1
|
Russell BJ, Verma M, Maier NK, Jost M. Dissecting host-microbe interactions with modern functional genomics. Curr Opin Microbiol 2024; 82:102554. [PMID: 39368241 PMCID: PMC11609025 DOI: 10.1016/j.mib.2024.102554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/10/2024] [Accepted: 09/11/2024] [Indexed: 10/07/2024]
Abstract
Interrogation of host-microbe interactions has long been a source of both basic discoveries and benefits to human health. Here, we review the role that functional genomics approaches have played in such efforts, with an emphasis on recent examples that have harnessed technological advances to provide mechanistic insight at increased scale and resolution. Finally, we discuss how concurrent innovations in model systems and genetic tools have afforded opportunities to interrogate additional types of host-microbe relationships, such as those in the mammalian gut. Bringing these innovations together promises many exciting discoveries ahead.
Collapse
Affiliation(s)
- Baylee J Russell
- Department of Microbiology, Harvard Medical School, Boston, MA, USA
| | - Manasvi Verma
- Department of Microbiology, Harvard Medical School, Boston, MA, USA
| | - Nolan K Maier
- Department of Microbiology, Harvard Medical School, Boston, MA, USA
| | - Marco Jost
- Department of Microbiology, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
2
|
Northen TR, Kleiner M, Torres M, Kovács ÁT, Nicolaisen MH, Krzyżanowska DM, Sharma S, Lund G, Jelsbak L, Baars O, Kindtler NL, Wippel K, Dinesen C, Ferrarezi JA, Marian M, Pioppi A, Xu X, Andersen T, Geldner N, Schulze-Lefert P, Vorholt JA, Garrido-Oter R. Community standards and future opportunities for synthetic communities in plant-microbiota research. Nat Microbiol 2024; 9:2774-2784. [PMID: 39478084 DOI: 10.1038/s41564-024-01833-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 09/16/2024] [Indexed: 11/02/2024]
Abstract
Harnessing beneficial microorganisms is seen as a promising approach to enhance sustainable agriculture production. Synthetic communities (SynComs) are increasingly being used to study relevant microbial activities and interactions with the plant host. Yet, the lack of community standards limits the efficiency and progress in this important area of research. To address this gap, we recommend three actions: (1) defining reference SynComs; (2) establishing community standards, protocols and benchmark data for constructing and using SynComs; and (3) creating an infrastructure for sharing strains and data. We also outline opportunities to develop SynCom research through technical advances, linking to field studies, and filling taxonomic blind spots to move towards fully representative SynComs.
Collapse
Affiliation(s)
- Trent R Northen
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
- DOE Joint Genome Institute, Berkeley, CA, USA.
| | - Manuel Kleiner
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC, USA
| | - Marta Torres
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Ákos T Kovács
- Institute of Biology, Leiden University, Leiden, The Netherlands
- DTU Bioengineering, Technical University of Denmark, Kongens Lyngby, Denmark
| | | | - Dorota M Krzyżanowska
- Intercollegiate Faculty of Biotechnology UG&MUG, University of Gdańsk, Gdańsk, Poland
| | - Shilpi Sharma
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, New Delhi, India
| | - George Lund
- Sustainable Soils and Crops, Rothamsted Research, Harpenden, UK
| | - Lars Jelsbak
- DTU Bioengineering, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Oliver Baars
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC, USA
| | - Nikolaj Lunding Kindtler
- Terrestrial Ecology Section, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Kathrin Wippel
- Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, Amsterdam, The Netherlands
| | - Caja Dinesen
- Institute of Biology, Leiden University, Leiden, The Netherlands
- DTU Bioengineering, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Jessica A Ferrarezi
- Department of Genetics, Luiz de Queiroz College of Agriculture, University of São Paulo, Piracicaba, Brazil
| | - Malek Marian
- Center for Agriculture Food Environment, University of Trento, San Michele all'Adige, Trento, Italy
| | - Adele Pioppi
- Institute of Biology, Leiden University, Leiden, The Netherlands
- DTU Bioengineering, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Xinming Xu
- Institute of Biology, Leiden University, Leiden, The Netherlands
| | - Tonni Andersen
- Max Planck Institute for Plant Breeding Research, Cologne, Germany
- Cluster of Excellence on Plant Sciences (CEPLAS), Düsseldorf, Germany
| | - Niko Geldner
- Department of Plant Molecular Biology, University of Lausanne, Lausanne, Switzerland
| | - Paul Schulze-Lefert
- Max Planck Institute for Plant Breeding Research, Cologne, Germany
- Cluster of Excellence on Plant Sciences (CEPLAS), Düsseldorf, Germany
| | | | - Ruben Garrido-Oter
- Max Planck Institute for Plant Breeding Research, Cologne, Germany.
- Cluster of Excellence on Plant Sciences (CEPLAS), Düsseldorf, Germany.
- Earlham Institute, Norwich Research Park, Norwich, UK.
| |
Collapse
|
3
|
Biggs BW, Price MN, Lai D, Escobedo J, Fortanel Y, Huang YY, Kim K, Trotter VV, Kuehl JV, Lui LM, Chakraborty R, Deutschbauer AM, Arkin AP. High-throughput protein characterization by complementation using DNA barcoded fragment libraries. Mol Syst Biol 2024; 20:1207-1229. [PMID: 39375541 PMCID: PMC11535334 DOI: 10.1038/s44320-024-00068-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 09/05/2024] [Accepted: 09/09/2024] [Indexed: 10/09/2024] Open
Abstract
Our ability to predict, control, or design biological function is fundamentally limited by poorly annotated gene function. This can be particularly challenging in non-model systems. Accordingly, there is motivation for new high-throughput methods for accurate functional annotation. Here, we used complementation of auxotrophs and DNA barcode sequencing (Coaux-Seq) to enable high-throughput characterization of protein function. Fragment libraries from eleven genetically diverse bacteria were tested in twenty different auxotrophic strains of Escherichia coli to identify genes that complement missing biochemical activity. We recovered 41% of expected hits, with effectiveness ranging per source genome, and observed success even with distant E. coli relatives like Bacillus subtilis and Bacteroides thetaiotaomicron. Coaux-Seq provided the first experimental validation for 53 proteins, of which 11 are less than 40% identical to an experimentally characterized protein. Among the unexpected function identified was a sulfate uptake transporter, an O-succinylhomoserine sulfhydrylase for methionine synthesis, and an aminotransferase. We also identified instances of cross-feeding wherein protein overexpression and nearby non-auxotrophic strains enabled growth. Altogether, Coaux-Seq's utility is demonstrated, with future applications in ecology, health, and engineering.
Collapse
Affiliation(s)
- Bradley W Biggs
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Morgan N Price
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Dexter Lai
- Department of Bioengineering, University of California-Berkeley, Berkeley, CA, 94720, USA
| | - Jasmine Escobedo
- Department of Bioengineering, University of California-Berkeley, Berkeley, CA, 94720, USA
| | - Yuridia Fortanel
- Department of Bioengineering, University of California-Berkeley, Berkeley, CA, 94720, USA
| | - Yolanda Y Huang
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Kyoungmin Kim
- Department of Bioengineering, University of California-Berkeley, Berkeley, CA, 94720, USA
| | - Valentine V Trotter
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Jennifer V Kuehl
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Lauren M Lui
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Romy Chakraborty
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Adam M Deutschbauer
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
- Department of Plant and Microbial Biology, University of California-Berkeley, Berkeley, CA, 94720, USA
| | - Adam P Arkin
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA.
- Department of Bioengineering, University of California-Berkeley, Berkeley, CA, 94720, USA.
| |
Collapse
|
4
|
Chen W, Zhang K, Huang F, Zhao L, Waldren G, Jiang Q, Chen S, Wang B, Guo W, Zhang D, Zhang J. Advancing quantitative PCR with color cycle multiplex amplification. Nucleic Acids Res 2024; 52:e81. [PMID: 39119904 PMCID: PMC11417387 DOI: 10.1093/nar/gkae683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 07/01/2024] [Accepted: 08/02/2024] [Indexed: 08/10/2024] Open
Abstract
Quantitative PCR (qPCR) is the gold standard for detection and quantitation of known DNA targets, but the scarcity of spectrally distinct fluorophores and filter sets limits the number of detectable targets. Here, we introduce color cycle multiplex amplification (CCMA) to significantly increase the number of detectable DNA targets in a single qPCR reaction using standard instrumentation. In CCMA, presence of one DNA target species results in a pre-programmed pattern of fluorescence increases. This pattern is distinguished by cycle thresholds (Cts) through rationally designed delays in amplification. For example, we design an assay wherein Staphylococcus aureus sequentially induces FAM, then Cy5.5, then ROX fluorescence increases with more than 3 cycles between each signal. CCMA offers notably higher potential for multiplexing because it uses fluorescence permutation rather than combination. With 4 distinct fluorescence colors, CCMA theoretically allows the detection of up to 136 distinct DNA target sequences using fluorescence permutation. Experimentally, we demonstrated a single-tube qPCR assay screening 21 sepsis-related bacterial DNA targets in samples of blood, sputum, pleural effusion and bronchoalveolar lavage fluid, with 89% clinical sensitivity and 100% clinical specificity, showing its potential as a powerful tool for advanced quantitative screening in molecular diagnostics.
Collapse
Affiliation(s)
- Wei Chen
- Department of Innovation, NuProbe USA, Houston, TX 77054, USA
| | - Kerou Zhang
- Department of Innovation, NuProbe USA, Houston, TX 77054, USA
| | - Fei Huang
- Department of Laboratory Medicine, Zhongshan Hospital, Fudan University, Shanghai, Shanghai 200032, China
| | - Lan Zhao
- Department of Respiratory and Critical Care Medicine, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai 200433, China
| | | | - Qi Jiang
- Department of Innovation, NuProbe USA, Houston, TX 77054, USA
| | - Sherry X Chen
- Department of Innovation, NuProbe USA, Houston, TX 77054, USA
| | - Bonnie Wang
- Department of Innovation, NuProbe USA, Houston, TX 77054, USA
| | - Wei Guo
- Department of Laboratory Medicine, Zhongshan Hospital, Fudan University, Shanghai, Shanghai 200032, China
| | - David Y Zhang
- Department of Innovation, NuProbe USA, Houston, TX 77054, USA
| | - Jinny X Zhang
- Department of Innovation, NuProbe USA, Houston, TX 77054, USA
| |
Collapse
|
5
|
Vercauteren S, Fiesack S, Maroc L, Verstraeten N, Dewachter L, Michiels J, Vonesch SC. The rise and future of CRISPR-based approaches for high-throughput genomics. FEMS Microbiol Rev 2024; 48:fuae020. [PMID: 39085047 PMCID: PMC11409895 DOI: 10.1093/femsre/fuae020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 07/19/2024] [Accepted: 07/30/2024] [Indexed: 08/02/2024] Open
Abstract
Clustered regularly interspaced short palindromic repeats (CRISPR) has revolutionized the field of genome editing. To circumvent the permanent modifications made by traditional CRISPR techniques and facilitate the study of both essential and nonessential genes, CRISPR interference (CRISPRi) was developed. This gene-silencing technique employs a deactivated Cas effector protein and a guide RNA to block transcription initiation or elongation. Continuous improvements and a better understanding of the mechanism of CRISPRi have expanded its scope, facilitating genome-wide high-throughput screens to investigate the genetic basis of phenotypes. Additionally, emerging CRISPR-based alternatives have further expanded the possibilities for genetic screening. This review delves into the mechanism of CRISPRi, compares it with other high-throughput gene-perturbation techniques, and highlights its superior capacities for studying complex microbial traits. We also explore the evolution of CRISPRi, emphasizing enhancements that have increased its capabilities, including multiplexing, inducibility, titratability, predictable knockdown efficacy, and adaptability to nonmodel microorganisms. Beyond CRISPRi, we discuss CRISPR activation, RNA-targeting CRISPR systems, and single-nucleotide resolution perturbation techniques for their potential in genome-wide high-throughput screens in microorganisms. Collectively, this review gives a comprehensive overview of the general workflow of a genome-wide CRISPRi screen, with an extensive discussion of strengths and weaknesses, future directions, and potential alternatives.
Collapse
Affiliation(s)
- Silke Vercauteren
- Center for Microbiology, VIB - KU Leuven, Gaston Geenslaan 1, 3001 Leuven, Belgium
- Centre of Microbial and Plant Genetics, KU Leuven, Kasteelpark Arenberg 20, box 2460, 3001 Leuven, Belgium
| | - Simon Fiesack
- Center for Microbiology, VIB - KU Leuven, Gaston Geenslaan 1, 3001 Leuven, Belgium
- Centre of Microbial and Plant Genetics, KU Leuven, Kasteelpark Arenberg 20, box 2460, 3001 Leuven, Belgium
| | - Laetitia Maroc
- Center for Microbiology, VIB - KU Leuven, Gaston Geenslaan 1, 3001 Leuven, Belgium
- Centre of Microbial and Plant Genetics, KU Leuven, Kasteelpark Arenberg 20, box 2460, 3001 Leuven, Belgium
| | - Natalie Verstraeten
- Center for Microbiology, VIB - KU Leuven, Gaston Geenslaan 1, 3001 Leuven, Belgium
- Centre of Microbial and Plant Genetics, KU Leuven, Kasteelpark Arenberg 20, box 2460, 3001 Leuven, Belgium
| | - Liselot Dewachter
- de Duve Institute, Université catholique de Louvain, Hippokrateslaan 75, 1200 Brussels, Belgium
| | - Jan Michiels
- Center for Microbiology, VIB - KU Leuven, Gaston Geenslaan 1, 3001 Leuven, Belgium
- Centre of Microbial and Plant Genetics, KU Leuven, Kasteelpark Arenberg 20, box 2460, 3001 Leuven, Belgium
| | - Sibylle C Vonesch
- Center for Microbiology, VIB - KU Leuven, Gaston Geenslaan 1, 3001 Leuven, Belgium
- Centre of Microbial and Plant Genetics, KU Leuven, Kasteelpark Arenberg 20, box 2460, 3001 Leuven, Belgium
| |
Collapse
|
6
|
Huang YY, Price MN, Hung A, Gal-Oz O, Tripathi S, Smith CW, Ho D, Carion H, Deutschbauer AM, Arkin AP. Barcoded overexpression screens in gut Bacteroidales identify genes with roles in carbon utilization and stress resistance. Nat Commun 2024; 15:6618. [PMID: 39103350 DOI: 10.1038/s41467-024-50124-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 06/28/2024] [Indexed: 08/07/2024] Open
Abstract
A mechanistic understanding of host-microbe interactions in the gut microbiome is hindered by poorly annotated bacterial genomes. While functional genomics can generate large gene-to-phenotype datasets to accelerate functional discovery, their applications to study gut anaerobes have been limited. For instance, most gain-of-function screens of gut-derived genes have been performed in Escherichia coli and assayed in a small number of conditions. To address these challenges, we develop Barcoded Overexpression BActerial shotgun library sequencing (Boba-seq). We demonstrate the power of this approach by assaying genes from diverse gut Bacteroidales overexpressed in Bacteroides thetaiotaomicron. From hundreds of experiments, we identify new functions and phenotypes for 29 genes important for carbohydrate metabolism or tolerance to antibiotics or bile salts. Highlights include the discovery of a D-glucosamine kinase, a raffinose transporter, and several routes that increase tolerance to ceftriaxone and bile salts through lipid biosynthesis. This approach can be readily applied to develop screens in other strains and additional phenotypic assays.
Collapse
Affiliation(s)
- Yolanda Y Huang
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
- Department of Microbiology and Immunology, University at Buffalo, State University of New York, Buffalo, NY, USA.
| | - Morgan N Price
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Allison Hung
- Department of Molecular and Cell Biology, University of California-Berkeley, Berkeley, CA, USA
| | - Omree Gal-Oz
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Surya Tripathi
- Department of Plant and Microbial Biology, University of California-Berkeley, Berkeley, CA, USA
| | - Christopher W Smith
- Department of Microbiology and Immunology, University at Buffalo, State University of New York, Buffalo, NY, USA
| | - Davian Ho
- Department of Bioengineering, University of California-Berkeley, Berkeley, CA, USA
| | - Héloïse Carion
- Department of Bioengineering, University of California-Berkeley, Berkeley, CA, USA
| | - Adam M Deutschbauer
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Department of Plant and Microbial Biology, University of California-Berkeley, Berkeley, CA, USA
| | - Adam P Arkin
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
- Department of Bioengineering, University of California-Berkeley, Berkeley, CA, USA.
| |
Collapse
|
7
|
Parkhill SL, Johnson EO. Integrating bacterial molecular genetics with chemical biology for renewed antibacterial drug discovery. Biochem J 2024; 481:839-864. [PMID: 38958473 PMCID: PMC11346456 DOI: 10.1042/bcj20220062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/20/2024] [Accepted: 06/24/2024] [Indexed: 07/04/2024]
Abstract
The application of dyes to understanding the aetiology of infection inspired antimicrobial chemotherapy and the first wave of antibacterial drugs. The second wave of antibacterial drug discovery was driven by rapid discovery of natural products, now making up 69% of current antibacterial drugs. But now with the most prevalent natural products already discovered, ∼107 new soil-dwelling bacterial species must be screened to discover one new class of natural product. Therefore, instead of a third wave of antibacterial drug discovery, there is now a discovery bottleneck. Unlike natural products which are curated by billions of years of microbial antagonism, the vast synthetic chemical space still requires artificial curation through the therapeutics science of antibacterial drugs - a systematic understanding of how small molecules interact with bacterial physiology, effect desired phenotypes, and benefit the host. Bacterial molecular genetics can elucidate pathogen biology relevant to therapeutics development, but it can also be applied directly to understanding mechanisms and liabilities of new chemical agents with new mechanisms of action. Therefore, the next phase of antibacterial drug discovery could be enabled by integrating chemical expertise with systematic dissection of bacterial infection biology. Facing the ambitious endeavour to find new molecules from nature or new-to-nature which cure bacterial infections, the capabilities furnished by modern chemical biology and molecular genetics can be applied to prospecting for chemical modulators of new targets which circumvent prevalent resistance mechanisms.
Collapse
Affiliation(s)
- Susannah L. Parkhill
- Systems Chemical Biology of Infection and Resistance Laboratory, The Francis Crick Institute, London, U.K
- Faculty of Life Sciences, University College London, London, U.K
| | - Eachan O. Johnson
- Systems Chemical Biology of Infection and Resistance Laboratory, The Francis Crick Institute, London, U.K
- Faculty of Life Sciences, University College London, London, U.K
- Department of Chemistry, Imperial College, London, U.K
- Department of Chemistry, King's College London, London, U.K
| |
Collapse
|
8
|
Chitboonthavisuk C, Martin C, Huss P, Peters JM, Anantharaman K, Raman S. Systematic genome-wide discovery of host factors governing bacteriophage infectivity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.20.590424. [PMID: 38659955 PMCID: PMC11042327 DOI: 10.1101/2024.04.20.590424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Bacterial host factors regulate the infection cycle of bacteriophages. Except for some well-studied host factors (e.g., receptors or restriction-modification systems), the contribution of the rest of the host genome on phage infection remains poorly understood. We developed PHAGEPACK, a pooled assay that systematically and comprehensively measures each host-gene impact on phage fitness. PHAGEPACK combines CRISPR interference with phage packaging to link host perturbation to phage fitness during active infection. Using PHAGEPACK, we constructed a genome-wide map of genes impacting T7 phage fitness in permissive E. coli, revealing pathways previously unknown to affect phage packaging. When applied to the non-permissive E. coli O121, PHAGEPACK identified pathways leading to host resistance; their removal increased phage susceptibility up to a billion-fold. Bioinformatic analysis indicates phage genomes carry homologs or truncations of key host factors, potentially for fitness advantage. In summary, PHAGEPACK offers valuable insights into phage-host interactions, phage evolution, and bacterial resistance.
Collapse
|
9
|
Banta AB, Myers KS, Ward RD, Cuellar RA, Place M, Freeh CC, Bacon EE, Peters JM. A Targeted Genome-scale Overexpression Platform for Proteobacteria. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.01.582922. [PMID: 38496613 PMCID: PMC10942329 DOI: 10.1101/2024.03.01.582922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
Targeted, genome-scale gene perturbation screens using Clustered Regularly Interspaced Short Palindromic Repeats interference (CRISPRi) and activation (CRISPRa) have revolutionized eukaryotic genetics, advancing medical, industrial, and basic research. Although CRISPRi knockdowns have been broadly applied in bacteria, options for genome-scale overexpression face key limitations. Here, we develop a facile approach for genome-scale gene overexpression in bacteria we call, "CRISPRtOE" (CRISPR transposition and OverExpression). We create a platform for comprehensive gene targeting using CRISPR-associated transposition (CAST) and show that transposition occurs at a higher frequency in non-transcribed DNA. We then demonstrate that CRISPRtOE can upregulate gene expression in Proteobacteria with medical and industrial relevance by integrating synthetic promoters of varying strength upstream of target genes. Finally, we employ CRISPRtOE screening at the genome-scale in Escherichia coli, recovering known antibiotic targets and genes with unexplored roles in antibiotic function. We envision that CRISPRtOE will be a valuable overexpression tool for antibiotic mode of action, industrial strain optimization, and gene function discovery in bacteria.
Collapse
Affiliation(s)
- Amy B. Banta
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, WI, USA
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI, USA
| | - Kevin S. Myers
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI, USA
- Wisconsin Energy Institute, University of Wisconsin-Madison, Madison, WI, USA
| | - Ryan D. Ward
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, WI, USA
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI, USA
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, WI, USA
| | - Rodrigo A. Cuellar
- Microbiology Doctoral Training Program, University of Wisconsin-Madison, Madison, WI, USA
| | - Michael Place
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI, USA
| | - Claire C. Freeh
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, WI, USA
| | - Emily E. Bacon
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, WI, USA
- Microbiology Doctoral Training Program, University of Wisconsin-Madison, Madison, WI, USA
| | - Jason M. Peters
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, WI, USA
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI, USA
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, USA
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI, USA
- Center for Genomic Science Innovation, University of Wisconsin-Madison, Madison, WI, USA
| |
Collapse
|
10
|
Garza Elizondo AM, Chappell J. Targeted Transcriptional Activation Using a CRISPR-Associated Transposon System. ACS Synth Biol 2024; 13:328-336. [PMID: 38085703 DOI: 10.1021/acssynbio.3c00563] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2024]
Abstract
Synthetic perturbation of gene expression is central to our ability to reliably uncover genotype-phenotype relationships in microbes. Here, we present a novel transcription activation strategy that uses the Vibrio cholerae CRISPR-Associated Transposon (CAST) system to selectively insert promoter elements upstream of genes of interest. Through this strategy, we show robust activation of both recombinant and endogenous genes across the Escherichia coli chromosome. We then demonstrate the precise tuning of expression levels by exchanging the promoter elements being inserted. Finally, we demonstrate that CAST activation can be used to synthetically induce ampicillin-resistant phenotypes in E. coli.
Collapse
Affiliation(s)
| | - James Chappell
- Department of Biosciences, Rice University, Houston, Texas 77005, United States
- Department of Bioengineering, Rice University, Houston, Texas 77005, United States
| |
Collapse
|
11
|
Huang Y, Sheth RU, Zhao S, Cohen LA, Dabaghi K, Moody T, Sun Y, Ricaurte D, Richardson M, Velez-Cortes F, Blazejewski T, Kaufman A, Ronda C, Wang HH. High-throughput microbial culturomics using automation and machine learning. Nat Biotechnol 2023; 41:1424-1433. [PMID: 36805559 PMCID: PMC10567565 DOI: 10.1038/s41587-023-01674-2] [Citation(s) in RCA: 86] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 01/11/2023] [Indexed: 02/22/2023]
Abstract
Pure bacterial cultures remain essential for detailed experimental and mechanistic studies in microbiome research, and traditional methods to isolate individual bacteria from complex microbial ecosystems are labor-intensive, difficult-to-scale and lack phenotype-genotype integration. Here we describe an open-source high-throughput robotic strain isolation platform for the rapid generation of isolates on demand. We develop a machine learning approach that leverages colony morphology and genomic data to maximize the diversity of microbes isolated and enable targeted picking of specific genera. Application of this platform on fecal samples from 20 humans yields personalized gut microbiome biobanks totaling 26,997 isolates that represented >80% of all abundant taxa. Spatial analysis on >100,000 visually captured colonies reveals cogrowth patterns between Ruminococcaceae, Bacteroidaceae, Coriobacteriaceae and Bifidobacteriaceae families that suggest important microbial interactions. Comparative analysis of 1,197 high-quality genomes from these biobanks shows interesting intra- and interpersonal strain evolution, selection and horizontal gene transfer. This culturomics framework should empower new research efforts to systematize the collection and quantitative analysis of imaging-based phenotypes with high-resolution genomics data for many emerging microbiome studies.
Collapse
Affiliation(s)
- Yiming Huang
- Department of Systems Biology, Columbia University, New York, NY, USA
| | - Ravi U Sheth
- Department of Systems Biology, Columbia University, New York, NY, USA
| | - Shijie Zhao
- Department of Systems Biology, Columbia University, New York, NY, USA
| | - Lucas A Cohen
- Department of Systems Biology, Columbia University, New York, NY, USA
| | - Kendall Dabaghi
- Department of Systems Biology, Columbia University, New York, NY, USA
| | - Thomas Moody
- Department of Systems Biology, Columbia University, New York, NY, USA
| | - Yiwei Sun
- Department of Biomedical Informatics, Columbia University, New York, NY, USA
| | - Deirdre Ricaurte
- Department of Systems Biology, Columbia University, New York, NY, USA
| | - Miles Richardson
- Department of Systems Biology, Columbia University, New York, NY, USA
| | | | | | - Andrew Kaufman
- Department of Systems Biology, Columbia University, New York, NY, USA
| | - Carlotta Ronda
- Department of Systems Biology, Columbia University, New York, NY, USA
| | - Harris H Wang
- Department of Systems Biology, Columbia University, New York, NY, USA.
- Department of Pathology and Cell Biology, Columbia University, New York, NY, USA.
| |
Collapse
|
12
|
Müller J, Bollenbach T. Quantitative approaches to study phenotypic effects of large-scale genetic perturbations. Curr Opin Microbiol 2023; 74:102333. [PMID: 37276805 DOI: 10.1016/j.mib.2023.102333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/30/2023] [Accepted: 05/08/2023] [Indexed: 06/07/2023]
Abstract
How microbes interact with their environment and how the complex interplay of their genes enables them to survive and thrive under stress is a fundamental question in microbial system biology, which is also important from a public health perspective. Large-scale studies of gene-gene, gene-drug, and drug-drug interactions have proven to be powerful tools for elucidating gene function and functional modules in the cell. Approaches that systematically quantify phenotypes in libraries of microbial strains with genome-wide genetic perturbations are crucial for progress in this area. Here, we review recent advances in this field, and point out applications to the study of gene-drug interactions. We highlight newly developed techniques for the rapid generation of genome-wide mutant libraries and the high-throughput measurement of more complex phenotypes and other observables, such as cell morphology or thermal stability of the proteome.
Collapse
Affiliation(s)
- Janina Müller
- Institute for Biological Physics, University of Cologne, 50931 Cologne, Germany
| | - Tobias Bollenbach
- Institute for Biological Physics, University of Cologne, 50931 Cologne, Germany; Center for Data and Simulation Science, University of Cologne, 50931 Cologne, Germany.
| |
Collapse
|
13
|
Adler BA, Chamakura K, Carion H, Krog J, Deutschbauer AM, Young R, Mutalik VK, Arkin AP. Multicopy suppressor screens reveal convergent evolution of single-gene lysis proteins. Nat Chem Biol 2023; 19:759-766. [PMID: 36805702 PMCID: PMC10229422 DOI: 10.1038/s41589-023-01269-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Accepted: 01/18/2023] [Indexed: 02/22/2023]
Abstract
Single-strand RNA (ssRNA) Fiersviridae phages cause host lysis with a product of single gene (sgl for single-gene lysis; product Sgl) that induces autolysis. Many different Sgls have been discovered, but the molecular targets of only a few have been identified. In this study, we used a high-throughput genetic screen to uncover genome-wide host suppressors of diverse Sgls. In addition to validating known molecular mechanisms, we discovered that the Sgl of PP7, an ssRNA phage of Pseudomonas aeruginosa, targets MurJ, the flippase responsible for lipid II export, previously shown to be the target of the Sgl of coliphage M. These two Sgls, which are unrelated and predicted to have opposite membrane topology, thus represent a case of convergent evolution. We extended the genetic screens to other uncharacterized Sgls and uncovered a common set of multicopy suppressors, suggesting that these Sgls act by the same or similar mechanism.
Collapse
Affiliation(s)
- Benjamin A Adler
- The UC Berkeley-UCSF Graduate Program in Bioengineering, Berkeley, CA, USA
- Department of Bioengineering, University of California, Berkeley, Berkeley, CA, USA
- Innovative Genomics Institute, University of California, Berkeley, Berkeley, CA, USA
| | - Karthik Chamakura
- Department of Biochemistry and Biophysics, Center for Phage Technology, Texas A&M University, College Station, TX, USA
- Armata Pharmaceuticals, Inc., Marina Del Rey, CA, USA
| | - Heloise Carion
- Department of Bioengineering, University of California, Berkeley, Berkeley, CA, USA
| | - Jonathan Krog
- Department of Bioengineering, University of California, Berkeley, Berkeley, CA, USA
| | - Adam M Deutschbauer
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Ry Young
- Department of Biochemistry and Biophysics, Center for Phage Technology, Texas A&M University, College Station, TX, USA
| | - Vivek K Mutalik
- Innovative Genomics Institute, University of California, Berkeley, Berkeley, CA, USA.
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
| | - Adam P Arkin
- Department of Bioengineering, University of California, Berkeley, Berkeley, CA, USA.
- Innovative Genomics Institute, University of California, Berkeley, Berkeley, CA, USA.
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
| |
Collapse
|
14
|
Apjok G, Számel M, Christodoulou C, Seregi V, Vásárhelyi BM, Stirling T, Eszenyi B, Sári T, Vidovics F, Nagrand E, Kovács D, Szili P, Lantos II, Méhi O, Jangir PK, Herczeg R, Gálik B, Urbán P, Gyenesei A, Draskovits G, Nyerges Á, Fekete G, Bodai L, Zsindely N, Dénes B, Yosef I, Qimron U, Papp B, Pál C, Kintses B. Characterization of antibiotic resistomes by reprogrammed bacteriophage-enabled functional metagenomics in clinical strains. Nat Microbiol 2023; 8:410-423. [PMID: 36759752 PMCID: PMC9981461 DOI: 10.1038/s41564-023-01320-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 01/04/2023] [Indexed: 02/11/2023]
Abstract
Functional metagenomics is a powerful experimental tool to identify antibiotic resistance genes (ARGs) in the environment, but the range of suitable host bacterial species is limited. This limitation affects both the scope of the identified ARGs and the interpretation of their clinical relevance. Here we present a functional metagenomics pipeline called Reprogrammed Bacteriophage Particle Assisted Multi-species Functional Metagenomics (DEEPMINE). This approach combines and improves the use of T7 bacteriophage with exchanged tail fibres and targeted mutagenesis to expand phage host-specificity and efficiency for functional metagenomics. These modified phage particles were used to introduce large metagenomic plasmid libraries into clinically relevant bacterial pathogens. By screening for ARGs in soil and gut microbiomes and clinical genomes against 13 antibiotics, we demonstrate that this approach substantially expands the list of identified ARGs. Many ARGs have species-specific effects on resistance; they provide a high level of resistance in one bacterial species but yield very limited resistance in a related species. Finally, we identified mobile ARGs against antibiotics that are currently under clinical development or have recently been approved. Overall, DEEPMINE expands the functional metagenomics toolbox for studying microbial communities.
Collapse
Affiliation(s)
- Gábor Apjok
- grid.481814.00000 0004 0479 9817Synthetic and System Biology Unit, Institute of Biochemistry, Biological Research Centre, National Laboratory of Biotechnology, Eötvös Loránd Research Network (ELKH), Szeged, Hungary ,grid.9008.10000 0001 1016 9625Doctoral School of Biology, University of Szeged, Szeged, Hungary
| | - Mónika Számel
- grid.481814.00000 0004 0479 9817Synthetic and System Biology Unit, Institute of Biochemistry, Biological Research Centre, National Laboratory of Biotechnology, Eötvös Loránd Research Network (ELKH), Szeged, Hungary ,grid.9008.10000 0001 1016 9625Doctoral School of Biology, University of Szeged, Szeged, Hungary
| | - Chryso Christodoulou
- grid.481814.00000 0004 0479 9817Synthetic and System Biology Unit, Institute of Biochemistry, Biological Research Centre, National Laboratory of Biotechnology, Eötvös Loránd Research Network (ELKH), Szeged, Hungary
| | - Viktória Seregi
- grid.481814.00000 0004 0479 9817Synthetic and System Biology Unit, Institute of Biochemistry, Biological Research Centre, National Laboratory of Biotechnology, Eötvös Loránd Research Network (ELKH), Szeged, Hungary ,HCEMM-BRC Translational Microbiology Research Group, Szeged, Hungary
| | - Bálint Márk Vásárhelyi
- grid.481814.00000 0004 0479 9817Synthetic and System Biology Unit, Institute of Biochemistry, Biological Research Centre, National Laboratory of Biotechnology, Eötvös Loránd Research Network (ELKH), Szeged, Hungary
| | - Tamás Stirling
- grid.481814.00000 0004 0479 9817Synthetic and System Biology Unit, Institute of Biochemistry, Biological Research Centre, National Laboratory of Biotechnology, Eötvös Loránd Research Network (ELKH), Szeged, Hungary ,grid.9008.10000 0001 1016 9625Doctoral School of Biology, University of Szeged, Szeged, Hungary ,grid.481814.00000 0004 0479 9817Institute of Biochemistry, Biological Research Centre, National Laboratory for Health Security, Eötvös Loránd Research Network (ELKH), Szeged, Hungary
| | - Bálint Eszenyi
- grid.481814.00000 0004 0479 9817Synthetic and System Biology Unit, Institute of Biochemistry, Biological Research Centre, National Laboratory of Biotechnology, Eötvös Loránd Research Network (ELKH), Szeged, Hungary
| | - Tóbiás Sári
- grid.481814.00000 0004 0479 9817Synthetic and System Biology Unit, Institute of Biochemistry, Biological Research Centre, National Laboratory of Biotechnology, Eötvös Loránd Research Network (ELKH), Szeged, Hungary ,grid.9008.10000 0001 1016 9625Doctoral School of Biology, University of Szeged, Szeged, Hungary
| | - Fanni Vidovics
- grid.481814.00000 0004 0479 9817Synthetic and System Biology Unit, Institute of Biochemistry, Biological Research Centre, National Laboratory of Biotechnology, Eötvös Loránd Research Network (ELKH), Szeged, Hungary
| | - Erika Nagrand
- grid.481814.00000 0004 0479 9817Synthetic and System Biology Unit, Institute of Biochemistry, Biological Research Centre, National Laboratory of Biotechnology, Eötvös Loránd Research Network (ELKH), Szeged, Hungary
| | - Dorina Kovács
- grid.481814.00000 0004 0479 9817Synthetic and System Biology Unit, Institute of Biochemistry, Biological Research Centre, National Laboratory of Biotechnology, Eötvös Loránd Research Network (ELKH), Szeged, Hungary
| | - Petra Szili
- grid.481814.00000 0004 0479 9817Synthetic and System Biology Unit, Institute of Biochemistry, Biological Research Centre, National Laboratory of Biotechnology, Eötvös Loránd Research Network (ELKH), Szeged, Hungary ,grid.9008.10000 0001 1016 9625Doctoral School of Multidisciplinary Medical Sciences, University of Szeged, Szeged, Hungary
| | - Ildikó Ilona Lantos
- grid.481814.00000 0004 0479 9817Synthetic and System Biology Unit, Institute of Biochemistry, Biological Research Centre, National Laboratory of Biotechnology, Eötvös Loránd Research Network (ELKH), Szeged, Hungary
| | - Orsolya Méhi
- grid.481814.00000 0004 0479 9817Synthetic and System Biology Unit, Institute of Biochemistry, Biological Research Centre, National Laboratory of Biotechnology, Eötvös Loránd Research Network (ELKH), Szeged, Hungary
| | - Pramod K. Jangir
- grid.481814.00000 0004 0479 9817Synthetic and System Biology Unit, Institute of Biochemistry, Biological Research Centre, National Laboratory of Biotechnology, Eötvös Loránd Research Network (ELKH), Szeged, Hungary ,grid.9008.10000 0001 1016 9625Doctoral School of Biology, University of Szeged, Szeged, Hungary ,grid.4991.50000 0004 1936 8948Present Address: Department of Zoology, University of Oxford, Oxford, UK
| | - Róbert Herczeg
- grid.9679.10000 0001 0663 9479Bioinformatics Research Group, Genomics and Bioinformatics Core Facility, Szentágothai Research Centre, University of Pécs, Pécs, Hungary
| | - Bence Gálik
- grid.9679.10000 0001 0663 9479Bioinformatics Research Group, Genomics and Bioinformatics Core Facility, Szentágothai Research Centre, University of Pécs, Pécs, Hungary ,grid.48324.390000000122482838Department of Clinical Molecular Biology, Medical University of Bialystok, Bialystok, Poland
| | - Péter Urbán
- grid.9679.10000 0001 0663 9479Bioinformatics Research Group, Genomics and Bioinformatics Core Facility, Szentágothai Research Centre, University of Pécs, Pécs, Hungary
| | - Attila Gyenesei
- grid.9679.10000 0001 0663 9479Bioinformatics Research Group, Genomics and Bioinformatics Core Facility, Szentágothai Research Centre, University of Pécs, Pécs, Hungary ,grid.48324.390000000122482838Department of Clinical Molecular Biology, Medical University of Bialystok, Bialystok, Poland
| | - Gábor Draskovits
- grid.481814.00000 0004 0479 9817Synthetic and System Biology Unit, Institute of Biochemistry, Biological Research Centre, National Laboratory of Biotechnology, Eötvös Loránd Research Network (ELKH), Szeged, Hungary
| | - Ákos Nyerges
- grid.481814.00000 0004 0479 9817Synthetic and System Biology Unit, Institute of Biochemistry, Biological Research Centre, National Laboratory of Biotechnology, Eötvös Loránd Research Network (ELKH), Szeged, Hungary
| | - Gergely Fekete
- grid.481814.00000 0004 0479 9817Synthetic and System Biology Unit, Institute of Biochemistry, Biological Research Centre, National Laboratory of Biotechnology, Eötvös Loránd Research Network (ELKH), Szeged, Hungary
| | - László Bodai
- grid.9008.10000 0001 1016 9625Department of Biochemistry and Molecular Biology, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
| | - Nóra Zsindely
- grid.9008.10000 0001 1016 9625Department of Genetics, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
| | - Béla Dénes
- grid.432859.10000 0004 4647 7293Veterinary Diagnostic Directorate, National Food Chain Safety Office, Budapest, Hungary
| | - Ido Yosef
- grid.12136.370000 0004 1937 0546Department of Clinical Microbiology and Immunology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Udi Qimron
- grid.12136.370000 0004 1937 0546Department of Clinical Microbiology and Immunology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Balázs Papp
- grid.481814.00000 0004 0479 9817Synthetic and System Biology Unit, Institute of Biochemistry, Biological Research Centre, National Laboratory of Biotechnology, Eötvös Loránd Research Network (ELKH), Szeged, Hungary ,grid.481814.00000 0004 0479 9817Institute of Biochemistry, Biological Research Centre, National Laboratory for Health Security, Eötvös Loránd Research Network (ELKH), Szeged, Hungary ,HCEMM-BRC Metabolic Systems Biology Lab, Szeged, Hungary
| | - Csaba Pál
- Synthetic and System Biology Unit, Institute of Biochemistry, Biological Research Centre, National Laboratory of Biotechnology, Eötvös Loránd Research Network (ELKH), Szeged, Hungary.
| | - Bálint Kintses
- Synthetic and System Biology Unit, Institute of Biochemistry, Biological Research Centre, National Laboratory of Biotechnology, Eötvös Loránd Research Network (ELKH), Szeged, Hungary. .,HCEMM-BRC Translational Microbiology Research Group, Szeged, Hungary. .,Department of Biochemistry and Molecular Biology, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary.
| |
Collapse
|
15
|
Mutalik VK, Arkin AP. A Phage Foundry Framework to Systematically Develop Viral Countermeasures to Combat Antibiotic-Resistant Bacterial Pathogens. iScience 2022; 25:104121. [PMID: 35402883 PMCID: PMC8983348 DOI: 10.1016/j.isci.2022.104121] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
At its current rate, the rise of antimicrobial-resistant (AMR) infections is predicted to paralyze our industries and healthcare facilities while becoming the leading global cause of loss of human life. With limited new antibiotics on the horizon, we need to invest in alternative solutions. Bacteriophages (phages)-viruses targeting bacteria-offer a powerful alternative approach to tackle bacterial infections. Despite recent advances in using phages to treat recalcitrant AMR infections, the field lacks systematic development of phage therapies scalable to different applications. We propose a Phage Foundry framework to establish metrics for phage characterization and to fill the knowledge and technological gaps in phage therapeutics. Coordinated investment in AMR surveillance, sampling, characterization, and data sharing procedures will enable rational exploitation of phages for treatments. A fully realized Phage Foundry will enhance the sharing of knowledge, technology, and viral reagents in an equitable manner and will accelerate the biobased economy.
Collapse
Affiliation(s)
- Vivek K. Mutalik
- Innovative Genomics Institute, University of California, Berkeley, CA, USA
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Adam P. Arkin
- Innovative Genomics Institute, University of California, Berkeley, CA, USA
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
- Department of Bioengineering, University of California, Berkeley, CA, USA
| |
Collapse
|
16
|
Adler BA, Kazakov AE, Zhong C, Liu H, Kutter E, Lui LM, Nielsen TN, Carion H, Deutschbauer AM, Mutalik VK, Arkin AP. The genetic basis of phage susceptibility, cross-resistance and host-range in Salmonella. MICROBIOLOGY (READING, ENGLAND) 2021; 167. [PMID: 34910616 PMCID: PMC8744999 DOI: 10.1099/mic.0.001126] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Though bacteriophages (phages) are known to play a crucial role in bacterial fitness and virulence, our knowledge about the genetic basis of their interaction, cross-resistance and host-range is sparse. Here, we employed genome-wide screens in Salmonella enterica serovar Typhimurium to discover host determinants involved in resistance to eleven diverse lytic phages including four new phages isolated from a therapeutic phage cocktail. We uncovered 301 diverse host factors essential in phage infection, many of which are shared between multiple phages demonstrating potential cross-resistance mechanisms. We validate many of these novel findings and uncover the intricate interplay between RpoS, the virulence-associated general stress response sigma factor and RpoN, the nitrogen starvation sigma factor in phage cross-resistance. Finally, the infectivity pattern of eleven phages across a panel of 23 genome sequenced Salmonella strains indicates that additional constraints and interactions beyond the host factors uncovered here define the phage host range.
Collapse
Affiliation(s)
- Benjamin A Adler
- The UC Berkeley-UCSF Graduate Program in Bioengineering, Berkeley, California, USA.,Department of Bioengineering, University of California, Berkeley, Berkeley, California, USA.,Innovative Genomics Institute, University of California, Berkeley, California, USA
| | - Alexey E Kazakov
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Crystal Zhong
- Department of Bioengineering, University of California, Berkeley, Berkeley, California, USA
| | - Hualan Liu
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | | | - Lauren M Lui
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Torben N Nielsen
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Heloise Carion
- Department of Bioengineering, University of California, Berkeley, Berkeley, California, USA
| | - Adam M Deutschbauer
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA.,Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, California, USA
| | - Vivek K Mutalik
- Innovative Genomics Institute, University of California, Berkeley, California, USA.,Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Adam P Arkin
- Department of Bioengineering, University of California, Berkeley, Berkeley, California, USA.,Innovative Genomics Institute, University of California, Berkeley, California, USA.,Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| |
Collapse
|
17
|
Identification of a transcription factor, PunR, that regulates the purine and purine nucleoside transporter punC in E. coli. Commun Biol 2021; 4:991. [PMID: 34413462 PMCID: PMC8376909 DOI: 10.1038/s42003-021-02516-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 07/21/2021] [Indexed: 01/26/2023] Open
Abstract
Many genes in bacterial genomes are of unknown function, often referred to as y-genes. Recently, the analytic methods have divided bacterial transcriptomes into independently modulated sets of genes (iModulons). Functionally annotated iModulons that contain y-genes lead to testable hypotheses to elucidate y-gene function. The inversely correlated expression of a putative transporter gene, ydhC, relative to purine biosynthetic genes, has led to the hypothesis that it encodes a purine-related transporter and revealed a LysR-family regulator, YdhB, with a predicted 23-bp palindromic binding motif. RNA-Seq analysis of a ydhB knockout mutant confirmed the YdhB-dependent activation of ydhC in the presence of adenosine. The deletion of either the ydhC or the ydhB gene led to a substantially decreased growth rate for E. coli in minimal medium with adenosine, inosine, or guanosine as the nitrogen source. Taken together, we provide clear evidence that YdhB activates the expression of the ydhC gene that encodes a purine transporter in E. coli. We propose that the genes ydhB and ydhC be re-named as punR and punC, respectively. Rodionova et al. find that the putative transporter gene, ydhC and its regulator ydhB are involved in purine transportation and that the expression of the ydhC gene is activated by the YdhB in E. coli. The authors suggest renaming the regulator PunR and the transporter PunC, respectively.
Collapse
|
18
|
Carim S, Azadeh AL, Kazakov AE, Price MN, Walian PJ, Lui LM, Nielsen TN, Chakraborty R, Deutschbauer AM, Mutalik VK, Arkin AP. Systematic discovery of pseudomonad genetic factors involved in sensitivity to tailocins. THE ISME JOURNAL 2021; 15:2289-2305. [PMID: 33649553 PMCID: PMC8319346 DOI: 10.1038/s41396-021-00921-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 01/14/2021] [Accepted: 02/01/2021] [Indexed: 12/13/2022]
Abstract
Tailocins are bactericidal protein complexes produced by a wide variety of bacteria that kill closely related strains and may play a role in microbial community structure. Thanks to their high specificity, tailocins have been proposed as precision antibacterial agents for therapeutic applications. Compared to tailed phages, with whom they share an evolutionary and morphological relationship, bacterially produced tailocins kill their host upon production but producing strains display resistance to self-intoxication. Though lipopolysaccharide (LPS) has been shown to act as a receptor for tailocins, the breadth of factors involved in tailocin sensitivity, and the mechanisms behind resistance to self-intoxication, remain unclear. Here, we employed genome-wide screens in four non-model pseudomonads to identify mutants with altered fitness in the presence of tailocins produced by closely related pseudomonads. Our mutant screens identified O-antigen composition and display as most important in defining sensitivity to our tailocins. In addition, the screens suggest LPS thinning as a mechanism by which resistant strains can become more sensitive to tailocins. We validate many of these novel findings, and extend these observations of tailocin sensitivity to 130 genome-sequenced pseudomonads. This work offers insights into tailocin-bacteria interactions, informing the potential use of tailocins in microbiome manipulation and antibacterial therapy.
Collapse
Affiliation(s)
- Sean Carim
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, USA
| | - Ashley L Azadeh
- Innovative Genomics Institute, University of California, Berkeley, CA, USA
| | - Alexey E Kazakov
- Environmental Genomics and Systems Biology, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Morgan N Price
- Environmental Genomics and Systems Biology, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Peter J Walian
- Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Lauren M Lui
- Environmental Genomics and Systems Biology, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Torben N Nielsen
- Environmental Genomics and Systems Biology, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Romy Chakraborty
- Climate and Ecosystem Sciences, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Adam M Deutschbauer
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, USA
- Environmental Genomics and Systems Biology, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Vivek K Mutalik
- Innovative Genomics Institute, University of California, Berkeley, CA, USA.
- Environmental Genomics and Systems Biology, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
| | - Adam P Arkin
- Innovative Genomics Institute, University of California, Berkeley, CA, USA.
- Environmental Genomics and Systems Biology, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
- Department of Bioengineering, University of California, Berkeley, CA, USA.
| |
Collapse
|
19
|
Eng T, Banerjee D, Lau AK, Bowden E, Herbert RA, Trinh J, Prahl JP, Deutschbauer A, Tanjore D, Mukhopadhyay A. Engineering Pseudomonas putida for efficient aromatic conversion to bioproduct using high throughput screening in a bioreactor. Metab Eng 2021; 66:229-238. [PMID: 33964456 DOI: 10.1016/j.ymben.2021.04.015] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 04/30/2021] [Accepted: 04/30/2021] [Indexed: 12/18/2022]
Abstract
Pseudomonas putida KT2440 is an emerging biomanufacturing host amenable for use with renewable carbon streams including aromatics such as para-coumarate. We used a pooled transposon library disrupting nearly all (4,778) non-essential genes to characterize this microbe under common stirred-tank bioreactor parameters with quantitative fitness assays. Assessing differential fitness values by monitoring changes in mutant strain abundance identified 33 gene mutants with improved fitness across multiple stirred-tank bioreactor formats. Twenty-one deletion strains from this subset were reconstructed, including GacA, a regulator, TtgB, an ABC transporter, and PP_0063, a lipid A acyltransferase. Thirteen deletion strains with roles in varying cellular functions were evaluated for conversion of para-coumarate, to a heterologous bioproduct, indigoidine. Several mutants, such as the ΔgacA strain improved fitness in a bioreactor by 35 fold and showed an 8-fold improvement in indigoidine production (4.5 g/L, 0.29 g/g, 23% of maximum theoretical yield) from para-coumarate as the carbon source.
Collapse
Affiliation(s)
- Thomas Eng
- Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, 5885, Hollis Street, Emeryville, CA, USA; Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Rd, Berkeley, CA, USA
| | - Deepanwita Banerjee
- Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, 5885, Hollis Street, Emeryville, CA, USA; Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Rd, Berkeley, CA, USA
| | - Andrew K Lau
- Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, 5885, Hollis Street, Emeryville, CA, USA; Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Rd, Berkeley, CA, USA
| | - Emily Bowden
- Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, 5885, Hollis Street, Emeryville, CA, USA; Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Rd, Berkeley, CA, USA
| | - Robin A Herbert
- Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, 5885, Hollis Street, Emeryville, CA, USA; Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Rd, Berkeley, CA, USA
| | - Jessica Trinh
- Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, 5885, Hollis Street, Emeryville, CA, USA; Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Rd, Berkeley, CA, USA
| | - Jan-Philip Prahl
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Rd, Berkeley, CA, USA; Advanced Biofuels and Bioproducts Process Development Unit, Lawrence Berkeley National Laboratory, Hollis Street, Emeryville, CA, 5885, USA
| | - Adam Deutschbauer
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Rd, Berkeley, CA, USA
| | - Deepti Tanjore
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Rd, Berkeley, CA, USA; Advanced Biofuels and Bioproducts Process Development Unit, Lawrence Berkeley National Laboratory, Hollis Street, Emeryville, CA, 5885, USA
| | - Aindrila Mukhopadhyay
- Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, 5885, Hollis Street, Emeryville, CA, USA; Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Rd, Berkeley, CA, USA; Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Rd, Berkeley, CA, USA.
| |
Collapse
|
20
|
Zhu C, Du G, Zhang J, Xue C. A high-efficient strategy for combinatorial engineering paralogous gene family: A case study on histidine kinases in Clostridium. Biotechnol Bioeng 2021; 118:2770-2780. [PMID: 33871069 DOI: 10.1002/bit.27796] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 04/08/2021] [Accepted: 04/17/2021] [Indexed: 11/10/2022]
Abstract
Microorganisms harbor bulks of functionally similar or undefined genes, which belong to paralogous gene family. There is a necessity of exploring combinatorial or interactive functions of these genes, but conventional loss-of-function strategy with one-by-one rounds suffers extremely low efficiency for generating mutant libraries with all gene permutations. Here, taking histidine kinases (HKs) in Clostridium acetobutylicum as a proof-of-concept, we developed a multi-plasmid cotransformation strategy for generating all theoretical HKs combinations in one round. For five HKs with 31 theoretical combinations, the library containing 22 mutants within all the possible HKs-inactivated combinations was constructed with 11 days compared to 242 days by conventional strategy, while the other 9 combinations cannot survive. Six mutants with the enhanced butanol production and tolerance were obtained with changes of cell development during fermentation, one of which could produce 54.2% more butanol (56.4% more solvents), while the butanol production of other mutants was unchanged or decreased. The cotransformation strategy demonstrated potentials for fast exploring pleiotropic function of paralogous family genes in cell survival, cell development, and target product metabolism.
Collapse
Affiliation(s)
- Chao Zhu
- School of Bioengineering, Engineering Research Center of Application and Transformation for Synthetic Biology, Dalian University of Technology, Dalian, China.,Ningbo Institute of Dalian University of Technology, Ningbo, China
| | - Guangqing Du
- School of Bioengineering, Engineering Research Center of Application and Transformation for Synthetic Biology, Dalian University of Technology, Dalian, China.,Ningbo Institute of Dalian University of Technology, Ningbo, China
| | - Jie Zhang
- School of Bioengineering, Engineering Research Center of Application and Transformation for Synthetic Biology, Dalian University of Technology, Dalian, China
| | - Chuang Xue
- School of Bioengineering, Engineering Research Center of Application and Transformation for Synthetic Biology, Dalian University of Technology, Dalian, China.,Ningbo Institute of Dalian University of Technology, Ningbo, China
| |
Collapse
|
21
|
Lui LM, Majumder ELW, Smith HJ, Carlson HK, von Netzer F, Fields MW, Stahl DA, Zhou J, Hazen TC, Baliga NS, Adams PD, Arkin AP. Mechanism Across Scales: A Holistic Modeling Framework Integrating Laboratory and Field Studies for Microbial Ecology. Front Microbiol 2021; 12:642422. [PMID: 33841364 PMCID: PMC8024649 DOI: 10.3389/fmicb.2021.642422] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 02/22/2021] [Indexed: 11/13/2022] Open
Abstract
Over the last century, leaps in technology for imaging, sampling, detection, high-throughput sequencing, and -omics analyses have revolutionized microbial ecology to enable rapid acquisition of extensive datasets for microbial communities across the ever-increasing temporal and spatial scales. The present challenge is capitalizing on our enhanced abilities of observation and integrating diverse data types from different scales, resolutions, and disciplines to reach a causal and mechanistic understanding of how microbial communities transform and respond to perturbations in the environment. This type of causal and mechanistic understanding will make predictions of microbial community behavior more robust and actionable in addressing microbially mediated global problems. To discern drivers of microbial community assembly and function, we recognize the need for a conceptual, quantitative framework that connects measurements of genomic potential, the environment, and ecological and physical forces to rates of microbial growth at specific locations. We describe the Framework for Integrated, Conceptual, and Systematic Microbial Ecology (FICSME), an experimental design framework for conducting process-focused microbial ecology studies that incorporates biological, chemical, and physical drivers of a microbial system into a conceptual model. Through iterative cycles that advance our understanding of the coupling across scales and processes, we can reliably predict how perturbations to microbial systems impact ecosystem-scale processes or vice versa. We describe an approach and potential applications for using the FICSME to elucidate the mechanisms of globally important ecological and physical processes, toward attaining the goal of predicting the structure and function of microbial communities in chemically complex natural environments.
Collapse
Affiliation(s)
- Lauren M. Lui
- Division of Environmental Genomics and Systems Biology, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - Erica L.-W. Majumder
- Department of Bacteriology, University of Wisconsin–Madison, Madison, WI, United States
| | - Heidi J. Smith
- Center for Biofilm Engineering, Department of Microbiology and Immunology, Montana State University, Bozeman, MT, United States
| | - Hans K. Carlson
- Division of Environmental Genomics and Systems Biology, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - Frederick von Netzer
- Department of Civil and Environmental Engineering, University of Washington, Seattle, WA, United States
| | - Matthew W. Fields
- Center for Biofilm Engineering, Department of Microbiology and Immunology, Montana State University, Bozeman, MT, United States
| | - David A. Stahl
- Department of Civil and Environmental Engineering, University of Washington, Seattle, WA, United States
| | - Jizhong Zhou
- Institute for Environmental Genomics, Department of Microbiology & Plant Biology, School of Civil Engineering and Environmental Sciences, University of Oklahoma, Norman, OK, United States
| | - Terry C. Hazen
- Department of Civil and Environmental Engineering, University of Tennessee, Knoxville, Knoxville, TN, United States
| | | | - Paul D. Adams
- Division of Environmental Genomics and Systems Biology, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
- Department of Bioengineering, University of California, Berkeley, Berkeley, CA, United States
| | - Adam P. Arkin
- Division of Environmental Genomics and Systems Biology, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
- Department of Bioengineering, University of California, Berkeley, Berkeley, CA, United States
| |
Collapse
|
22
|
Mutalik VK, Adler BA, Rishi HS, Piya D, Zhong C, Koskella B, Kutter EM, Calendar R, Novichkov PS, Price MN, Deutschbauer AM, Arkin AP. High-throughput mapping of the phage resistance landscape in E. coli. PLoS Biol 2020; 18:e3000877. [PMID: 33048924 PMCID: PMC7553319 DOI: 10.1371/journal.pbio.3000877] [Citation(s) in RCA: 91] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Accepted: 09/08/2020] [Indexed: 12/18/2022] Open
Abstract
Bacteriophages (phages) are critical players in the dynamics and function of microbial communities and drive processes as diverse as global biogeochemical cycles and human health. Phages tend to be predators finely tuned to attack specific hosts, even down to the strain level, which in turn defend themselves using an array of mechanisms. However, to date, efforts to rapidly and comprehensively identify bacterial host factors important in phage infection and resistance have yet to be fully realized. Here, we globally map the host genetic determinants involved in resistance to 14 phylogenetically diverse double-stranded DNA phages using two model Escherichia coli strains (K-12 and BL21) with known sequence divergence to demonstrate strain-specific differences. Using genome-wide loss-of-function and gain-of-function genetic technologies, we are able to confirm previously described phage receptors as well as uncover a number of previously unknown host factors that confer resistance to one or more of these phages. We uncover differences in resistance factors that strongly align with the susceptibility of K-12 and BL21 to specific phage. We also identify both phage-specific mechanisms, such as the unexpected role of cyclic-di-GMP in host sensitivity to phage N4, and more generic defenses, such as the overproduction of colanic acid capsular polysaccharide that defends against a wide array of phages. Our results indicate that host responses to phages can occur via diverse cellular mechanisms. Our systematic and high-throughput genetic workflow to characterize phage-host interaction determinants can be extended to diverse bacteria to generate datasets that allow predictive models of how phage-mediated selection will shape bacterial phenotype and evolution. The results of this study and future efforts to map the phage resistance landscape will lead to new insights into the coevolution of hosts and their phage, which can ultimately be used to design better phage therapeutic treatments and tools for precision microbiome engineering.
Collapse
Affiliation(s)
- Vivek K. Mutalik
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
- Innovative Genomics Institute, Berkeley, California, United States of America
| | - Benjamin A. Adler
- Innovative Genomics Institute, Berkeley, California, United States of America
- Department of Bioengineering, University of California – Berkeley, Berkeley, California, United States of America
| | - Harneet S. Rishi
- Biophysics Graduate Group, University of California – Berkeley, Berkeley, California, United States of America
- Designated Emphasis Program in Computational and Genomic Biology, University of California – Berkeley, Berkeley, California, United States of America
| | - Denish Piya
- Innovative Genomics Institute, Berkeley, California, United States of America
- Department of Bioengineering, University of California – Berkeley, Berkeley, California, United States of America
| | - Crystal Zhong
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
| | - Britt Koskella
- Department of Integrative Biology, University of California – Berkeley, Berkeley, California, United States of America
| | | | - Richard Calendar
- Department of Molecular and Cell Biology, University of California – Berkeley, Berkeley, California, United States of America
| | - Pavel S. Novichkov
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
| | - Morgan N. Price
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
| | - Adam M. Deutschbauer
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
- Innovative Genomics Institute, Berkeley, California, United States of America
- Department of Plant and Microbial Biology, University of California – Berkeley, Berkeley, California, United States of America
| | - Adam P. Arkin
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
- Innovative Genomics Institute, Berkeley, California, United States of America
- Department of Bioengineering, University of California – Berkeley, Berkeley, California, United States of America
- Biophysics Graduate Group, University of California – Berkeley, Berkeley, California, United States of America
- Designated Emphasis Program in Computational and Genomic Biology, University of California – Berkeley, Berkeley, California, United States of America
| |
Collapse
|
23
|
High-throughput screening for efficient microbial biotechnology. Curr Opin Biotechnol 2020; 64:141-150. [DOI: 10.1016/j.copbio.2020.02.019] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 02/21/2020] [Accepted: 02/27/2020] [Indexed: 01/25/2023]
|
24
|
Cain AK, Barquist L, Goodman AL, Paulsen IT, Parkhill J, van Opijnen T. A decade of advances in transposon-insertion sequencing. Nat Rev Genet 2020; 21:526-540. [PMID: 32533119 PMCID: PMC7291929 DOI: 10.1038/s41576-020-0244-x] [Citation(s) in RCA: 251] [Impact Index Per Article: 50.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/24/2020] [Indexed: 01/12/2023]
Abstract
It has been 10 years since the introduction of modern transposon-insertion sequencing (TIS) methods, which combine genome-wide transposon mutagenesis with high-throughput sequencing to estimate the fitness contribution or essentiality of each genetic component in a bacterial genome. Four TIS variations were published in 2009: transposon sequencing (Tn-Seq), transposon-directed insertion site sequencing (TraDIS), insertion sequencing (INSeq) and high-throughput insertion tracking by deep sequencing (HITS). TIS has since become an important tool for molecular microbiologists, being one of the few genome-wide techniques that directly links phenotype to genotype and ultimately can assign gene function. In this Review, we discuss the recent applications of TIS to answer overarching biological questions. We explore emerging and multidisciplinary methods that build on TIS, with an eye towards future applications. In this Review, several experts discuss progress in the decade since the development of transposon-based approaches for bacterial genetic screens. They describe how advances in both experimental technologies and analytical strategies are resulting in insights into diverse biological processes.
Collapse
Affiliation(s)
- Amy K Cain
- ARC Centre of Excellence in Synthetic Biology, Department of Molecular Sciences, Macquarie University, Sydney, NSW, Australia.
| | - Lars Barquist
- Helmholtz Institute for RNA-based Infection Research, Helmholtz Centre for Infection Research, Würzburg, Germany.,Faculty of Medicine, University of Würzburg, Würzburg, Germany
| | - Andrew L Goodman
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT, USA.,Microbial Sciences Institute, Yale University, New Haven, CT, USA
| | - Ian T Paulsen
- ARC Centre of Excellence in Synthetic Biology, Department of Molecular Sciences, Macquarie University, Sydney, NSW, Australia
| | - Julian Parkhill
- Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | | |
Collapse
|
25
|
Zehentner B, Ardern Z, Kreitmeier M, Scherer S, Neuhaus K. A Novel pH-Regulated, Unusual 603 bp Overlapping Protein Coding Gene pop Is Encoded Antisense to ompA in Escherichia coli O157:H7 (EHEC). Front Microbiol 2020; 11:377. [PMID: 32265854 PMCID: PMC7103648 DOI: 10.3389/fmicb.2020.00377] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 02/20/2020] [Indexed: 12/23/2022] Open
Abstract
Antisense transcription is well known in bacteria. However, translation of antisense RNAs is typically not considered, as the implied overlapping coding at a DNA locus is assumed to be highly improbable. Therefore, such overlapping genes are systematically excluded in prokaryotic genome annotation. Here we report an exceptional 603 bp long open reading frame completely embedded in antisense to the gene of the outer membrane protein ompA. An active σ70 promoter, transcription start site (TSS), Shine-Dalgarno motif and rho-independent terminator were experimentally validated, providing evidence that this open reading frame has all the structural features of a functional gene. Furthermore, ribosomal profiling revealed translation of the mRNA, the protein was detected in Western blots and a pH-dependent phenotype conferred by the protein was shown in competitive overexpression growth experiments of a translationally arrested mutant versus wild type. We designate this novel gene pop (pH-regulated overlapping protein-coding gene), thus adding another example to the growing list of overlapping, protein coding genes in bacteria.
Collapse
Affiliation(s)
- Barbara Zehentner
- Chair for Microbial Ecology, Technical University of Munich, Freising, Germany
| | - Zachary Ardern
- Chair for Microbial Ecology, Technical University of Munich, Freising, Germany
| | - Michaela Kreitmeier
- Chair for Microbial Ecology, Technical University of Munich, Freising, Germany
| | - Siegfried Scherer
- Chair for Microbial Ecology, Technical University of Munich, Freising, Germany
- ZIEL – Institute for Food & Health, Technical University of Munich, Freising, Germany
| | - Klaus Neuhaus
- ZIEL – Institute for Food & Health, Technical University of Munich, Freising, Germany
- Core Facility Microbiome, ZIEL – Institute for Food & Health, Technical University of Munich, Freising, Germany
| |
Collapse
|
26
|
Fabian BK, Tetu SG, Paulsen IT. Application of Transposon Insertion Sequencing to Agricultural Science. FRONTIERS IN PLANT SCIENCE 2020; 11:291. [PMID: 32256512 PMCID: PMC7093568 DOI: 10.3389/fpls.2020.00291] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Accepted: 02/26/2020] [Indexed: 06/11/2023]
Abstract
Many plant-associated bacteria have the ability to positively affect plant growth and there is growing interest in utilizing such bacteria in agricultural settings to reduce reliance on pesticides and fertilizers. However, our capacity to utilize microbes in this way is currently limited due to patchy understanding of bacterial-plant interactions at a molecular level. Traditional methods of studying molecular interactions have sought to characterize the function of one gene at a time, but the slow pace of this work means the functions of the vast majority of bacterial genes remain unknown or poorly understood. New approaches to improve and speed up investigations into the functions of bacterial genes in agricultural systems will facilitate efforts to optimize microbial communities and develop microbe-based products. Techniques enabling high-throughput gene functional analysis, such as transposon insertion sequencing analyses, have great potential to be widely applied to determine key aspects of plant-bacterial interactions. Transposon insertion sequencing combines saturation transposon mutagenesis and high-throughput sequencing to simultaneously investigate the function of all the non-essential genes in a bacterial genome. This technique can be used for both in vitro and in vivo studies to identify genes involved in microbe-plant interactions, stress tolerance and pathogen virulence. The information provided by such investigations will rapidly accelerate the rate of bacterial gene functional determination and provide insights into the genes and pathways that underlie biotic interactions, metabolism, and survival of agriculturally relevant bacteria. This knowledge could be used to select the most appropriate plant growth promoting bacteria for a specific set of conditions, formulating crop inoculants, or developing crop protection products. This review provides an overview of transposon insertion sequencing, outlines how this approach has been applied to study plant-associated bacteria, and proposes new applications of these techniques for the benefit of agriculture.
Collapse
Affiliation(s)
- Belinda K. Fabian
- ARC Centre of Excellence in Synthetic Biology, Macquarie University, Sydney, NSW, Australia
- Department of Molecular Sciences, Macquarie University, Sydney, NSW, Australia
| | - Sasha G. Tetu
- ARC Centre of Excellence in Synthetic Biology, Macquarie University, Sydney, NSW, Australia
- Department of Molecular Sciences, Macquarie University, Sydney, NSW, Australia
| | - Ian T. Paulsen
- ARC Centre of Excellence in Synthetic Biology, Macquarie University, Sydney, NSW, Australia
- Department of Molecular Sciences, Macquarie University, Sydney, NSW, Australia
| |
Collapse
|
27
|
Pseudomonas putida in the quest of programmable chemistry. Curr Opin Biotechnol 2019; 59:111-121. [DOI: 10.1016/j.copbio.2019.03.012] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 02/15/2019] [Accepted: 03/12/2019] [Indexed: 11/19/2022]
|
28
|
Fernández‐Cabezón L, Cros A, Nikel PI. Evolutionary Approaches for Engineering Industrially Relevant Phenotypes in Bacterial Cell Factories. Biotechnol J 2019; 14:e1800439. [DOI: 10.1002/biot.201800439] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Revised: 04/08/2019] [Indexed: 12/12/2022]
Affiliation(s)
- Lorena Fernández‐Cabezón
- The Novo Nordisk Foundation Center for BiosustainabilityTechnical University of Denmark 2800 Kongens Lyngby Denmark
| | - Antonin Cros
- The Novo Nordisk Foundation Center for BiosustainabilityTechnical University of Denmark 2800 Kongens Lyngby Denmark
| | - Pablo I. Nikel
- The Novo Nordisk Foundation Center for BiosustainabilityTechnical University of Denmark 2800 Kongens Lyngby Denmark
| |
Collapse
|
29
|
Tang L. Characterizing gain-of-function phenotypes. Nat Methods 2019; 16:216. [DOI: 10.1038/s41592-019-0348-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|