1
|
Gil-Fernández M, Carthey AJR, Mendoza E, Godínez-Gómez O, G MCM, Blanco-García A, Delfín-Alfonso CA, Le Roux JJ. The impact of land use change on mycorrhizal fungi and their associations with rodents: insights from a temperate forest in Mexico. MYCORRHIZA 2025; 35:36. [PMID: 40338382 PMCID: PMC12062193 DOI: 10.1007/s00572-025-01210-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2025] [Accepted: 04/25/2025] [Indexed: 05/09/2025]
Abstract
Ecosystem functioning is influenced by biological diversity, ecological interactions, and abiotic conditions. Human interactions with ecosystems can cause major changes in how they function when involving changes in the vegetation cover and structure (i.e., land use change). This study examines how land use change affects the diversity of arbuscular mycorrhizal fungi (AMF) and ectomycorrhizal fungi (EMF) in soil and rodent scats in temperate forest sites. We collected soil and rodent scat samples at five paired sites (i.e., disturbed vs. undisturbed) in Michoacan, Mexico. We identified 112 putative mycorrhizal fungi species using DNA barcoding based on partial internal transcribed region 1 (ITS) sequences. We found a higher richness of EMF in undisturbed soil samples compared to disturbed soil samples and a higher AMF diversity in rodent scat samples from disturbed than undisturbed sites. Scat samples had a high incidence of both AMF (75%) and EMF (100%). We found significant differences in the diversity of both AMF and EMF depending on the rodent species associated with them. We also found a higher diversity of EMF in scats in the wet season than in the dry season. We also report, for the first time, associations between Sigmodon hispidus and numerous AMF and EMF species. Overall, our study highlights the role of rodents as important dispersal vectors of mycorrhizal fungi, particularly for EMF that could be essential to build up mycorrhizal fungi spore banks in disturbed forests.
Collapse
Affiliation(s)
- Margarita Gil-Fernández
- School of Natural Sciences, Macquarie University, New South Wales, 2109, Australia.
- Posgrado en Biología Integrativa, Instituto de Investigaciones Biológicas, Universidad Veracruzana. Luis Castelazo Ayala Avenue, Industrial Ánimas, Xalapa, 91190, Veracruz, Mexico.
- Laboratorio de Vertebrados, Instituto de Investigaciones Biológicas, Universidad Veracruzana. Luis Castelazo Ayala Avenue, Industrial Ánimas, Xalapa, 91190, Veracruz, Mexico.
| | | | - Eduardo Mendoza
- Instituto de Investigaciones sobre los Recursos Naturales, Universidad Michoacana de San Nicolás de Hidalgo, San Juanito Itzicuaro Avenue, Nueva Esperanza, Morelia, Michoacán, 58330, México
| | - Oscar Godínez-Gómez
- Department of Wildlife Ecology and Conservation, School of Natural Resources and Environment, University of Florida, Gainesville, FL, 32618, USA
| | - M Cristina MacSwiney G
- Centro de Investigaciones Tropicales, Universidad Veracruzana, José María Morelos y Pavon 44, Centro, Xalapa, Veracruz, 91000, México
| | - Arnulfo Blanco-García
- Facultad de Biología, Universidad Michoacana de San Nicolás de Hidalgo. Francisco J. Múgica Avenue, Ciudad Universitaria, 58060, Morelia, Michoacan, Mexico
| | - Christian A Delfín-Alfonso
- Laboratorio de Vertebrados, Instituto de Investigaciones Biológicas, Universidad Veracruzana. Luis Castelazo Ayala Avenue, Industrial Ánimas, Xalapa, 91190, Veracruz, Mexico
| | - Johannes J Le Roux
- School of Natural Sciences, Macquarie University, New South Wales, 2109, Australia
| |
Collapse
|
2
|
Pigot AL, Dee LE, Richardson AJ, Cooper DLM, Eisenhauer N, Gregory RD, Lewis SL, Macgregor CJ, Massimino D, Maynard DS, Phillips HRP, Rillo M, Loreau M, Haegeman B. Macroecological rules predict how biomass scales with species richness in nature. Science 2025; 387:1272-1276. [PMID: 40112057 DOI: 10.1126/science.adq3278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 01/06/2025] [Indexed: 03/22/2025]
Abstract
Despite advances in theory and experiments, how biodiversity influences the structure and functioning of natural ecosystems remains debated. By applying new theory to data on 84,695 plant, animal, and protist assemblages, we show that the general positive effect of species richness on stocks of biomass, as well as much of the variation in the strength and sign of this effect, is predicted by a fundamental macroecological quantity: the scaling of species abundance with body mass. Standing biomass increases with richness when large-bodied species are numerically rare but is independent of richness when species size and abundance are uncoupled. These results suggest a new fundamental law in the structure of ecological communities and show that the impacts of changes in species richness on biomass are predictable.
Collapse
Affiliation(s)
- Alex L Pigot
- Centre for Biodiversity and Environment Research, Department of Genetics, Evolution and Environment, University College London, London, UK
| | - Laura E Dee
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO, USA
| | - Anthony J Richardson
- School of the Environment, University of Queensland, St Lucia, Queensland, Australia
- CSIRO Environment, Queensland Biosciences Precinct, St Lucia, Queensland, Australia
| | - Declan L M Cooper
- Centre for Biodiversity and Environment Research, Department of Genetics, Evolution and Environment, University College London, London, UK
- Department of Geography, University College London, London, UK
| | - Nico Eisenhauer
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- Institute of Biology, Leipzig University, Leipzig, Germany
| | - Richard D Gregory
- Centre for Biodiversity and Environment Research, Department of Genetics, Evolution and Environment, University College London, London, UK
- RSPB Centre for Conservation Science, Sandy, Bedfordshire, UK
| | - Simon L Lewis
- Department of Geography, University College London, London, UK
- School of Geography, University of Leeds, Leeds, UK
| | | | | | - Daniel S Maynard
- Centre for Biodiversity and Environment Research, Department of Genetics, Evolution and Environment, University College London, London, UK
| | - Helen R P Phillips
- Netherlands Institute of Ecology (NIOO-KNAW), Netherlands Institute of Ecology (NIOO-KNAW), Department of Terrestrial Ecology, Wageningen, Netherlands
- Department of Environmental Sciences, Saint Mary's University, Halifax, Nova Scotia, Canada
- Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Marina Rillo
- Institute for Chemistry and Biology of the Marine Environment (ICBM), University of Oldenburg, Wilhelmshaven, Germany
| | - Michel Loreau
- Theoretical and Experimental Ecology Station, CNRS, Moulis, France
- Institute of Ecology, College of Urban and Environmental Sciences, Peking University, Beijing, China
| | - Bart Haegeman
- CNRS/Sorbonne Université, Laboratory of Microbial Oceanography, Banyuls-sur-Mer, France
| |
Collapse
|
3
|
Marshall DJ, Malerba M, Lines T, Sezmis AL, Hasan CM, Lenski RE, McDonald MJ. Long-term experimental evolution decouples size and production costs in Escherichia coli. Proc Natl Acad Sci U S A 2022; 119:e2200713119. [PMID: 35594402 PMCID: PMC9173777 DOI: 10.1073/pnas.2200713119] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 03/25/2022] [Indexed: 11/18/2022] Open
Abstract
Body size covaries with population dynamics across life’s domains. Metabolism may impose fundamental constraints on the coevolution of size and demography, but experimental tests of the causal links remain elusive. We leverage a 60,000-generation experiment in which Escherichia coli populations evolved larger cells to examine intraspecific metabolic scaling and correlations with demographic parameters. Over the course of their evolution, the cells have roughly doubled in size relative to their ancestors. These larger cells have metabolic rates that are absolutely higher, but relative to their size, they are lower. Metabolic theory successfully predicted the relations between size, metabolism, and maximum population density, including support for Damuth’s law of energy equivalence, such that populations of larger cells achieved lower maximum densities but higher maximum biomasses than populations of smaller cells. The scaling of metabolism with cell size thus predicted the scaling of size with maximum population density. In stark contrast to standard theory, however, populations of larger cells grew faster than those of smaller cells, contradicting the fundamental and intuitive assumption that the costs of building new individuals should scale directly with their size. The finding that the costs of production can be decoupled from size necessitates a reevaluation of the evolutionary drivers and ecological consequences of biological size more generally.
Collapse
Affiliation(s)
- Dustin J. Marshall
- Centre for Geometric Biology, School of Biological Sciences, Monash University, Melbourne, VIC 3800, Australia
| | - Martino Malerba
- Centre for Integrative Ecology, School of Life and Environmental Sciences, Deakin University, Melbourne, VIC 3125, Australia
| | - Thomas Lines
- Centre for Geometric Biology, School of Biological Sciences, Monash University, Melbourne, VIC 3800, Australia
- School of Agriculture, Food and Wine, University of Adelaide, Adelaide, SA 5005, Australia
| | - Aysha L. Sezmis
- Centre for Geometric Biology, School of Biological Sciences, Monash University, Melbourne, VIC 3800, Australia
| | - Chowdhury M. Hasan
- Centre for Geometric Biology, School of Biological Sciences, Monash University, Melbourne, VIC 3800, Australia
| | - Richard E. Lenski
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI 48824
- Program in Ecology, Evolution, and Behavior, Michigan State University, East Lansing, MI 48824
| | - Michael J. McDonald
- Centre for Geometric Biology, School of Biological Sciences, Monash University, Melbourne, VIC 3800, Australia
| |
Collapse
|
4
|
Perkins DM. Temperature effects on community size structure: The value of large-scale biomonitoring programs. GLOBAL CHANGE BIOLOGY 2022; 28:687-689. [PMID: 34748250 DOI: 10.1111/gcb.15981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 10/20/2021] [Indexed: 06/13/2023]
Affiliation(s)
- Daniel M Perkins
- School of Life and Health Sciences, Whitelands College, University of Roehampton, London, UK
| |
Collapse
|
5
|
Kratina P, Rosenbaum B, Gallo B, Horas EL, O’Gorman EJ. The Combined Effects of Warming and Body Size on the Stability of Predator-Prey Interactions. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2021.772078] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Environmental temperature and body size are two prominent drivers of predation. Despite the ample evidence of their independent effects, the combined impact of temperature and predator-prey body size ratio on the strength and stability of trophic interactions is not fully understood. We experimentally tested how water temperature alters the functional response and population stability of dragonfly nymphs (Cordulegaster boltonii) feeding on freshwater amphipods (Gammarus pulex) across a gradient of their body size ratios. Attack coefficients were highest for small predators feeding on small prey at low temperatures, but shifted toward the largest predators feeding on larger prey in warmer environments. Handling time appeared to decrease with increasing predator and prey body size in the cold environment, but increase at higher temperatures. These findings indicate interactive effects of temperature and body size on functional responses. There was also a negative effect of warming on the stability of predator and prey populations, but this was counteracted by a larger predator-prey body size ratio at higher temperatures. Here, a greater Hill exponent reduced feeding at low prey densities when predators were much larger than their prey, enhancing the persistence of both predator and prey populations in the warmer environment. These experimental findings provide new mechanistic insights into the destabilizing effect of warming on trophic interactions and the key role of predator-prey body size ratios in mitigating these effects.
Collapse
|
6
|
Rey F, Greenacre M, Silva Neto GM, Bueno-Pardo J, Domingues MR, Calado R. Fatty acid ratio analysis identifies changes in competent meroplanktonic larvae sampled over different supply events. MARINE ENVIRONMENTAL RESEARCH 2022; 173:105517. [PMID: 34798492 DOI: 10.1016/j.marenvres.2021.105517] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 10/25/2021] [Accepted: 11/03/2021] [Indexed: 06/13/2023]
Abstract
Planktonic communities are a cornerstone of ocean food webs. Early benthic performance of meroplanktonic organisms is shaped by their life stages in planktonic communities. Fatty acid profiles of marine invertebrates are a good indicator of their nutritional state and allow inferring how dietary regimes experienced during larval pelagic life may drive their pre- and post-metamorphosis performance. Fatty acid profiles of Carcinus maenas megalopae were analysed during four larval supply events in two consecutive years to better understand the variability in their nutritional state at settlement. The logratio analysis of fatty acids showed differences between the four larval supply events, with five ratios explaining 83.1% of the variance. The ratios that contributed to separate larval supply events presented a combination of essential, de novo synthetized and diet origin fatty acids (e.g., phytanate/20:4 n-6, 16:0/18:2 n-4). The high fatty acid signature dispersion found within the same supply event suggests that larvae settling at Ria de Aveiro (Portugal) developed through different planktonic feeding zones and experienced contrasting feeding regimes. The fatty acid profile of megalopae demonstrated a high contribution of diatoms, flagellates and bacteria in the larval diet of C. maenas. The present study demonstrated differences between supply events, although a high variability of larval phenotypes was recorded within the same supply event.
Collapse
Affiliation(s)
- Felisa Rey
- ECOMARE & CESAM - Centre for Environmental and Marine Studies & Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal; Mass Spectrometry Centre & LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal.
| | - Michael Greenacre
- Department of Economics and Business, Universitat Pompeu Fabra, & Barcelona School of Management, Barcelona, Spain.
| | - Gina M Silva Neto
- ECOMARE & CESAM - Centre for Environmental and Marine Studies & Department of Biology, Campus Universitário de Santiago, University of Aveiro, 3810-193 Aveiro, Portugal.
| | - Juan Bueno-Pardo
- Future Oceans Lab, CIM-Universidade de Vigo, Campus Lagoas Marcosende, 36310 Vigo, Spain.
| | - M Rosário Domingues
- ECOMARE & CESAM - Centre for Environmental and Marine Studies & Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal; Mass Spectrometry Centre & LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal.
| | - Ricardo Calado
- ECOMARE & CESAM - Centre for Environmental and Marine Studies & Department of Biology, Campus Universitário de Santiago, University of Aveiro, 3810-193 Aveiro, Portugal.
| |
Collapse
|
7
|
Schuster L, Cameron H, White CR, Marshall DJ. Metabolism drives demography in an experimental field test. Proc Natl Acad Sci U S A 2021; 118:e2104942118. [PMID: 34417293 PMCID: PMC8403948 DOI: 10.1073/pnas.2104942118] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Accepted: 07/19/2021] [Indexed: 12/21/2022] Open
Abstract
Metabolism should drive demography by determining the rates of both biological work and resource demand. Long-standing "rules" for how metabolism should covary with demography permeate biology, from predicting the impacts of climate change to managing fisheries. Evidence for these rules is almost exclusively indirect and in the form of among-species comparisons, while direct evidence is exceptionally rare. In a manipulative field experiment on a sessile marine invertebrate, we created experimental populations that varied in population size (density) and metabolic rate, but not body size. We then tested key theoretical predictions regarding relationships between metabolism and demography by parameterizing population models with lifetime performance data from our field experiment. We found that populations with higher metabolisms had greater intrinsic rates of increase and lower carrying capacities, in qualitative accordance with classic theory. We also found important departures from theory-in particular, carrying capacity declined less steeply than predicted, such that energy use at equilibrium increased with metabolic rate, violating the long-standing axiom of energy equivalence. Theory holds that energy equivalence emerges because resource supply is assumed to be independent of metabolic rate. We find this assumption to be violated under real-world conditions, with potentially far-reaching consequences for the management of biological systems.
Collapse
Affiliation(s)
- Lukas Schuster
- Centre for Geometric Biology, School of Biological Sciences, Monash University, Melbourne, VIC 3800, Australia
| | - Hayley Cameron
- Centre for Geometric Biology, School of Biological Sciences, Monash University, Melbourne, VIC 3800, Australia
| | - Craig R White
- Centre for Geometric Biology, School of Biological Sciences, Monash University, Melbourne, VIC 3800, Australia
| | - Dustin J Marshall
- Centre for Geometric Biology, School of Biological Sciences, Monash University, Melbourne, VIC 3800, Australia
| |
Collapse
|
8
|
Zhou J, Yu K, Lin G, Wang Z. Variance in tree growth rates provides a key link for completing the theory of forest size structure formation. J Theor Biol 2021; 529:110857. [PMID: 34384836 DOI: 10.1016/j.jtbi.2021.110857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 06/19/2021] [Accepted: 08/03/2021] [Indexed: 11/24/2022]
Abstract
In natural forests at a demographic equilibrium state, the size frequency distribution (SFD) of trees is linked with their size-dependent growth and mortality rates. While the mean growth rate (MGR) of each size class is generally used for determining the SFD, the variance in the growth rate (VGR) has always been ignored. Here, based on the analyses with Kolmogorov forward equation, we show that in general, the VGR can flatten the slope of the SFD and, in particular, can address the contradiction between the size-dependent MGR and the -2 power-law SFD in the metabolic scaling theory. We traced the origin of the VGR to the intrinsic stochasticity in the allometric growth coefficients of trees and deduced its functional form based on variance propagation. Using the forest censuses data from Barro Colorado Island, we verified the prediction of the VGR and indicated its indispensability in the theory of forest size-structure formation.
Collapse
Affiliation(s)
- Jian Zhou
- Institute of Ecology and Key Laboratory for Earth Surface Processes of the Ministry of Education, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China.
| | - Kailiang Yu
- High Meadows Environmental Institute, Princeton University, Princeton, NJ 08544, USA
| | - Guanghui Lin
- Ministry of Education Key Laboratory of Earth Ecosystem Modeling, Department of Earth System Science, Tsinghua University, Beijing 100084, China
| | - Zhiheng Wang
- Institute of Ecology and Key Laboratory for Earth Surface Processes of the Ministry of Education, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China.
| |
Collapse
|
9
|
Ghedini G, Malerba ME, Marshall DJ. How to estimate community energy flux? A comparison of approaches reveals that size-abundance trade-offs alter the scaling of community energy flux. Proc Biol Sci 2020; 287:20200995. [PMID: 32811317 DOI: 10.1098/rspb.2020.0995] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Size and metabolism are highly correlated, so that community energy flux might be predicted from size distributions alone. However, the accuracy of predictions based on interspecific energy-size relationships relative to approaches not based on size distributions is unknown. We compare six approaches to predict energy flux in phytoplankton communities across succession: assuming a constant energy use among species (per cell or unit biomass), using energy-size interspecific scaling relationships and species-specific rates (both with or without accounting for density effects). Except for the per cell approach, all others explained some variation in energy flux but their accuracy varied considerably. Surprisingly, the best approach overall was based on mean biomass-specific rates, followed by the most complex (species-specific rates with density). We show that biomass-specific rates alone predict community energy flux because the allometric scaling of energy use with size measured for species in isolation does not reflect the isometric scaling of these species in communities. We also find energy equivalence throughout succession, even when communities are not at carrying capacity. Finally, we discuss that species assembly can alter energy-size relationships, and that metabolic suppression in response to density might drive the allometry of community energy flux as biomass accumulates.
Collapse
Affiliation(s)
- Giulia Ghedini
- Centre for Geometric Biology, School of Biological Sciences, Monash University, Melbourne VIC 3800, Australia
| | - Martino E Malerba
- Centre for Geometric Biology, School of Biological Sciences, Monash University, Melbourne VIC 3800, Australia
| | - Dustin J Marshall
- Centre for Geometric Biology, School of Biological Sciences, Monash University, Melbourne VIC 3800, Australia
| |
Collapse
|
10
|
Cheng L. Scaling Analysis of Energy in Great Lakes Water Supplies. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:5071-5080. [PMID: 32207930 DOI: 10.1021/acs.est.9b05982] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Resource-scale quantification of energy in water supplies is important for local-scale sustainability and for regional-, national-, and global-scale assessments of the water-energy nexus. Water supply systems within a resource region are characterized by a homogeneity in system type but a heterogeneity in system size. Size heterogeneity has traditionally imposed large challenges to energy quantification because of nonlinearities. Recently, an analytical approach for quantifying nonlinear size effects in water supplies was developed based on the complex system phenomena of skewed size abundance (decreasing abundance with increasing size in a population of systems) and allometric energy scaling (decreasing energy intensity with increasing size in an individual system). Here, building on this advance and using new, resource-scope data on Great Lakes water supplies, we explore the interaction between energy allometry and size abundance and demonstrate the application of scaling for making energy predictions in water supplies. We show that communities are driven by the allometric effect to form "large get larger" supply systems, but ultimately spatial distances impose limits on the effect, resulting in delegation of tasks to local systems to preserve energy optimality. This cross-scale, interaction perspective of scaling and the application of scaling for energy prediction together may lead to a more functional understanding of supply size abundance and more integrative quantification of supply energy and environmental impacts at the water resource scale.
Collapse
Affiliation(s)
- Likwan Cheng
- City Colleges of Chicago, 30 E. Lake Street, Chicago, Illinois 60601, United States
| |
Collapse
|
11
|
Malerba ME, Marshall DJ. Size‐abundance rules? Evolution changes scaling relationships between size, metabolism and demography. Ecol Lett 2019; 22:1407-1416. [DOI: 10.1111/ele.13326] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 03/28/2019] [Accepted: 05/23/2019] [Indexed: 11/30/2022]
Affiliation(s)
- Martino E. Malerba
- Centre of Geometric Biology, School of Biological Sciences Monash University Melbourne VIC 3800Australia
| | - Dustin J. Marshall
- Centre of Geometric Biology, School of Biological Sciences Monash University Melbourne VIC 3800Australia
| |
Collapse
|