1
|
Liu S, Zhou J, Yu L, Liu Y, Huang Y, Ouyang Y, Liu GK, Xu XH, Shibata N. Nitrogen-Based Organofluorine Functional Molecules: Synthesis and Applications. Chem Rev 2025; 125:4603-4764. [PMID: 40261821 DOI: 10.1021/acs.chemrev.4c00661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/24/2025]
Abstract
Fluorine and nitrogen form a successful partnership in organic synthesis, medicinal chemistry, and material sciences. Although fluorine-nitrogen chemistry has a long and rich history, this field has received increasing interest and made remarkable progress over the past two decades, driven by recent advancements in transition metal and organocatalysis and photochemistry. This review, emphasizing contributions from 2015 to 2023, aims to update the state of the art of the synthesis and applications of nitrogen-based organofluorine functional molecules in organic synthesis and medicinal chemistry. In dedicated sections, we first focus on fluorine-containing reagents organized according to the type of fluorine-containing groups attached to nitrogen, including N-F, N-RF, N-SRF, and N-ORF. This review also covers nitrogen-linked fluorine-containing building blocks, catalysts, pharmaceuticals, and agrochemicals, underlining these components' broad applicability and growing importance in modern chemistry.
Collapse
Affiliation(s)
- Shuai Liu
- College of Chemistry and Chemical Engineering, Donghua University, 2999 North Renmin Road, Shanghai 201620, China
- National Engineering Research Center for Carbohydrate Synthesis, Jiangxi Normal University, Nanchang 330022, China
| | - Jun Zhou
- Department of Nanopharmaceutical Sciences & Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Gokiso, Showa-ku, Nagoya 466-8555, Japan
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
| | - Lu Yu
- Key Laboratory of Fluorine and Nitrogen Chemistry and Advanced Materials, Shanghai Institute of Organic Chemistry, Chinese Academy of Science, 345 Lingling Lu, Shanghai 200032, China
| | - Yingle Liu
- School of Chemistry and Environmental Engineering, Sichuan University of Science&Engineering, 180 Xueyuan Street, Huixing Lu, Zigong, Sichuan 643000, China
| | - Yangen Huang
- College of Chemistry and Chemical Engineering, Donghua University, 2999 North Renmin Road, Shanghai 201620, China
| | - Yao Ouyang
- Key Laboratory of Fluorine and Nitrogen Chemistry and Advanced Materials, Shanghai Institute of Organic Chemistry, Chinese Academy of Science, 345 Lingling Lu, Shanghai 200032, China
| | - Guo-Kai Liu
- School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, China
| | - Xiu-Hua Xu
- Key Laboratory of Fluorine and Nitrogen Chemistry and Advanced Materials, Shanghai Institute of Organic Chemistry, Chinese Academy of Science, 345 Lingling Lu, Shanghai 200032, China
| | - Norio Shibata
- Department of Nanopharmaceutical Sciences & Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Gokiso, Showa-ku, Nagoya 466-8555, Japan
| |
Collapse
|
2
|
Tao L, Lei Z, Zhao L, Ji T, Lim YH, Roane JP, Hu B, Wen X. CuOTf(Tol) 1/2-Catalyzed O-Trifluoroethylation of Alcohols with 2,2,2-Trifluorodiazoethane. Org Lett 2025; 27:4485-4490. [PMID: 40257062 DOI: 10.1021/acs.orglett.5c00942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/22/2025]
Abstract
Trifluoroethyl groups are important in medicinal chemistry since they can impart desirable properties, such as enhanced lipophilicity, metabolic stability, or binding affinity. A practical and scalable protocol has been developed for O-trifluoroethylation of alcohols with 2,2,2-trifluorodiazoethane using Cu(OTf)(Tol)1/2 catalyst under mild conditions. This novel approach demonstrated high reactivity and broad substrate scope toward a diverse range of alcohols, ranging from fused and bridged ring systems, linear alcohols, to even sugar motifs, which makes the protocol valuable for medicinal chemistry, material science, and other areas where the introduction of trifluoroethyl groups would be beneficial.
Collapse
Affiliation(s)
- Leyi Tao
- RCS, WuXi AppTec Co., Ltd., Shanghai 200131, China
| | - Zhiyu Lei
- RCS, WuXi AppTec Co., Ltd., Shanghai 200131, China
| | - Lianyun Zhao
- Merck & Co., Inc., Kenilworth, New Jersey 07033, United States
| | - Tao Ji
- RCS, WuXi AppTec Co., Ltd., Shanghai 200131, China
| | - Yeon-Hee Lim
- Department of Discovery Chemistry, Merck &Co., Inc., South San Francisco, California 94080, United States
| | - James Patrick Roane
- Department of Discovery Chemistry, Merck &Co., Inc., South San Francisco, California 94080, United States
| | - Bin Hu
- RCS, WuXi AppTec Co., Ltd., Shanghai 200131, China
| | - Xin Wen
- Department of Discovery Chemistry, Merck &Co., Inc., South San Francisco, California 94080, United States
| |
Collapse
|
3
|
Singh SP, Chaudhary U, Daróczi A, Sharma I. Fe(OTf)3 or Photosensitizer-free blue light activated diazo-thioglycoside donors for Iterative and stereoselective glycosylations. Nat Commun 2025; 16:3651. [PMID: 40258854 PMCID: PMC12012106 DOI: 10.1038/s41467-025-56445-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 01/20/2025] [Indexed: 04/23/2025] Open
Abstract
Conventional methods for thioglycoside activation often rely on precious and toxic platinum group metals. Here, we report a catalytic glycosylation strategy employing diazo-thioglycoside donors activated by earth-abundant iron or photosensitizer-free blue light conditions. It confers orthogonal reactivity relative to most glycosyl donors, including widely used thioglycosides and alkyne-based donors, thereby enabling one-pot orthogonal synthesis of glycans. The Thorpe-Ingold-like effect drives the proximity of iron- or blue-light-generated carbenes to the sulfur atom of thioglycosides. This approach accommodates diverse protecting groups and nucleophiles. It applies to various glycosyl donors derived from glucose, mannose, galactose, rhamnose, xylose, lactose, 2-deoxyamino glucose, and furanose derivatives such as ribose and arabinose. Moreover, we demonstrate the robustness of this methodology through challenging 1,2-cis furanosides, late-stage modifications of biomolecules like cholesterol, and the drug simvastatin on a gram scale, along with the iterative synthesis of challenging hexasaccharides.
Collapse
Affiliation(s)
- Surya Pratap Singh
- Department of Chemistry and Biochemistry, University of Oklahoma, 101 Stephenson Parkway, Norman, OK, 73019, USA
| | - Umesh Chaudhary
- Department of Chemistry and Biochemistry, University of Oklahoma, 101 Stephenson Parkway, Norman, OK, 73019, USA
| | - Adrienne Daróczi
- Department of Chemistry and Biochemistry, University of Oklahoma, 101 Stephenson Parkway, Norman, OK, 73019, USA
| | - Indrajeet Sharma
- Department of Chemistry and Biochemistry, University of Oklahoma, 101 Stephenson Parkway, Norman, OK, 73019, USA.
| |
Collapse
|
4
|
Li Z, Liu Z, Sivaguru P, Yang Y, Murali K, Wang K, Bi X. Silver-Catalyzed Doyle-Kirmse Reaction of Allyl Sulfides with Vinyl Triftosylhydrazones. Org Lett 2025; 27:4057-4062. [PMID: 40190181 DOI: 10.1021/acs.orglett.5c01059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2025]
Abstract
Here, we report a general and practical Doyle-Kirmse reaction of allyl/propargyl sulfides with donor-only vinyl carbenes generated in situ from vinyl triftosylhydrazones in the presence of a silver catalyst. This protocol features mild conditions, exhibits a broad substrate scope and exceptional functional group tolerance, and provides corresponding 1,5-dienyl and 1,4-enallenyl sulfides in high yields. Moreover, gram-scale synthesis, late-stage modifications of complex molecules, and post-synthetic transformations were performed to demonstrate the applicability of this protocol.
Collapse
Affiliation(s)
- Ziying Li
- Department of Chemistry, Northeast Normal University, Changchun 130024, China
| | - Zhaohong Liu
- Department of Chemistry, Northeast Normal University, Changchun 130024, China
| | | | - Yong Yang
- Department of Chemistry, Northeast Normal University, Changchun 130024, China
| | - Karunanidhi Murali
- Department of Chemistry, Northeast Normal University, Changchun 130024, China
| | - Kuan Wang
- Department of Chemistry, Northeast Normal University, Changchun 130024, China
| | - Xihe Bi
- Department of Chemistry, Northeast Normal University, Changchun 130024, China
- State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, China
| |
Collapse
|
5
|
Huang X, Fang D, Wang X, Wang M, Liao J. α,α-Difluorinated Allylsulfones: gem-Difluoroethylenyl Reagents for Synthesis of Fluorinated Chiral α-Quaternary Amino Acids. Org Lett 2025; 27:3338-3343. [PMID: 40130593 DOI: 10.1021/acs.orglett.5c00625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2025]
Abstract
Among numerous fluorine-containing molecules, chiral gem-difluoroethylenes (C═CF2) exhibited unique properties in agrochemicals, pharmaceuticals, and materials science. However, the general synthetic methods were limited to the functionalization/defluorination of trifluoromethylalkenes. Here, we disclose a new type of difluoroethylenyl reagent, α,α-difluoro allylsulfones, which allows highly enantioselective Cu-catalyzed desulfonylative SN2' substitution with benzylideneamino esters. This protocol presents a novel strategy for the construction of diversified chiral α-quaternary amino acid derivatives containing a gem-difluoroethylene moiety with excellent results (up to 86% yield, generally 90-98% ee). The ease of synthesis of α,α-difluoro allylsulfones, synthetic applications of this protocol, and transformations of products revealed the potential utility of this chemistry.
Collapse
Affiliation(s)
- Xiang Huang
- Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu 610299, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Dongmei Fang
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610213, China
| | - Xihong Wang
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610213, China
| | - Min Wang
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610213, China
| | - Jian Liao
- Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu 610299, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610213, China
| |
Collapse
|
6
|
Zhang X, Tian T, Liao P, Liu Z, Murali K, Bi X. Copper-Catalyzed Cross-Coupling of Bicyclobutanes with Triftosylhydrazone Leading to Skipped Dienes. Org Lett 2025; 27:2300-2304. [PMID: 40040367 DOI: 10.1021/acs.orglett.4c04519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2025]
Abstract
Here, we report a protocol for the synthesis of skipped dienes through the cross-coupling of bicyclo[1.1.0]butanes with trifluoromethyl triftosylhydrazones. The reaction is run using TpBr3Cu(NCMe) as a catalyst to give access to a library of trifluoromethylated skipped dienes (32 examples, ≤98% yield) with excellent E/Z selectivity under mild and operationally safe conditions. The presented methods proved to be compatible with various functionalized bicyclo[1.1.0]butanes and triftosylhydrazones.
Collapse
Affiliation(s)
- Xiaolong Zhang
- Department of Chemistry, Northeast Normal University, Changchun 130024, China
| | - Tian Tian
- Department of Chemistry, Northeast Normal University, Changchun 130024, China
| | - Peiqiu Liao
- Department of Chemistry, Northeast Normal University, Changchun 130024, China
| | - Zhaohong Liu
- Department of Chemistry, Northeast Normal University, Changchun 130024, China
| | - Karunanidhi Murali
- Department of Chemistry, Northeast Normal University, Changchun 130024, China
| | - Xihe Bi
- Department of Chemistry, Northeast Normal University, Changchun 130024, China
- State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, China
| |
Collapse
|
7
|
Zhang X, Sivaguru P, Pan Y, Wang N, Zhang W, Bi X. The Carbene Chemistry of N-Sulfonyl Hydrazones: The Past, Present, and Future. Chem Rev 2025; 125:1049-1190. [PMID: 39792453 DOI: 10.1021/acs.chemrev.4c00742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
Abstract
N-Sulfonyl hydrazones have been extensively used as operationally safe carbene precursors in modern organic synthesis due to their ready availability, facile functionalization, and environmental benignity. Over the past two decades, there has been tremendous progress in the carbene chemistry of N-sulfonyl hydrazones in the presence of transition metal catalysts, under metal-free conditions, or using photocatalysts under photoirradiation conditions. Many carbene transfer reactions of N-sulfonyl hydrazones are unique and cannot be achieved by any alternative methods. The discovery of novel N-sulfonyl hydrazones and the development of highly enantioselective new reactions and skeletal editing reactions represent the notable recent achievements in the carbene chemistry of N-sulfonyl hydrazones. This review describes the overall progress made in the carbene chemistry of N-sulfonyl hydrazones, organized based on reaction types, spotlighting the current state-of-the-art and remaining challenges to be addressed in the future. Special emphasis is devoted to identifying, describing, and comparing the scope and limitations of current methodologies, key mechanistic scenarios, and potential applications in the synthesis of complex molecules.
Collapse
Affiliation(s)
- Xiaolong Zhang
- Department of Chemistry, Northeast Normal University, Changchun 130024, China
| | | | - Yongzhen Pan
- Department of Chemistry, Northeast Normal University, Changchun 130024, China
| | - Nan Wang
- Department of Chemistry, Northeast Normal University, Changchun 130024, China
| | - Wenjie Zhang
- Department of Chemistry, Northeast Normal University, Changchun 130024, China
| | - Xihe Bi
- Department of Chemistry, Northeast Normal University, Changchun 130024, China
| |
Collapse
|
8
|
Liu S, Yang Y, Song Q, Liu Z, Sivaguru P, Zhang Y, de Ruiter G, Anderson EA, Bi X. Halogencarbene-free Ciamician-Dennstedt single-atom skeletal editing. Nat Commun 2024; 15:9998. [PMID: 39557879 PMCID: PMC11574194 DOI: 10.1038/s41467-024-54379-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 11/10/2024] [Indexed: 11/20/2024] Open
Abstract
Single-atom skeletal editing is an increasingly powerful tool for scaffold hopping-based drug discovery. However, the insertion of a functionalized carbon atom into heteroarenes remains rare, especially when performed in complex chemical settings. Despite more than a century of research, Ciamician-Dennstedt (C-D) rearrangement remains limited to halocarbene precursors. Herein, we report a general methodology for the Ciamician-Dennstedt reaction using α-halogen-free carbenes generated in situ from N-triftosylhydrazones. This one-pot, two-step protocol enables the insertion of various carbenes, including those previously unexplored in C-D skeletal editing chemistry, into indoles/pyrroles scaffolds to access 3-functionalized quinolines/pyridines. Mechanistic studies reveal a pathway involving the intermediacy of a 1,4-dihydroquinoline intermediate, which could undergo oxidative aromatization or defluorinative aromatization to form different carbon-atom insertion products.
Collapse
Affiliation(s)
- Shaopeng Liu
- Department of Chemistry, Northeast Normal University, Changchun, China
| | - Yong Yang
- Department of Chemistry, Northeast Normal University, Changchun, China
| | - Qingmin Song
- Department of Chemistry, Northeast Normal University, Changchun, China
| | - Zhaohong Liu
- Department of Chemistry, Northeast Normal University, Changchun, China.
| | | | - Yifan Zhang
- Department of Chemistry, Northeast Normal University, Changchun, China
| | - Graham de Ruiter
- Schulich Faculty of Chemistry, Technion-Israel Institute of Technology, Haifa, Israel
| | - Edward A Anderson
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Oxford, UK.
| | - Xihe Bi
- Department of Chemistry, Northeast Normal University, Changchun, China.
- State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin, China.
| |
Collapse
|
9
|
Hu MC, Zhou HT, Fang YC, Zhang LR, Cui BD, Chen YZ, Bai M. In situ generated CF 3CHN 2 with 3-ylideneoxindoles to access CF 3-containing pyrazolo[1,5- c]quinazolines derivatives. RSC Adv 2024; 14:36410-36415. [PMID: 39545173 PMCID: PMC11562030 DOI: 10.1039/d4ra06651k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Accepted: 10/31/2024] [Indexed: 11/17/2024] Open
Abstract
Toward a selective and facile method for the synthesis of CF3-containing pyrazolo[1,5-c]quinazolines, we developed a [3 + 2] cycloaddition/1,3-H shift/rearrangement/dehydrogenation cascade involving in situ generated CF3CHN2 and 3-ylideneoxindoles with DBU as a base. The reaction is distinguished by its mild conditions, metal-free process, operational simplicity, and broad functional group tolerance, thus presenting a convenient protocol for the construction of pyrazolo[1,5-c]quinazolines that are of interest in medicinal chemistry.
Collapse
Affiliation(s)
- Ming-Cheng Hu
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, School of Pharmacy, Zunyi Medical University Zunyi 563000 China
| | - Hai-Tao Zhou
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, School of Pharmacy, Zunyi Medical University Zunyi 563000 China
| | - Yu-Chen Fang
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, School of Pharmacy, Zunyi Medical University Zunyi 563000 China
| | - Li-Ren Zhang
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, School of Pharmacy, Zunyi Medical University Zunyi 563000 China
| | - Bao-Dong Cui
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, School of Pharmacy, Zunyi Medical University Zunyi 563000 China
- Key Laboratory of Basic Pharmacology of Ministry of Education, Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University Zunyi 563000 China
| | - Yong-Zheng Chen
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, School of Pharmacy, Zunyi Medical University Zunyi 563000 China
- Key Laboratory of Basic Pharmacology of Ministry of Education, Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University Zunyi 563000 China
| | - Mei Bai
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, School of Pharmacy, Zunyi Medical University Zunyi 563000 China
- Key Laboratory of Basic Pharmacology of Ministry of Education, Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University Zunyi 563000 China
| |
Collapse
|
10
|
Du Y, Mei H, Makarem A, Javahershenas R, Soloshonok VA, Han J. Copper-catalyzed multicomponent reaction of β-trifluoromethyl β-diazo esters enabling the synthesis of β-trifluoromethyl N, N-diacyl-β-amino esters. Beilstein J Org Chem 2024; 20:212-219. [PMID: 38318462 PMCID: PMC10840549 DOI: 10.3762/bjoc.20.21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 01/23/2024] [Indexed: 02/07/2024] Open
Abstract
An efficient multicomponent reaction of newly designed β-trifluoromethyl β-diazo esters, acetonitrile, and carboxylic acids via an interrupted esterification process under copper-catalyzed conditions has been developed, which affords various unsymmetrical β-trifluoromethyl N,N-diacyl-β-amino esters in good to excellent yields. The reaction features mild conditions, a wide scope of β-amino esters and carboxylic acids, and also applicability to large-scale synthesis, thus providing an efficient way for the synthesis of β-trifluoromethyl β-diacylamino esters. Furthermore, this reaction represents the first example of a Mumm rearrangement of β-trifluoromethyl β-diazo esters.
Collapse
Affiliation(s)
- Youlong Du
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Haibo Mei
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Ata Makarem
- Department of Chemistry, University of Hamburg, Martin-Luther-King-Platz 6, 20146 Hamburg, Germany
| | - Ramin Javahershenas
- Department of Organic Chemistry, Faculty of Chemistry, Urmia University, Urmia, Iran
| | - Vadim A Soloshonok
- Department of Organic Chemistry I, Faculty of Chemistry, University of the Basque Country (UPV/EHU), Paseo Manuel Lardizábal 3, San Sebastián, 20018, Spain
- IKERBASQUE, Basque Foundation for Science, Alameda Urquijo 36-5, Plaza Bizkaia, 48011 Bilbao, Spain
| | - Jianlin Han
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|
11
|
Lee WCC, Wang DS, Zhu Y, Zhang XP. Iron(III)-based metalloradical catalysis for asymmetric cyclopropanation via a stepwise radical mechanism. Nat Chem 2023; 15:1569-1580. [PMID: 37679462 PMCID: PMC10842623 DOI: 10.1038/s41557-023-01317-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 08/08/2023] [Indexed: 09/09/2023]
Abstract
Metalloradical catalysis (MRC) exploits the metal-centred radicals present in open-shell metal complexes as one-electron catalysts for the generation of metal-stabilized organic radicals-key intermediates that control subsequent one-electron homolytic reactions. Cobalt(II) complexes of porphyrins, as stable 15e-metalloradicals with a well-defined low-spin d7 configuration, have dominated the ongoing development of MRC. Here, to broaden MRC beyond the use of Co(II)-based metalloradical catalysts, we describe systematic studies that establish the operation of Fe(III)-based MRC and demonstrate an initial application for asymmetric radical transformations. Specifically, we report that five-coordinate iron(III) complexes of porphyrins with an axial ligand, which represent another family of stable 15e-metalloradicals with a d5 configuration, are potent metalloradical catalysts for olefin cyclopropanation with different classes of diazo compounds via a stepwise radical mechanism. This work lays a foundation and mechanistic blueprint for future exploration of Fe(III)-based MRC towards the discovery of diverse stereoselective radical reactions.
Collapse
Affiliation(s)
- Wan-Chen Cindy Lee
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, MA, USA
| | - Duo-Sheng Wang
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, MA, USA
| | - Yiling Zhu
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, MA, USA
| | - X Peter Zhang
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, MA, USA.
| |
Collapse
|
12
|
Trifonov AL, Dilman AD. gem-Difluoroolefination of Amides. Chemistry 2023:e202303144. [PMID: 37815941 DOI: 10.1002/chem.202303144] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 10/10/2023] [Accepted: 10/10/2023] [Indexed: 10/12/2023]
Abstract
A metal-free one-pot process for the gem-difluoroolefination of amides is described. The reaction is based on interaction of generated in situ α-chloroiminium salts with difluorinated phosphorus ylide formed from difluorocarbene and triphenylphosphine. The olefination involves nucleophile-assisted dephosphorylation and proceeds within one hour at low temperature. The gem-difluoroenamines were used in further transformations leading to a variety of fluoroalkylated amines.
Collapse
Affiliation(s)
- Alexey L Trifonov
- N. D. Zelinsky Institute of Organic Chemistry, 119991, Moscow, Leninsky prosp. 47, Russian Federation
| | - Alexander D Dilman
- N. D. Zelinsky Institute of Organic Chemistry, 119991, Moscow, Leninsky prosp. 47, Russian Federation
| |
Collapse
|
13
|
Xu WY, Xu ZY, Zhang ZK, Gong TJ, Fu Y. Tunable Synthesis of Monofluoroalkenes and Gem-Difluoroalkenes via Solvent-Controlled Rhodium-Catalyzed Arylation of 1-Bromo-2,2-difluoroethylene. Angew Chem Int Ed Engl 2023; 62:e202310125. [PMID: 37589202 DOI: 10.1002/anie.202310125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 08/08/2023] [Accepted: 08/16/2023] [Indexed: 08/18/2023]
Abstract
Divergent synthesis of fluorine-containing scaffolds starting from a suite of raw materials is an intriguing topic. Herein, we report the solvent-controlled rhodium-catalyzed tunable arylation of 1-bromo-2,2-difluoroethylene. The selection of the reaction solvents provides switchable defluorinated or debrominated arylation from readily available feedstock resources (both arylboronic acids/esters and 1-bromo-2,2-difluoroethylene are commercially available). This switch is feasible because of the difference in coordination ability between the solvent (CH2 Cl2 or CH3 CN) and the rhodium center, resulting in different olefin insertion. This protocol allows the convenient synthesis of monofluoroalkenes and gem-difluoroalkenes, both of which are important scaffolds in the fields of medicine and materials. Moreover, this newly developed solvent-regulated reaction system can be applied to the site-selective dechlorinated arylation of trichloroethylene. Overall, this study provides a useful strategy for the divergent synthesis of fluorine-containing scaffolds and provides insight into the importance of solvent selection in catalytic reactions.
Collapse
Affiliation(s)
- Wen-Yan Xu
- Key Laboratory of Precision and Intelligent Chemistry, iChEM, CAS Key Laboratory of Urban Pollutant Conversion, Anhui Province Key Laboratory of Biomass Clean Energy, University of Science and Technology of China, 230026, Hefei, China
| | - Zhe-Yuan Xu
- Key Laboratory of Precision and Intelligent Chemistry, iChEM, CAS Key Laboratory of Urban Pollutant Conversion, Anhui Province Key Laboratory of Biomass Clean Energy, University of Science and Technology of China, 230026, Hefei, China
| | - Ze-Kuan Zhang
- Key Laboratory of Precision and Intelligent Chemistry, iChEM, CAS Key Laboratory of Urban Pollutant Conversion, Anhui Province Key Laboratory of Biomass Clean Energy, University of Science and Technology of China, 230026, Hefei, China
| | - Tian-Jun Gong
- Key Laboratory of Precision and Intelligent Chemistry, iChEM, CAS Key Laboratory of Urban Pollutant Conversion, Anhui Province Key Laboratory of Biomass Clean Energy, University of Science and Technology of China, 230026, Hefei, China
| | - Yao Fu
- Key Laboratory of Precision and Intelligent Chemistry, iChEM, CAS Key Laboratory of Urban Pollutant Conversion, Anhui Province Key Laboratory of Biomass Clean Energy, University of Science and Technology of China, 230026, Hefei, China
| |
Collapse
|
14
|
Liu Y, Pang T, Yao W, Zhong F, Wu G. Visible-Light-Induced Radical gem-Iodoallylation of 2,2,2-Trifluorodiazoethane. Org Lett 2023; 25:1958-1962. [PMID: 36912766 DOI: 10.1021/acs.orglett.3c00464] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2023]
Abstract
A visible-light-induced radical gem-iodoallylation of CF3CHN2 was developed under mild conditions, delivering a variety of α-CF3-substituted homoallylic iodide compounds in moderate to excellent yields. The transformation features broad substrate scope, good functional group compatibility, and operational simplicity. The described protocol provides a convenient and attractive tool to apply CF3CHN2 as CF3-introduction reagent in radical synthetic chemistry.
Collapse
Affiliation(s)
- Yu Liu
- Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan 430074, China
| | - Tengfei Pang
- Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan 430074, China
| | - Weijun Yao
- Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, P.R. China
| | - Fangrui Zhong
- Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan 430074, China
| | - Guojiao Wu
- Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan 430074, China
| |
Collapse
|
15
|
Muller C, Horký F, Vayer M, Golushko A, Lebœuf D, Moran J. Synthesis of functionalised isochromans: epoxides as aldehyde surrogates in hexafluoroisopropanol. Chem Sci 2023; 14:2983-2989. [PMID: 36937595 PMCID: PMC10016621 DOI: 10.1039/d2sc06692k] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 02/13/2023] [Indexed: 02/17/2023] Open
Abstract
The oxa-Pictet-Spengler reaction is arguably the most straightforward and modular way to construct the privileged isochroman motif, but its scope is largely limited to benzaldehyde derivatives and to electron-rich β-phenylethanols that lack substitution along the aliphatic chain. Here we describe a variant of this reaction starting from an epoxide, rather than an aldehyde, that greatly expands the scope and rate of the reaction (<1 h, 20 °C). Besides facilitating the initial Meinwald rearrangement, the use of hexafluoroisopropanol (HFIP) as a solvent expands the electrophile scope to include partners equivalent to ketones, aliphatic aldehydes, and phenylacetyl aldehydes, and the nucleophile scope to include modestly electronically deactivated and highly substituted β-phenylethanols. The products could be easily further derivatised in the same pot by subsequent ring-opening, reductions, and intra- and intermolecular Friedel-Crafts reactions, also in HFIP. Finally, owing to the high pharmacological relevance of the isochroman motif, the synthesis of drug analogues was demonstrated.
Collapse
Affiliation(s)
- Cyprien Muller
- Institut de Science et d'Ingénierie Supramoléculaires (ISIS), CNRS UMR 7006, Université de Strasbourg 8 allée Gaspard Monge 67000 Strasbourg France
| | - Filip Horký
- Institut de Science et d'Ingénierie Supramoléculaires (ISIS), CNRS UMR 7006, Université de Strasbourg 8 allée Gaspard Monge 67000 Strasbourg France
| | - Marie Vayer
- Institut de Science et d'Ingénierie Supramoléculaires (ISIS), CNRS UMR 7006, Université de Strasbourg 8 allée Gaspard Monge 67000 Strasbourg France
| | - Andrei Golushko
- Institut de Science et d'Ingénierie Supramoléculaires (ISIS), CNRS UMR 7006, Université de Strasbourg 8 allée Gaspard Monge 67000 Strasbourg France
| | - David Lebœuf
- Institut de Science et d'Ingénierie Supramoléculaires (ISIS), CNRS UMR 7006, Université de Strasbourg 8 allée Gaspard Monge 67000 Strasbourg France
| | - Joseph Moran
- Institut de Science et d'Ingénierie Supramoléculaires (ISIS), CNRS UMR 7006, Université de Strasbourg 8 allée Gaspard Monge 67000 Strasbourg France
| |
Collapse
|
16
|
Wu K, Zhang X, Wu LL, Huang JS, Che CM. A Convergent, Modular Approach to Trifluoromethyl-Bearing 5-Membered Rings via Catalytic C(sp 3 )-H Activation. Angew Chem Int Ed Engl 2023; 62:e202215891. [PMID: 36596721 DOI: 10.1002/anie.202215891] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 01/02/2023] [Accepted: 01/03/2023] [Indexed: 01/05/2023]
Abstract
Trifluoromethyl-bearing 5-membered rings are prevalent in bioactive molecules, but modular approaches to these compounds by functionalization of robust C(sp3 )-H bonds in a direct and selective manner are extremely challenging. Herein we report the rhodium-catalyzed α-CF3 -α-alkyl carbene insertion into C(sp3 )-H bonds of a broad range of substrates to access 7 types of CF3 -bearing saturated 5-membered carbo- and heterocycles. The reaction is particularly effective for benzylic C-H insertion exerting good site-, diastereo- and enantiocontrol, and applicable to the synthesis of chiral CF3 analogues of bioactive molecules. Ruthenium α-CF3 -α-alkyl carbene complexes underwent stoichiometric reactions to give C-H insertion products, lending evidence for the involvement of metal α-CF3 -α-alkyl carbene species in the catalytic cycle. DFT calculations revealed that the π⋅⋅⋅π attraction and intra-carbene C-H⋅⋅⋅F hydrogen bond elucidate the origin of selectivity of the benzylic C-H insertion reactions.
Collapse
Affiliation(s)
- Kai Wu
- State Key Laboratory of Synthetic Chemistry, Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Xuyang Zhang
- State Key Laboratory of Synthetic Chemistry, Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, China.,Chemistry and Chemical Engineering of Guangdong Provincial Laboratory, No. 1, College Road, Tuojiang Street, Jinping District, Shantou, Guangdong, 515041, China
| | - Liang-Liang Wu
- State Key Laboratory of Synthetic Chemistry, Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Jie-Sheng Huang
- State Key Laboratory of Synthetic Chemistry, Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Chi-Ming Che
- State Key Laboratory of Synthetic Chemistry, Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, China.,Chemistry and Chemical Engineering of Guangdong Provincial Laboratory, No. 1, College Road, Tuojiang Street, Jinping District, Shantou, Guangdong, 515041, China.,Laboratory for Synthetic Chemistry and Chemical Biology Limited, Units 1503-1511, 15/F., Building 17W, Hong Kong Science and Technology Parks, New Territories, Hong Kong, China
| |
Collapse
|
17
|
Zhang X, Ning Y, Tian C, Zanoni G, Bi X. Asymmetric [2+1] cycloaddition of difluoroalkyl-substituted carbenes with alkenes under rhodium catalysis: Synthesis of chiral difluoroalkyl-substituted cyclopropanes. iScience 2023; 26:105896. [PMID: 36994182 PMCID: PMC10040897 DOI: 10.1016/j.isci.2022.105896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 10/30/2022] [Accepted: 12/22/2022] [Indexed: 02/17/2023] Open
Abstract
Herein, we report a novel strategy for the synthesis of chiral difluoroalkyl-substituted cyclopropanes through enantioselective [2 + 1] cyclopropanation of alkenes and difluoroalkyl-substituted carbenes under rhodium catalysis, wherein the newly designed α, α-difluoro-β-carbonyl ketone N-triftosylhydrazones are used as the difluoroalkyl-substituted carbenes precursors. This approach represents the first asymmetric cyclopropanation of alkenes with difluoroalkyl carbenes, featuring high yield, high enantioselectivity, and broad substrate scope. Gram-scale synthesis and further interconversion of diverse functional groups demonstrate the usefulness of this protocol in the preparation of diverse functionalized chiral difluoroalkyl-substituted cyclopropanes.
Collapse
Affiliation(s)
- Xinyu Zhang
- Department of Chemistry, Northeast Normal University, Changchun 130024, China
| | - Yongquan Ning
- Department of Chemistry, Northeast Normal University, Changchun 130024, China
| | - Chunqi Tian
- Department of Chemistry, Northeast Normal University, Changchun 130024, China
| | - Giuseppe Zanoni
- Department of ChemistryUniversity of Pavia, Viale Taramelli 12, 27100 Pavia, Italy
| | - Xihe Bi
- Department of Chemistry, Northeast Normal University, Changchun 130024, China
- State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, China
- Corresponding author
| |
Collapse
|
18
|
Zhang F, Wei Z, Wu W, Liu N, Li X, Zou L, Wang K, Xu J, Fan B. Photocatalyst-free visible light driven synthesis of gem-dihaloenones from alkynes, tetrahalomethanes and water. Org Biomol Chem 2023; 21:719-723. [PMID: 36416357 DOI: 10.1039/d2ob01983c] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Photocatalytic reactions, in particular, processes without photosensitisers, have attracted increased attention due to their green aspect and high economic value and are considered valuable tools in organic synthesis. A new practical photocatalytic system was investigated in this study, and it can efficiently produce gem-dihaloenones by combining terminal alkynes with tetrahalomethanes (BrCCl3 and CBr4) and water without a photocatalyst, and the yield can reach up to 87%. The catalytic system is straightforward, the raw materials are inexpensive and easy to obtain, and the operation is simple.
Collapse
Affiliation(s)
- Fuqing Zhang
- School of chemistry and Environment, Yunnan Minzu University, Kunmin 650504, China.
| | - Zixiang Wei
- School of chemistry and Environment, Yunnan Minzu University, Kunmin 650504, China.
| | - Wei Wu
- School of chemistry and Environment, Yunnan Minzu University, Kunmin 650504, China.
| | - Na Liu
- School of chemistry and Environment, Yunnan Minzu University, Kunmin 650504, China. .,Key Laboratory of Chemistry in Ethnic Medicinal Resources, State Ethnic Affairs Commission & Ministry of Education, Yunnan Minzu University, Kunming, Yunnan, 650504, China
| | - Xinhan Li
- School of chemistry and Environment, Yunnan Minzu University, Kunmin 650504, China.
| | - Luqian Zou
- School of chemistry and Environment, Yunnan Minzu University, Kunmin 650504, China.
| | - Kaiming Wang
- School of chemistry and Environment, Yunnan Minzu University, Kunmin 650504, China.
| | - Jianbin Xu
- School of chemistry and Environment, Yunnan Minzu University, Kunmin 650504, China. .,Key Laboratory of Chemistry in Ethnic Medicinal Resources, State Ethnic Affairs Commission & Ministry of Education, Yunnan Minzu University, Kunming, Yunnan, 650504, China
| | - Baomin Fan
- School of chemistry and Environment, Yunnan Minzu University, Kunmin 650504, China. .,Key Laboratory of Chemistry in Ethnic Medicinal Resources, State Ethnic Affairs Commission & Ministry of Education, Yunnan Minzu University, Kunming, Yunnan, 650504, China
| |
Collapse
|
19
|
Zhang X, Li L, Sivaguru P, Zanoni G, Bi X. Highly electrophilic silver carbenes. Chem Commun (Camb) 2022; 58:13699-13715. [PMID: 36453127 DOI: 10.1039/d2cc04845k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Catalytic carbene transfer reactions are fundamental transformations in modern organic synthesis, which enable direct access to diverse structurally complex molecules. Despite diazo precursors playing a crucial role in catalytic carbene transfer reactions, most reported methodologies take into account only diazoacetates or related compounds. This is primarily because diazoalkanes, unless they contain a resonance stabilizing group, are more susceptible to violent exothermic decomposition. In this feature article, we present an alternative approach to carbene-transfer reactions based on the formation of highly electrophilic silver carbenes from N-sulfonylhydrazones, where the high electrophilicity of silver carbenes stems from the weak interaction between silver and the carbenic carbon. These precursors are readily accessible, stable, and environmentally sustainable. Using the strategy that employs highly electrophilic silver carbenes, it is possible to develop novel intermolecular transformations involving non-stabilized carbenes, including C(sp3)-H insertion, C(sp3)-C(O) insertion, cycloaddition, and defluorinative functionalization. The silver-catalyzed carbene transfer reactions described here have high efficiency, unusual reactivity, exceptional selectivity, and a reaction pathway that differs from typical transition metal-catalyzed reactions. Our research provided fundamental insight into silver carbene chemistry, and we hope to apply this mode of catalysis to other more general transformations, including asymmetric transformations.
Collapse
Affiliation(s)
- Xiaolong Zhang
- Department of Chemistry, Northeast Normal University, 5268 Renmin Street, 130024, Changchun, P. R. China.
| | - Linxuan Li
- Department of Chemistry, Northeast Normal University, 5268 Renmin Street, 130024, Changchun, P. R. China.
| | - Paramasivam Sivaguru
- Department of Chemistry, Northeast Normal University, 5268 Renmin Street, 130024, Changchun, P. R. China.
| | - Giuseppe Zanoni
- Department of Chemistry, University of Pavia, Viale Taramelli 12, 27100, Pavia, Italy
| | - Xihe Bi
- Department of Chemistry, Northeast Normal University, 5268 Renmin Street, 130024, Changchun, P. R. China.
| |
Collapse
|
20
|
Fang Z, Gong Y, Liu B, Zhang J, Han X, Liu Z, Ning Y. Rh-Catalyzed Coupling Reactions of Fluoroalkyl N-Sulfonylhydrazones with Azides Leading to α-Trifluoroethylated Imines. Org Lett 2022; 24:8920-8924. [DOI: 10.1021/acs.orglett.2c03773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Zhongxue Fang
- School of Chemistry and Environmental Engineering, Yancheng Teachers University, Yancheng City, Jiangsu 224007, People’s Republic of China
| | - Yanmei Gong
- School of Chemistry and Environmental Engineering, Yancheng Teachers University, Yancheng City, Jiangsu 224007, People’s Republic of China
| | - Binbin Liu
- Jilin Province Key Laboratory of Organic Functional Molecular Design and Synthesis, Department of Chemistry, Northeast Normal University, Changchun, Jilin 130024, China
| | - Jin Zhang
- Jilin Province Key Laboratory of Organic Functional Molecular Design and Synthesis, Department of Chemistry, Northeast Normal University, Changchun, Jilin 130024, China
| | - Xinyue Han
- Jilin Province Key Laboratory of Organic Functional Molecular Design and Synthesis, Department of Chemistry, Northeast Normal University, Changchun, Jilin 130024, China
| | - Zhaohong Liu
- Jilin Province Key Laboratory of Organic Functional Molecular Design and Synthesis, Department of Chemistry, Northeast Normal University, Changchun, Jilin 130024, China
| | - Yongquan Ning
- Jilin Province Key Laboratory of Organic Functional Molecular Design and Synthesis, Department of Chemistry, Northeast Normal University, Changchun, Jilin 130024, China
| |
Collapse
|
21
|
Copper-catalyzed reaction of alkyl trifluoromethyl diazoalkane for the synthesis of trifluoromethyl allenes. J Fluor Chem 2022. [DOI: 10.1016/j.jfluchem.2022.110050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
22
|
Wang N, Qiao Y, Du Y, Mei H, Han J. Assembly of trifluoromethylated fused tricyclic pyrazoles via cyclization of β-amino cyclic ketones. Org Biomol Chem 2022; 20:7467-7471. [PMID: 36102007 DOI: 10.1039/d2ob01391f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Fused polycyclic pyrazoles are an important class of heterocyclic compounds; thus, the development of efficient methods for their preparation becomes highly urgent. Herein, we reported an efficient method for the synthesis of trifluoromethylated fused tricyclic pyrazoles via intramolecular cyclization of cyclic ketone-derived amines. Mechanistic studies provide evidence for the in situ generation of trifluoromethylated β-diazo ketones as intermediates via diazotization with the use of tert-butyl nitrite. The synthetic utility of this method is highlighted by scale-up synthesis and the derivatization of the obtained fused tricyclic pyrazole products.
Collapse
Affiliation(s)
- Nana Wang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China.
| | - Yiming Qiao
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China.
| | - Youlong Du
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China.
| | - Haibo Mei
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China.
| | - Jianlin Han
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China.
| |
Collapse
|
23
|
Li L, Zhang X, Ning Y, Zhang X, Liu B, Zhang Z, Sivaguru P, Zanoni G, Li S, Anderson EA, Bi X. Carbodefluorination of fluoroalkyl ketones via a carbene-initiated rearrangement strategy. Nat Commun 2022; 13:4280. [PMID: 35879307 PMCID: PMC9314321 DOI: 10.1038/s41467-022-31976-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 07/12/2022] [Indexed: 11/09/2022] Open
Abstract
The C-F bond cleavage and C-C bond formation (i.e., carbodefluorination) of readily accessible (per)fluoroalkyl groups constitutes an atom-economical and efficient route to partially fluorinated compounds. However, the selective mono-carbodefluorination of trifluoromethyl (CF3) groups remains a challenge, due to the notorious inertness of C-F bond and the risk of over-defluorination arising from C-F bond strength decrease as the defluorination proceeds. Herein, we report a carbene-initiated rearrangement strategy for the carbodefluorination of fluoroalkyl ketones with β,γ-unsaturated alcohols to provide skeletally and functionally diverse α-mono- and α,α-difluoro-γ,δ-unsaturated ketones. The reaction starts with the formation of silver carbenes from fluoroalkyl N-triftosylhydrazones, followed by nucleophilic attack of a β,γ-unsaturated alcohol to form key silver-coordinated oxonium ylide intermediates, which triggers selective C-F bond cleavage by HF elimination and C-C bond formation through Claisen rearrangement of in situ generated difluorovinyl ether. The origin of chemoselectivity and the reaction mechanism are determined by experimental and DFT calculations. Collectively, this strategy by an intramolecular cascade process offers significant advances over existing stepwise strategies in terms of selectivity, efficiency, functional group tolerance, etc.
Collapse
Affiliation(s)
- Linxuan Li
- Department of Chemistry, Northeast Normal University, Changchun, 130024, China
| | - Xinyu Zhang
- Department of Chemistry, Northeast Normal University, Changchun, 130024, China
| | - Yongquan Ning
- Department of Chemistry, Northeast Normal University, Changchun, 130024, China
| | - Xiaolong Zhang
- Department of Chemistry, Northeast Normal University, Changchun, 130024, China
| | - Binbin Liu
- Department of Chemistry, Northeast Normal University, Changchun, 130024, China
| | - Zhansong Zhang
- Department of Chemistry, Northeast Normal University, Changchun, 130024, China
| | | | - Giuseppe Zanoni
- Department of Chemistry, University of Pavia, Viale Taramelli 12, 27100, Pavia, Italy
| | - Shuang Li
- Department of Chemistry, Northeast Normal University, Changchun, 130024, China
| | - Edward A Anderson
- Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA, UK
| | - Xihe Bi
- Department of Chemistry, Northeast Normal University, Changchun, 130024, China.
- State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin, 300071, China.
| |
Collapse
|
24
|
Xu ZY, Liu YP, Liu X, Fu R, Hao WJ, Tu SJ, Jiang B. Photocatalytic Chemodivergent Synthesis of α‐gem‐Dihalovinyl Ketones and Chromen‐2‐ones from Monoalkynes. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202200422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
| | | | - Xin Liu
- Jiangsu Normal University CHINA
| | - Rong Fu
- Jiangsu Normal University CHINA
| | | | | | | |
Collapse
|
25
|
Liu Z, Sivaguru P, Zanoni G, Bi X. N-Triftosylhydrazones: A New Chapter for Diazo-Based Carbene Chemistry. Acc Chem Res 2022; 55:1763-1781. [PMID: 35675648 DOI: 10.1021/acs.accounts.2c00186] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
ConspectusOver recent decades, N-sulfonylhydrazones have attracted significant attention in academic and industrial contexts owing to their ease of preparation, versatile reactivity, high stability, and practicality. In particular, the use of N-sulfonylhydrazones as precursors for diazo compounds has paved the way for innovative and original organic reactions that are otherwise difficult to achieve. Three key developments are noteworthy in the history of N-sulfonylhydrazone chemistry: (1) Bamford and Stevens initially disclosed the application of N-tosylhydrazones as a diazo source in 1952; (2) Aggarwal and co-workers investigated N-tosylhydrazone salts as diazo precursors for sulfur ylide-mediated asymmetric epoxidation and aziridination in 2001; and (3) Barluenga, Valdés and co-workers first reported Pd-catalyzed cross-coupling reactions with N-tosylhydrazones in 2007, thus introducing the direct use of N-tosylhydrazones in carbene transfer reactions. In the past 2 decades, the synthetic exploration of N-sulfonylhydrazones in carbene chemistry has increased remarkably. N-Tosylhydrazones are the most commonly used N-sulfonylhydrazones, but they are not easy to decompose and normally need relatively high temperatures (e.g., 90-110 °C). Temperature, as a key reaction parameter, has a significant influence on the selectivity and scope of organic reactions, especially the enantioselectivity. Aggarwal and co-workers have addressed this issue by using N-tosylhydrazone salts and achieved a limited number of asymmetric organic reactions, but the method is greatly limited because the salts must be freshly prepared or stored in the dark at -20 °C prior to use. Hence, easily decomposable N-sulfonylhydrazones, especially those capable of decomposing at low temperature, should open up new opportunities for the development of N-sulfonylhydrazone chemistry. Since 2014, our group has worked toward this goal and eventually identified N-2-(trifluoromethyl)benzenesulfonylhydrazone (i.e., N-triftosylhydrazone) as an efficient diazo surrogate that can decompose at temperatures as low as -40 °C. This allowed us to carry out a range of challenging synthetic transformations and to broaden the applications of some known reactions of great relevance.In this Account, we report our achievements in the application of N-triftosylhydrazones in carbene chemistry. On the basis of the reaction types, such applications can be categorized as (i) C(sp3)-H insertion reactions, (ii) defluorinative reactions of fluoroalkyl N-triftosylhydrazones, (iii) cycloaddition reactions with alkenes and alkynes, and (iv) asymmetric reactions. Additional applications in Doyle-Kirmse rearrangements and cross-coupling with isocyanides (ours) and benzyl chlorides (from the group of Xia) are also summarized in this Account concerning miscellaneous reactions. In terms of reaction efficiency, selectivity, and functional group tolerance, N-triftosylhydrazones are generally superior to traditional N-tosylhydrazones because of their easy decomposition. Mechanistic investigations by theoretical calculations provide insights into both the reaction mechanisms and the origin of selectivity. We hope that this Account will inspire broad interest and promote new progress in the synthetic exploration of easily decomposable N-sulfonylhydrazones.
Collapse
Affiliation(s)
- Zhaohong Liu
- Department of Chemistry, Northeast Normal University, Changchun 130024, China
| | | | - Giuseppe Zanoni
- Department of Chemistry, University of Pavia, Pavia 27100, Italy
| | - Xihe Bi
- Department of Chemistry, Northeast Normal University, Changchun 130024, China
| |
Collapse
|
26
|
Zhang X, Li L, Zanoni G, Han X, Bi X. Direct gem-Difluoroalkenylation of X-H Bonds with Trifluoromethyl Ketone N-Triftosylhydrazones for Synthesis of Tetrasubstituted Heteroatomic gem-Difluoroalkenes. Chemistry 2022; 28:e202200280. [PMID: 35191565 DOI: 10.1002/chem.202200280] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Indexed: 12/24/2022]
Abstract
The direct gem-difluoroalkenylation of X-H bonds represents the most straightforward approach to access heteroatomic gem-difluoroalkenes that, as the isostere of the carbonyl group, have great potency in drug discovery. However, the construction of tetrasubstituted heteroatomic gem-difluoroalkenes by this strategy is still an unsolved problem. Here, we report the first direct X-H bond gem-difluoroalkenylation of amines and alcohols with trifluoromethyl ketone N-triftosylhydrazones under silver (for (hetero)aryl hydrazones) or rhodium (for alkyl hydrazones), thereby providing a most powerful method for the synthesis of tetrasubstituted heteroatomic gem-difluoroalkenes. This method features a broad substrate scope, high product yield, excellent functional group tolerance, and operational simplicity (open air conditions). Moreover, the site-specific replacement of the carbonyl group with a gem-difluorovinyl ether bioisostere in drug Trimebutine and the post-modification of bioactive molecules demonstrates potential use in medicinal research. Finally, the reaction mechanism was investigated by combining experiments and DFT calculations, and disclosed that the key step of HF elimination occurred via five-membered ring transition state, and the difference in the electrophilicity of Ag- and Rh-carbenes as well as the multiple intermolecular interactions rendered the effectiveness of Rh catalyst selectively for alkyl hydrazones.
Collapse
Affiliation(s)
- Xinyu Zhang
- Department of Chemistry, Northeast Normal University, Changchun, 130024, China
| | - Linxuan Li
- Department of Chemistry, Northeast Normal University, Changchun, 130024, China
| | - Giuseppe Zanoni
- Department of Chemistry, University of Pavia, Viale Taramelli 12, 27100, Pavia, Italy
| | - Xinyue Han
- Department of Chemistry, Northeast Normal University, Changchun, 130024, China
| | - Xihe Bi
- Department of Chemistry, Northeast Normal University, Changchun, 130024, China.,State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin, 300071, China
| |
Collapse
|
27
|
Kowalczyk A, Utecht-Jarzyńska G, Mlostoń G, Jasiński M. Trifluoromethylated Pyrazoles via Sequential (3 + 2)-Cycloaddition of Fluorinated Nitrile Imines with Chalcones and Solvent-Dependent Deacylative Oxidation Reactions. Org Lett 2022; 24:2499-2503. [PMID: 35343703 PMCID: PMC9003577 DOI: 10.1021/acs.orglett.2c00521] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
![]()
A general approach
for preparation of two types of polyfunctionalized
3-trifluoromethylpyrazoles is reported. The protocol comprises (3
+ 2)-cycloaddition of the in situ generated trifluoroacetonitrile
imines with enones leading to trans-configured 5-acyl-pyrazolines
in a fully regio- and diastereoselective manner. Initially formed
cycloadducts were aromatized by treatment with manganese dioxide.
Depending on the solvent used, the oxidation step either led to fully
substituted pyrazoles (DMSO) or proceeded via a deacylative pathway
to afford 1,3,4-trisubstituted derivatives (hexane) with excellent
selectivity.
Collapse
Affiliation(s)
- Anna Kowalczyk
- Department of Organic and Applied Chemistry, Faculty of Chemistry, University of Lodz, Tamka 12, 91403 Łódź, Poland.,The University of Lodz Doctoral School of Exact and Natural Sciences, Banacha 12/16, 90237 Łódź, Poland
| | - Greta Utecht-Jarzyńska
- Department of Organic and Applied Chemistry, Faculty of Chemistry, University of Lodz, Tamka 12, 91403 Łódź, Poland
| | - Grzegorz Mlostoń
- Department of Organic and Applied Chemistry, Faculty of Chemistry, University of Lodz, Tamka 12, 91403 Łódź, Poland
| | - Marcin Jasiński
- Department of Organic and Applied Chemistry, Faculty of Chemistry, University of Lodz, Tamka 12, 91403 Łódź, Poland
| |
Collapse
|
28
|
Mei H, Wang N, Li Z, Han J. Intramolecular Appel Reaction of Trifluoromethylated β-Keto Diazos Enabling Assembly of Trifluoromethylpyrazoles. Org Lett 2022; 24:2258-2263. [PMID: 35297254 DOI: 10.1021/acs.orglett.2c00738] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A method for the generation of trifluoromethylated β-keto diazos and their applications in intramolecular Appel type reactions are reported. The key success of this reaction is a diazo species as an N-nucleophile in Appel reactions. This reaction is conducted under mild conditions and has a broad substrate scope, affording trifluoromethylpyrazoles in ≤94% yields. This protocol represents a new type of Appel reaction and also a new reaction mode of fluoro diazoalkanes.
Collapse
Affiliation(s)
- Haibo Mei
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Nana Wang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Ziyi Li
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Jianlin Han
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|
29
|
[4 + 1] Annulation of in situ generated azoalkenes with amines: A powerful approach to access 1-substituted 1,2,3-triazoles. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2021.09.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
30
|
|
31
|
Fang Z, Jin Q, Wang X, Ning Y. Metal-free [2 + 1 + 3] Cycloaddition of Trifluoroacetaldehyde N-Sulfonylhydrazones with Hexahydro-1,3,5-triazines Leading to Trifluoromethylated 2,3,4,5-Tetrahydro-1,2,4-triazines. J Org Chem 2022; 87:2966-2974. [PMID: 35133818 DOI: 10.1021/acs.joc.1c02810] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A transition-metal-free [2 + 1 + 3] cycloaddition of trifluoroacetaldehyde N-sulfonylhydrazone and hexahydro-1,3,5-triazine was described. This operationally simple protocol provides a general synthesis of diverse trifluoromethylated 2,3,4,5-tetrahydro-1,2,4-triazines in 81-97% yield with a broad substrate scope, including aryl, benzyl, and alkyl hexahydro-1,3,5-triazine.
Collapse
Affiliation(s)
- Zhongxue Fang
- School of Chemistry and Environmental Engineering, Yancheng Teachers University, Yancheng 224007, China
| | - Qihao Jin
- School of Chemistry and Environmental Engineering, Yancheng Teachers University, Yancheng 224007, China
| | - Xinyu Wang
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Department of Chemistry, Northeast Normal University, Changchun 130024, China
| | - Yongquan Ning
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Department of Chemistry, Northeast Normal University, Changchun 130024, China
| |
Collapse
|
32
|
Zhai SJ, Cahard D, Zhang FG, Ma JA. Metal-free regioselective construction of 2-aryl-2H-tetrazol-5-yl difluoromethylene phosphonates. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2021.08.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
33
|
Fang Z, Zhang Y, Wang H, Zanoni G, Li J, Li X, Liu Z, Ning Y. Straightforward access to fluoroalkyl tetrazoles from fluoroalkyl N-sulfonylhydrazones. Org Chem Front 2022. [DOI: 10.1039/d2qo00962e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A metal-free cycloaddition reaction of fluoroalkyl N-sulfonylhydrazones with arene-diazonium salts has been reported. This transformation represents the first general procedure to access mono-, di- and perfluoroalkyl tetrazole products.
Collapse
Affiliation(s)
- Zhongxue Fang
- School of Chemistry and Environmental Engineering, Yancheng Teachers University, Yancheng City 224007, People's Republic of China
| | - Yujie Zhang
- School of Chemistry and Environmental Engineering, Yancheng Teachers University, Yancheng City 224007, People's Republic of China
| | - Hongwei Wang
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Department of Chemistry, Northeast Normal University, Changchun 130024, China
| | - Giuseppe Zanoni
- Department of Chemistry, University of Pavia, Viale Taramelli 12, Pavia 27100, Italy
| | - Jianxin Li
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Department of Chemistry, Northeast Normal University, Changchun 130024, China
| | - Xingqi Li
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Department of Chemistry, Northeast Normal University, Changchun 130024, China
| | - Zhaohong Liu
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Department of Chemistry, Northeast Normal University, Changchun 130024, China
| | - Yongquan Ning
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Department of Chemistry, Northeast Normal University, Changchun 130024, China
| |
Collapse
|
34
|
Zhang X, Li X, Sivaguru P, Wu J, Zanoni G, Song JN, Ning Y. Difluorodiazoethane as a masked acetylene equivalent in formal [3 + 2] cycloadditions with ketones to access 2,3-functionalized furans. Org Chem Front 2022. [DOI: 10.1039/d2qo01045c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A transition-metal-free [3+2] cycloaddition of CF2HCHN2 with β-ketones is reported, which enables the synthesis of 2,3-functionalized furans. Sequential defluorination, nucleophilic addition, and cyclization are key elemental steps of the reaction.
Collapse
Affiliation(s)
- Xiaolong Zhang
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Department of Chemistry, Northeast Normal University, Changchun 130024, China
| | - Xin Li
- School of Life Science, Jilin University, Changchun 130012, China
| | - Paramasivam Sivaguru
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Department of Chemistry, Northeast Normal University, Changchun 130024, China
| | - Jiayi Wu
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Department of Chemistry, Northeast Normal University, Changchun 130024, China
| | - Giuseppe Zanoni
- Department of Chemistry, University of Pavia, Viale Taramelli 12, Pavia 27100, Italy
| | - Jin-Na Song
- School of Life Science, Jilin University, Changchun 130012, China
| | - Yongquan Ning
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Department of Chemistry, Northeast Normal University, Changchun 130024, China
| |
Collapse
|
35
|
Liu Z, Yang Y, Jiang X, Song Q, Zanoni G, Liu S, Bi X. Dearomative [4 + 3] cycloaddition of furans with vinyl- N-triftosylhydrazones by silver catalysis: stereoselective access to oxa-bridged seven-membered bicycles. Org Chem Front 2022. [DOI: 10.1039/d2qo00256f] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
A practical dearomative [4 + 3] cycloaddition of furans with vinylcarbenes to access oxa-bridged seven-membered carbocycles, with complete and predictable stereoselectivity, is achieved by merging silver catalysis and vinyl-N-triftosylhydrazones.
Collapse
Affiliation(s)
- Zhaohong Liu
- Department of Chemistry, Northeast Normal University, Changchun 130024, China
| | - Yong Yang
- Department of Chemistry, Northeast Normal University, Changchun 130024, China
| | - Xinyu Jiang
- Department of Chemistry, Northeast Normal University, Changchun 130024, China
| | - Qingmin Song
- Department of Chemistry, Northeast Normal University, Changchun 130024, China
| | - Giuseppe Zanoni
- Department of Chemistry, University of Pavia, Viale Taramelli 12, 27100, Pavia, Italy
| | - Shaopeng Liu
- Department of Chemistry, Northeast Normal University, Changchun 130024, China
| | - Xihe Bi
- Department of Chemistry, Northeast Normal University, Changchun 130024, China
- State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, China
| |
Collapse
|
36
|
Fang Z, Ma Y, Liu S, Bai H, Li S, Ning Y, Zanoni G, Liu Z. Silver-catalyzed [4 + 3] cycloaddition of 1,3-dienes with alkenyl- N-triftosylhydrazones: a practical approach to 1,4-cycloheptadienes. Org Chem Front 2022. [DOI: 10.1039/d2qo00806h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
A formal [4 + 3] cycloaddition of 1,3-dienes with alkenyl-N-triftosylhydrazones was developed using silver catalysis, producing a broad spectrum of complex 1,4-cycloheptadienes with high yields and predictable stereochemistry.
Collapse
Affiliation(s)
- Zhongxue Fang
- School of Chemistry and Environmental Engineering, Yancheng Teachers University, Yancheng City 224007, People's Republic of China
| | - Yiming Ma
- School of Chemistry and Environmental Engineering, Yancheng Teachers University, Yancheng City 224007, People's Republic of China
| | - Shaopeng Liu
- Department of Chemistry, Northeast Normal University, Changchun 130024, China
| | - Huricha Bai
- Department of Chemistry, Northeast Normal University, Changchun 130024, China
| | - Shuang Li
- Department of Chemistry, Northeast Normal University, Changchun 130024, China
| | - Yongquan Ning
- Department of Chemistry, Northeast Normal University, Changchun 130024, China
| | - Giuseppe Zanoni
- Department of Chemistry, University of Pavia, Viale Taramelli 12, 27100, Pavia, Italy
| | - Zhaohong Liu
- Department of Chemistry, Northeast Normal University, Changchun 130024, China
| |
Collapse
|
37
|
Zeng X, Xu Y, Liu J, Deng Y. Access to gem-Dibromoenones Enabled by Carbon-Centered Radical Addition to Terminal Alkynes in Water Solution. Org Lett 2021; 23:9058-9062. [PMID: 34766780 DOI: 10.1021/acs.orglett.1c03305] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
We herein report a novel and more practical approach to prepare gem-dibromoenones from terminal alkynes, tetrabromomethane (CBr4), and water in a single step. Mechanistic studies reveal that the generation of a tribromomethyl radical with the assistance of a persulfate salt (K2S2O8) is essential to this transformation. The reaction features readily available chemicals, a broad substrate scope, a green solvent, and mild reaction conditions, providing an efficient alternative for construction of halogen-substituted enones.
Collapse
Affiliation(s)
- Xianghua Zeng
- College of Biological, Chemical Science and Engineering, Jiaxing University, 118 Jiahang Road, Jiaxing 314001, P.R. China
| | - Yuhai Xu
- College of Biological, Chemical Science and Engineering, Jiaxing University, 118 Jiahang Road, Jiaxing 314001, P.R. China
| | - Jiawei Liu
- College of Biological, Chemical Science and Engineering, Jiaxing University, 118 Jiahang Road, Jiaxing 314001, P.R. China
| | - Yuanyuan Deng
- College of Biological, Chemical Science and Engineering, Jiaxing University, 118 Jiahang Road, Jiaxing 314001, P.R. China
| |
Collapse
|
38
|
Zhang X, Sivaguru P, Zanoni G, Han X, Tong M, Bi X. Catalytic Asymmetric C(sp 3)–H Carbene Insertion Approach to Access Enantioenriched 3-Fluoroalkyl 2,3-Dihydrobenzofurans. ACS Catal 2021. [DOI: 10.1021/acscatal.1c04523] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Xinyu Zhang
- Department of Chemistry, Northeast Normal University, Changchun 130024, China
| | | | - Giuseppe Zanoni
- Department of Chemistry, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy
| | - Xinyue Han
- Department of Chemistry, Northeast Normal University, Changchun 130024, China
| | - Minghui Tong
- Department of Chemistry, Northeast Normal University, Changchun 130024, China
| | - Xihe Bi
- Department of Chemistry, Northeast Normal University, Changchun 130024, China
- State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, China
| |
Collapse
|
39
|
Ning X, Chen Y, Hu F, Xia Y. Palladium-Catalyzed Carbene Coupling Reactions of Cyclobutanone N-Sulfonylhydrazones. Org Lett 2021; 23:8348-8352. [PMID: 34623163 DOI: 10.1021/acs.orglett.1c03052] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Described herein are the palladium-catalyzed cross-coupling reactions of cyclobutanone-derived N-sulfonylhydrazones with aryl or benzyl halides, suggesting that the metal carbene process and β-hydride elimination can smoothly occur in strained ring systems. Structurally diversified products including cyclobutenes, methylenecyclobutanes, and conjugated dienes are selectively afforded in good to excellent yields. Preliminary success in asymmetric carbene coupling reactions in strained ring systems has been achieved, providing a promising route for the synthesis of enantioenriched four-membered-ring molecules.
Collapse
Affiliation(s)
- Xiaoqin Ning
- West China School of Public Health and West China Fourth Hospital, and State Key Laboratory of Biotherapy, Sichuan University, Chengdu 610041, China
| | - Yongke Chen
- West China School of Public Health and West China Fourth Hospital, and State Key Laboratory of Biotherapy, Sichuan University, Chengdu 610041, China
| | - Fangdong Hu
- School of Chemistry and Chemical Engineering, Linyi University, Linyi 276000, China
| | - Ying Xia
- West China School of Public Health and West China Fourth Hospital, and State Key Laboratory of Biotherapy, Sichuan University, Chengdu 610041, China
| |
Collapse
|
40
|
Sivaguru P, Bi X. Fluoroalkyl N-sulfonyl hydrazones: An efficient reagent for the synthesis of fluoroalkylated compounds. Sci China Chem 2021. [DOI: 10.1007/s11426-021-1052-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
41
|
Zhang X, Tian C, Wang Z, Sivaguru P, Nolan SP, Bi X. Fluoroalkyl N-Triftosylhydrazones as Easily Decomposable Diazo Surrogates for Asymmetric [2 + 1] Cycloaddition: Synthesis of Chiral Fluoroalkyl Cyclopropenes and Cyclopropanes. ACS Catal 2021. [DOI: 10.1021/acscatal.1c01483] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Xinyu Zhang
- Department of Chemistry, Northeast Normal University, Changchun 130024, China
| | - Chunqi Tian
- Department of Chemistry, Northeast Normal University, Changchun 130024, China
| | - Zhanjing Wang
- Department of Chemistry, Northeast Normal University, Changchun 130024, China
| | | | - Steven P. Nolan
- Department of Chemistry and Center for Sustainable Chemistry, Ghent University, Krijgslaan 281-S3, 9000 Ghent, Belgium
| | - Xihe Bi
- Department of Chemistry, Northeast Normal University, Changchun 130024, China
- State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, China
| |
Collapse
|
42
|
Velasco N, Suárez A, Martínez-Lara F, Fernández-Rodríguez MÁ, Sanz R, Suárez-Pantiga S. From Propargylic Alcohols to Substituted Thiochromenes: gem-Disubstituent Effect in Intramolecular Alkyne Iodo/hydroarylation. J Org Chem 2021; 86:7078-7091. [PMID: 33928778 PMCID: PMC8474117 DOI: 10.1021/acs.joc.1c00333] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
This work describes the 6-endo-dig cyclization of S-aryl propargyl sulfides to afford 2H-thiochromenes. The substitution at the propargylic position plays a crucial role in allowing intramolecular silver-catalyzed alkyne hydroarylation and N-iodosuccinimide-promoted iodoarylation. Additionally, a PTSA-catalyzed thiolation reaction of propargylic alcohols was developed to synthesize the required tertiary S-aryl propargyl ethers. The applicability of merging these two methods is demonstrated by synthesizing the retinoic acid receptor antagonist AGN194310.
Collapse
Affiliation(s)
- Noelia Velasco
- Área de Química Orgánica, Departamento de Química, Facultad de Ciencias, Universidad de Burgos, Pza. Misael Bañuelos s/n, 09001 Burgos, Spain
| | - Anisley Suárez
- Área de Química Orgánica, Departamento de Química, Facultad de Ciencias, Universidad de Burgos, Pza. Misael Bañuelos s/n, 09001 Burgos, Spain
| | - Fernando Martínez-Lara
- Área de Química Orgánica, Departamento de Química, Facultad de Ciencias, Universidad de Burgos, Pza. Misael Bañuelos s/n, 09001 Burgos, Spain
| | - Manuel Ángel Fernández-Rodríguez
- Departamento de Química Orgánica y Química Inorgánica, Instituto de Investigación Química "Andrés M. del Río" (IQAR), Universidad de Alcalá (IRYCIS), 28805 Alcalá de Henares, Madrid, Spain
| | - Roberto Sanz
- Área de Química Orgánica, Departamento de Química, Facultad de Ciencias, Universidad de Burgos, Pza. Misael Bañuelos s/n, 09001 Burgos, Spain
| | - Samuel Suárez-Pantiga
- Área de Química Orgánica, Departamento de Química, Facultad de Ciencias, Universidad de Burgos, Pza. Misael Bañuelos s/n, 09001 Burgos, Spain
| |
Collapse
|
43
|
Kumar A, Jamali MF, Thomas S, Ahamad S, Kant R, Mohanan K. Additive‐Free Synthesis of Trifluoromethylated Spiro Cyclopropanes and Their Transformation into Trifluoromethylated Building Blocks. ASIAN J ORG CHEM 2021. [DOI: 10.1002/ajoc.202100207] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Anuj Kumar
- Medicinal & Process Chemistry Division CSIR-Central Drug Research Institute Lucknow 226031 India
| | - Muhammad Fahad Jamali
- Medicinal & Process Chemistry Division CSIR-Central Drug Research Institute Lucknow 226031 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201002 India
| | - Shilpa Thomas
- Medicinal & Process Chemistry Division CSIR-Central Drug Research Institute Lucknow 226031 India
| | - Shakir Ahamad
- Medicinal & Process Chemistry Division CSIR-Central Drug Research Institute Lucknow 226031 India
- Department of Chemistry Aligarh Muslim University Aligarh 202002, UP India
| | - Ruchir Kant
- Molecular and Structural Biology Division CSIR-Central Drug Research Institute Lucknow 226031 India
| | - Kishor Mohanan
- Medicinal & Process Chemistry Division CSIR-Central Drug Research Institute Lucknow 226031 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201002 India
| |
Collapse
|
44
|
Wu Y, Cao S, Douair I, Maron L, Bi X. Computational Insights into Different Mechanisms for Ag-, Cu-, and Pd-Catalyzed Cyclopropanation of Alkenes and Sulfonyl Hydrazones. Chemistry 2021; 27:5999-6006. [PMID: 33443293 DOI: 10.1002/chem.202005193] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 01/04/2021] [Indexed: 11/06/2022]
Abstract
The [2+1] cycloaddition reaction of a metal carbene with an alkene can produce important cyclopropane products for synthetic intermediates, materials, and pharmaceutical applications. However, this reaction is often accompanied by side reactions, such as coupling and self-coupling, so that the yield of the cyclopropanation product of non-silver transition-metal carbenes and hindered alkenes is generally lower than 50 %. To solve this problem, the addition of a low concentration of diazo compound (decomposition of sulfonyl hydrazones) to alkenes catalyzed by either CuOAc or PdCl2 was studied, but side reactions could still not be avoided. Interestingly, however, the yield of cyclopropanation products for such hindered alkenes were as high as 99 % with AgOTf as a catalyst. To explain this unexpected phenomenon, reaction pathways have been computed for four different catalysts by using DFT. By combining the results of these calculations with those obtained experimentally, it can be concluded that the efficiency of the silver catalyst is due to the barrierless concerted cycloaddition step and the kinetic inhibition of side reactions by a high concentration of alkene.
Collapse
Affiliation(s)
- Yong Wu
- Department of Chemistry, Northeast Normal University, Changchun, 130024, P.R. China
| | - Shanshan Cao
- Department of Chemistry, Northeast Normal University, Changchun, 130024, P.R. China
| | - Iskander Douair
- INSA, UPS, UMR 5215, LPCNO, Université de Toulouse et CNRS, 135 Avenue de Rangueil, 31077, Toulouse, France
| | - Laurent Maron
- INSA, UPS, UMR 5215, LPCNO, Université de Toulouse et CNRS, 135 Avenue de Rangueil, 31077, Toulouse, France
| | - Xihe Bi
- Department of Chemistry, Northeast Normal University, Changchun, 130024, P.R. China.,State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin, 300071, P.R. China
| |
Collapse
|
45
|
Cailler LP, Kroitor AP, Martynov AG, Gorbunova YG, Sorokin AB. Selective carbene transfer to amines and olefins catalyzed by ruthenium phthalocyanine complexes with donor substituents. Dalton Trans 2021; 50:2023-2031. [PMID: 33443525 DOI: 10.1039/d0dt04090h] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Electron-rich ruthenium phthalocyanine complexes were evaluated in carbene transfer reactions from ethyl diazoacetate (EDA) to aromatic and aliphatic olefins as well as to a wide range of aromatic, heterocyclic and aliphatic amines for the first time. It was revealed that the ruthenium octabutoxyphthalocyanine carbonyl complex [(BuO)8Pc]Ru(CO) is the most efficient catalyst converting electron-rich and electron-poor aromatic olefins to cyclopropane derivatives with high yields (typically 80-100%) and high TON (up to 1000) under low catalyst loading and nearly equimolar substrate/EDA ratio. This catalyst shows a rare efficiency in the carbene insertion into amine N-H bonds. Using a 0.05 mol% catalyst loading, a high amine concentration (1 M) and 1.1 eq. of EDA, a number of structurally divergent amines were selectively converted to mono-substituted glycine derivatives with up to quantitative yields and turnover numbers reaching 2000. High selectivity, large substrate scope, low catalyst loading and practical reaction conditions place [(BuO)8Pc]Ru(CO) among the most efficient catalysts for the carbene insertion into amines.
Collapse
Affiliation(s)
- Lucie P Cailler
- Univ. Lyon, Université Claude Bernard Lyon 1, CNRS, IRCELYON, 2 av. A. Einstein, 69626 Villeurbanne, France.
| | - Andrey P Kroitor
- A. N. Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Leniskii pr., 31, bldg. 4, 119071 Moscow, Russia.
| | - Alexander G Martynov
- A. N. Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Leniskii pr., 31, bldg. 4, 119071 Moscow, Russia.
| | - Yulia G Gorbunova
- A. N. Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Leniskii pr., 31, bldg. 4, 119071 Moscow, Russia. and N. S. Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Leniskii pr., 31, 11991 Moscow, Russia.
| | - Alexander B Sorokin
- Univ. Lyon, Université Claude Bernard Lyon 1, CNRS, IRCELYON, 2 av. A. Einstein, 69626 Villeurbanne, France.
| |
Collapse
|
46
|
Decaens J, Couve-Bonnaire S, Charette AB, Poisson T, Jubault P. Synthesis of Fluoro-, Monofluoromethyl-, Difluoromethyl-, and Trifluoromethyl-Substituted Three-Membered Rings. Chemistry 2021; 27:2935-2962. [PMID: 32939868 DOI: 10.1002/chem.202003822] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Indexed: 12/13/2022]
Abstract
This Minireview describes recent advances toward the synthesis of fluoro-, monofluoromethyl-, difluoromethyl-, and trifluoromethyl-substituted three-membered rings such as cyclopropanes, aziridines, epoxides, episulfides, cyclopropenes, and 2 H-azirines. The main synthetic methodologies since 2016 for cyclopropanes and since 2010 for the other three-membered rings are reported.
Collapse
Affiliation(s)
- Jonathan Decaens
- INSA Rouen, UNIROUEN, CNRS, COBRA (UMR 6014), Normandie Univ, 76000, Rouen, France
| | | | - André B Charette
- Centre in Green Chemistry and Catalysis, Faculty of Arts and Sciences, Department of Chemistry, Université de Montréal, PO Box 6128, Station Downtown, Montréal, Québec, H3C 3J7, Canada
| | - Thomas Poisson
- INSA Rouen, UNIROUEN, CNRS, COBRA (UMR 6014), Normandie Univ, 76000, Rouen, France.,Institut Universitaire de France, 1 rue Descartes, 75231, Paris, France
| | - Philippe Jubault
- INSA Rouen, UNIROUEN, CNRS, COBRA (UMR 6014), Normandie Univ, 76000, Rouen, France
| |
Collapse
|
47
|
Wang Y, Wang H, Liu Z. Research Progress on EWG-Substituted N-Arylsulfonylhydrazones as the Diazo Compound Precursor. ACTA CHIMICA SINICA 2021. [DOI: 10.6023/a21040179] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
48
|
Affiliation(s)
- Pavel K. Mykhailiuk
- Enamine Ltd., Chervonotkatska 78, 02094 Kyiv, Ukraine
- Chemistry Department, Taras Shevchenko National University of Kyiv, Volodymyrska 64, 01601 Kyiv, Ukraine
| |
Collapse
|
49
|
Li C, Zhang X, He J, Xu S, Cao S. Et
3
N‐Catalyzed
Cycloaddition Reactions of α‐(Trifluoromethyl)styrenes with 2,2,
2‐Trifluorodiazoethane
to Access Bis(trifluoromethyl)‐Substituted Pyrazolines. CHINESE J CHEM 2020. [DOI: 10.1002/cjoc.202000480] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Chunmei Li
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology Shanghai 200237 China
| | - Xuxue Zhang
- College of Chemistry and Chemical Engineering, Qilu Normal University Jinan Shandong 250200 China
| | - Jingjing He
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology Shanghai 200237 China
| | - Sixue Xu
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology Shanghai 200237 China
| | - Song Cao
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology Shanghai 200237 China
| |
Collapse
|
50
|
Shang Z, Zhang Z, Weng W, Wang Y, Cheng T, Zhang Q, Song L, Shao T, Liu K, Zhu Y. A Metal‐ and Azide‐free Oxidative Coupling Reaction for the Synthesis of [1,2,3]Triazolo[1,5‐a]quinolines and their Application to Construct C−C and C‐P Bonds, 2‐Cyclopropylquinolines and Imidazo[1,5‐a]quinolines. Adv Synth Catal 2020. [DOI: 10.1002/adsc.202001052] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Zhi‐Hao Shang
- School of Pharmacy Key Laboratory of Molecular Pharmacology and Drug Evaluation Ministry of Education Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong Yantai University Shandong Yantai 264005 People's Republic of China
| | - Zhen‐Xiao Zhang
- School of Pharmacy Key Laboratory of Molecular Pharmacology and Drug Evaluation Ministry of Education Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong Yantai University Shandong Yantai 264005 People's Republic of China
| | - Wei‐Zhao Weng
- School of Pharmacy Key Laboratory of Molecular Pharmacology and Drug Evaluation Ministry of Education Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong Yantai University Shandong Yantai 264005 People's Republic of China
| | - Yu‐Fei Wang
- School of Pharmacy Key Laboratory of Molecular Pharmacology and Drug Evaluation Ministry of Education Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong Yantai University Shandong Yantai 264005 People's Republic of China
| | - Tian‐Wei Cheng
- School of Pharmacy Key Laboratory of Molecular Pharmacology and Drug Evaluation Ministry of Education Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong Yantai University Shandong Yantai 264005 People's Republic of China
| | - Qiu‐Yi Zhang
- School of Pharmacy Key Laboratory of Molecular Pharmacology and Drug Evaluation Ministry of Education Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong Yantai University Shandong Yantai 264005 People's Republic of China
| | - Li‐Qun Song
- School of Pharmacy Key Laboratory of Molecular Pharmacology and Drug Evaluation Ministry of Education Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong Yantai University Shandong Yantai 264005 People's Republic of China
| | - Tian‐Qi Shao
- School of Pharmacy Key Laboratory of Molecular Pharmacology and Drug Evaluation Ministry of Education Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong Yantai University Shandong Yantai 264005 People's Republic of China
| | - Kai‐Xuan Liu
- School of Pharmacy Key Laboratory of Molecular Pharmacology and Drug Evaluation Ministry of Education Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong Yantai University Shandong Yantai 264005 People's Republic of China
| | - Yan‐Ping Zhu
- School of Pharmacy Key Laboratory of Molecular Pharmacology and Drug Evaluation Ministry of Education Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong Yantai University Shandong Yantai 264005 People's Republic of China
| |
Collapse
|