1
|
Chang Y, Zhang R, Liu Y, Liu Y, Tao L, Liu D, Ma Y, Sun W. Conservation genomics of a threatened subtropical Rhododendron species highlights the distinct conservation actions required in marginal and admixed populations. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2025; 122:e70175. [PMID: 40287966 PMCID: PMC12034323 DOI: 10.1111/tpj.70175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 04/03/2025] [Accepted: 04/10/2025] [Indexed: 04/29/2025]
Abstract
With the impact of climate change and anthropogenic activities, the underlying threats facing populations with different evolutionary histories and distributions, and the associated conservation strategies necessary to ensure their survival, may vary within a species. This is particularly true for marginal populations and/or those showing admixture. Here, we re-sequence genomes of 102 individuals from 21 locations for Rhododendron vialii, a threatened species distributed in the subtropical forests of southwestern China that has suffered from habitat fragmentation due to deforestation. Population structure results revealed that R. vialii can be divided into five genetic lineages using neutral single-nucleotide polymorphisms (SNPs), whereas selected SNPs divide the species into six lineages. This is due to the Guigu (GG) population, which is identified as admixed using neutral SNPs, but is assigned to a distinct genetic cluster using non-neutral loci. R. vialii has experienced multiple genetic bottlenecks, and different demographic histories have been suggested among populations. Ecological niche modeling combined with genomic offset analysis suggests that the marginal population (Northeast, NE) harboring the highest genetic diversity is likely to have the highest risk of maladaptation in the future. The marginal population therefore needs urgent ex situ conservation in areas where the influence of future climate change is predicted to be well buffered. Alternatively, the GG population may have the potential for local adaptation, and will need in situ conservation. The Puer population, which carries the heaviest genetic load, needs genetic rescue. Our findings highlight how population genomics, genomic offset analysis, and ecological niche modeling can be integrated to inform targeted conservation.
Collapse
Affiliation(s)
- Yuhang Chang
- Yunnan Key Laboratory for Integrative Conservation of Plant Species with Extremely Small Populations, Kunming Institute of BotanyChinese Academy of SciencesKunming650201China
- University of Chinese Academy of SciencesBeijing101408China
| | - Rengang Zhang
- Yunnan Key Laboratory for Integrative Conservation of Plant Species with Extremely Small Populations, Kunming Institute of BotanyChinese Academy of SciencesKunming650201China
- University of Chinese Academy of SciencesBeijing101408China
| | - Yang Liu
- Yunnan Key Laboratory for Integrative Conservation of Plant Species with Extremely Small Populations, Kunming Institute of BotanyChinese Academy of SciencesKunming650201China
- University of Chinese Academy of SciencesBeijing101408China
| | - Yuhang Liu
- Yunnan Key Laboratory for Integrative Conservation of Plant Species with Extremely Small Populations, Kunming Institute of BotanyChinese Academy of SciencesKunming650201China
| | - Lidan Tao
- Yunnan Key Laboratory for Integrative Conservation of Plant Species with Extremely Small Populations, Kunming Institute of BotanyChinese Academy of SciencesKunming650201China
- University of Chinese Academy of SciencesBeijing101408China
| | - Detuan Liu
- Yunnan Key Laboratory for Integrative Conservation of Plant Species with Extremely Small Populations, Kunming Institute of BotanyChinese Academy of SciencesKunming650201China
| | - Yongpeng Ma
- Yunnan Key Laboratory for Integrative Conservation of Plant Species with Extremely Small Populations, Kunming Institute of BotanyChinese Academy of SciencesKunming650201China
- University of Chinese Academy of SciencesBeijing101408China
- State Key Laboratory of Plant Diversity and Specialty Crops, Kunming Institute of BotanyChinese Academy of SciencesKunming650201China
| | - Weibang Sun
- Yunnan Key Laboratory for Integrative Conservation of Plant Species with Extremely Small Populations, Kunming Institute of BotanyChinese Academy of SciencesKunming650201China
- University of Chinese Academy of SciencesBeijing101408China
- State Key Laboratory of Plant Diversity and Specialty Crops, Kunming Institute of BotanyChinese Academy of SciencesKunming650201China
| |
Collapse
|
2
|
Shao S, Li Y, Feng X, Jin C, Liu M, Zhu R, Tracy ME, Guo Z, He Z, Shi S, Xu S. Chromosomal-Level Genome Suggests Adaptive Constraints Leading to the Historical Population Decline in an Extremely Endangered Plant. Mol Ecol Resour 2025; 25:e14045. [PMID: 39575519 DOI: 10.1111/1755-0998.14045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 10/14/2024] [Accepted: 10/28/2024] [Indexed: 03/08/2025]
Abstract
Increased human activity and climate change have significantly impacted wild habitats and increased the number of endangered species. Exploring evolutionary history and predicting adaptive potential using genomic data will facilitate species conservation and biodiversity recovery. Here, we examined the genome evolution of a critically endangered tree Pellacalyx yunnanensis, a plant species with extremely small populations (PSESP) that is narrowly distributed in Xishuangbanna, China. The species has neared extinction due to economic exploitation in recent decades. We assembled a chromosome-level genome of 334 Mb, with the N50 length of 20.5 Mb. Using the genome, we discovered that P. yunnanensis has undergone several population size reductions, leading to excess deleterious mutations. The species may possess low adaptive potential due to reduced genetic diversity and the loss of stress-responsive genes. We estimate that P. yunnanensis is the basal species of its genus and diverged from its relatives during global cooling, suggesting it was stranded in unsuitable environments during periods of dramatic climate change. In particular, the loss of seed dormancy leads to germination under unfavourable conditions and reproduction challenges. This dormancy loss may have occurred through genetic changes that suppress ABA signalling and the loss of genes involved in seed maturation. The high-quality genome has also enabled us to reveal phenotypic trait evolution in Rhizophoraceae and identify divergent adaptation to intertidal and inland habitats. In summary, our study elucidates mechanisms underlying the decline and evaluates the adaptive potential of P. yunnanensis to future climate change, informing future conservation efforts.
Collapse
Affiliation(s)
- Shao Shao
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Stress Biology, Innovation Center for Evolutionary Synthetic Biology, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Yulong Li
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Stress Biology, Innovation Center for Evolutionary Synthetic Biology, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
- School of Ecology, Sun Yat-sen University, Shenzhen, China
| | - Xiao Feng
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Stress Biology, Innovation Center for Evolutionary Synthetic Biology, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Chuanfeng Jin
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Stress Biology, Innovation Center for Evolutionary Synthetic Biology, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Min Liu
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Stress Biology, Innovation Center for Evolutionary Synthetic Biology, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Ranran Zhu
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Stress Biology, Innovation Center for Evolutionary Synthetic Biology, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Miles E Tracy
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Stress Biology, Innovation Center for Evolutionary Synthetic Biology, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Zixiao Guo
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Stress Biology, Innovation Center for Evolutionary Synthetic Biology, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Ziwen He
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Stress Biology, Innovation Center for Evolutionary Synthetic Biology, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Suhua Shi
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Stress Biology, Innovation Center for Evolutionary Synthetic Biology, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Shaohua Xu
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Stress Biology, Innovation Center for Evolutionary Synthetic Biology, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
- School of Ecology, Sun Yat-sen University, Shenzhen, China
| |
Collapse
|
3
|
Wang Y, Wang X, Wu J, Yang J, Liu Y, Guo P, Shang F, Lin N. Phylogeography and genetic diversity of Ulmus elongata (Ulmaceae), a Tertiary relict tree with extremely small populations (PSESP). BMC PLANT BIOLOGY 2025; 25:61. [PMID: 39815177 PMCID: PMC11737252 DOI: 10.1186/s12870-025-06069-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Accepted: 01/06/2025] [Indexed: 01/18/2025]
Abstract
BACKGROUND Assessing the current status and identifying the mechanisms threatening endangered plants are significant challenges and fundamental to biodiversity conservation, particularly for protecting Tertiary relict trees and plant species with extremely small populations (PSESP). Ulmus elongata (Ulmus, Ulmaceae) with high values for the ornamental application, is a Tertiary relict tree species and one of the members from PSESP in China. Currently, the wild populations of U. elongata have been threatened by excessive deforestation and urbanization, but limited knowledges of its genetic diversity seriously hinder conservation efforts. Therefore, a further study on the genetic diversity and drivers of genetic pattern in U. elongata is crucial for preserving genetic resources and can serve as a reference for other Tertiary relict plants and PSESP under climate change. RESULTS Here, a total of 12 populations from 70 individuals of U. elongata were collected covering its geographical distribution in China. Utilizing chloroplast genome datasets, we found that U. elongata exhibited remarkably low nucleotide diversity and gene flow (π = 0.00013, Nm = 0.03). Analysis of molecular variance (AMOVA) showed that genetic variation in U. elongata occurs mainly between eight clades (60.95%). The Mantel tests indicated a significant correlation between genetic differentiation and geographical distances (r = 0.3777, p < 0.05) in U. elongata populations. A notable phylogeographic structure was identified in U. elongata, comprising eight distinct haplogroups (NST = 0.917, GST = 0.876, p < 0.05), which was attributed to the global cooling in the East Asia and Quaternary climate oscillations. CONCLUSIONS Overall, our study using Ulmus elongata as a representative supported the hypothesis that plants belonging to Tertiary relict species and PSESP simultaneously exhibits significantly lower genetic diversity compared to those are either Tertiary relict species or PSESP individually. Furthermore, the low genetic diversity and significant genetic differentiation in U. elongata populations can be primarily ascribed to a combination of factors, including habitat fragmentation resulting from human activities, populations contraction during LGM and small population sizes. This provides a crucial foundation for guiding conservation efforts and implementing management strategies for other Tertiary relict tree species and PSESP. Our findings also provide evidence for the important roles of East Asian monsoon system and climate oscillations in shaping the phylogeographic pattern in subtropical broad-leaved forests.
Collapse
Affiliation(s)
- Yakun Wang
- College of Life Science, Henan Agricultural University, Zhengzhou, China
| | - Xiankun Wang
- College of Landscape Architecture and Art, Henan Agricultural University, Zhengzhou, China
| | - Junyuan Wu
- College of Life Science, Henan Agricultural University, Zhengzhou, China
| | - Jun Yang
- Jiangxi Wuyuan Forest Bird National Nature Reserve Management Center, Shangrao, China
| | - Yanpei Liu
- College of Life Science, Henan Agricultural University, Zhengzhou, China
- Henan Engineering Research Center for Osmanthus Germplasm Innovation and Resource Utilization, Henan Agricultural University, Zhengzhou, China
| | - Peng Guo
- College of Life Science, Henan Agricultural University, Zhengzhou, China
- Henan Engineering Research Center for Osmanthus Germplasm Innovation and Resource Utilization, Henan Agricultural University, Zhengzhou, China
| | - Fude Shang
- College of Life Science, Henan Agricultural University, Zhengzhou, China.
- Henan Engineering Research Center for Osmanthus Germplasm Innovation and Resource Utilization, Henan Agricultural University, Zhengzhou, China.
| | - Nan Lin
- College of Life Science, Henan Agricultural University, Zhengzhou, China.
- Henan Engineering Research Center for Osmanthus Germplasm Innovation and Resource Utilization, Henan Agricultural University, Zhengzhou, China.
| |
Collapse
|
4
|
Zhang J, Zhao F, Zhang H. Evolutionary Genomics Provides Insights Into Endangerment and Conservation of a Wild Apple Tree Species, Malus sieversii. Evol Appl 2024; 17:e70048. [PMID: 39633655 PMCID: PMC11616530 DOI: 10.1111/eva.70048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 11/01/2024] [Accepted: 11/04/2024] [Indexed: 12/07/2024] Open
Abstract
Understanding the evolutionary history of a species is essential for effective conservation management. Malus sieversii, a relict broad-leaf forest tree found in arid Central Asian mountains, has a narrow and fragmented distribution and is classified as an endangered species in China. This species is considered one of the ancestors of the domesticated apple trees. In the present study, we sampled five populations of M. sieversii and its wide-ranging congener M. baccata from China. Through deep whole-genome resequencing, we analyzed the population's genetic diversity, genetic structure, demographic history, fixation of deleterious mutations, and genomic divergence. Our results revealed that M. baccata exhibits a higher level of genetic diversity than M. sieversii. The effective population size of M. sieversii decreased, whereas that of M. baccata recovered after the bottleneck effect. In M. sieversii, the genetic structure of the Yili region was distinct from that of the Tacheng region. Populations at the rear edge of the Tacheng region showed a stronger fixation of deleterious mutations than those in the Yili region. Genomic divergence indicated that the positively selected genes were associated with physiological processes within the genomic islands between the Yili and Tacheng regions. Based on these findings, we recommend the establishment of two separate conservation units for the Yili and Tacheng lineages to preserve their genetic resources. Given the limited distribution range and high fixation rate of deleterious mutations, urgent protective measures are recommended for the Tacheng lineage.
Collapse
Affiliation(s)
- Jian Zhang
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and GeographyChinese Academy of SciencesUrumqiChina
- Xinjiang Key Laboratory of Conservation and Utilization of Gene ResourcesUrumqiChina
- Specimen Museum of Xinjiang Institute of Ecology and GeographyChinese Academy of SciencesUrumqiChina
- University of Chinese Academy of SciencesBeijingChina
| | - Fang‐Yuan Zhao
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and GeographyChinese Academy of SciencesUrumqiChina
- Xinjiang Key Laboratory of Conservation and Utilization of Gene ResourcesUrumqiChina
- Specimen Museum of Xinjiang Institute of Ecology and GeographyChinese Academy of SciencesUrumqiChina
| | - Hong‐Xiang Zhang
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and GeographyChinese Academy of SciencesUrumqiChina
- Xinjiang Key Laboratory of Conservation and Utilization of Gene ResourcesUrumqiChina
- Specimen Museum of Xinjiang Institute of Ecology and GeographyChinese Academy of SciencesUrumqiChina
- University of Chinese Academy of SciencesBeijingChina
| |
Collapse
|
5
|
Yi H, Wang J, Dong S, Kang M. Genomic signatures of inbreeding and mutation load in tree ferns. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 120:1522-1535. [PMID: 39387366 DOI: 10.1111/tpj.17064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 09/11/2024] [Accepted: 09/23/2024] [Indexed: 10/15/2024]
Abstract
Ferns (Pteridophyta), as the second largest group of vascular plants, play important roles in ecosystem functioning. Homosporous ferns exhibit a remarkable range of mating systems, from extreme inbreeding to obligate outcrossing, which may have significant evolutionary and ecological implications. Despite their significance, the impact of genome-wide inbreeding on genetic diversity and mutation load within the fern lineage remain largely unexplored. In this study, we utilized whole-genome sequencing to investigate the genomic signatures of inbreeding and genetic load in three Alsophila tree fern species. Our analysis revealed extremely high inbreeding in A. spinulosa, in contrast to the predominantly outcrossing observed in A. costularis and A. latebrosa. This difference likely reflects divergent mating systems and demographic histories. Consistent with its extreme inbreeding propensity, A. spinulosa exhibits reduced genetic diversity and a pronounced decline in effective population size. Comparison of genetic load revealed an overall reduction in deleterious mutations in the highly inbred A. spinulosa, highlighting that long-term inbreeding may have contributed to the purging of strongly deleterious mutations, thereby prolonging the survival of A. spinulosa. Despite this, however, A. spinulosa carries a substantive realized genetic load that may potentially instigate future fitness decline. Our findings illuminate the complex evolutionary interplay between inbreeding and mutation load in homosporous ferns, yielding insights with important implications for the conservation and management of these species.
Collapse
Affiliation(s)
- Huiqin Yi
- Key Laboratory of National Forestry and Grassland Administration on Plant Conservation and Utilization in Southern China, Guangzhou, 510650, China
- South China National Botanical Garden, Guangzhou, 510650, China
| | - Jing Wang
- Key Laboratory of National Forestry and Grassland Administration on Plant Conservation and Utilization in Southern China, Guangzhou, 510650, China
- South China National Botanical Garden, Guangzhou, 510650, China
| | - Shiyong Dong
- Key Laboratory of National Forestry and Grassland Administration on Plant Conservation and Utilization in Southern China, Guangzhou, 510650, China
- South China National Botanical Garden, Guangzhou, 510650, China
| | - Ming Kang
- Key Laboratory of National Forestry and Grassland Administration on Plant Conservation and Utilization in Southern China, Guangzhou, 510650, China
- South China National Botanical Garden, Guangzhou, 510650, China
- State Key Laboratory of Plant Diversity and Specialty Crops, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
| |
Collapse
|
6
|
Feng J, Dan X, Cui Y, Gong Y, Peng M, Sang Y, Ingvarsson PK, Wang J. Integrating evolutionary genomics of forest trees to inform future tree breeding amid rapid climate change. PLANT COMMUNICATIONS 2024; 5:101044. [PMID: 39095989 PMCID: PMC11573912 DOI: 10.1016/j.xplc.2024.101044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 06/03/2024] [Accepted: 07/31/2024] [Indexed: 08/04/2024]
Abstract
Global climate change is leading to rapid and drastic shifts in environmental conditions, posing threats to biodiversity and nearly all life forms worldwide. Forest trees serve as foundational components of terrestrial ecosystems and play a crucial and leading role in combating and mitigating the adverse effects of extreme climate events, despite their own vulnerability to these threats. Therefore, understanding and monitoring how natural forests respond to rapid climate change is a key priority for biodiversity conservation. Recent progress in evolutionary genomics, driven primarily by cutting-edge multi-omics technologies, offers powerful new tools to address several key issues. These include precise delineation of species and evolutionary units, inference of past evolutionary histories and demographic fluctuations, identification of environmentally adaptive variants, and measurement of genetic load levels. As the urgency to deal with more extreme environmental stresses grows, understanding the genomics of evolutionary history, local adaptation, future responses to climate change, and conservation and restoration of natural forest trees will be critical for research at the nexus of global change, population genomics, and conservation biology. In this review, we explore the application of evolutionary genomics to assess the effects of global climate change using multi-omics approaches and discuss the outlook for breeding of climate-adapted trees.
Collapse
Affiliation(s)
- Jiajun Feng
- Key Laboratory for Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Xuming Dan
- Key Laboratory for Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Yangkai Cui
- Key Laboratory for Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Yi Gong
- Key Laboratory for Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Minyue Peng
- Key Laboratory for Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Yupeng Sang
- Key Laboratory for Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Pär K Ingvarsson
- Department of Plant Biology, Linnean Centre for Plant Biology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Jing Wang
- Key Laboratory for Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China.
| |
Collapse
|
7
|
Liu L, James J, Zhang YQ, Wang ZF, Arakaki M, Vadillo G, Zhou QJ, Lascoux M, Ge XJ. The 'queen of the Andes' (Puya raimondii) is genetically fragile and fragmented: a consequence of long generation time and semelparity? THE NEW PHYTOLOGIST 2024; 244:277-291. [PMID: 39135394 DOI: 10.1111/nph.20036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 07/16/2024] [Indexed: 09/17/2024]
Abstract
Understanding how life history shapes genetic diversity is a fundamental issue in evolutionary biology, with important consequences for conservation. However, we still have an incomplete picture of the impact of life history on genome-wide patterns of diversity, especially in long-lived semelparous plants. Puya raimondii is a high-altitude semelparous species from the Andes that flowers at 40-100 years of age. We sequenced the whole genome and estimated the nucleotide diversity of 200 individuals sampled from nine populations. Coalescent-based approaches were then used to infer past population dynamics. Finally, these results were compared with results obtained for the iteroparous species, Puya macrura. The nine populations of P. raimondii were highly divergent, highly inbred, and carried an exceptionally high genetic load. They are genetically depauperate, although, locally in the genome, balancing selection contributed to the maintenance of genetic polymorphism. While both P. raimondii and P. macrura went through a severe bottleneck during the Pleistocene, P. raimondii did not recover from it and continuously declined, while P. macrura managed to bounce back. Our results demonstrate the importance of life history, in particular generation time and reproductive strategy, in affecting population dynamics and genomic variation, and illustrate the genetic fragility of long-lived semelparous plants.
Collapse
Affiliation(s)
- Lu Liu
- State Key Laboratory of Plant Diversity and Specialty Crops, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
- Key Laboratory of National Forestry and Grassland Administration on Plant Conservation and Utilization in Southern China, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
- South China National Botanical Garden, Guangzhou, 510650, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Department of Ecology and Genetics, Evolutionary Biology Centre and Science for Life Laboratory, Uppsala University, Uppsala, 75236, Sweden
| | - Jennifer James
- Department of Ecology and Genetics, Evolutionary Biology Centre and Science for Life Laboratory, Uppsala University, Uppsala, 75236, Sweden
- Swedish Collegium of Advanced Study, Uppsala University, Uppsala, 75236, Sweden
| | - Yu-Qu Zhang
- College of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an, 712044, China
| | - Zheng-Feng Wang
- Key Laboratory of National Forestry and Grassland Administration on Plant Conservation and Utilization in Southern China, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
- South China National Botanical Garden, Guangzhou, 510650, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
| | - Mónica Arakaki
- Natural History Museum, Universidad Nacional Mayor de San Marcos, Lima, 15072, Peru
| | - Giovana Vadillo
- Plant Physiology Laboratory, Faculty of Biological Sciences, Universidad Nacional Mayor de San Marcos, Lima, 15081, Peru
| | - Qiu-Jie Zhou
- Department of Ecology and Genetics, Evolutionary Biology Centre and Science for Life Laboratory, Uppsala University, Uppsala, 75236, Sweden
| | - Martin Lascoux
- Department of Ecology and Genetics, Evolutionary Biology Centre and Science for Life Laboratory, Uppsala University, Uppsala, 75236, Sweden
| | - Xue-Jun Ge
- State Key Laboratory of Plant Diversity and Specialty Crops, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
- Key Laboratory of National Forestry and Grassland Administration on Plant Conservation and Utilization in Southern China, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
- South China National Botanical Garden, Guangzhou, 510650, China
| |
Collapse
|
8
|
Kou YX, Liu ML, López-Pujol J, Zhang QJ, Zhang ZY, Li ZH. Contrasting demographic history and mutational load in three threatened whitebark pines (Pinus subsect. Gerardianae): implications for conservation. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 119:2967-2981. [PMID: 39115017 DOI: 10.1111/tpj.16965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 07/12/2024] [Accepted: 07/25/2024] [Indexed: 11/15/2024]
Abstract
Demographic history and mutational load are of paramount importance for the adaptation of the endangered species. However, the effects of population evolutionary history and genetic load on the adaptive potential in endangered conifers remain unclear. Here, using population transcriptome sequencing, whole chloroplast genomes and mitochondrial DNA markers, combined with niche analysis, we determined the demographic history and mutational load for three threatened whitebark pines having different endangered statuses, Pinus bungeana, P. gerardiana and P. squamata. Demographic inference indicated that severe bottlenecks occurred in all three pines at different times, coinciding with periods of major climate and geological changes; in contrast, while P. bungeana experienced a recent population expansion, P. gerardiana and P. squamata maintained small population sizes after bottlenecking. Abundant homozygous-derived variants accumulated in the three pines, particularly in P. squamata, while the species with most heterozygous variants was P. gerardiana. Abundant moderately and few highly deleterious variants accumulated in the pine species that have experienced the most severe demographic bottlenecks (P. gerardiana and P. squamata), most likely because of purging effects. Finally, niche modeling showed that the distribution of P. bungeana might experience a significant expansion in the future, and the species' identified genetic clusters are also supported by differences in the ecological niche. The integration of genomic, demographic and niche data has allowed us to prove that the three threatened pines have contrasting patterns of demographic history and mutational load, which may have important implications in their adaptive potential and thus are also key for informing conservation planning.
Collapse
Affiliation(s)
- Yi-Xuan Kou
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, Shaanxi, 710069, China
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, Guilin, Guangxi, 541006, China
| | - Mi-Li Liu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, Shaanxi, 710069, China
| | - Jordi López-Pujol
- Botanic Institute of Barcelona (IBB), CSIC-CMCNB, Barcelona, Catalonia, 08038, Spain
- Escuela de Ciencias Ambientales, Universidad Espíritu Santo (UEES), Samborondón, 091650, Ecuador
| | - Qi-Jing Zhang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, Shaanxi, 710069, China
| | - Zhi-Yong Zhang
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, Guilin, Guangxi, 541006, China
| | - Zhong-Hu Li
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, Shaanxi, 710069, China
| |
Collapse
|
9
|
Chen Y, Dong L, Yi H, Kidner C, Kang M. Genomic divergence and mutation load in the Begonia masoniana complex from limestone karsts. PLANT DIVERSITY 2024; 46:575-584. [PMID: 39290887 PMCID: PMC11403149 DOI: 10.1016/j.pld.2024.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 04/01/2024] [Accepted: 04/03/2024] [Indexed: 09/19/2024]
Abstract
Understanding genome-wide diversity, inbreeding, and the burden of accumulated deleterious mutations in small and isolated populations is essential for predicting and enhancing population persistence and resilience. However, these effects are rarely studied in limestone karst plants. Here, we re-sequenced the nuclear genomes of 62 individuals of the Begonia masoniana complex (B. liuyanii, B. longgangensis, B. masoniana and B. variegata) and investigated genomic divergence and genetic load for these four species. Our analyses revealed four distinct clusters corresponding to each species within the complex. Notably, there was only limited admixture between B. liuyanii and B. longgangensis occurring in overlapping geographic regions. All species experienced historical bottlenecks during the Pleistocene, which were likely caused by glacial climate fluctuations. We detected an asymmetric historical gene flow between group pairs within this timeframe, highlighting a distinctive pattern of interspecific divergence attributable to karst geographic isolation. We found that isolated populations of B. masoniana have limited gene flow, the smallest recent population size, the highest inbreeding coefficients, and the greatest accumulation of recessive deleterious mutations. These findings underscore the urgency to prioritize conservation efforts for these isolated population. This study is among the first to disentangle the genetic differentiation and specific demographic history of karst Begonia plants at the whole-genome level, shedding light on the potential risks associated with the accumulation of deleterious mutations over generations of inbreeding. Moreover, our findings may facilitate conservation planning by providing critical baseline genetic data and a better understanding of the historical events that have shaped current population structure of rare and endangered karst plants.
Collapse
Affiliation(s)
- Yiqing Chen
- Key Laboratory of National Forestry and Grassland Administration on Plant Conservation and Utilization in Southern China, Guangzhou 510650, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lina Dong
- Guangxi Key Laboratory of Conservation and Restoration Ecology in Karst Terrain, Guangxi Institute of Botany, Guangxi Zhang Autonomous Region and the Chinese Academy of Sciences, Guilin 541006, China
| | - Huiqin Yi
- Key Laboratory of National Forestry and Grassland Administration on Plant Conservation and Utilization in Southern China, Guangzhou 510650, China
| | - Catherine Kidner
- Institute of Molecular Plant Sciences, University of Edinburgh, Daniel Rutherford Building Max Born Crescent, The King's Buildings, Edinburgh EH9 3BF, UK
- Royal Botanic Garden Edinburgh, 20a Inverleith Row, Edinburgh EH3 5LR, UK
| | - Ming Kang
- Key Laboratory of National Forestry and Grassland Administration on Plant Conservation and Utilization in Southern China, Guangzhou 510650, China
- State Key Laboratory of Plant Diversity and Specialty Crops, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| |
Collapse
|
10
|
Baytar AA, Yanar EG, Frary A, Doğanlar S. Association mapping and candidate gene identification for yield traits in European hazelnut ( Corylus avellana L.). PLANT DIRECT 2024; 8:e625. [PMID: 39170862 PMCID: PMC11336203 DOI: 10.1002/pld3.625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 07/10/2024] [Accepted: 07/11/2024] [Indexed: 08/23/2024]
Abstract
European hazelnut (Corylus avellana L.) is an important nut crop due to its nutritional benefits, culinary uses, and economic value. Türkiye is the leading producer of hazelnut, followed by Italy and the United States. Quantitative trait locus studies offer promising opportunities for breeders and geneticists to identify genomic regions controlling desirable traits in hazelnut. A genome-wide association analysis was conducted with 5,567 single nucleotide polymorphisms on a Turkish core set of 86 hazelnut accessions, revealing 189 quantitative trait nucleotides (QTNs) associated with 22 of 31 traits (p < 2.9E-07). These QTNs were associated with plant and leaf, phenological, reproductive, nut, and kernel traits. Based on the close physical distance of QTNs associated with the same trait, we identified 23 quantitative trait loci. Furthermore, we identified 23 loci of multiple QTs comprising chromosome locations associated with more than one trait at the same position or in close proximity. A total of 159 candidate genes were identified for 189 QTNs, with 122 of them containing significant conserved protein domains. Some candidate matches to known proteins/domains were highly significant, suggesting that they have similar functions as their matches. This comprehensive study provides valuable insights for the development of breeding strategies and the improvement of hazelnut and enhances the understanding of the genetic architecture of complex traits by proposing candidate genes and potential functions.
Collapse
Affiliation(s)
- Asena Akköse Baytar
- Department of Molecular Biology and Genetics, Faculty of ScienceIzmir Institute of TechnologyIzmirTürkiye
| | - Ertuğrul Gazi Yanar
- Department of Molecular Biology and Genetics, Faculty of ScienceIzmir Institute of TechnologyIzmirTürkiye
| | - Anne Frary
- Department of Molecular Biology and Genetics, Faculty of ScienceIzmir Institute of TechnologyIzmirTürkiye
| | - Sami Doğanlar
- Department of Molecular Biology and Genetics, Faculty of ScienceIzmir Institute of TechnologyIzmirTürkiye
- Plant Science and Technology Application and Research CenterIzmir Institute of TechnologyIzmirTürkiye
| |
Collapse
|
11
|
Wang Y, Yang Y, Han Z, Li J, Luo J, Yang H, Kuang J, Wu D, Wang S, Tso S, Ju T, Liu J, Renner SS, Kangshan M. Efficient purging of deleterious mutations contributes to the survival of a rare conifer. HORTICULTURE RESEARCH 2024; 11:uhae108. [PMID: 38883334 PMCID: PMC11179848 DOI: 10.1093/hr/uhae108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 04/01/2024] [Indexed: 06/18/2024]
Abstract
Cupressaceae is a conifer family rich in plants of horticultural importance, including Cupressus, Chamaecyparis, Juniperus, and Thuja, yet genomic surveys are lacking for this family. Cupressus gigantea, one of the many rare conifers that are threatened by climate change and anthropogenic habitat fragmentation, plays an ever-increasing role in ecotourism in Tibet. To infer how past climate change has shaped the population evolution of this species, we generated a de novo chromosome-scale genome (10.92 Gb) and compared the species' population history and genetic load with that of a widespread close relative, C. duclouxiana. Our demographic analyses, based on 83 re-sequenced individuals from multiple populations of the two species, revealed a sharp decline of population sizes during the first part of the Quaternary. However, populations of C. duclouxiana then started to recover, while C. gigantea populations continued to decrease until recently. The total genomic diversity of C. gigantea is smaller than that of C. duclouxiana, but contrary to expectations, C. gigantea has fewer highly and mildly deleterious mutations than C. duclouxiana, and simulations and statistical tests support purifying selection during prolonged inbreeding as the explanation. Our results highlight the evolutionary consequences of decreased population size on the genetic burden of a long-lived endangered conifer with large genome size and suggest that genetic purging deserves more attention in conservation management.
Collapse
Affiliation(s)
- Yi Wang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, Sichuan Zoige Alpine Wetland Ecosystem National Observation and Research Station, College of Life Sciences, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610065, China
| | - Yongzhi Yang
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou 730000, China
| | - Zhitong Han
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, Sichuan Zoige Alpine Wetland Ecosystem National Observation and Research Station, College of Life Sciences, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610065, China
| | - Jialiang Li
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, Sichuan Zoige Alpine Wetland Ecosystem National Observation and Research Station, College of Life Sciences, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610065, China
| | - Jian Luo
- Xizang Key Laboratory of Forest Ecology in Plateau Area of Ministry of Education, National Key Station of Field Scientific Observation & Experiment of Alpine Forest Ecology System in Nyingchi, Research Institute of Xizang Plateau Ecology, Xizang Agriculture & Animal Husbandry University, Nyingchi 860000, China
| | - Heng Yang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, Sichuan Zoige Alpine Wetland Ecosystem National Observation and Research Station, College of Life Sciences, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610065, China
| | - Jingge Kuang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, Sichuan Zoige Alpine Wetland Ecosystem National Observation and Research Station, College of Life Sciences, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610065, China
| | - Dayu Wu
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, Sichuan Zoige Alpine Wetland Ecosystem National Observation and Research Station, College of Life Sciences, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610065, China
| | - Shiyang Wang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, Sichuan Zoige Alpine Wetland Ecosystem National Observation and Research Station, College of Life Sciences, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610065, China
| | - Sonam Tso
- School of Ecology and Environment, Tibet University, Lhasa 850000, China
| | - Tsam Ju
- School of Ecology and Environment, Tibet University, Lhasa 850000, China
| | - Jianquan Liu
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, Sichuan Zoige Alpine Wetland Ecosystem National Observation and Research Station, College of Life Sciences, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610065, China
| | - Susanne S Renner
- Department of Biology, Washington University, Saint Louis, MO 63130, USA
| | - Mao Kangshan
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, Sichuan Zoige Alpine Wetland Ecosystem National Observation and Research Station, College of Life Sciences, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610065, China
- School of Ecology and Environment, Tibet University, Lhasa 850000, China
| |
Collapse
|
12
|
Choi SH, Kim JH, Ahn J, Kim T, Jung Y, Won D, Bang J, Pyun KR, Jeong S, Kim H, Kim YG, Ko SH. Phase patterning of liquid crystal elastomers by laser-induced dynamic crosslinking. NATURE MATERIALS 2024; 23:834-843. [PMID: 38532072 DOI: 10.1038/s41563-024-01845-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 02/21/2024] [Indexed: 03/28/2024]
Abstract
Liquid crystal elastomers hold promise in various fields due to their reversible transition of mechanical and optical properties across distinct phases. However, the lack of local phase patterning techniques and irreversible phase programming has hindered their broad implementation. Here we introduce laser-induced dynamic crosslinking, which leverages the precision and control offered by laser technology to achieve high-resolution multilevel patterning and transmittance modulation. Incorporation of allyl sulfide groups enables adaptive liquid crystal elastomers that can be reconfigured into desired phases or complex patterns. Laser-induced dynamic crosslinking is compatible with existing processing methods and allows the generation of thermo- and strain-responsive patterns that include isotropic, polydomain and monodomain phases within a single liquid crystal elastomer film. We show temporary information encryption at body temperature, expanding the functionality of liquid crystal elastomer devices in wearable applications.
Collapse
Affiliation(s)
- Seok Hwan Choi
- Department of Mechanical Engineering, Seoul National University, Seoul, Republic of Korea
| | - Ju Hee Kim
- Department of Chemical and Biological Engineering and Institute of Chemical Processes, Seoul National University, Seoul, Republic of Korea
| | - Jiyong Ahn
- Department of Mechanical Engineering, Seoul National University, Seoul, Republic of Korea
| | - Taegyeom Kim
- Department of Mechanical Engineering, Seoul National University, Seoul, Republic of Korea
| | - Yeongju Jung
- Department of Mechanical Engineering, Seoul National University, Seoul, Republic of Korea
| | - Daeyeon Won
- Department of Mechanical Engineering, Seoul National University, Seoul, Republic of Korea
| | - Junhyuk Bang
- Department of Mechanical Engineering, Seoul National University, Seoul, Republic of Korea
| | - Kyung Rok Pyun
- Department of Mechanical Engineering, Seoul National University, Seoul, Republic of Korea
| | - Seongmin Jeong
- Department of Mechanical Engineering, Seoul National University, Seoul, Republic of Korea
| | - Hyunsu Kim
- Department of Mechanical Engineering, Seoul National University, Seoul, Republic of Korea
| | - Young Gyu Kim
- Department of Chemical and Biological Engineering and Institute of Chemical Processes, Seoul National University, Seoul, Republic of Korea
| | - Seung Hwan Ko
- Department of Mechanical Engineering, Seoul National University, Seoul, Republic of Korea.
- Institute of Engineering Research / Institute of Advanced Machinery and Design (SNU-IAMD), Seoul National University, Seoul, Republic of Korea.
- Interdisciplinary Program in Bioengineering, Seoul National University, Seoul, Korea.
| |
Collapse
|
13
|
Liu X, Zhang W, Zhang Y, Yang J, Zeng P, Tian Z, Sun W, Cai J. Chromosome-scale genomes of Quercus sichourensis and Quercus rex provide insights into the evolution and adaptation of Fagaceae. J Genet Genomics 2024; 51:554-565. [PMID: 38575109 DOI: 10.1016/j.jgg.2024.03.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 03/25/2024] [Accepted: 03/28/2024] [Indexed: 04/06/2024]
Abstract
The Fagaceae, a plant family with a wide distribution and diverse adaptability, has garnered significant interest as a subject of study in plant speciation and adaptation. Meanwhile, certain Fagaceae species are regarded as highly valuable wood resources due to the exceptional quality of their wood. In this study, we present two high-quality, chromosome-scale genome sequences for Quercus sichourensis (848.75 Mb) and Quercus rex (883.46 Mb). Comparative genomics analysis reveals that the difference in the number of plant disease resistance genes and the nonsynonymous and synonymous substitution ratio (Ka/Ks) of protein-coding genes among Fagaceae species are related to different environmental adaptations. Interestingly, most genes related to starch synthesis in the investigated Quercoideae species are located on a single chromosome, as compared to the outgroup species, Fagus sylvatica. Furthermore, resequencing and population analysis of Q. sichourensis and Q. rex reveal that Q. sichourensis has lower genetic diversity and higher deleterious mutations compared to Q. rex. The high-quality, chromosome-level genomes and the population genomic analysis of the critically endangered Q. sichourensis and Q. rex will provide an invaluable resource as well as insights for future study in these two species, even the genus Quercus, to facilitate their conservation.
Collapse
Affiliation(s)
- Xue Liu
- Shaanxi Key Laboratory of Qinling Ecological Intelligent Monitoring and Protection, School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China
| | - Weixiong Zhang
- Shaanxi Key Laboratory of Qinling Ecological Intelligent Monitoring and Protection, School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China
| | - Yongting Zhang
- Shaanxi Key Laboratory of Qinling Ecological Intelligent Monitoring and Protection, School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China
| | - Jing Yang
- Yunnan Key Laboratory for Integrative Conservation of Plant Species with Extremely Small Populations, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - Peng Zeng
- Shaanxi Key Laboratory of Qinling Ecological Intelligent Monitoring and Protection, School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China
| | - Zunzhe Tian
- Shaanxi Key Laboratory of Qinling Ecological Intelligent Monitoring and Protection, School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China
| | - Weibang Sun
- Yunnan Key Laboratory for Integrative Conservation of Plant Species with Extremely Small Populations, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China.
| | - Jing Cai
- Shaanxi Key Laboratory of Qinling Ecological Intelligent Monitoring and Protection, School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China.
| |
Collapse
|
14
|
Yang Z, Liang L, Xiang W, Wang L, Ma Q, Wang Z. Conservation genomics provides insights into genetic resilience and adaptation of the endangered Chinese hazelnut, Corylus chinensis. PLANT DIVERSITY 2024; 46:294-308. [PMID: 38798732 PMCID: PMC11119545 DOI: 10.1016/j.pld.2024.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 03/23/2024] [Accepted: 03/25/2024] [Indexed: 05/29/2024]
Abstract
Global climate change has increased concerns regarding biodiversity loss. However, many key conservation issues still required further research, including demographic history, deleterious mutation load, adaptive evolution, and putative introgression. Here we generated the first chromosome-level genome of the endangered Chinese hazelnut, Corylus chinensis, and compared the genomic signatures with its sympatric widespread C. kwechowensis-C. yunnanensis complex. We found large genome rearrangements across all Corylus species and identified species-specific expanded gene families that may be involved in adaptation. Population genomics revealed that both C. chinensis and the C. kwechowensis-C. yunnanensis complex had diverged into two genetic lineages, forming a consistent pattern of southwestern-northern differentiation. Population size of the narrow southwestern lineages of both species have decreased continuously since the late Miocene, whereas the widespread northern lineages have remained stable (C. chinensis) or have even recovered from population bottlenecks (C. kwechowensis-C. yunnanensis complex) during the Quaternary. Compared with C. kwechowensis-C. yunnanensis complex, C. chinensis showed significantly lower genomic diversity and higher inbreeding level. However, C. chinensis carried significantly fewer deleterious mutations than C. kwechowensis-C. yunnanensis complex, as more effective purging selection reduced the accumulation of homozygous variants. We also detected signals of positive selection and adaptive introgression in different lineages, which facilitated the accumulation of favorable variants and formation of local adaptation. Hence, both types of selection and exogenous introgression could have mitigated inbreeding and facilitated survival and persistence of C. chinensis. Overall, our study provides critical insights into lineage differentiation, local adaptation, and the potential for future recovery of endangered trees.
Collapse
Affiliation(s)
- Zhen Yang
- Key Laboratory of Tree Breeding and Cultivation, National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China
| | - Lisong Liang
- Key Laboratory of Tree Breeding and Cultivation, National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China
| | - Weibo Xiang
- National Engineering Research Center of Eco-Environment Protection for Yangtze River Economic Belt, China Three Gorges Corporation, Beijing 100083, China
- Rare Plants Research Institute of Yangtze River, China Three Gorges Corporation, Yichang 443133, China
| | - Lujun Wang
- Research Institute of Economic Forest Cultivation and Processing, Anhui Academy of Forestry, Hefei 230031, China
| | - Qinghua Ma
- Key Laboratory of Tree Breeding and Cultivation, National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China
| | - Zhaoshan Wang
- Key Laboratory of Tree Breeding and Cultivation, National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China
| |
Collapse
|
15
|
Zhang L, Zhang HL, Chen Y, Nizamani MM, Wu T, Liu T, Zhou Q. Assessing genetic diversity in critically endangered Chieniodendron hainanense populations within fragmented habitats in Hainan. Sci Rep 2024; 14:6988. [PMID: 38523175 PMCID: PMC10961303 DOI: 10.1038/s41598-024-56630-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 03/08/2024] [Indexed: 03/26/2024] Open
Abstract
Habitat fragmentation has led to a reduction in the geographic distribution of species, making small populations vulnerable to extinction due to environmental, demographic, and genetic factors. The wild plant Chieniodendron hainanense, a species with extremely small populations, is currently facing endangerment and thus requires urgent conservation efforts. Understanding its genetic diversity is essential for uncovering the underlying mechanisms of its vulnerability and for developing effective conservation strategies. In our study, we analyzed 35 specimens from six different populations of C. hainanense using genotyping-by-sequencing (GBS) and single nucleotide polymorphism (SNP) methodologies. Our findings indicate that C. hainanense has limited genetic diversity. The observed heterozygosity across the populations ranged from 10.79 to 14.55%, with an average of 13.15%. We categorized the six populations of C. hainanense into two distinct groups: (1) Diaoluoshan and Baishaling, and (2) Wuzhishan, Huishan, Bawangling, and Jianfengling. The genetic differentiation among these populations was found to be relatively weak. The observed loss of diversity is likely a result of the effects of natural selection.
Collapse
Affiliation(s)
- Li Zhang
- Guizhou Normal University Museum, Guizhou Normal University, Guiyang, 550001, China
| | - Hai-Li Zhang
- Sanya Nanfan Research Institute, Hainan Yazhou Bay Seed Laboratory, Sanya, 572025, China
| | - Yukai Chen
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, College of Life Sciences, Hainan Normal University, Haikou, 571158, China.
| | - Mir Muhammad Nizamani
- Department of Plant Pathology, Agricultural College, Guizhou University, Guiyang, 550001, China.
| | - Tingtian Wu
- Hainan Academy of Forestry, Hainan Academy of Mangrove, Haikou, 570228, China
| | - Tingting Liu
- Guizhou Normal University Museum, Guizhou Normal University, Guiyang, 550001, China
| | - Qin Zhou
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, College of Life Sciences, Hainan Normal University, Haikou, 571158, China
| |
Collapse
|
16
|
Liu Y, Cai L, Sun W. Transcriptome data analysis provides insights into the conservation of Michelia lacei, a plant species with extremely small populations distributed in Yunnan province, China. BMC PLANT BIOLOGY 2024; 24:200. [PMID: 38500068 PMCID: PMC10949798 DOI: 10.1186/s12870-024-04892-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 03/08/2024] [Indexed: 03/20/2024]
Abstract
BACKGROUND Michelia lacei W.W.Smith (Magnoliaceae), was classified as a Plant Species with Extremely Small Populations (PSESP) by the Yunnan Provincial Government in both action plans of 2012 and 2021. This evergreen tree is known for its high ornamental and scientific value, but it faces significant threats due to its extremely small population size and narrow geographical distribution. The study aims to understand the genetic structure, diversity, and demographic history of this species to inform its conservation strategies. RESULTS The analysis of transcriptome data from 64 individuals across seven populations of M. lacei identified three distinct genetic clusters and generated 104,616 single-nucleotide polymorphisms (SNPs). The KM ex-situ population, originating from Longling County, exhibited unique genetic features, suggesting limited gene flow. The genetic diversity was substantial, with significant differences between populations, particularly between the KM lineage and the OTHER lineage. Demographic history inferred from the data indicated population experienced three significant population declines during glaciations, followed by periods of recovery. We estimated the effective population size (Ne) of the KM and OTHER lineages 1,000 years ago were 85,851 and 416,622, respectively. Gene flow analysis suggested past gene flow between populations, but the KM ex-situ population showed no recent gene flow. A total of 805 outlier SNPs, associated with four environmental factors, suggest potential local adaptation and showcase the species' adaptive potential. Particularly, the BZ displayed 515 adaptive loci, highlighting its strong potential for adaptation within this group. CONCLUSIONS The comprehensive genomic analysis of M. lacei provides valuable insights into its genetic background and highlights the urgent need for conservation efforts. The study underscores the importance of ex-situ conservation methods, such as seed collection and vegetative propagation, to safeguard genetic diversity and promote population restoration. The preservation of populations like MC and BZ is crucial for maintaining the species' genetic diversity. In-situ conservation measures, including the establishment of in-situ conservation sites and community engagement, are essential to enhance protection awareness and ensure the long-term survival of this threatened plant species.
Collapse
Affiliation(s)
- Yang Liu
- Yunnan Key Laboratory for Integrative Conservation of Plant Species With Extremely Small Populations/ Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, 650201, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Lei Cai
- Yunnan Key Laboratory for Integrative Conservation of Plant Species With Extremely Small Populations/ Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, 650201, China
| | - Weibang Sun
- Yunnan Key Laboratory for Integrative Conservation of Plant Species With Extremely Small Populations/ Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, 650201, China.
| |
Collapse
|
17
|
Wang R, Liu CN, Segar ST, Jiang YT, Zhang KJ, Jiang K, Wang G, Cai J, Chen LF, Chen S, Cheng J, Compton SG, Deng JY, Ding YY, Du FK, Hu XD, Hu XH, Kang L, Li DH, Lu L, Li YY, Tang L, Tong X, Wang ZS, Xu WW, Yang Y, Zang RG, Zu ZX, Zhang YY, Chen XY. Dipterocarpoidae genomics reveal their demography and adaptations to Asian rainforests. Nat Commun 2024; 15:1683. [PMID: 38395938 PMCID: PMC10891123 DOI: 10.1038/s41467-024-45836-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 02/01/2024] [Indexed: 02/25/2024] Open
Abstract
Dipterocarpoideae species form the emergent layer of Asian rainforests. They are the indicator species for Asian rainforest distribution, but they are severely threatened. Here, to understand their adaptation and population decline, we assemble high-quality genomes of seven Dipterocarpoideae species including two autotetraploid species. We estimate the divergence time between Dipterocarpoideae and Malvaceae and within Dipterocarpoideae to be 108.2 (97.8‒118.2) and 88.4 (77.7‒102.9) million years ago, and we identify a whole genome duplication event preceding dipterocarp lineage diversification. We find several genes that showed a signature of selection, likely associated with the adaptation to Asian rainforests. By resequencing of two endangered species, we detect an expansion of effective population size after the last glacial period and a recent sharp decline coinciding with the history of local human activities. Our findings contribute to understanding the diversification and adaptation of dipterocarps and highlight anthropogenic disturbances as a major factor in their endangered status.
Collapse
Affiliation(s)
- Rong Wang
- Zhejiang Tiantong Forest Ecosystem National Observation and Research Station, Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, China.
| | - Chao-Nan Liu
- Zhejiang Tiantong Forest Ecosystem National Observation and Research Station, Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, China
| | - Simon T Segar
- Agriculture & Environment Department, Harper Adams University, Newport, United Kingdom
| | - Yu-Ting Jiang
- Zhejiang Tiantong Forest Ecosystem National Observation and Research Station, Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, China
| | | | - Kai Jiang
- Zhejiang Tiantong Forest Ecosystem National Observation and Research Station, Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, China
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Botanical Garden, Shanghai, China
| | - Gang Wang
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan, China
| | - Jing Cai
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Lu-Fan Chen
- Zhejiang Tiantong Forest Ecosystem National Observation and Research Station, Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, China
| | - Shan Chen
- Zhejiang Tiantong Forest Ecosystem National Observation and Research Station, Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, China
| | - Jing Cheng
- Zhejiang Tiantong Forest Ecosystem National Observation and Research Station, Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, China
| | | | - Jun-Yin Deng
- Zhejiang Tiantong Forest Ecosystem National Observation and Research Station, Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, China
| | - Yuan-Yuan Ding
- Zhejiang Tiantong Forest Ecosystem National Observation and Research Station, Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, China
| | - Fang K Du
- School of Ecology and Nature Conservation, Beijing Forestry University, Beijing, China
| | - Xiao-Di Hu
- Novogene Bioinformatics Institute, Beijing, China
| | - Xing-Hua Hu
- Guangxi Institute of Botany, Guangxi Zhuang Autonomous Region and the Chinese Academy of Sciences, Guilin, China
| | - Ling Kang
- Novogene Bioinformatics Institute, Beijing, China
| | - Dong-Hai Li
- College of Ecology and Environment, Hainan University, Haikou, China
| | - Ling Lu
- Zhejiang Tiantong Forest Ecosystem National Observation and Research Station, Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, China
| | - Yuan-Yuan Li
- Zhejiang Tiantong Forest Ecosystem National Observation and Research Station, Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, China
| | - Liang Tang
- Key Laboratory of Genetics and Germplasm Innovation of Tropical Special Forest Trees and Ornamental Plants, Hainan University, Haikou, China
| | - Xin Tong
- Zhejiang Tiantong Forest Ecosystem National Observation and Research Station, Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, China
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Botanical Garden, Shanghai, China
| | - Zheng-Shi Wang
- Zhejiang Tiantong Forest Ecosystem National Observation and Research Station, Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, China
| | - Wei-Wei Xu
- Novogene Bioinformatics Institute, Beijing, China
| | - Yang Yang
- Zhejiang Tiantong Forest Ecosystem National Observation and Research Station, Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, China
| | - Run-Guo Zang
- Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing, China
| | - Zhuo-Xin Zu
- Novogene Bioinformatics Institute, Beijing, China
| | - Yuan-Ye Zhang
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian, China.
| | - Xiao-Yong Chen
- Zhejiang Tiantong Forest Ecosystem National Observation and Research Station, Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, China.
- Shanghai Engineering Research Center of Sustainable Plant Innovation, Shanghai, China.
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai, China.
- Institute of Eco-Chongming, Shanghai, China.
| |
Collapse
|
18
|
Shen Y, Tao L, Zhang R, Yao G, Zhou M, Sun W, Ma Y. Genomic insights into endangerment and conservation of the garlic-fruit tree (Malania oleifera), a plant species with extremely small populations. Gigascience 2024; 13:giae070. [PMID: 39311762 PMCID: PMC11417964 DOI: 10.1093/gigascience/giae070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 07/17/2024] [Accepted: 08/22/2024] [Indexed: 09/26/2024] Open
Abstract
BACKGROUND Advanced whole-genome sequencing techniques enable covering nearly all genome nucleotide variations and thus can provide deep insights into protecting endangered species. However, the use of genomic data to make conservation strategies is still rare, particularly for endangered plants. Here we performed comprehensive conservation genomic analysis for Malania oleifera, an endangered tree species with a high amount of nervonic acid. We used whole-genome resequencing data of 165 samples, covering 16 populations across the entire distribution range, to investigate the formation reasons of its extremely small population sizes and to evaluate the possible genomic offsets and changes of ecology niche suitability under future climate change. RESULTS Although M. oleifera maintains relatively high genetic diversity among endangered woody plants (θπ = 3.87 × 10-3), high levels of inbreeding have been observed, which have reduced genetic diversity in 3 populations (JM, NP, and BM2) and caused the accumulation of deleterious mutations. Repeated bottleneck events, recent inbreeding (∼490 years ago), and anthropogenic disturbance to wild habitats have aggravated the fragmentation of M. oleifera and made it endangered. Due to the significant effect of higher average annual temperature, populations distributed in low altitude exhibit a greater genomic offset. Furthermore, ecological niche modeling shows the suitable habitats for M. oleifera will decrease by 71.15% and 98.79% in 2100 under scenarios SSP126 and SSP585, respectively. CONCLUSIONS The basic realizations concerning the threats to M. oleifera provide scientific foundation for defining management and adaptive units, as well as prioritizing populations for genetic rescue. Meanwhile, we highlight the importance of integrating genomic offset and ecological niche modeling to make targeted conservation actions under future climate change. Overall, our study provides a paradigm for genomics-directed conservation.
Collapse
Affiliation(s)
- Yuanting Shen
- Yunnan Key Laboratory for Integrative Conservation of Plant Species with Extremely Small Populations, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Lidan Tao
- Yunnan Key Laboratory for Integrative Conservation of Plant Species with Extremely Small Populations, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Rengang Zhang
- Yunnan Key Laboratory for Integrative Conservation of Plant Species with Extremely Small Populations, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Gang Yao
- Yunnan Key Laboratory for Integrative Conservation of Plant Species with Extremely Small Populations, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Minjie Zhou
- Yunnan Key Laboratory for Integrative Conservation of Plant Species with Extremely Small Populations, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Weibang Sun
- Yunnan Key Laboratory for Integrative Conservation of Plant Species with Extremely Small Populations, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Yongpeng Ma
- Yunnan Key Laboratory for Integrative Conservation of Plant Species with Extremely Small Populations, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| |
Collapse
|
19
|
Cai L, Liu D, Yang F, Zhang R, Yun Q, Dao Z, Ma Y, Sun W. The chromosome-scale genome of Magnolia sinica (Magnoliaceae) provides insights into the conservation of plant species with extremely small populations (PSESP). Gigascience 2024; 13:giad110. [PMID: 38206588 PMCID: PMC10999834 DOI: 10.1093/gigascience/giad110] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 07/28/2023] [Accepted: 12/04/2023] [Indexed: 01/12/2024] Open
Abstract
Magnolia sinica (Magnoliaceae) is a highly threatened tree endemic to southeast Yunnan, China. In this study, we generated for the first time a high-quality chromosome-scale genome sequence from M. sinica, by combining Illumina and ONT data with Hi-C scaffolding methods. The final assembled genome size of M. sinica was 1.84 Gb, with a contig N50 of ca. 45 Mb and scaffold N50 of 92 Mb. Identified repeats constituted approximately 57% of the genome, and 43,473 protein-coding genes were predicted. Phylogenetic analysis shows that the magnolias form a sister clade with the eudicots and the order Ceratophyllales, while the monocots are sister to the other core angiosperms. In our study, a total of 21 individuals from the 5 remnant populations of M. sinica, as well as 22 specimens belonging to 8 related Magnoliaceae species, were resequenced. The results showed that M. sinica had higher genetic diversity (θw = 0.01126 and θπ = 0.01158) than other related species in the Magnoliaceae. However, population structure analysis suggested that the genetic differentiation among the 5 M. sinica populations was very low. Analyses of the demographic history of the species using different models consistently revealed that 2 bottleneck events occurred. The contemporary effective population size of M. sinica was estimated to be 10.9. The different patterns of genetic loads (inbreeding and numbers of deleterious mutations) suggested constructive strategies for the conservation of these 5 different populations of M. sinica. Overall, this high-quality genome will be a valuable genomic resource for conservation of M. sinica.
Collapse
Affiliation(s)
- Lei Cai
- Yunnan Key Laboratory for Integrative Conservation of Plant Species with Extremely Small Populations/Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China
| | - Detuan Liu
- Yunnan Key Laboratory for Integrative Conservation of Plant Species with Extremely Small Populations/Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China
- University of Chinese Academy of Sciences, 100049 Beijing, China
| | - Fengmao Yang
- Yunnan Key Laboratory for Integrative Conservation of Plant Species with Extremely Small Populations/Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China
- University of Chinese Academy of Sciences, 100049 Beijing, China
| | - Rengang Zhang
- Yunnan Key Laboratory for Integrative Conservation of Plant Species with Extremely Small Populations/Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China
- University of Chinese Academy of Sciences, 100049 Beijing, China
| | - Quanzheng Yun
- Department of Bioinformatics, Ori (Shandong) Gene Science and Technology Co., Ltd., Weifang, 261000, Shandong, China
| | - Zhiling Dao
- Yunnan Key Laboratory for Integrative Conservation of Plant Species with Extremely Small Populations/Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China
| | - Yongpeng Ma
- Yunnan Key Laboratory for Integrative Conservation of Plant Species with Extremely Small Populations/Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China
| | - Weibang Sun
- Yunnan Key Laboratory for Integrative Conservation of Plant Species with Extremely Small Populations/Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China
| |
Collapse
|
20
|
Feng Y, Comes HP, Chen J, Zhu S, Lu R, Zhang X, Li P, Qiu J, Olsen KM, Qiu Y. Genome sequences and population genomics provide insights into the demographic history, inbreeding, and mutation load of two 'living fossil' tree species of Dipteronia. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 117:177-192. [PMID: 37797086 DOI: 10.1111/tpj.16486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 08/29/2023] [Accepted: 09/20/2023] [Indexed: 10/07/2023]
Abstract
'Living fossils', that is, ancient lineages of low taxonomic diversity, represent an exceptional evolutionary heritage, yet we know little about how demographic history and deleterious mutation load have affected their long-term survival and extinction risk. We performed whole-genome sequencing and population genomic analyses on Dipteronia sinensis and D. dyeriana, two East Asian Tertiary relict trees. We found large-scale genome reorganizations and identified species-specific genes under positive selection that are likely involved in adaptation. Our demographic analyses suggest that the wider-ranged D. sinensis repeatedly recovered from population bottlenecks over late Tertiary/Quaternary periods of adverse climate conditions, while the population size of the narrow-ranged D. dyeriana steadily decreased since the late Miocene, especially after the Last Glacial Maximum (LGM). We conclude that the efficient purging of deleterious mutations in D. sinensis facilitated its survival and repeated demographic recovery. By contrast, in D. dyeriana, increased genetic drift and reduced selection efficacy, due to recent severe population bottlenecks and a likely preponderance of vegetative propagation, resulted in fixation of strongly deleterious mutations, reduced fitness, and continuous population decline, with likely detrimental consequences for the species' future viability and adaptive potential. Overall, our findings highlight the significant impact of demographic history on levels of accumulation and purging of putatively deleterious mutations that likely determine the long-term survival and extinction risk of Tertiary relict trees.
Collapse
Affiliation(s)
- Yu Feng
- Systematic & Evolutionary Botany and Biodiversity group, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China
- Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, Hubei, 430074, China
| | - Hans Peter Comes
- Department of Environment & Biodiversity, Salzburg University, Salzburg, Austria
| | - Jun Chen
- Systematic & Evolutionary Botany and Biodiversity group, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Shanshan Zhu
- Systematic & Evolutionary Botany and Biodiversity group, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo, Zhejiang, 315211, China
| | - Ruisen Lu
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, 210014, China
| | - Xinyi Zhang
- Systematic & Evolutionary Botany and Biodiversity group, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
- Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, Hubei, 430074, China
| | - Pan Li
- Systematic & Evolutionary Botany and Biodiversity group, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jie Qiu
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Kenneth M Olsen
- Department of Biology, Washington University in St Louis, St Louis, Missouri, 63130, USA
| | - Yingxiong Qiu
- Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, Hubei, 430074, China
| |
Collapse
|
21
|
Hong K, Radian Y, Manda T, Xu H, Luo Y. The Development of Plant Genome Sequencing Technology and Its Conservation and Application in Endangered Gymnosperms. PLANTS (BASEL, SWITZERLAND) 2023; 12:4006. [PMID: 38068641 PMCID: PMC10708082 DOI: 10.3390/plants12234006] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 11/21/2023] [Accepted: 11/24/2023] [Indexed: 10/16/2024]
Abstract
Genome sequencing is widely recognized as a fundamental pillar in genetic research and legal studies of biological phenomena, providing essential insights for genetic investigations and legal analyses of biological events. The field of genome sequencing has experienced significant progress due to rapid improvements in scientific and technological developments. These advancements encompass not only significant improvements in the speed and quality of sequencing but also provide an unparalleled opportunity to explore the subtle complexities of genomes, particularly in the context of rare species. Such a wide range of possibilities has successfully supported the validation of plant gene functions and the refinement of precision breeding methodologies. This expanded scope now includes a comprehensive exploration of the current state and conservation efforts of gymnosperm gene sequencing, offering invaluable insights into their genomic landscapes. This comprehensive review elucidates the trajectory of development and the diverse applications of genome sequencing. It encompasses various domains, including crop breeding, responses to abiotic stress, species evolutionary dynamics, biodiversity, and the unique challenges faced in the conservation and utilization of gymnosperms. It highlights both ongoing challenges and the unveiling of forthcoming developmental trajectories.
Collapse
Affiliation(s)
- Kaiyue Hong
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture and Environmental Protection, Jiangsu Key Laboratory for Eco-Agricultural Biotechnology around Hongze Lake, Huaiyin Normal University, Huai’an 223300, China;
- School of Life Sciences, Nanjing Forestry University, Nanjing 210037, China; (Y.R.); (T.M.)
| | - Yasmina Radian
- School of Life Sciences, Nanjing Forestry University, Nanjing 210037, China; (Y.R.); (T.M.)
| | - Teja Manda
- School of Life Sciences, Nanjing Forestry University, Nanjing 210037, China; (Y.R.); (T.M.)
| | - Haibin Xu
- School of Life Sciences, Nanjing Forestry University, Nanjing 210037, China; (Y.R.); (T.M.)
| | - Yuming Luo
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture and Environmental Protection, Jiangsu Key Laboratory for Eco-Agricultural Biotechnology around Hongze Lake, Huaiyin Normal University, Huai’an 223300, China;
| |
Collapse
|
22
|
Zhao YJ, Yin GS, Gong X. RAD-sequencing improves the genetic characterization of a threatened tree peony ( Paeonia ludlowii) endemic to China: Implications for conservation. PLANT DIVERSITY 2023; 45:513-522. [PMID: 37936813 PMCID: PMC10625974 DOI: 10.1016/j.pld.2022.07.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 06/06/2022] [Accepted: 07/12/2022] [Indexed: 11/09/2023]
Abstract
Compared with traditional genetic markers, genomic approaches have proved valuable to the conservation of endangered species. Paeonia ludlowii having rarely and pure yellow flowers, is one of the world's most famous tree peonies. However, only several wild populations remain in the Yarlung Zangbo Valley (Nyingchi and Shannan regions, Xizang) in China due to increasing anthropogenic impact on the natural habitats. We used genome-wide single nucleotide polymorphisms to elucidate the spatial pattern of genetic variation, population structure and demographic history of P. ludlowii from the fragmented region comprising the entire range of this species, aiming to provide a basis for conserving the genetic resources of this species. Unlike genetic uniformity among populations revealed in previous studies, we found low but varied levels of intra-population genetic diversity, in which lower genetic diversity was detected in the population in Shannan region compared to those in Nyingzhi region. These spatial patterns may be likely associated with different population sizes caused by micro-environment differences in these two regions. Additionally, low genetic differentiation among populations (Fst = 0.0037) were detected at the species level. This line of evidence, combined with the result of significant genetic differentiation between the two closest populations and lack of isolation by distance, suggested that shared ancestry among now remnant populations rather than contemporary genetic connectivity resulted in subtle population structure. Demographic inference suggested that P. ludlowii probably experienced a temporal history of sharp population decline during the period of Last Glacial Maximum, and a subsequent bottleneck event resulting from prehistoric human activities on the Qinghai-Tibet Plateau. All these events, together with current habitat fragment and excavation might contribute to the endangered status of P. ludlowii. Our study improved the genetic characterization of the endangered tree peony (P. ludlowii) in China, and these genetic inferences should be considered when making different in situ and ex situ conservation actions for P. ludlowii in this evolutionary hotspot region.
Collapse
Affiliation(s)
- Yu-Juan Zhao
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, China
- Key Laboratory of Economic Plants and Biotechnology, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, China
- Yunnan Key Laboratory for Wild Plant Resources, Kunming 650201, Yunnan, China
| | - Gen-Shen Yin
- Kunming University, Institute of Agriculture and Life Sciences, Kunming 650214, Yunnan, China
| | - Xun Gong
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, China
- Key Laboratory of Economic Plants and Biotechnology, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, China
- Yunnan Key Laboratory for Wild Plant Resources, Kunming 650201, Yunnan, China
| |
Collapse
|
23
|
Vasilopoulou M, Mohd Yusoff ARB, Nazeeruddin MK. Background and Basic Knowledge of Perovskite Solar Cells. PRINTABLE MESOSCOPIC PEROVSKITE SOLAR CELLS 2023:1-18. [DOI: 10.1002/9783527834297.ch1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
24
|
Wang Z, Zhang X, Lei W, Zhu H, Wu S, Liu B, Ru D. Chromosome-level genome assembly and population genomics of Robinia pseudoacacia reveal the genetic basis for its wide cultivation. Commun Biol 2023; 6:797. [PMID: 37524773 PMCID: PMC10390555 DOI: 10.1038/s42003-023-05158-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 07/19/2023] [Indexed: 08/02/2023] Open
Abstract
Urban greening provides important ecosystem services and ideal places for urban recreation and is a serious consideration for municipal decision-makers. Among the tree species cultivated in urban green spaces, Robinia pseudoacacia stands out due to its attractive flowers, fragrances, high trunks, wide adaptability, and essential ecosystem services. However, the genomic basis and consequences of its wide-planting in urban green spaces remains unknown. Here, we report the chromosome-level genome assembly of R. pseudoacacia, revealing a genome size of 682.4 Mb and 33,187 protein-coding genes. More than 99.3% of the assembly is anchored to 11 chromosomes with an N50 of 59.9 Mb. Comparative genomic analyses among 17 species reveal that gene families related to traits favoured by urbanites, such as wood formation, biosynthesis, and drought tolerance, are notably expanded in R. pseudoacacia. Our population genomic analyses further recover 11 genes that are under recent selection. Ultimately, these genes play important roles in the biological processes related to flower development, water retention, and immunization. Altogether, our results reveal the evolutionary forces that shape R. pseudoacacia cultivated for urban greening. These findings also present a valuable foundation for the future development of agronomic traits and molecular breeding strategies for R. pseudoacacia.
Collapse
Affiliation(s)
- Zefu Wang
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystem, College of Ecology, Lanzhou University, Lanzhou, 730000, China
- Tianjin Key Laboratory of Conservation and Utilization of Animal Diversity, College of Life Sciences, Tianjin Normal University, Tianjin, 300387, China
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing, 210037, China
| | - Xiao Zhang
- Tianjin Key Laboratory of Conservation and Utilization of Animal Diversity, College of Life Sciences, Tianjin Normal University, Tianjin, 300387, China.
| | - Weixiao Lei
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystem, College of Ecology, Lanzhou University, Lanzhou, 730000, China
| | - Hui Zhu
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystem, College of Ecology, Lanzhou University, Lanzhou, 730000, China
| | - Shengdan Wu
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystem, College of Ecology, Lanzhou University, Lanzhou, 730000, China.
| | - Bingbing Liu
- Institute of Loess Plateau, Shanxi University, Taiyuan, 030006, China.
| | - Dafu Ru
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystem, College of Ecology, Lanzhou University, Lanzhou, 730000, China.
| |
Collapse
|
25
|
Wang N, Cao S, Liu Z, Xiao H, Hu J, Xu X, Chen P, Ma Z, Ye J, Chai L, Guo W, Larkin RM, Xu Q, Morrell PL, Zhou Y, Deng X. Genomic conservation of crop wild relatives: A case study of citrus. PLoS Genet 2023; 19:e1010811. [PMID: 37339133 DOI: 10.1371/journal.pgen.1010811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 06/01/2023] [Indexed: 06/22/2023] Open
Abstract
Conservation of crop wild relatives is critical for plant breeding and food security. The lack of clarity on the genetic factors that lead to endangered status or extinction create difficulties when attempting to develop concrete recommendations for conserving a citrus wild relative: the wild relatives of crops. Here, we evaluate the conservation of wild kumquat (Fortunella hindsii) using genomic, geographical, environmental, and phenotypic data, and forward simulations. Genome resequencing data from 73 accessions from the Fortunella genus were combined to investigate population structure, demography, inbreeding, introgression, and genetic load. Population structure was correlated with reproductive type (i.e., sexual and apomictic) and with a significant differentiation within the sexually reproducing population. The effective population size for one of the sexually reproducing subpopulations has recently declined to ~1,000, resulting in high levels of inbreeding. In particular, we found that 58% of the ecological niche overlapped between wild and cultivated populations and that there was extensive introgression into wild samples from cultivated populations. Interestingly, the introgression pattern and accumulation of genetic load may be influenced by the type of reproduction. In wild apomictic samples, the introgressed regions were primarily heterozygous, and genome-wide deleterious variants were hidden in the heterozygous state. In contrast, wild sexually reproducing samples carried a higher recessive deleterious burden. Furthermore, we also found that sexually reproducing samples were self-incompatible, which prevented the reduction of genetic diversity by selfing. Our population genomic analyses provide specific recommendations for distinct reproductive types and monitoring during conservation. This study highlights the genomic landscape of a wild relative of citrus and provides recommendations for the conservation of crop wild relatives.
Collapse
Affiliation(s)
- Nan Wang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, China
- State Key Laboratory of Tropical Crop Breeding, Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Shuo Cao
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, China
- State Key Laboratory of Tropical Crop Breeding, Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Zhongjie Liu
- State Key Laboratory of Tropical Crop Breeding, Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Hua Xiao
- State Key Laboratory of Tropical Crop Breeding, Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Jianbing Hu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, China
| | - Xiaodong Xu
- State Key Laboratory of Tropical Crop Breeding, Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
- Hubei Hongshan Laboratory, Wuhan, China
| | - Peng Chen
- Institute of Horticultural Research, Hunan Academy of Agricultural Sciences, Changsha, China
| | - Zhiyao Ma
- State Key Laboratory of Tropical Crop Breeding, Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Junli Ye
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, China
| | - Lijun Chai
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, China
| | - Wenwu Guo
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
| | - Robert M Larkin
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
| | - Qiang Xu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
| | - Peter L Morrell
- Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul, Minnesota, United States of America
| | - Yongfeng Zhou
- State Key Laboratory of Tropical Crop Breeding, Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
- State Key Laboratory of Tropical Crop Breeding, Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Xiuxin Deng
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
| |
Collapse
|
26
|
Zhu X, Zou R, Tang J, Deng L, Wei X. Genetic diversity variation during the natural regeneration of Vatica guangxiensis, an endangered tree species with extremely small populations. Glob Ecol Conserv 2023. [DOI: 10.1016/j.gecco.2023.e02400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023] Open
|
27
|
Xu Y, Zang R. Conservation of rare and endangered plant species in China. iScience 2023; 26:106008. [PMID: 36798437 PMCID: PMC9926111 DOI: 10.1016/j.isci.2023.106008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Rare and endangered plant species (REPs) are facing high danger of extinction, yet a comprehensive and up-to-date review on their conservation in China is still lacking. This paper systematically collected studies and achievements on REPs conservation, including species surveys and monitoring, cause of endangerment, in situ conservation, ex situ conservation, reintroduction, propagation, conservation legislation, public participation, progress in conservation of wild plant with extremely small populations, and progress in China's implementation of the Convention on Biological Diversity. Although enormous advances have been made in conservation policies and legislations, protection systems, and research, as well as public education and international collaborations, the conservation efficiency is still restricted largely by the conflict between economic growth and biodiversity conservation in China. In order to meet its commitments to the new Post-2020 Global Biodiversity Framework, more work on basic investigation and long-term observation, as well as advanced technologies and application-oriented research on REPs should be carried out.
Collapse
Affiliation(s)
- Yue Xu
- Key Laboratory of Biodiversity Conservation of National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing 100091, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| | - Runguo Zang
- Key Laboratory of Biodiversity Conservation of National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing 100091, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|
28
|
History cooling events contributed to the endangered status of Pseudotsuga brevifolia endemic to limestone habitats. Glob Ecol Conserv 2023. [DOI: 10.1016/j.gecco.2023.e02414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023] Open
|
29
|
Zhang T, Meng J, Yang F, Li X, Yin X, Zhang J, He S. Genome-wide assessment of population genetic and demographic history in Magnolia odoratissima based on SLAF-seq. CONSERV GENET 2022. [DOI: 10.1007/s10592-022-01500-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
30
|
Zhang J, Zhang S, Zheng Z, Lu Z, Yang Y. Genomic divergence between two sister Ostrya species through linked selection and recombination. Ecol Evol 2022; 12:e9611. [PMID: 36540075 PMCID: PMC9754895 DOI: 10.1002/ece3.9611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 11/16/2022] [Accepted: 11/22/2022] [Indexed: 12/23/2022] Open
Abstract
Studying the evolution of genomic divergence between lineages is a topical issue in evolutionary biology. However, the evolutionary forces that shape the heterogeneous divergence of the genomic landscape are still poorly understood. Here, two wind-pollinated sister-species (Ostrya japonica and O. chinensis) are used to explore what these potential forces might be. A total of 40 individuals from 16 populations across their main distribution areas in China were sampled for genome-wide resequencing. Population demography analyses revealed that these two sister-species diverged at 3.06-4.43 Mya. Both population contraction and increased gene flow were detected during glacial periods, suggesting secondary contact at those times. All three parameters (D XY, π, and ρ) decreased in those regions showing high levels of differentiation (F ST). These findings indicate that linked selection and recombination played a key role in the genomic heterogeneous differentiation between the two Ostrya species. Genotype-environment association analyses showed that precipitation was the most important ecological factor for speciation. Such environmentally related genes and positive selection genes may have contributed to local adaptation and the maintenance of species boundaries.
Collapse
Affiliation(s)
- Jin Zhang
- State Key Laboratory of Grassland Agro‐Ecosystems, College of EcologyLanzhou UniversityLanzhouChina
| | - Shangzhe Zhang
- State Key Laboratory of Grassland Agro‐Ecosystems, College of EcologyLanzhou UniversityLanzhouChina
| | - Zeyu Zheng
- State Key Laboratory of Grassland Agro‐Ecosystems, College of EcologyLanzhou UniversityLanzhouChina
| | - Zhiqiang Lu
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical GardenChinese Academy of SciencesMenglaChina
| | - Yongzhi Yang
- State Key Laboratory of Grassland Agro‐Ecosystems, College of EcologyLanzhou UniversityLanzhouChina
| |
Collapse
|
31
|
Ochoa A, Onorato DP, Roelke-Parker ME, Culver M, Fitak RR. Give and Take: Effects of Genetic Admixture on Mutation Load in Endangered Florida Panthers. J Hered 2022; 113:491-499. [PMID: 35930593 DOI: 10.1093/jhered/esac037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 08/02/2022] [Indexed: 11/14/2022] Open
Abstract
Genetic admixture is a biological event inherent to genetic rescue programs aimed at the long-term conservation of endangered wildlife. Although the success of such programs can be measured by the increase in genetic diversity and fitness of subsequent admixed individuals, predictions supporting admixture costs to fitness due to the introduction of novel deleterious alleles are necessary. Here, we analyzed nonsynonymous variation from conserved genes to quantify and compare levels of mutation load (i.e., proportion of deleterious alleles and genotypes carrying these alleles) among endangered Florida panthers and non-endangered Texas pumas. Specifically, we used canonical (i.e., non-admixed) Florida panthers, Texas pumas, and F1 (canonical Florida x Texas) panthers dating from a genetic rescue program and Everglades National Park panthers with Central American ancestry resulting from an earlier admixture event. We found neither genetic drift nor selection significantly reduced overall proportions of deleterious alleles in the severely bottlenecked canonical Florida panthers. Nevertheless, the deleterious alleles identified were distributed into a disproportionately high number of homozygous genotypes due to close inbreeding in this group. Conversely, admixed Florida panthers (either with Texas or Central American ancestry) presented reduced levels of homozygous genotypes carrying deleterious alleles but increased levels of heterozygous genotypes carrying these variants relative to canonical Florida panthers. Although admixture is likely to alleviate the load of standing deleterious variation present in homozygous genotypes, our results suggest introduced novel deleterious alleles (temporarily present in heterozygous state) in genetically rescued populations could potentially be expressed in subsequent generations if their effective sizes remain small.
Collapse
Affiliation(s)
- Alexander Ochoa
- Department of Biology and Genomics and Bioinformatics Cluster, University of Central Florida, Orlando, FL
| | - David P Onorato
- Fish and Wildlife Research Institute, Florida Fish and Wildlife Conservation Commission, Naples, FL
| | - Melody E Roelke-Parker
- Frederick National Laboratory of Cancer Research, Leidos Biomedical Research, Inc., Bethesda, MD
| | - Melanie Culver
- U.S. Geological Survey, Arizona Cooperative Fish and Wildlife Research Unit, and School of Natural Resources and the Environment, University of Arizona, Tucson, AZ
| | - Robert R Fitak
- Department of Biology and Genomics and Bioinformatics Cluster, University of Central Florida, Orlando, FL
| |
Collapse
|
32
|
Zhang H, Du X, Dong C, Zheng Z, Mu W, Zhu M, Yang Y, Li X, Hu H, Shrestha N, Li M, Yang Y. Genomes and demographic histories of the endangered Bretschneidera sinensis (Akaniaceae). Gigascience 2022; 11:giac050. [PMID: 35701375 PMCID: PMC9197684 DOI: 10.1093/gigascience/giac050] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 03/02/2022] [Accepted: 04/23/2022] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND Bretschneidera sinensis is an endangered relic tree species in the Akaniaceae family and is sporadically distributed in eastern Asia. As opposed to its current narrow and rare distribution, the fossil pollen of B. sinensis has been found to be frequent and widespread in the Northern Hemisphere during the Late Miocene. B. sinensis is also a typical mycorrhizal plant, and its annual seedlings exhibit high mortality rates in absence of mycorrhizal development. The chromosome-level high-quality genome of B. sinensis will help us to more deeply understand the survival and demographic histories of this relic species. RESULTS A total of 25.39 Gb HiFi reads and 109.17 Gb Hi-C reads were used to construct the chromosome-level genome of B. sinensis, which is 1.21 Gb in length with the contig N50 of 64.13 Mb and chromosome N50 of 146.54 Mb. The identified transposable elements account for 55.21% of the genome. A total of 45,839 protein-coding genes were predicted in B. sinensis. A lineage-specific whole-genome duplication was detected, and 7,283 lineage-specific expanded gene families with functions related to the specialized endotrophic mycorrhizal adaptation were identified. The historical effective population size (Ne) of B. sinensis was found to oscillate greatly in response to Quaternary climatic changes. The Ne of B. sinensis has decreased rapidly in the recent past, making its extant Ne extremely lower. Our additional evolutionary genomic analyses suggested that the developed mycorrhizal adaption might have been repeatedly disrupted by environmental changes caused by Quaternary climatic oscillations. The environmental changes and an already decreased population size during the Holocene may have led to the current rarity of B. sinensis. CONCLUSION This is a detailed report of the genome sequences for the family Akaniaceae distributed in evergreen forests in eastern Asia. Such a high-quality genomic resource may provide critical clues for comparative genomics studies of this family in the future.
Collapse
Affiliation(s)
- Han Zhang
- State Key Laboratory of Grassland Agro-Ecosystem, College of Ecology & School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Xin Du
- State Key Laboratory of Grassland Agro-Ecosystem, College of Ecology & School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Congcong Dong
- State Key Laboratory of Grassland Agro-Ecosystem, College of Ecology & School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Zeyu Zheng
- State Key Laboratory of Grassland Agro-Ecosystem, College of Ecology & School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Wenjie Mu
- State Key Laboratory of Grassland Agro-Ecosystem, College of Ecology & School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Mingjia Zhu
- State Key Laboratory of Grassland Agro-Ecosystem, College of Ecology & School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Yingbo Yang
- State Key Laboratory of Grassland Agro-Ecosystem, College of Ecology & School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Xiaojie Li
- Emeishan Biological Resources Experimental Station, Emei 511181, Sichuan, China
| | - Hongyin Hu
- State Key Laboratory of Grassland Agro-Ecosystem, College of Ecology & School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Nawal Shrestha
- State Key Laboratory of Grassland Agro-Ecosystem, College of Ecology & School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Minjie Li
- State Key Laboratory of Grassland Agro-Ecosystem, College of Ecology & School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Yongzhi Yang
- State Key Laboratory of Grassland Agro-Ecosystem, College of Ecology & School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
33
|
Huang K, Ostevik KL, Elphinstone C, Todesco M, Bercovich N, Owens GL, Rieseberg LH. Mutation load in sunflower inversions is negatively correlated with inversion heterozygosity. Mol Biol Evol 2022; 39:6583099. [PMID: 35535689 PMCID: PMC9127631 DOI: 10.1093/molbev/msac101] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Recombination is critical both for accelerating adaptation and purging deleterious mutations. Chromosomal inversions can act as recombination modifiers that suppress local recombination in heterozygotes and thus, under some conditions, are predicted to accumulate such mutations. In this study, we investigated patterns of recombination, transposable element abundance and coding sequence evolution across the genomes of 1,445 individuals from three sunflower species, as well as within nine inversions segregating within species. We also analyzed the effects of inversion genotypes on 87 phenotypic traits to test for overdominance. We found significant negative correlations of long terminal repeat retrotransposon abundance and deleterious mutations with recombination rates across the genome in all three species. However, we failed to detect an increase in these features in the inversions, except for a modest increase in the proportion of stop codon mutations in several very large or rare inversions. Consistent with this finding, there was little evidence of overdominance of inversions in phenotypes that may relate to fitness. On the other hand, significantly greater load was observed for inversions in populations polymorphic for a given inversion compared to populations monomorphic for one of the arrangements, suggesting that the local state of inversion polymorphism affects deleterious load. These seemingly contradictory results can be explained by the low frequency of inversion heterozygotes in wild sunflower populations, apparently due to divergent selection and associated geographic structure. Inversions contributing to local adaptation represent ideal recombination modifiers, acting to facilitate adaptive divergence with gene flow, while largely escaping the accumulation of deleterious mutations.
Collapse
Affiliation(s)
- Kaichi Huang
- Department of Botany and Biodiversity Research Centre, University of British Columbia, Vancouver, BC, Canada
| | - Kate L Ostevik
- Department of Botany and Biodiversity Research Centre, University of British Columbia, Vancouver, BC, Canada.,Department of Evolution, Ecology, and Organismal Biology, University of California, Riverside, CA, USA
| | - Cassandra Elphinstone
- Department of Botany and Biodiversity Research Centre, University of British Columbia, Vancouver, BC, Canada
| | - Marco Todesco
- Department of Botany and Biodiversity Research Centre, University of British Columbia, Vancouver, BC, Canada
| | - Natalia Bercovich
- Department of Botany and Biodiversity Research Centre, University of British Columbia, Vancouver, BC, Canada
| | - Gregory L Owens
- Department of Botany and Biodiversity Research Centre, University of British Columbia, Vancouver, BC, Canada.,Department of Biology, University of Victoria, Victoria, BC, Canada
| | - Loren H Rieseberg
- Department of Botany and Biodiversity Research Centre, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
34
|
Wang Z, Kang M, Li J, Zhang Z, Wang Y, Chen C, Yang Y, Liu J. Genomic evidence for homoploid hybrid speciation between ancestors of two different genera. Nat Commun 2022; 13:1987. [PMID: 35418567 PMCID: PMC9008057 DOI: 10.1038/s41467-022-29643-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 03/25/2022] [Indexed: 11/29/2022] Open
Abstract
Homoploid hybrid speciation (HHS) has been increasingly recognized as occurring widely during species diversification of both plants and animals. However, previous studies on HHS have mostly focused on closely-related species while it has been rarely reported or tested between ancestors of different genera. Here, we explore the likely HHS origin of Carpinus sect. Distegocarpus between sect. Carpinus and Ostrya in the family Betulaceae. We generate a chromosome-level reference genome for C. viminea of sect. Carpinus and re-sequence genomes of 44 individuals from the genera Carpinus and Ostrya. Our integrated analyses of all genomic data suggest that sect. Distegocarpus, which has three species, likely originates through HHS during the early divergence between Carpinus and Ostrya. Our study highlights the likelihood of an HHS event between ancestors of the extant genera during their initial divergences, which may have led to reticulate phylogenies at higher taxonomic levels.
Collapse
Affiliation(s)
- Zefu Wang
- State Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, China
| | - Minghui Kang
- State Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, China
| | - Jialiang Li
- State Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, China
| | - Zhiyang Zhang
- State Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, China
| | - Yufei Wang
- State Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, China
| | - Chunlin Chen
- State Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, China
| | - Yongzhi Yang
- State Key Laboratory of Grassland Agro-Ecosystem, College of Ecology, Lanzhou University, Lanzhou, Gansu, China
| | - Jianquan Liu
- State Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, China.
- State Key Laboratory of Grassland Agro-Ecosystem, College of Ecology, Lanzhou University, Lanzhou, Gansu, China.
| |
Collapse
|
35
|
Wu D, Vargas G G, Powers JS, McDowell NG, Becknell JM, Pérez-Aviles D, Medvigy D, Liu Y, Katul GG, Calvo-Alvarado JC, Calvo-Obando A, Sanchez-Azofeifa A, Xu X. Reduced ecosystem resilience quantifies fine-scale heterogeneity in tropical forest mortality responses to drought. GLOBAL CHANGE BIOLOGY 2022; 28:2081-2094. [PMID: 34921474 DOI: 10.1111/gcb.16046] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 12/07/2021] [Accepted: 12/07/2021] [Indexed: 06/14/2023]
Abstract
Sensitivity of forest mortality to drought in carbon-dense tropical forests remains fraught with uncertainty, while extreme droughts are predicted to be more frequent and intense. Here, the potential of temporal autocorrelation of high-frequency variability in Landsat Enhanced Vegetation Index (EVI), an indicator of ecosystem resilience, to predict spatial and temporal variations of forest biomass mortality is evaluated against in situ census observations for 64 site-year combinations in Costa Rican tropical dry forests during the 2015 ENSO drought. Temporal autocorrelation, within the optimal moving window of 24 months, demonstrated robust predictive power for in situ mortality (leave-one-out cross-validation R2 = 0.54), which allows for estimates of annual biomass mortality patterns at 30 m resolution. Subsequent spatial analysis showed substantial fine-scale heterogeneity of forest mortality patterns, largely driven by drought intensity and ecosystem properties related to plant water use such as forest deciduousness and topography. Highly deciduous forest patches demonstrated much lower mortality sensitivity to drought stress than less deciduous forest patches after elevation was controlled. Our results highlight the potential of high-resolution remote sensing to "fingerprint" forest mortality and the significant role of ecosystem heterogeneity in forest biomass resistance to drought.
Collapse
Affiliation(s)
- Donghai Wu
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, New York, USA
| | - German Vargas G
- Department of Plant and Microbial Biology, University of Minnesota, St. Paul, Minnesota, USA
| | - Jennifer S Powers
- Department of Plant and Microbial Biology, University of Minnesota, St. Paul, Minnesota, USA
- Department of Ecology, Evolution and Behavior, University of Minnesota, St. Paul, Minnesota, USA
| | - Nate G McDowell
- Atmospheric Sciences and Global Change Division, Pacific Northwest National Lab, Richland, Washington, USA
- School of Biological Sciences, Washington State University, Pullman, Washington, USA
| | - Justin M Becknell
- Environmental Studies Program, Colby College, Waterville, Maine, USA
| | - Daniel Pérez-Aviles
- Department of Ecology, Evolution and Behavior, University of Minnesota, St. Paul, Minnesota, USA
| | - David Medvigy
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, USA
| | - Yanlan Liu
- School of Earth Sciences, The Ohio State University, Columbus, Ohio, USA
| | - Gabriel G Katul
- Department of Civil and Environmental Engineering and the Nicholas School of the Environment, Duke University, Durham, North Carolina, USA
| | | | - Ana Calvo-Obando
- Escuela de Ing. Forestal, Instituto Tecnológico de Costa Rica, Barrio Los Ángeles, Cartago, Costa Rica
| | | | - Xiangtao Xu
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, New York, USA
| |
Collapse
|
36
|
Zheng X, Wang T, Cheng T, Zhao L, Zheng X, Zhu F, Dong C, Xu J, Xie K, Hu Z, Yang L, Diao Y. Genomic variation reveals demographic history and biological adaptation of the ancient relictual, lotus (Nelumbo Adans). HORTICULTURE RESEARCH 2022; 9:uhac029. [PMID: 35184169 PMCID: PMC9039500 DOI: 10.1093/hr/uhac029] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Accepted: 01/04/2022] [Indexed: 05/25/2023]
Abstract
Lotus (Nelumbo Adans.), a relict plant, is the testimony of long-term sustained ecological success, but the underlying genetic changes related to its survival strategy remains unclear. Here, we assembled the high-quality lotus genome, investigated genome variation of lotus mutation accumulation (MA) lines and reconstructed the demographic history of wild Asian lotus, respectively. We identified and validated 43 base substitutions fixed in MA lines, implying a spontaneous mutation rate of 1.4 × 10-9 base/generation in lotus shoot stem cells. The past history of lotus revealed that the ancestors of lotus in eastern and southern Asia could be traced back ~20 million years ago (Mya) and experienced twice significant bottlenecks and population splits. We further identified the selected genes among three lotus groups in different habitats, suggesting that 453 genes between tropical and temperate group and 410 genes between two subgroups from Northeastern China and the Yangtze River - Yellow River Basin might play important roles in natural selection in lotus's adaptation and resilience. Our findings not only improve an understanding of the lotus evolutionary history and the genetic basis of its survival advantages, but also provide valuable data for addressing various questions in evolution and protection for the relict plants.
Collapse
Affiliation(s)
- Xingwen Zheng
- State Key Laboratory of Hybrid Rice, Lotus Engineering Research Center of Hubei Province, College of Life Sciences, Wuhan University, Wuhan 430072, China
- Guangchang White Lotus Research Institute, Guangchang 344900, China
| | - Tao Wang
- State Key Laboratory of Hybrid Rice, Lotus Engineering Research Center of Hubei Province, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Teng Cheng
- State Key Laboratory of Hybrid Rice, Lotus Engineering Research Center of Hubei Province, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Lingling Zhao
- State Key Laboratory of Hybrid Rice, Lotus Engineering Research Center of Hubei Province, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Xingfei Zheng
- State Key Laboratory of Hybrid Rice, Lotus Engineering Research Center of Hubei Province, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Fenglin Zhu
- State Key Laboratory of Hybrid Rice, Lotus Engineering Research Center of Hubei Province, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Chen Dong
- College of Biological Engineering, Henan University of Technology, Zhengzhou, Henan 450001, China
| | - Jinxing Xu
- Guangchang White Lotus Research Institute, Guangchang 344900, China
| | - Keqiang Xie
- Guangchang White Lotus Research Institute, Guangchang 344900, China
| | - Zhongli Hu
- State Key Laboratory of Hybrid Rice, Lotus Engineering Research Center of Hubei Province, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Liangbo Yang
- Guangchang White Lotus Research Institute, Guangchang 344900, China
| | - Ying Diao
- State Key Laboratory of Hybrid Rice, Lotus Engineering Research Center of Hubei Province, College of Life Sciences, Wuhan University, Wuhan 430072, China
| |
Collapse
|
37
|
Yang F, Cai L, Dao Z, Sun W. Genomic Data Reveals Population Genetic and Demographic History of Magnolia fistulosa (Magnoliaceae), a Plant Species With Extremely Small Populations in Yunnan Province, China. FRONTIERS IN PLANT SCIENCE 2022; 13:811312. [PMID: 35251084 PMCID: PMC8892343 DOI: 10.3389/fpls.2022.811312] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 01/13/2022] [Indexed: 05/11/2023]
Abstract
Elucidating the genetic background of threatened species is fundamental to their management and conservation, and investigating the demographic history of these species is helpful in the determination of the threats facing them. The woody species of the genus Magnolia (Magnoliaceae) have high economic, scientific and ecological values. Although nearly half of all Magnolia species have been evaluated as threatened, to date there has been no population genetic study employing Next Generation Sequencing (NGS) technology in this genus. In the present study, we investigate the conservation genomics of Magnolia fistulosa, a threatened species endemic to the limestone area along the Sino-Vietnamese border, using a double digest restriction-site-associated DNA-sequencing (ddRAD-seq) approach. To increase the reliability of our statistical inferences, we employed two approaches, Stacks and ipyrad, for SNP calling. A total of 15,272 and 18,960, respectively, putatively neutral SNPs were generated by Stacks and ipyrad. Relatively high genetic diversity and large population divergence were detected in M. fistulosa. Although higher absolute values were calculated using the ipyrad data set, the two data sets showed the same trends in genetic diversity (π, H e), population differentiation (F ST) and inbreeding coefficients (F IS). A change in the effective population size of M. fistulosa within the last 1 Ma was detected, including a population decline about 0.5-0.8 Ma ago, a bottleneck event about 0.2-0.3 Ma ago, population fluctuations during the last glacial stage, and the recovery of effective population size after the last glacial maximum. Our findings not only lay the foundation for the future conservation of this species, but also provide new insights into the evolutionary history of the genus Magnolia in southeastern Yunnan, China.
Collapse
Affiliation(s)
- Fengmao Yang
- Yunnan Key Laboratory for Integrative Conservation of Plant Species With Extremely Small Populations, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
- University of the Chinese Academy of Sciences, Beijing, China
| | - Lei Cai
- Yunnan Key Laboratory for Integrative Conservation of Plant Species With Extremely Small Populations, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Zhiling Dao
- Yunnan Key Laboratory for Integrative Conservation of Plant Species With Extremely Small Populations, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Weibang Sun
- Yunnan Key Laboratory for Integrative Conservation of Plant Species With Extremely Small Populations, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| |
Collapse
|
38
|
He H, Zhang H, Luan J, He J, Zeng L, Li X, Liu X, Zhang C. Cobalt-Catalyzed Carbonization Incorporating Disordered Defects in Ordered Graphitic Domains for Fast and Ultrastable Potassium-Ion Battery. ACS APPLIED MATERIALS & INTERFACES 2022; 14:5487-5496. [PMID: 35042337 DOI: 10.1021/acsami.1c23665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Carbonaceous materials featuring both ordered graphitic structure and disordered defects hold great promise for high-performance K-ion batteries (KIBs) due to the concurrent advantages of high electronic conductivity, fast and reversible K+ intercalation/deintercalation, and abundant active K+ storage sites. However, it has been a lingering problem and remains a big challenge because graphitization and defects are intrinsic trade-off properties of carbonaceous materials. Herein, for the first time, we propose a cobalt-catalyzed carbonization strategy to fabricate porous carbon nanofibers that incorporate disordered defects in graphitic domain layers (PCNFs-DG) for fast and durable K+ storage. The Co catalyst not only ensures the formation of highly graphitized carbon shells around the Co particles but also introduces nanopores and doping defects in the following catalyst removal process. This idea of architecting defected-ordered graphitic carbon engineering guarantees fast reaction kinetics as well as structural stability with negligible interlayer expansion/contraction owing to the uncompromised electronic conductivity, expanded interlayer spacing, and regulated K+ storage mechanism. These appealing features translate to a high reversible capacity of 318.5 mAh g-1 at 100 mA g-1 and ultrahigh stability with almost 100% capacity retention over 2000 cycles in KIBs. This work puts in perspective that defected and ordered carbonaceous materials could be simultaneously achieved, advancing their performance for next-generation energy storage systems.
Collapse
Affiliation(s)
- Hanna He
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute, Sichuan University, Chengdu 610065, China
| | - Hehe Zhang
- State Key Lab of Physical Chemistry of Solid Surfaces, College of Materials, Xiamen University, Xiamen 361005, China
| | - Jingyi Luan
- Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), School of Materials Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Jun He
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute, Sichuan University, Chengdu 610065, China
| | - Li Zeng
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute, Sichuan University, Chengdu 610065, China
| | - Xiaolong Li
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute, Sichuan University, Chengdu 610065, China
| | - Xingang Liu
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute, Sichuan University, Chengdu 610065, China
| | - Chuhong Zhang
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute, Sichuan University, Chengdu 610065, China
| |
Collapse
|
39
|
Predicting Potential Habitat of a Plant Species with Small Populations under Climate Change: Ostryarehderiana. FORESTS 2022. [DOI: 10.3390/f13010129] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Ostrya rehderiana is a famous plant species with extremely small populations. With ongoing global climate change, the extremely small populations would face more uncertainties and risks, including the loss of genetic diversity and extirpation. Thus, assessing the impact of climate change on suitable habitat of O. rehderiana is particularly important for its conservation and restoration. Here, we built niche models with climate variables and soil and human footprint variables. Furthermore, new methods were applied to avoid confounding effects between climate and soil and human footprint variables to simulate the potential habitats of O. rehderiana in current and future climates. We found that the Hargreaves climatic moisture deficit, degree-days below 0 °C, chilling degree-days, and the temperature difference between mean warmest month temperature and mean coldest month temperature, or continentality, were the most important climate factors. The topsoil USDA texture classification, topsoil cation exchange capacity of (clay), and topsoil sodicity (ESP) were the key soil factors determining the suitable distribution of O. rehderiana. Compared with soil factors, human footprint has less influence on the suitable distribution of O. rehderiana. The niche range of this species was projected to expand and shift to north in the Representative Concentration Pathway (RCP) 4.5 scenario for the 2050s. Our study results could be referenced in further extremely small populations ecological restoration studies and provide the scientific strategies for the conservation and restoration of O. rehderiana.
Collapse
|
40
|
Tang SL, Song YB, Zeng B, Dong M. Potential distribution of the extremely endangered species Ostrya rehderiana (Betulaceae) in China under future climate change. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:7782-7792. [PMID: 34476707 DOI: 10.1007/s11356-021-16268-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 08/26/2021] [Indexed: 06/13/2023]
Abstract
Global climate change is a major threat to biodiversity, which may increase the extinction risk of rare species, particularly those like Ostrya rehderiana Chun (Betulaceae) with very few remaining extant wild individuals. We aimed to estimate the potential distribution of O. rehderiana under climate change and to analyze possible relevant climatic factors. Maximum entropy (Maxent) was employed to model the potential distribution of O. rehderiana under present and future climate scenarios. Suitable habitat areas in different periods and the main contributing climate factors were identified using species distribution models. The minimum temperature in winter and precipitation seasonality were the principal climatic factors influencing the establishment of O. rehderiana. The proportion of high potential distribution area in China was 3.91% and would further shrink significantly under changing climate, especially reduce by 97% under high radiative forcing. The extinction risk of O. rehderiana would still be extraordinarily high under future climate scenarios. The Tianmu and Luoxiao Mountains would be the only potential refugia for O. rehderiana in the future. Special conservation efforts are urgently required to rescue extremely endangered species as O. rehderiana. We propose priorities for the conservation region and suggestions for conservation management strategies.
Collapse
Affiliation(s)
- Shuang-Li Tang
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), Chongqing Key Laboratory of Plant Ecology and Resources in Three Gorges Reservoir Region, School of Life Sciences, Southwest University, Chongqing, 400715, China
- Key Laboratory of Hangzhou City for Ecosystem Protection and Restoration, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, China
| | - Yao-Bin Song
- Key Laboratory of Hangzhou City for Ecosystem Protection and Restoration, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, China
| | - Bo Zeng
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), Chongqing Key Laboratory of Plant Ecology and Resources in Three Gorges Reservoir Region, School of Life Sciences, Southwest University, Chongqing, 400715, China.
| | - Ming Dong
- Key Laboratory of Hangzhou City for Ecosystem Protection and Restoration, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, China.
- Ecological Security and Protection Key Laboratory of Sichuan Province, Mianyang Normal University, Mianyang, 621000, China.
| |
Collapse
|
41
|
Sharma P, Murigneux V, Haimovitz J, Nock CJ, Tian W, Kharabian Masouleh A, Topp B, Alam M, Furtado A, Henry RJ. The genome of the endangered Macadamia jansenii displays little diversity but represents an important genetic resource for plant breeding. PLANT DIRECT 2021; 5:e364. [PMID: 34938939 DOI: 10.1101/2021.09.08/459545] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 11/09/2021] [Accepted: 11/09/2021] [Indexed: 05/28/2023]
Abstract
Macadamia, a recently domesticated expanding nut crop in the tropical and subtropical regions of the world, is one of the most economically important genera in the diverse and widely adapted Proteaceae family. All four species of Macadamia are rare in the wild with the most recently discovered, M. jansenii, being endangered. The M. jansenii genome has been used as a model for testing sequencing methods using a wide range of long read sequencing techniques. Here, we report a chromosome level genome assembly, generated using a combination of Pacific Biosciences sequencing and Hi-C, comprising 14 pseudo-molecules, with a N50 of 52 Mb and a total genome assembly size of 758 Mb of which 56% is repetitive. Completeness assessment revealed that the assembly covered -97.1% of the conserved single copy genes. Annotation predicted 31,591 protein coding genes and allowed the characterization of genes encoding biosynthesis of cyanogenic glycosides, fatty acid metabolism, and anti-microbial proteins. Re-sequencing of seven other genotypes confirmed low diversity and low heterozygosity within this endangered species. Important morphological characteristics of this species such as small tree size and high kernel recovery suggest that M. jansenii is an important source of these commercial traits for breeding. As a member of a small group of families that are sister to the core eudicots, this high-quality genome also provides a key resource for evolutionary and comparative genomics studies.
Collapse
Affiliation(s)
- Priyanka Sharma
- Queensland Alliance for Agriculture and Food Innovation University of Queensland Brisbane Australia
| | | | | | - Catherine J Nock
- Southern Cross Plant Science Southern Cross University Lismore New South Wales Australia
| | - Wei Tian
- BGI-Shenzhen Shenzhen Guangdong Province China
- BGI International Pty Ltd Herston Queensland Australia
| | | | - Bruce Topp
- Queensland Alliance for Agriculture and Food Innovation University of Queensland Brisbane Australia
| | - Mobashwer Alam
- Queensland Alliance for Agriculture and Food Innovation University of Queensland Brisbane Australia
| | - Agnelo Furtado
- Queensland Alliance for Agriculture and Food Innovation University of Queensland Brisbane Australia
| | - Robert J Henry
- Queensland Alliance for Agriculture and Food Innovation University of Queensland Brisbane Australia
- ARC Centre of Excellence for Plant Success in Nature and Agriculture University of Queensland Brisbane Australia
| |
Collapse
|
42
|
Sharma P, Murigneux V, Haimovitz J, Nock CJ, Tian W, Kharabian Masouleh A, Topp B, Alam M, Furtado A, Henry RJ. The genome of the endangered Macadamia jansenii displays little diversity but represents an important genetic resource for plant breeding. PLANT DIRECT 2021; 5:e364. [PMID: 34938939 PMCID: PMC8671617 DOI: 10.1002/pld3.364] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 11/09/2021] [Accepted: 11/09/2021] [Indexed: 05/05/2023]
Abstract
Macadamia, a recently domesticated expanding nut crop in the tropical and subtropical regions of the world, is one of the most economically important genera in the diverse and widely adapted Proteaceae family. All four species of Macadamia are rare in the wild with the most recently discovered, M. jansenii, being endangered. The M. jansenii genome has been used as a model for testing sequencing methods using a wide range of long read sequencing techniques. Here, we report a chromosome level genome assembly, generated using a combination of Pacific Biosciences sequencing and Hi-C, comprising 14 pseudo-molecules, with a N50 of 52 Mb and a total genome assembly size of 758 Mb of which 56% is repetitive. Completeness assessment revealed that the assembly covered -97.1% of the conserved single copy genes. Annotation predicted 31,591 protein coding genes and allowed the characterization of genes encoding biosynthesis of cyanogenic glycosides, fatty acid metabolism, and anti-microbial proteins. Re-sequencing of seven other genotypes confirmed low diversity and low heterozygosity within this endangered species. Important morphological characteristics of this species such as small tree size and high kernel recovery suggest that M. jansenii is an important source of these commercial traits for breeding. As a member of a small group of families that are sister to the core eudicots, this high-quality genome also provides a key resource for evolutionary and comparative genomics studies.
Collapse
Affiliation(s)
- Priyanka Sharma
- Queensland Alliance for Agriculture and Food InnovationUniversity of QueenslandBrisbaneAustralia
| | | | | | - Catherine J. Nock
- Southern Cross Plant ScienceSouthern Cross UniversityLismoreNew South WalesAustralia
| | - Wei Tian
- BGI‐ShenzhenShenzhenGuangdong ProvinceChina
- BGI International Pty LtdHerstonQueenslandAustralia
| | | | - Bruce Topp
- Queensland Alliance for Agriculture and Food InnovationUniversity of QueenslandBrisbaneAustralia
| | - Mobashwer Alam
- Queensland Alliance for Agriculture and Food InnovationUniversity of QueenslandBrisbaneAustralia
| | - Agnelo Furtado
- Queensland Alliance for Agriculture and Food InnovationUniversity of QueenslandBrisbaneAustralia
| | - Robert J. Henry
- Queensland Alliance for Agriculture and Food InnovationUniversity of QueenslandBrisbaneAustralia
- ARC Centre of Excellence for Plant Success in Nature and AgricultureUniversity of QueenslandBrisbaneAustralia
| |
Collapse
|
43
|
Ma Y, Liu D, Wariss HM, Zhang R, Tao L, Milne RI, Sun W. Demographic history and identification of threats revealed by population genomic analysis provide insights into conservation for an endangered maple. Mol Ecol 2021; 31:767-779. [PMID: 34826164 DOI: 10.1111/mec.16289] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 11/17/2021] [Accepted: 11/22/2021] [Indexed: 12/01/2022]
Abstract
Recent advancements in whole genome sequencing techniques capable of covering nearly all the nucleotide variations of a genome would make it possible to set up a conservation framework for threatened plants at the genomic level. Here we applied a whole genome resequencing approach to obtain genome-wide data from 105 individuals sampled from the 10 currently known extant populations of Acer yangbiense, an endangered species with fragmented habitats and restricted distribution in Yunnan, China. To inform meaningful conservation action, we investigated what factors might have contributed to the formation of its extremely small population sizes and what threats it currently suffers at a genomic level. Our results revealed that A. yangbiense has low genetic diversity and comprises different numbers of genetic groups based on neutral (seven) and selected loci (13), with frequent gene flow between populations. Repeated bottleneck events, particularly the most recent one occurring within ~10,000 years before present, which decreased its effective population size (Ne ) < 200, and severe habitat fragmentation resulting from anthropogenic activities as well as a biased gender ratio of mature individuals in its natural habitat, might have together contributed to the currently fragmented and endangered status of A. yangbiense. The species has suffered from inbreeding and deleterious mutation load, both of which varied among populations but had similar patterns; that is, populations with higher FROH (frequency of runs of homozygosity) always carried a larger number of deleterious mutations in the homozygous state than in populations with lower FROH. In addition, based on our genetic differentiation results, and the distribution patterns of homozygous deleterious mutations in individuals, we recommend certain conservation actions regarding the genetic rescue of A. yangbiense. Overall, our study provides meaningful insights into the conservation genetics and a framework for the further conservation for the endangered A. yangbiense.
Collapse
Affiliation(s)
- Yongpeng Ma
- Yunnan Key Laboratory for Integrative Conservation of Plant Species with Extremely Small Populations, Chinese Academy of Sciences, Kunming Institute of Botany, Kunming, China.,Key Laboratory for Plant Diversity and Biogeography of East Asia, Chinese Academy of Sciences, Kunming Institute of Botany, Kunming, China
| | - Detuan Liu
- Yunnan Key Laboratory for Integrative Conservation of Plant Species with Extremely Small Populations, Chinese Academy of Sciences, Kunming Institute of Botany, Kunming, China.,Key Laboratory for Plant Diversity and Biogeography of East Asia, Chinese Academy of Sciences, Kunming Institute of Botany, Kunming, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Hafiz Muhammad Wariss
- Yunnan Key Laboratory for Integrative Conservation of Plant Species with Extremely Small Populations, Chinese Academy of Sciences, Kunming Institute of Botany, Kunming, China.,Key Laboratory for Plant Diversity and Biogeography of East Asia, Chinese Academy of Sciences, Kunming Institute of Botany, Kunming, China
| | - Rengang Zhang
- Beijing Ori-Gene Science and Technology Co. Ltd, Beijing, China
| | - Lidan Tao
- Yunnan Key Laboratory for Integrative Conservation of Plant Species with Extremely Small Populations, Chinese Academy of Sciences, Kunming Institute of Botany, Kunming, China.,Key Laboratory for Plant Diversity and Biogeography of East Asia, Chinese Academy of Sciences, Kunming Institute of Botany, Kunming, China
| | - Richard I Milne
- Institute of Molecular Plant Sciences, University of Edinburgh, Edinburgh, UK
| | - Weibang Sun
- Yunnan Key Laboratory for Integrative Conservation of Plant Species with Extremely Small Populations, Chinese Academy of Sciences, Kunming Institute of Botany, Kunming, China.,Key Laboratory for Plant Diversity and Biogeography of East Asia, Chinese Academy of Sciences, Kunming Institute of Botany, Kunming, China.,Kunming Botanical Garden, Chinese Academy of Sciences, Kunming Institute of Botany, Kunming, China
| |
Collapse
|
44
|
Tian XL, Ma YP. Editorial: Conservation Genomic Studies for Threatened Plants. Front Genet 2021; 12:778712. [PMID: 34721553 PMCID: PMC8552021 DOI: 10.3389/fgene.2021.778712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 10/04/2021] [Indexed: 11/29/2022] Open
Affiliation(s)
- Xiao-Ling Tian
- Guiyang Institute of Humanities and Technology, Guiyang, China
| | - Yong-Peng Ma
- Yunnan Key Laboratory for Integrative Conservation of Plant Species with Extremely Small Populations, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| |
Collapse
|
45
|
Ma H, Liu Y, Liu D, Sun W, Liu X, Wan Y, Zhang X, Zhang R, Yun Q, Wang J, Li Z, Ma Y. Chromosome-level genome assembly and population genetic analysis of a critically endangered rhododendron provide insights into its conservation. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 107:1533-1545. [PMID: 34189793 DOI: 10.1111/tpj.15399] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 06/23/2021] [Indexed: 05/25/2023]
Abstract
Rhododendrons are woody plants, famous throughout the world as having high horticultural value. However, many wild species are currently threatened with extinction. Here, we report for the first time a high-quality, chromosome-level genome of Rhododendron griersonianum, which has contributed to approximately 10% of all horticultural rhododendron varieties but which in its wild form has been evaluated as critically endangered. The final genome assembly, which has a contig N50 size of approximately 34 M and a total length of 677 M, is the highest-quality genome sequenced within the genus to date, in part due to its low heterozygosity (0.18%). Identified repeats constitute approximately 57% of the genome, and 38 280 protein-coding genes were predicted with high support. We further resequenced 31 individuals of R. griersonianum as well as 30 individuals of its widespread relative R. delavayi, and performed additional conservation genomic analysis. The results showed that R. griersonianum had lower genetic diversity (θ = 2.58e-3; π = 1.94e-3) when compared not only to R. delavayi (θ = 11.61e-3, π = 12.97e-3), but also to most other woody plants. Furthermore, three severe genetic bottlenecks were detected using both the Stairway plot and fastsimcoal2 analysis, which are thought to have occurred in the late Middle Pleistocene and the Last Glacial Maximum (LGM) period. After these bottlenecks, R. griersonianum recovered and maintained a constant effective population size (>25 000) until now. Intriguingly, R. griersonianum has accumulated significantly more deleterious mutations in the homozygous state than R. delavayi, and several deleterious mutations (e.g., in genes involved in the response to heat stress) are likely to have harmed the adaptation of this plant to its surroundings. This high-quality, chromosome-level genome and the population genomic analysis of the critically endangered R. griersonianum will provide an invaluable resource as well as insights for future study in this species to facilitate conservation and in the genus Rhododendron in general.
Collapse
Affiliation(s)
- Hong Ma
- Research Institute of Resources Insects, Chinese Academy of Forestry, Kunming, 650233, China
| | - Yongbo Liu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Detuan Liu
- Yunnan Key Laboratory for Integrative Conservation of Plant Species with Extremely Small Populations, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
| | - Weibang Sun
- Yunnan Key Laboratory for Integrative Conservation of Plant Species with Extremely Small Populations, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
| | - Xiongfang Liu
- Research Institute of Resources Insects, Chinese Academy of Forestry, Kunming, 650233, China
| | - Youming Wan
- Research Institute of Resources Insects, Chinese Academy of Forestry, Kunming, 650233, China
| | - Xiujiao Zhang
- Research Institute of Resources Insects, Chinese Academy of Forestry, Kunming, 650233, China
| | - Rengang Zhang
- Beijing Ori-Gene Science and Technology Co. Ltd, Beijing, 102206, China
| | - Quanzheng Yun
- Beijing Ori-Gene Science and Technology Co. Ltd, Beijing, 102206, China
| | - Jihua Wang
- The Flower Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, 650205, China
- National Engineering Research Center for Ornamental Horticulture, Kunming, 650205, China
| | - Zhenghong Li
- Research Institute of Resources Insects, Chinese Academy of Forestry, Kunming, 650233, China
| | - Yongpeng Ma
- Yunnan Key Laboratory for Integrative Conservation of Plant Species with Extremely Small Populations, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
| |
Collapse
|
46
|
Novel genome reveals susceptibility of popular gamebird, the red-legged partridge (Alectoris rufa, Phasianidae), to climate change. Genomics 2021; 113:3430-3438. [PMID: 34400239 DOI: 10.1016/j.ygeno.2021.08.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 08/02/2021] [Accepted: 08/11/2021] [Indexed: 01/15/2023]
Abstract
We produced a high-quality de novo genome assembly of the red-legged partridge A. rufa, the first reference genome of its genus, by utilising novel 10× Chromium technology. The estimated genome size was 1.19 Gb with an overall genome heterozygosity of 0.0022; no runs of homozygosity were observed. In total, 21,589 protein coding genes were identified and assigned to 16,772 orthologs. Of these, 201 emerged as unique to Alectoris and were enriched for positive regulation of epithelial cell migration, viral genome integration and maturation. Using PSMC analysis, we inferred a major demographic decline commencing ~140,000 years ago, consistent with forest expansion and reduction of open habitats during the Eemian interglacial. Present-day populations exhibit the historically lowest genetic diversity. Besides implications for management and conservation, this genome also promises key insights into the physiology of these birds with a view to improving poultry husbandry practices.
Collapse
|
47
|
Mi X, Feng G, Hu Y, Zhang J, Chen L, Corlett RT, Hughes AC, Pimm S, Schmid B, Shi S, Svenning JC, Ma K. The global significance of biodiversity science in China: an overview. Natl Sci Rev 2021; 8:nwab032. [PMID: 34694304 PMCID: PMC8310773 DOI: 10.1093/nsr/nwab032] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Revised: 01/03/2021] [Accepted: 02/14/2021] [Indexed: 01/13/2023] Open
Abstract
Biodiversity science in China has seen rapid growth over recent decades, ranging from baseline biodiversity studies to understanding the processes behind evolution across dynamic regions such as the Qinghai-Tibetan Plateau. We review research, including species catalogues; biodiversity monitoring; the origins, distributions, maintenance and threats to biodiversity; biodiversity-related ecosystem function and services; and species and ecosystems' responses to global change. Next, we identify priority topics and offer suggestions and priorities for future biodiversity research in China. These priorities include (i) the ecology and biogeography of the Qinghai-Tibetan Plateau and surrounding mountains, and that of subtropical and tropical forests across China; (ii) marine and inland aquatic biodiversity; and (iii) effective conservation and management to identify and maintain synergies between biodiversity and socio-economic development to fulfil China's vision for becoming an ecological civilization. In addition, we propose three future strategies: (i) translate advanced biodiversity science into practice for biodiversity conservation; (ii) strengthen capacity building and application of advanced technologies, including high-throughput sequencing, genomics and remote sensing; and (iii) strengthen and expand international collaborations. Based on the recent rapid progress of biodiversity research, China is well positioned to become a global leader in biodiversity research in the near future.
Collapse
Affiliation(s)
- Xiangcheng Mi
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Gang Feng
- Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau and Inner Mongolia Key Laboratory of Grassland Ecology, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Yibo Hu
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Jian Zhang
- Zhejiang Tiantong Forest Ecosystem National Observation and Research Station, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Lei Chen
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Richard T Corlett
- Center for Integrative Conservation, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun 666303, China
- Center of Conservation Biology, Core Botanical Gardens, Chinese Academy of Sciences, Menglun, 666303, China
| | - Alice C Hughes
- Center for Integrative Conservation, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun 666303, China
- Center of Conservation Biology, Core Botanical Gardens, Chinese Academy of Sciences, Menglun, 666303, China
| | - Stuart Pimm
- Nicholas School of the Environment, Duke University, Durham, NC 27708, USA
| | - Bernhard Schmid
- Department of Geography, Remote Sensing Laboratories, University of Zurich, Zurich 8057, Switzerland
| | - Suhua Shi
- State Key Laboratory of Biocontrol, Guangdong Key Laboratory of Plant Resources, Key Laboratory of Biodiversity Dynamics and Conservation of Guangdong Higher Education Institutes, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Jens-Christian Svenning
- Center for Biodiversity Dynamics in a Changing World (BIOCHANGE) and Section for Ecoinformatics and Biodiversity, Department of Biology, Aarhus University, DK-8000 Aarhus C, Denmark
| | - Keping Ma
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- Universityof Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
48
|
Veldman BCF, Kuper WFE, Lilien M, Schuurs-Hoeijmakers JHM, Marcelis C, Phan M, Hettinga Y, Talsma HE, van Hasselt PM, Haijes HA. Beyond nephronophthisis: Retinal dystrophy in the absence of kidney dysfunction in childhood expands the clinical spectrum of CEP83 deficiency. Am J Med Genet A 2021; 185:2204-2210. [PMID: 33938610 PMCID: PMC8252653 DOI: 10.1002/ajmg.a.62225] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 03/31/2021] [Accepted: 04/01/2021] [Indexed: 12/12/2022]
Abstract
The CEP83 protein is an essential part in the first steps of ciliogenesis, causing a ciliopathy if deficient. As a core component of the distal appendages of the centriole, CEP83 is located in almost all cell types and is involved in the primary cilium assembly. Previously reported CEP83 deficient patients all presented with nephronophthisis and kidney dysfunction. Despite retinal degeneration being a common feature in ciliopathies, only one patient also had retinitis. Here, we present two unrelated patients, who both presented with retinitis pigmentosa, without nephronophthisis or any form of kidney dysfunction. Both patients harbor bi‐allelic variants in CEP83. This report expands the current clinical spectrum of CEP83 deficiency. For timely diagnosis of CEP83 deficiency, we advocate that CEP83 should be included in gene panels for inherited retinal diseases.
Collapse
Affiliation(s)
- Bram C F Veldman
- Department of Metabolic Diseases, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Willemijn F E Kuper
- Department of Metabolic Diseases, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Marc Lilien
- Department of Pediatric Nephrology, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht, The Netherlands
| | | | - Carlo Marcelis
- Department of Clinical Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Milan Phan
- Department of Ophthalmology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Ymkje Hettinga
- Bartiméus Diagnostic Center for Complex Visual Disorders, Zeist, The Netherlands
| | - Herman E Talsma
- Bartiméus Diagnostic Center for Complex Visual Disorders, Zeist, The Netherlands
| | - Peter M van Hasselt
- Department of Metabolic Diseases, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Hanneke A Haijes
- Department of Metabolic Diseases, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht, The Netherlands
| |
Collapse
|
49
|
Yang W, Wang D, Li Y, Zhang Z, Tong S, Li M, Zhang X, Zhang L, Ren L, Ma X, Zhou R, Sanderson BJ, Keefover-Ring K, Yin T, Smart LB, Liu J, DiFazio SP, Olson M, Ma T. A General Model to Explain Repeated Turnovers of Sex Determination in the Salicaceae. Mol Biol Evol 2021; 38:968-980. [PMID: 33027519 PMCID: PMC7947767 DOI: 10.1093/molbev/msaa261] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Dioecy, the presence of separate sexes on distinct individuals, has evolved repeatedly in multiple plant lineages. However, the specific mechanisms by which sex systems evolve and their commonalities among plant species remain poorly understood. With both XY and ZW sex systems, the family Salicaceae provides a system to uncover the evolutionary forces driving sex chromosome turnovers. In this study, we performed a genome-wide association study to characterize sex determination in two Populus species, P. euphratica and P. alba. Our results reveal an XY system of sex determination on chromosome 14 of P. euphratica, and a ZW system on chromosome 19 of P. alba. We further assembled the corresponding sex-determination regions, and found that their sex chromosome turnovers may be driven by the repeated translocations of a Helitron-like transposon. During the translocation, this factor may have captured partial or intact sequences that are orthologous to a type-A cytokinin response regulator gene. Based on results from this and other recently published studies, we hypothesize that this gene may act as a master regulator of sex determination for the entire family. We propose a general model to explain how the XY and ZW sex systems in this family can be determined by the same RR gene. Our study provides new insights into the diversification of incipient sex chromosomes in flowering plants by showing how transposition and rearrangement of a single gene can control sex in both XY and ZW systems.
Collapse
Affiliation(s)
- Wenlu Yang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Deyan Wang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Yiling Li
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Zhiyang Zhang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Shaofei Tong
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Mengmeng Li
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Xu Zhang
- State Key Laboratory of Grassland Agro-Ecosystem, Institute of Innovation Ecology and College of Life Sciences, Lanzhou University, Lanzhou, China
| | - Lei Zhang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Liwen Ren
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Xinzhi Ma
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Ran Zhou
- Department of Biology, West Virginia University, Morgantown, WV
| | - Brian J Sanderson
- Department of Biology, West Virginia University, Morgantown, WV
- Department of Biological Sciences, Texas Tech University, Lubbock, TX
| | - Ken Keefover-Ring
- Departments of Botany and Geography, University of Wisconsin—Madison, Madison, WI
| | - Tongming Yin
- The Key Laboratory of Tree Genetics and Biotechnology of Jiangsu Province and Education Department of China, Nanjing Forestry University, Nanjing, China
| | - Lawrence B Smart
- Horticulture Section, School of Integrative Plant Science, Cornell University, New York State Agricultural Experiment Station, Geneva, NY
| | - Jianquan Liu
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
- State Key Laboratory of Grassland Agro-Ecosystem, Institute of Innovation Ecology and College of Life Sciences, Lanzhou University, Lanzhou, China
| | | | - Matthew Olson
- Department of Biological Sciences, Texas Tech University, Lubbock, TX
| | - Tao Ma
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| |
Collapse
|
50
|
Li Y, Sun P, Lu Z, Chen J, Wang Z, Du X, Zheng Z, Wu Y, Hu H, Yang J, Ma J, Liu J, Yang Y. The Corylus mandshurica genome provides insights into the evolution of Betulaceae genomes and hazelnut breeding. HORTICULTURE RESEARCH 2021; 8:54. [PMID: 33642584 PMCID: PMC7917096 DOI: 10.1038/s41438-021-00495-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 01/11/2021] [Accepted: 01/20/2021] [Indexed: 05/04/2023]
Abstract
Hazelnut is popular for its flavor, and it has also been suggested that hazelnut is beneficial to cardiovascular health because it is rich in oleic acid. Here, we report the first high-quality chromosome-scale genome for the hazelnut species Corylus mandshurica (2n = 22), which has a high concentration of oleic acid in its nuts. The assembled genome is 367.67 Mb in length, and the contig N50 is 14.85 Mb. All contigs were assembled into 11 chromosomes, and 28,409 protein-coding genes were annotated. We reconstructed the evolutionary trajectories of the genomes of Betulaceae species and revealed that the 11 chromosomes of the hazelnut genus were derived from the most ancestral karyotype in Betula pendula, which has 14 protochromosomes, by inferring homology among five Betulaceae genomes. We identified 96 candidate genes involved in oleic acid biosynthesis, and 10 showed rapid evolution or positive selection. These findings will help us to understand the mechanisms of lipid synthesis and storage in hazelnuts. Several gene families related to salicylic acid metabolism and stress responses experienced rapid expansion in this hazelnut species, which may have increased its stress tolerance. The reference genome presented here constitutes a valuable resource for molecular breeding and genetic improvement of the important agronomic properties of hazelnut.
Collapse
Affiliation(s)
- Ying Li
- State Key Laboratory of Grassland Agro-Ecosystem, Institute of Innovation Ecology & School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Pengchuan Sun
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education & State Key Laboratory of Hydraulics & Mountain River Engineering, College of Life Sciences, Sichuan University, Chengdu, China
| | - Zhiqiang Lu
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, 666303, Mengla, Yunnan, China
- Center of Plant Ecology, Core Botanical Gardens, Chinese Academy of Sciences, 666303, Mengla, Yunnan, China
| | - Jinyuan Chen
- State Key Laboratory of Grassland Agro-Ecosystem, Institute of Innovation Ecology & School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Zhenyue Wang
- State Key Laboratory of Grassland Agro-Ecosystem, Institute of Innovation Ecology & School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Xin Du
- State Key Laboratory of Grassland Agro-Ecosystem, Institute of Innovation Ecology & School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Zeyu Zheng
- State Key Laboratory of Grassland Agro-Ecosystem, Institute of Innovation Ecology & School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Ying Wu
- State Key Laboratory of Grassland Agro-Ecosystem, Institute of Innovation Ecology & School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Hongyin Hu
- State Key Laboratory of Grassland Agro-Ecosystem, Institute of Innovation Ecology & School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Jiao Yang
- State Key Laboratory of Grassland Agro-Ecosystem, Institute of Innovation Ecology & School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Jianxiang Ma
- State Key Laboratory of Grassland Agro-Ecosystem, Institute of Innovation Ecology & School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Jianquan Liu
- State Key Laboratory of Grassland Agro-Ecosystem, Institute of Innovation Ecology & School of Life Sciences, Lanzhou University, Lanzhou, China
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education & State Key Laboratory of Hydraulics & Mountain River Engineering, College of Life Sciences, Sichuan University, Chengdu, China
| | - Yongzhi Yang
- State Key Laboratory of Grassland Agro-Ecosystem, Institute of Innovation Ecology & School of Life Sciences, Lanzhou University, Lanzhou, China.
| |
Collapse
|