this article highlights the role of distributed processes subserving executive functions. An atypical phenotype of Alzheimer disease has been described that selectively targets parietal-temporal-frontal networks important for core executive functions. SUMMARY Executive function comprises working memory, cognitive flexibility, and inhibition and depends on top-down (ie, goal-driven) control of distributed processes occurring throughout the brain. The exact behavioral output (ie, function) depends on the content of the processes being controlled. Prefrontal cortex regions serve key cognitive functions related to social, emotional, and motivational aspects of behavior. The dorsal lateral prefrontal cortex plays a role in working memory, goal-driven attention, task switching, planning, problem-solving, and novelty-seeking. The ventral lateral prefrontal cortex plays a role in inhibition, response selection, and monitoring; the medial prefrontal cortex in self-knowledge, motivation, emotional regulation, and updating goal-directed behavior; the orbitofrontal cortex in personality, inhibition, and emotional and social reasoning. Although dysexecutive syndromes have been traditionally associated with dorsolateral prefrontal cortex injury, it is now recognized that they can also result from an impaired parietal-temporal-frontal system, which is targeted in a distinct form of atypical Alzheimer disease. This dysexecutive Alzheimer phenotype is characterized by impaired task performance on a wide battery of neuropsychological tests and simple daily tasks that require executive control. In contrast, dysexecutive syndromes more localized to the frontal lobe involve impaired executive control of social, emotional, and motivational aspects of behavior.
Collapse
|
28
|
Marzuki AA, Tomić I, Ip SHY, Gottwald J, Kanen JW, Kaser M, Sule A, Conway-Morris A, Sahakian BJ, Robbins TW. Association of Environmental Uncertainty With Altered Decision-making and Learning Mechanisms in Youths With Obsessive-Compulsive Disorder. JAMA Netw Open 2021; 4:e2136195. [PMID: 34842925 PMCID: PMC8630570 DOI: 10.1001/jamanetworkopen.2021.36195] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 10/01/2021] [Indexed: 02/05/2023] Open
Abstract
Importance Adults with obsessive-compulsive disorder (OCD) display perseverative behavior in stable environments but exhibit vacillating choice when payoffs are uncertain. These findings may be associated with intolerance of uncertainty and compulsive behaviors; however, little is known about the mechanisms underlying learning and decision-making in youths with OCD because research into this population has been limited. Objective To investigate cognitive mechanisms associated with decision-making in youths with OCD by using executive functioning tasks and computational modeling. Design, Setting, and Participants In this cross-sectional study, 50 youths with OCD (patients) and 53 healthy participants (controls) completed a probabilistic reversal learning (PRL) task between January 2014 and March 2020. A separate sample of 27 patients and 46 controls completed the Wisconsin Card Sorting Task (WCST) between January 2018 and November 2020. The study took place at the University of Cambridge in the UK. Main Outcomes and Measures Decision-making mechanisms were studied by fitting hierarchical bayesian reinforcement learning models to the 2 data sets and comparing model parameters between participant groups. Model parameters included reward and punishment learning rates (feedback sensitivity), reinforcement sensitivity and decision consistency (exploitation), and stickiness (perseveration). Associations of receipt of serotonergic medication with performance were assessed. Results In total, 50 patients (29 female patients [58%]; median age, 16.6 years [IQR, 15.3-18.0 years]) and 53 controls (30 female participants [57%]; median age, 16.4 years [IQR, 14.8-18.0 years]) completed the PRL task. A total of 27 patients (18 female patients [67%]; median age, 16.1 years [IQR, 15.2-17.2 years]) and 46 controls (28 female participants [61%]; median age, 17.2 [IQR, 16.3-17.6 years]) completed the WCST. During the reversal phase of the PRL task, patients made fewer correct responses (mean [SD] proportion: 0.83 [0.16] for controls and 0.61 [0.31] for patients; 95% CI, -1.31 to -0.64) and switched choices more often following false-negative feedback (mean [SD] proportion: 0.09 [0.16] for controls vs 0.27 [0.34] for patients; 95% CI, 0.60-1.26) and true-positive feedback (mean [SD] proportion: 0.93 [0.17] for controls vs 0.73 [0.34] for patients; 95% CI, -2.17 to -1.31). Computational modeling revealed that patients displayed enhanced reward learning rates (mean difference [MD], 0.21; 95% highest density interval [HDI], 0.04-0.38) but decreased punishment learning rates (MD, -0.29; 95% HDI, -0.39 to -0.18), reinforcement sensitivity (MD, -4.91; 95% HDI, -9.38 to -1.12), and stickiness (MD, -0.35; 95% HDI, -0.57 to -0.11) compared with controls. There were no group differences on standard WCST measures and computational model parameters. However, patients who received serotonergic medication showed slower response times (mean [SD], 1420.49 [279.71] milliseconds for controls, 1471.42 [212.81] milliseconds for patients who were unmedicated, and 1738.25 [349.23] milliseconds for patients who were medicated) (control vs medicated MD, -320.26 [95% CI, -547.00 to -88.68]) and increased unique errors (mean [SD] proportion: 0.001 [0.004] for controls, 0.002 [0.004] for patients who were unmedicated, and 0.008 [0.01] for patients who were medicated) (control vs medicated MD, -0.007 [95% CI, -3.14 to -0.36]) on the WCST. Conclusions and Relevance The results of this cross-sectional study indicated that youths with OCD showed atypical probabilistic reversal learning but were generally unimpaired on the deterministic WCST, although unexpected results were observed for patients receiving serotonergic medication. These findings have implications for reframing the understanding of early-onset OCD as a disorder in which decision-making is associated with uncertainty in the environment, a potential target for therapeutic treatment. These results provide continuity with findings in adults with OCD.
Collapse
Affiliation(s)
- Aleya A. Marzuki
- Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, United Kingdom
- Department of Psychology, University of Cambridge, Cambridge, United Kingdom
- International University Malaya–Wales, Kuala Lumpur, Malaysia
| | - Ivan Tomić
- Department of Psychology, University of Cambridge, Cambridge, United Kingdom
| | - Samantha Hiu Yan Ip
- Department of Public Health and Primary Care, School of Clinical Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Julia Gottwald
- Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, United Kingdom
- Department of Psychiatry, School of Clinical Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Jonathan W. Kanen
- Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, United Kingdom
- Department of Psychology, University of Cambridge, Cambridge, United Kingdom
| | - Muzaffer Kaser
- Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, United Kingdom
- Cambridgeshire and Peterborough NHS Foundation Trust, Cambridge, United Kingdom
| | - Akeem Sule
- Department of Psychiatry, School of Clinical Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Anna Conway-Morris
- Cambridgeshire and Peterborough NHS Foundation Trust, Cambridge, United Kingdom
| | - Barbara J. Sahakian
- Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, United Kingdom
- Department of Psychiatry, School of Clinical Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Trevor W. Robbins
- Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, United Kingdom
- Department of Psychology, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
29
|
A network analysis and empirical validation of executive deficits in patients with psychosis and their healthy siblings. Schizophr Res 2021; 237:122-130. [PMID: 34521039 DOI: 10.1016/j.schres.2021.09.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 04/19/2021] [Accepted: 09/06/2021] [Indexed: 11/24/2022]
Abstract
BACKGROUND Psychopathological symptoms and cognitive impairment are core features of patients with psychotic disorders. Executive dysfunctions are commonly observed and typically assessed using tests like the Wisconsin Card Sorting Test (WCST). However, the structure of executive deficits remains unclear, and the underlying processes may be different. This study aimed to explore and compare the network structure of WCST measures in patients with psychosis and their unaffected siblings and to empirically validate the resulting network structure of the patients. METHODS The subjects were 298 patients with a DSM 5 diagnosis of a psychotic disorder and 89 of their healthy siblings. The dimensionality and network structure of the WCST were examined by means of exploratory graph analysis (EGA) and network centrality parameters. RESULTS The WCST network structure comprised 4 dimensions: perseveration (PER), inefficient sorting (IS), failure to maintain set (FMS) and learning (LNG). The patient and sibling groups showed a similar network structure, which was reliably estimated. PER and IS showed common and strong associations with antecedent, concurrent and outcome validators. The LNG dimension was also moderately associated with these validators, but FMS did not show significant associations. CONCLUSIONS Four cognitive processes underlying WCST performance were identified by the network analysis. PER, IS and LNG were associated with and shared common antecedent, concurrent and outcome validators, while FMS was not associated with external validators. These four underlying dysfunctions might help disentangle the neurofunctional basis of executive deficits in psychosis.
Collapse
|
30
|
Gallup GG, Platek SM. Self-Processing and Self-Face Reaction Time Latencies: A Review. Brain Sci 2021; 11:brainsci11111409. [PMID: 34827408 PMCID: PMC8615763 DOI: 10.3390/brainsci11111409] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/13/2021] [Accepted: 10/20/2021] [Indexed: 11/16/2022] Open
Abstract
In this article, we detail the advantages of self-face identification latencies over more traditional tests of mirror self-recognition. Using reaction time latencies (measured in milliseconds) to identify different dimensions of the self, instead of relying on a simple dichotomous pass/fail mirror mark-test outcome, enables investigators to examine individual differences in self-processing time. This is a significant methodological step forward with important implications. The point of departure for our article is to detail research we and others have conducted on latencies for self-face identification, to show how self-processing occurs in the right side of the brain, how schizophrenia is a self-processing disorder, how self-face reaction time latencies implicate the existence of an underlying multiple modal self-processing system, and to explore ideas for future research.
Collapse
Affiliation(s)
- Gordon G. Gallup
- Department of Psychology, State University of New York at Albany, Albany, NY 12222, USA
- Correspondence:
| | - Steven M. Platek
- Psychology, Georgia Gwinnett College, Lawrenceville, GA 30024, USA;
| |
Collapse
|
31
|
Altered brain activity in the bilateral frontal cortices and neural correlation with cognitive impairment in schizophrenia. Brain Imaging Behav 2021; 16:415-423. [PMID: 34449034 DOI: 10.1007/s11682-021-00516-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/17/2021] [Indexed: 10/20/2022]
Abstract
Cognitive impairments are core aspects of schizophrenia and are highly related to poor outcomes. However, the effect of therapy on cognitive impairments remains unsatisfactory as its biological mechanisms are not fully understood. The purpose of this study was to investigate the disrupted intrinsic neural activity of the frontal areas and to further examine the functional connectivity of frontal areas related to cognitive impairments in schizophrenia. We collected brain imaging data using a 3T Siemens Prisma MRI system in 32 patients with schizophrenia and 34 age- and sex-matched healthy controls. The mean fractional amplitude of low-frequency fluctuation (mfALFF) in the frontal regions was calculated and analyzed to evaluate regional neural activity alterations in schizophrenia. Seed regions were generated from clusters showing significant changes in mfALFF in schizophrenia, and its resting-state functional connectivity (rs-FC) with other brain regions were estimated to detect possible aberrant rs-FC indicating cognitive impairments in schizophrenia. We found that mfALFF in the bilateral frontal cortices was increased in schizophrenia. mfALFF-based rs-FC revealed that decreased rs-FC between left middle frontal gyrus (MFG) and left medial superior frontal gyrus (MFSG) was associated with poor delayed memory (r = 0.566, Bonferroni-corrected p = 0.012). These findings demonstrate increased neural activity in the frontal cortices in schizophrenia. FC analysis revealed a diminished rs-FC pattern between the left MFG and left MSFG that was associated with cognitive impairments. These findings have provided deeper insight into the alterations in brain function related to specific domains of cognitive impairment and may provide evidence for precise interventions for cognitive deficits in schizophrenia.
Collapse
|
32
|
Barceló F. A Predictive Processing Account of Card Sorting: Fast Proactive and Reactive Frontoparietal Cortical Dynamics during Inference and Learning of Perceptual Categories. J Cogn Neurosci 2021; 33:1636-1656. [PMID: 34375413 DOI: 10.1162/jocn_a_01662] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
For decades, a common assumption in cognitive neuroscience has been that prefrontal executive control is mainly engaged during target detection [Posner, M. I., & Petersen, S. E. The attention system of the human brain. Annual Review of Neuroscience, 13, 25-42, 1990]. More recently, predictive processing theories of frontal function under the Bayesian brain hypothesis emphasize a key role of proactive control for anticipatory action selection (i.e., planning as active inference). Here, we review evidence of fast and widespread EEG and magnetoencephalographic fronto-temporo-parietal cortical activations elicited by feedback cues and target cards in the Wisconsin Card Sorting Test. This evidence is best interpreted when considering negative and positive feedback as predictive cues (i.e., sensory outcomes) for proactively updating beliefs about unknown perceptual categories. Such predictive cues inform posterior beliefs about high-level hidden categories governing subsequent response selection at target onset. Quite remarkably, these new views concur with Don Stuss' early findings concerning two broad classes of P300 cortical responses evoked by feedback cues and target cards in a computerized Wisconsin Card Sorting Test analogue. Stuss' discussion of those P300 responses-in terms of the resolution of uncertainty about response (policy) selection as well as the participants' expectancies for future perceptual or motor activities and their timing-was prescient of current predictive processing and active (Bayesian) inference theories. From these new premises, a domain-general frontoparietal cortical network is rapidly engaged during two temporarily distinct stages of inference and learning of perceptual categories that underwrite goal-directed card sorting behavior, and they each engage prefrontal executive functions in fundamentally distinct ways.
Collapse
|
33
|
Wu X, Wang L, Geng Z, Wei L, Yan Y, Xie C, Chen X, Ji GJ, Tian Y, Wang K. Improved Cognitive Promotion through Accelerated Magnetic Stimulation. eNeuro 2021; 8:ENEURO.0392-20.2020. [PMID: 33452108 PMCID: PMC7901150 DOI: 10.1523/eneuro.0392-20.2020] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 12/11/2020] [Accepted: 12/31/2020] [Indexed: 11/21/2022] Open
Abstract
Noninvasive brain stimulation to enhance cognition is an area of increasing research interest. Theta burst stimulation (TBS) is a novel accelerated form of stimulation, which more closely mimics the brain's natural firing patterns and may have greater effects on cognitive performance. We report here the comparative assessment of the effect of conventional high-frequency repetitive transcranial magnetic stimulation (HF-rTMS) protocols and TBS protocols on cognition enhancement in healthy controls. Sixty healthy adults (34 males and 26 females) were randomized and counterbalanced and assigned to HF-rTMS (n = 20), TBS (n = 20), or sham (n = 20) groups. The promotion effects of different parameters of prefrontal stimulation on working memory and executive function were compared, as assessed by performance in N-back tasks and the Wisconsin Card Sorting Test (WCST). Both HF-rTMS and intermittent TBS (iTBS) groups displayed a significant improvement in N-back tasks, with an effect size of 0.79 and 1.50, respectively. Furthermore, the iTBS group displayed a significant improvement in the WCST, with an effect size of 0.84. The iTBS group demonstrated higher effect sizes than the HF-rTMS group (t = 2.68, p = 0.011), with an effect size of 0.85. However, no improvement in other tasks was observed (p > 0.05). Intermittent TBS has a stronger cognitive promoting effect than conventional rTMS. In summary, our findings provide direct evidence that iTBS may be a superior protocol for cognitive promotion.
Collapse
Affiliation(s)
- Xingqi Wu
- Department of Neurology, the First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
- Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei 230022, China
- Collaborative Innovation Center of Neuropsychiatric Disorders and Mental Health, Hefei 230022, China
| | - Lu Wang
- Department of Neurology, the First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
- Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei 230022, China
- Collaborative Innovation Center of Neuropsychiatric Disorders and Mental Health, Hefei 230022, China
| | - Zhi Geng
- Department of Neurology, Second People's Hospital of Hefei City, The Hefei Affiliated Hospital of Anhui Medical University, Hefei 230022, China
| | - Ling Wei
- Department of Neurology, the First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
- Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei 230022, China
- Collaborative Innovation Center of Neuropsychiatric Disorders and Mental Health, Hefei 230022, China
| | - Yibing Yan
- Department of Neurology, the First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
- Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei 230022, China
- Collaborative Innovation Center of Neuropsychiatric Disorders and Mental Health, Hefei 230022, China
| | - Chengjuan Xie
- Department of Neurology, the First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
- Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei 230022, China
- Collaborative Innovation Center of Neuropsychiatric Disorders and Mental Health, Hefei 230022, China
| | - Xingui Chen
- Department of Neurology, the First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
- Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei 230022, China
- Collaborative Innovation Center of Neuropsychiatric Disorders and Mental Health, Hefei 230022, China
| | - Gong-Jun Ji
- Department of Neurology, the First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
- Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei 230022, China
- Collaborative Innovation Center of Neuropsychiatric Disorders and Mental Health, Hefei 230022, China
- Department of Medical Psychology, Chaohu Clinical Medical College, Anhui Medical University, Hefei 230022, China
| | - Yanghua Tian
- Department of Neurology, the First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
- Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei 230022, China
- Collaborative Innovation Center of Neuropsychiatric Disorders and Mental Health, Hefei 230022, China
| | - Kai Wang
- Department of Neurology, the First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
- Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei 230022, China
- Collaborative Innovation Center of Neuropsychiatric Disorders and Mental Health, Hefei 230022, China
- Department of Medical Psychology, Chaohu Clinical Medical College, Anhui Medical University, Hefei 230022, China
| |
Collapse
|
34
|
Steinke A, Kopp B. Toward a Computational Neuropsychology of Cognitive Flexibility. Brain Sci 2020; 10:E1000. [PMID: 33348638 PMCID: PMC7766646 DOI: 10.3390/brainsci10121000] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 12/10/2020] [Accepted: 12/15/2020] [Indexed: 12/11/2022] Open
Abstract
Cognitive inflexibility is a well-documented, yet non-specific corollary of many neurological diseases. Computational modeling of covert cognitive processes supporting cognitive flexibility may provide progress toward nosologically specific aspects of cognitive inflexibility. We review computational models of the Wisconsin Card Sorting Test (WCST), which represents a gold standard for the clinical assessment of cognitive flexibility. A parallel reinforcement-learning (RL) model provides the best conceptualization of individual trial-by-trial WCST responses among all models considered. Clinical applications of the parallel RL model suggest that patients with Parkinson's disease (PD) and patients with amyotrophic lateral sclerosis (ALS) share a non-specific covert cognitive symptom: bradyphrenia. Impaired stimulus-response learning appears to occur specifically in patients with PD, whereas haphazard responding seems to occur specifically in patients with ALS. Computational modeling hence possesses the potential to reveal nosologically specific profiles of covert cognitive symptoms, which remain undetectable by traditionally applied behavioral methods. The present review exemplifies how computational neuropsychology may advance the assessment of cognitive flexibility. We discuss implications for neuropsychological assessment and directions for future research.
Collapse
Affiliation(s)
- Alexander Steinke
- Department of Neurology, Hannover Medical School, Carl-Neuberg-Straße 1, 30625 Hannover, Germany;
| | | |
Collapse
|
35
|
D’Alessandro M, Radev ST, Voss A, Lombardi L. A Bayesian brain model of adaptive behavior: an application to the Wisconsin Card Sorting Task. PeerJ 2020; 8:e10316. [PMID: 33335805 PMCID: PMC7713598 DOI: 10.7717/peerj.10316] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 10/16/2020] [Indexed: 12/28/2022] Open
Abstract
Adaptive behavior emerges through a dynamic interaction between cognitive agents and changing environmental demands. The investigation of information processing underlying adaptive behavior relies on controlled experimental settings in which individuals are asked to accomplish demanding tasks whereby a hidden regularity or an abstract rule has to be learned dynamically. Although performance in such tasks is considered as a proxy for measuring high-level cognitive processes, the standard approach consists in summarizing observed response patterns by simple heuristic scoring measures. With this work, we propose and validate a new computational Bayesian model accounting for individual performance in the Wisconsin Card Sorting Test (WCST), a renowned clinical tool to measure set-shifting and deficient inhibitory processes on the basis of environmental feedback. We formalize the interaction between the task's structure, the received feedback, and the agent's behavior by building a model of the information processing mechanisms used to infer the hidden rules of the task environment. Furthermore, we embed the new model within the mathematical framework of the Bayesian Brain Theory (BBT), according to which beliefs about hidden environmental states are dynamically updated following the logic of Bayesian inference. Our computational model maps distinct cognitive processes into separable, neurobiologically plausible, information-theoretic constructs underlying observed response patterns. We assess model identification and expressiveness in accounting for meaningful human performance through extensive simulation studies. We then validate the model on real behavioral data in order to highlight the utility of the proposed model in recovering cognitive dynamics at an individual level. We highlight the potentials of our model in decomposing adaptive behavior in the WCST into several information-theoretic metrics revealing the trial-by-trial unfolding of information processing by focusing on two exemplary individuals whose behavior is examined in depth. Finally, we focus on the theoretical implications of our computational model by discussing the mapping between BBT constructs and functional neuroanatomical correlates of task performance. We further discuss the empirical benefit of recovering the assumed dynamics of information processing for both clinical and research practices, such as neurological assessment and model-based neuroscience.
Collapse
Affiliation(s)
- Marco D’Alessandro
- Department of Psychology and Cognitive Science, University of Trento, Rovereto, Italy
| | - Stefan T. Radev
- Institute of Psychology, Heidelberg University, Heidelberg, Germany
| | - Andreas Voss
- Institute of Psychology, Heidelberg University, Heidelberg, Germany
| | - Luigi Lombardi
- Department of Psychology and Cognitive Science, University of Trento, Rovereto, Italy
| |
Collapse
|
36
|
Tsuda B, Tye KM, Siegelmann HT, Sejnowski TJ. A modeling framework for adaptive lifelong learning with transfer and savings through gating in the prefrontal cortex. Proc Natl Acad Sci U S A 2020; 117:29872-29882. [PMID: 33154155 PMCID: PMC7703668 DOI: 10.1073/pnas.2009591117] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The prefrontal cortex encodes and stores numerous, often disparate, schemas and flexibly switches between them. Recent research on artificial neural networks trained by reinforcement learning has made it possible to model fundamental processes underlying schema encoding and storage. Yet how the brain is able to create new schemas while preserving and utilizing old schemas remains unclear. Here we propose a simple neural network framework that incorporates hierarchical gating to model the prefrontal cortex's ability to flexibly encode and use multiple disparate schemas. We show how gating naturally leads to transfer learning and robust memory savings. We then show how neuropsychological impairments observed in patients with prefrontal damage are mimicked by lesions of our network. Our architecture, which we call DynaMoE, provides a fundamental framework for how the prefrontal cortex may handle the abundance of schemas necessary to navigate the real world.
Collapse
Affiliation(s)
- Ben Tsuda
- Computational Neurobiology Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037;
- Neurosciences Graduate Program, University of California San Diego, La Jolla, CA 92093
- Medical Scientist Training Program, University of California San Diego, La Jolla, CA 92093
| | - Kay M Tye
- Systems Neuroscience Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037
| | - Hava T Siegelmann
- Biologically Inspired Neural & Dynamical Systems Laboratory, School of Computer Science, University of Massachusetts Amherst, Amherst, MA, 01003
| | - Terrence J Sejnowski
- Computational Neurobiology Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037;
- Institute for Neural Computation, University of California San Diego, La Jolla, CA 92093
- Division of Biological Sciences, University of California San Diego, La Jolla, CA 92093
| |
Collapse
|
37
|
Steinke A, Lange F, Kopp B. Parallel model-based and model-free reinforcement learning for card sorting performance. Sci Rep 2020; 10:15464. [PMID: 32963297 PMCID: PMC7508815 DOI: 10.1038/s41598-020-72407-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 08/31/2020] [Indexed: 12/13/2022] Open
Abstract
The Wisconsin Card Sorting Test (WCST) is considered a gold standard for the assessment of cognitive flexibility. On the WCST, repeating a sorting category following negative feedback is typically treated as indicating reduced cognitive flexibility. Therefore such responses are referred to as 'perseveration' errors. Recent research suggests that the propensity for perseveration errors is modulated by response demands: They occur less frequently when their commitment repeats the previously executed response. Here, we propose parallel reinforcement-learning models of card sorting performance, which assume that card sorting performance can be conceptualized as resulting from model-free reinforcement learning at the level of responses that occurs in parallel with model-based reinforcement learning at the categorical level. We compared parallel reinforcement-learning models with purely model-based reinforcement learning, and with the state-of-the-art attentional-updating model. We analyzed data from 375 participants who completed a computerized WCST. Parallel reinforcement-learning models showed best predictive accuracies for the majority of participants. Only parallel reinforcement-learning models accounted for the modulation of perseveration propensity by response demands. In conclusion, parallel reinforcement-learning models provide a new theoretical perspective on card sorting and it offers a suitable framework for discerning individual differences in latent processes that subserve behavioral flexibility.
Collapse
Affiliation(s)
- Alexander Steinke
- Department of Neurology, Hannover Medical School, Carl-Neuberg-Straße 1, 30625, Hannover, Germany.
| | - Florian Lange
- Behavioral Engineering Research Group, KU Leuven, Naamsestraat 69, 3000, Leuven, Belgium
| | - Bruno Kopp
- Department of Neurology, Hannover Medical School, Carl-Neuberg-Straße 1, 30625, Hannover, Germany
| |
Collapse
|
38
|
Hwang K, Bruss J, Tranel D, Boes AD. Network Localization of Executive Function Deficits in Patients with Focal Thalamic Lesions. J Cogn Neurosci 2020; 32:2303-2319. [PMID: 32902335 DOI: 10.1162/jocn_a_01628] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The human thalamus has been suggested to be involved in executive function, based on animal studies and correlational evidence from functional neuroimaging in humans. Human lesion studies, examining behavioral deficits associated with focal brain injuries, can directly test the necessity of the human thalamus for executive function. The goal of our study was to determine the specific lesion location within the thalamus as well as the potential disruption of specific thalamocortical functional networks, related to executive dysfunction. We assessed executive function in 15 patients with focal thalamic lesions and 34 comparison patients with lesions that spared the thalamus. We found that patients with mediodorsal thalamic lesions exhibited more severe impairment in executive function when compared to both patients with thalamic lesions that spared the mediodorsal nucleus and to comparison patients with lesions outside the thalamus. Furthermore, we employed a lesion network mapping approach to map cortical regions that show strong functional connectivity with the lesioned thalamic subregions in the normative functional connectome. We found that thalamic lesion sites associated with more severe deficits in executive function showed stronger functional connectivity with ACC, dorsomedial PFC, and frontoparietal network, compared to thalamic lesions not associated with executive dysfunction. These are brain regions and functional networks whose dysfunction could contribute to impaired executive functioning. In aggregate, our findings provide new evidence that delineates a thalamocortical network for executive function.
Collapse
Affiliation(s)
- Kai Hwang
- The University of Iowa.,The University of Iowa Hospitals and Clinics
| | - Joel Bruss
- The University of Iowa.,The University of Iowa Hospitals and Clinics
| | - Daniel Tranel
- The University of Iowa.,The University of Iowa Hospitals and Clinics
| | - Aaron D Boes
- The University of Iowa.,The University of Iowa Hospitals and Clinics
| |
Collapse
|
39
|
Steinke A, Lange F, Seer C, Petri S, Kopp B. A Computational Study of Executive Dysfunction in Amyotrophic Lateral Sclerosis. J Clin Med 2020; 9:E2605. [PMID: 32796719 PMCID: PMC7463664 DOI: 10.3390/jcm9082605] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 07/29/2020] [Accepted: 07/31/2020] [Indexed: 12/28/2022] Open
Abstract
Executive dysfunction is a well-documented, yet nonspecific corollary of various neurological diseases and psychiatric disorders. Here, we applied computational modeling of latent cognition for executive control in amyotrophic lateral sclerosis (ALS) patients. We utilized a parallel reinforcement learning model of trial-by-trial Wisconsin Card Sorting Test (WCST) behavior. Eighteen ALS patients and 21 matched healthy control participants were assessed on a computerized variant of the WCST (cWCST). ALS patients showed latent cognitive symptoms, which can be characterized as bradyphrenia and haphazard responding. A comparison with results from a recent computational Parkinson's disease (PD) study (Steinke et al., 2020, J Clin Med) suggests that bradyphrenia represents a disease-nonspecific latent cognitive symptom of ALS and PD patients alike. Haphazard responding seems to be a disease-specific latent cognitive symptom of ALS, whereas impaired stimulus-response learning seems to be a disease-specific latent cognitive symptom of PD. These data were obtained from the careful modeling of trial-by-trial behavior on the cWCST, and they suggest that computational cognitive neuropsychology provides nosologically specific indicators of latent facets of executive dysfunction in ALS (and PD) patients, which remain undiscoverable for traditional behavioral cognitive neuropsychology. We discuss implications for neuropsychological assessment, and we discuss opportunities for confirmatory computational brain imaging studies.
Collapse
Affiliation(s)
- Alexander Steinke
- Department of Neurology, Hannover Medical School, Carl-Neuberg-Straße 1, 30625 Hannover, Germany; (F.L.); (C.S.); (S.P.); (B.K.)
| | - Florian Lange
- Department of Neurology, Hannover Medical School, Carl-Neuberg-Straße 1, 30625 Hannover, Germany; (F.L.); (C.S.); (S.P.); (B.K.)
- Behavioral Engineering Research Group, KU Leuven, Naamsestraat 69, 3000 Leuven, Belgium
| | - Caroline Seer
- Department of Neurology, Hannover Medical School, Carl-Neuberg-Straße 1, 30625 Hannover, Germany; (F.L.); (C.S.); (S.P.); (B.K.)
- Movement Control & Neuroplasticity Research Group, Department of Movement Sciences, KU Leuven, Leuven, Tervuursevest 101, 3001 Leuven, Belgium
- LBI-KU Leuven Brain Institute, KU Leuven, 3000 Leuven, Belgium
| | - Susanne Petri
- Department of Neurology, Hannover Medical School, Carl-Neuberg-Straße 1, 30625 Hannover, Germany; (F.L.); (C.S.); (S.P.); (B.K.)
| | - Bruno Kopp
- Department of Neurology, Hannover Medical School, Carl-Neuberg-Straße 1, 30625 Hannover, Germany; (F.L.); (C.S.); (S.P.); (B.K.)
| |
Collapse
|
40
|
Rethinking causality and data complexity in brain lesion-behaviour inference and its implications for lesion-behaviour modelling. Cortex 2020; 126:49-62. [DOI: 10.1016/j.cortex.2020.01.004] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 11/30/2019] [Accepted: 01/10/2020] [Indexed: 01/04/2023]
|
41
|
Steinke A, Lange F, Seer C, Hendel MK, Kopp B. Computational Modeling for Neuropsychological Assessment of Bradyphrenia in Parkinson's Disease. J Clin Med 2020; 9:E1158. [PMID: 32325662 PMCID: PMC7230210 DOI: 10.3390/jcm9041158] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 04/09/2020] [Accepted: 04/16/2020] [Indexed: 12/13/2022] Open
Abstract
The neural mechanisms of cognitive dysfunctions in neurological diseases remain poorly understood. Here, we conjecture that this unsatisfying state-of-the-art is in part due to the non-specificity of the typical behavioral indicators for cognitive dysfunctions. Our study addresses the topic by advancing the assessment of cognitive dysfunctions through computational modeling. We investigate bradyphrenia in Parkinson's disease (PD) as an exemplary case of cognitive dysfunctions in neurological diseases. Our computational model conceptualizes trial-by-trial behavioral data as resulting from parallel cognitive and sensorimotor reinforcement learning. We assessed PD patients 'on' and 'off' their dopaminergic medication and matched healthy control (HC) participants on a computerized version of the Wisconsin Card Sorting Test. PD patients showed increased retention of learned cognitive information and decreased retention of learned sensorimotor information from previous trials in comparison to HC participants. Systemic dopamine replacement therapy did not remedy these cognitive dysfunctions in PD patients but incurred non-desirable side effects such as decreasing cognitive learning from positive feedback. Our results reveal novel insights into facets of bradyphrenia that are indiscernible by observable behavioral indicators of cognitive dysfunctions. We discuss how computational modeling may contribute to the advancement of future research on brain-behavior relationships and neuropsychological assessment.
Collapse
Affiliation(s)
- Alexander Steinke
- Department of Neurology, Hannover Medical School, Carl-Neuberg-Straße 1, 30625 Hannover, Germany
| | - Florian Lange
- Department of Neurology, Hannover Medical School, Carl-Neuberg-Straße 1, 30625 Hannover, Germany
- Behavioral Engineering Research Group, KU Leuven, Naamsestraat 69, 3000 Leuven, Belgium
| | - Caroline Seer
- Department of Neurology, Hannover Medical School, Carl-Neuberg-Straße 1, 30625 Hannover, Germany
- Movement Control & Neuroplasticity Research Group, Department of Movement Sciences, KU Leuven, Tervuursevest 101, 3001 Leuven, Belgium
- LBI - KU Leuven Brain Institute, KU Leuven, 3000 Leuven, Belgium
| | - Merle K. Hendel
- Department of Neurology, Hannover Medical School, Carl-Neuberg-Straße 1, 30625 Hannover, Germany
| | - Bruno Kopp
- Department of Neurology, Hannover Medical School, Carl-Neuberg-Straße 1, 30625 Hannover, Germany
| |
Collapse
|
42
|
Huang Y, Yaple ZA, Yu R. Goal-oriented and habitual decisions: Neural signatures of model-based and model-free learning. Neuroimage 2020; 215:116834. [PMID: 32283275 DOI: 10.1016/j.neuroimage.2020.116834] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 03/03/2020] [Accepted: 04/08/2020] [Indexed: 11/26/2022] Open
Abstract
Human decision-making is mainly driven by two fundamental learning processes: a slow, deliberative, goal-directed model-based process that maps out the potential outcomes of all options and a rapid habitual model-free process that enables reflexive repetition of previously successful choices. Although many model-informed neuroimaging studies have examined the neural correlates of model-based and model-free learning, the concordant activity among these two processes remains unclear. We used quantitative meta-analyses of functional magnetic resonance imaging experiments to identify the concordant activity pertaining to model-based and model-free learning over a range of reward-related paradigms. We found that: 1) both processes yielded concordant ventral striatum activity, 2) model-based learning activated the medial prefrontal cortex and orbital frontal cortex, and 3) model-free learning specifically activated the left globus pallidus and right caudate head. Our findings suggest that model-free and model-based decision making engage overlapping yet distinct neural regions. These stereotaxic maps improve our understanding of how deliberative goal-directed and reflexive habitual learning are implemented in the brain.
Collapse
Affiliation(s)
- Yi Huang
- NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore
| | - Zachary A Yaple
- Department of Psychology, National University of Singapore, Singapore
| | - Rongjun Yu
- NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore; Department of Psychology, National University of Singapore, Singapore.
| |
Collapse
|
43
|
Teigset CM, Mohn C, Rund BR. Perinatal complications and executive dysfunction in early-onset schizophrenia. BMC Psychiatry 2020; 20:103. [PMID: 32131788 PMCID: PMC7057649 DOI: 10.1186/s12888-020-02517-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 02/26/2020] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND The present study examined the association between perinatal obstetric complications and executive dysfunction in early-onset schizophrenia (EOS), compared to healthy controls. Higher incidences of obstetric complications and more severe executive dysfunctions characterize EOS. Research shows extensive brain maturation in newborns, suggesting them to be particularly vulnerable for perinatal insults. Executive function is mainly mediated by the prefrontal cortex, an area that matures last during pregnancy. Thus, exposure to perinatal complications may influence executive dysfunction in EOS. METHODS The participants were 19 EOS patients and 54 healthy controls. Executive function was assessed with the D-KEFS Color Word Interference Test and the Wisconsin Card Sorting Test. Information on perinatal obstetric complications and Apgar 5-min scores were obtained from the Norwegian Medical Birth Registry. Associations between perinatal conditions and executive function were studied using stepwise regression analyses. RESULTS Perinatal complications, and especially shorter gestational lengths, were significantly associated with significant executive dysfunctions in EOS. Perinatal complications did not affect executive function among healthy controls. A significant relationship between lower Apgar 5-min scores and executive dysfunction was found among both EOS patients and healthy controls. CONCLUSIONS Exposure to perinatal complications, and particularly a shorter gestational length, was associated with increased executive dysfunction in EOS. Exposed healthy controls did not exhibit similar executive difficulties, suggesting that the EOS patients seemed especially vulnerable for executive deficits due to perinatal insults. The findings indicate that EOS youths learn more slowly and experience more difficulty with problem-solving, which carry important implications for clinical practice. Lower Apgar 5-min scores were associated with executive dysfunction in both groups. Low Apgar score at 5 min may therefore be an important early indicator of executive difficulties among adolescents, independent of diagnosis.
Collapse
Affiliation(s)
- Charlotte M. Teigset
- grid.459157.b0000 0004 0389 7802Vestre Viken Hospital Trust, Research Department, Wergelands gate 10, 3004 Drammen, Norway
| | - Christine Mohn
- grid.459157.b0000 0004 0389 7802Vestre Viken Hospital Trust, Research Department, Wergelands gate 10, 3004 Drammen, Norway ,grid.5510.10000 0004 1936 8921NORMENT Norwegian Centre for Mental Disorders Research, Institute of Clinical Medicine, Postboks 4956 Nydalen, 0424 Oslo, Norway
| | - Bjørn Rishovd Rund
- grid.459157.b0000 0004 0389 7802Vestre Viken Hospital Trust, Research Department, Wergelands gate 10, 3004 Drammen, Norway ,grid.5510.10000 0004 1936 8921Department of Psychology, University of Oslo, Postboks 1094 Blindern, 0317 Oslo, Norway
| |
Collapse
|
44
|
Herbet G, Duffau H. Revisiting the Functional Anatomy of the Human Brain: Toward a Meta-Networking Theory of Cerebral Functions. Physiol Rev 2020; 100:1181-1228. [PMID: 32078778 DOI: 10.1152/physrev.00033.2019] [Citation(s) in RCA: 146] [Impact Index Per Article: 29.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
For more than one century, brain processing was mainly thought in a localizationist framework, in which one given function was underpinned by a discrete, isolated cortical area, and with a similar cerebral organization across individuals. However, advances in brain mapping techniques in humans have provided new insights into the organizational principles of anatomo-functional architecture. Here, we review recent findings gained from neuroimaging, electrophysiological, as well as lesion studies. Based on these recent data on brain connectome, we challenge the traditional, outdated localizationist view and propose an alternative meta-networking theory. This model holds that complex cognitions and behaviors arise from the spatiotemporal integration of distributed but relatively specialized networks underlying conation and cognition (e.g., language, spatial cognition). Dynamic interactions between such circuits result in a perpetual succession of new equilibrium states, opening the door to considerable interindividual behavioral variability and to neuroplastic phenomena. Indeed, a meta-networking organization underlies the uniquely human propensity to learn complex abilities, and also explains how postlesional reshaping can lead to some degrees of functional compensation in brain-damaged patients. We discuss the major implications of this approach in fundamental neurosciences as well as for clinical developments, especially in neurology, psychiatry, neurorehabilitation, and restorative neurosurgery.
Collapse
Affiliation(s)
- Guillaume Herbet
- Department of Neurosurgery, Gui de Chauliac Hospital, Montpellier University Medical Center, Montpellier, France; Team "Plasticity of Central Nervous System, Stem Cells and Glial Tumors," INSERM U1191, Institute of Functional Genomics, Montpellier, France; and University of Montpellier, Montpellier, France
| | - Hugues Duffau
- Department of Neurosurgery, Gui de Chauliac Hospital, Montpellier University Medical Center, Montpellier, France; Team "Plasticity of Central Nervous System, Stem Cells and Glial Tumors," INSERM U1191, Institute of Functional Genomics, Montpellier, France; and University of Montpellier, Montpellier, France
| |
Collapse
|
45
|
Prime H, Wade M, Gonzalez A. The link between maternal and child verbal abilities: An indirect effect through maternal responsiveness. Dev Sci 2019; 23:e12907. [PMID: 31571333 DOI: 10.1111/desc.12907] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 09/13/2019] [Accepted: 09/17/2019] [Indexed: 11/30/2022]
Abstract
Language abilities in early childhood show stability over time and play an important role in the development of other cognitive processes. Identifying modifiable environmental risk factors is important to informing prevention and early intervention efforts. Maternal verbal ability has been previously linked to child verbal ability. The current study examined whether maternal and child verbal abilities were linked indirectly through early childhood maternal responsiveness. Data come from a longitudinal birth cohort study. Participants included 133 mothers and their children recruited from maternity wards shortly after birth. Maternal verbal ability was measured using the Vocabulary subtest from the Wechsler Abbreviated Scale of Intelligence, Second Edition (child age 8 months). Child verbal ability was assessed using the Peabody Picture Vocabulary Test (36 months). A latent maternal responsiveness variable was estimated using three developmentally sensitive indicators; one during infancy (child age 8 months) and two when children were 36 months. Results of a structural equation model indicated a significant indirect effect from maternal verbal abilities to child verbal abilities through maternal responsiveness. This indirect path was significant even after inclusion of another indirect path from maternal executive functioning to child verbal ability through maternal responsiveness (which was not significant). Future studies will benefit from experimental, genetically sensitive and/or cross-lagged designs to allow for conclusions related to directionality and causality. This body of research has implications for the study of the intergenerational transmission of verbal abilities and associated skills, behaviours and adaptive outcomes.
Collapse
Affiliation(s)
- Heather Prime
- Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, ON, Canada.,Offord Centre for Child Studies, McMaster University, Hamilton, ON, Canada
| | - Mark Wade
- Department of Applied Psychology and Human Development, University of Toronto, Toronto, ON, Canada
| | - Andrea Gonzalez
- Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, ON, Canada.,Offord Centre for Child Studies, McMaster University, Hamilton, ON, Canada
| |
Collapse
|