1
|
Li QJ, Shao HH, Zheng LL, Liu Q, Huo CC, Yi DR, Feng T, Cen S. Thonningianin A disrupts pA104R-DNA binding and inhibits African swine fever virus replication. Emerg Microbes Infect 2025; 14:2482697. [PMID: 40138179 PMCID: PMC11966994 DOI: 10.1080/22221751.2025.2482697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 03/07/2025] [Accepted: 03/17/2025] [Indexed: 03/29/2025]
Abstract
African swine fever is a highly lethal disease caused by the African swine fever virus (ASFV), posing a significant threat to the global pig industry, wherease no approved treatments are currently available. The ASFV DNA-binding protein, pA104R, plays a critical role in viral genome packaging and replication, making it a key target for drug discovery. Through structure-based virtual screening, we identified a polyphenolic compound, thonningianin A, which disrupts the pA104R-DNA binding and significantly inhibits ASFV replication. Mechanistic study revealed that thonningianin A binds to the DNA-binding region of pA104R, forming strong hydrogen bonds with H100 and occupying the vital DNA-binding residues K92, R94, and K97. In addition, we resolved the high-resolution (1.8 Å) structure of pA104R (PDB ID 9JS5), providing valuable insights for future drug screening. Together, these results demonstrate that thonningianin A holds great potential for the development of anti-ASFV drug, as a herb extract with favourable pharmacokinetic properties and safety.
Collapse
Affiliation(s)
- Quan-jie Li
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, People’s Republic of China
| | - Hui-han Shao
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, People’s Republic of China
| | - Lin-lin Zheng
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, People’s Republic of China
| | - Qian Liu
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, People’s Republic of China
| | - Chen-chao Huo
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, People’s Republic of China
| | - Dong-rong Yi
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, People’s Republic of China
| | - Tao Feng
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, People’s Republic of China
| | - Shan Cen
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, People’s Republic of China
- CAMS Key Laboratory of Antiviral Drug Research, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, People’s Republic of China
| |
Collapse
|
2
|
Blackstock C, Walters-Freke C, Richards N, Williamson A. Nucleic acid joining enzymes: biological functions and synthetic applications beyond DNA. Biochem J 2025; 482:39-56. [PMID: 39840831 DOI: 10.1042/bcj20240136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 11/21/2024] [Accepted: 12/04/2024] [Indexed: 01/23/2025]
Abstract
DNA-joining by ligase and polymerase enzymes has provided the foundational tools for generating recombinant DNA and enabled the assembly of gene and genome-sized synthetic products. Xenobiotic nucleic acid (XNA) analogues of DNA and RNA with alternatives to the canonical bases, so-called 'unnatural' nucleobase pairs (UBP-XNAs), represent the next frontier of nucleic acid technologies, with applications as novel therapeutics and in engineering semi-synthetic biological organisms. To realise the full potential of UBP-XNAs, researchers require a suite of compatible enzymes for processing nucleic acids on a par with those already available for manipulating canonical DNA. In particular, enzymes able to join UBP-XNA will be essential for generating large assemblies and also hold promise in the synthesis of single-stranded oligonucleotides. Here, we review recent and emerging advances in the DNA-joining enzymes, DNA polymerases and DNA ligases, and describe their applications to UBP-XNA manipulation. We also discuss the future directions of this field which we consider will involve two-pronged approaches of enzyme biodiscovery for natural UBP-XNA compatible enzymes, coupled with improvement by structure-guided engineering.
Collapse
Affiliation(s)
- Chelsea Blackstock
- School of Science, University of Waikato, Hamilton, Waikato, 3216, New Zealand
| | | | - Nigel Richards
- Foundation for Applied Molecular Evolution, Alachua, FL, 32615, U.S.A
- School of Chemistry, Cardiff University, Cardiff, CF10 3AT, U.K
| | - Adele Williamson
- School of Science, University of Waikato, Hamilton, Waikato, 3216, New Zealand
| |
Collapse
|
3
|
Kuai L, Sun J, Peng Q, Zhao X, Yuan B, Liu S, Bi Y, Shi Y. Cryo-EM structure of DNA polymerase of African swine fever virus. Nucleic Acids Res 2024; 52:10717-10729. [PMID: 39189451 PMCID: PMC11417396 DOI: 10.1093/nar/gkae739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 08/07/2024] [Accepted: 08/19/2024] [Indexed: 08/28/2024] Open
Abstract
African swine fever virus (ASFV) is one of the most important causative agents of animal diseases and can cause highly fatal diseases in swine. ASFV DNA polymerase (DNAPol) is responsible for genome replication and highly conserved in all viral genotypes showing an ideal target for drug development. Here, we systematically determined the structures of ASFV DNAPol in apo, replicating and editing states. Structural analysis revealed that ASFV DNAPol had a classical right-handed structure and showed the highest similarity to the structure of human polymerase delta. Intriguingly, ASFV DNAPol has a much longer fingers subdomain, and the thumb and palm subdomain form a unique interaction that has never been seen. Mutagenesis work revealed that the loss of this unique interaction decreased the enzymatic activity. We also found that the β-hairpin of ASFV DNAPol is located below the template strand in the editing state, which is different from the editing structures of other known B family DNAPols with the β-hairpin above the template strand. It suggests that B family DNAPols have evolved two ways to facilitate the dsDNA unwinding during the transition from replicating into editing state. These findings figured out the working mechanism of ASFV DNAPol and will provide a critical structural basis for the development of antiviral drugs.
Collapse
Affiliation(s)
- Lu Kuai
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- Medical School, University of Chinese Academy of Sciences, Beijing 100049, China
- Beijing Life Science Academy, Beijing 102209, China
| | - Junqing Sun
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, 030801, China
| | - Qi Peng
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- Beijing Life Science Academy, Beijing 102209, China
| | - Xuejin Zhao
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- Beijing Life Science Academy, Beijing 102209, China
| | - Bin Yuan
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Sheng Liu
- Shenzhen Children's Hospital, Shenzhen 518038, China
| | - Yuhai Bi
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- Medical School, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yi Shi
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- Medical School, University of Chinese Academy of Sciences, Beijing 100049, China
- Beijing Life Science Academy, Beijing 102209, China
| |
Collapse
|
4
|
Mi J, Jing X, Ma C, Yang Y, Li Y, Zhang Y, Long R, Zheng H. Massive expansion of the pig gut virome based on global metagenomic mining. NPJ Biofilms Microbiomes 2024; 10:76. [PMID: 39209853 PMCID: PMC11362615 DOI: 10.1038/s41522-024-00554-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Accepted: 08/16/2024] [Indexed: 09/04/2024] Open
Abstract
The pig gut virome plays a vital role in the gut microbial ecosystem of pigs. However, a comprehensive understanding of their diversity and a reference database for the virome are currently lacking. To address this gap, we established a Pig Virome Database (PVD) that comprised of 5,566,804 viral contig sequences from 4650 publicly available gut metagenomic samples using a pipeline designated "metav". By clustering sequences, we identified 48,299 viral operational taxonomic units (vOTUs) genomes of at least medium quality, of which 92.83% of which were not found in existing major databases. The majority of vOTUs were identified as Caudoviricetes (72.21%). The PVD database contained a total of 2,362,631 protein-coding genes across the above medium-quality vOTUs genomes that can be used to explore the functional potential of the pig gut virome. These findings highlight the extensive diversity of viruses in the pig gut and provide a pivotal reference dataset for forthcoming research concerning the pig gut virome.
Collapse
Affiliation(s)
- Jiandui Mi
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou, China.
| | - Xiaoping Jing
- State Key Laboratory of Grassland and Agro-Ecosystems, International Centre for Tibetan Plateau Ecosystem Management, College of Ecology, Lanzhou University, Lanzhou, China
| | | | - Yiwen Yang
- College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Yong Li
- College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Yu Zhang
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Ruijun Long
- State Key Laboratory of Grassland and Agro-Ecosystems, International Centre for Tibetan Plateau Ecosystem Management, College of Ecology, Lanzhou University, Lanzhou, China.
| | - Haixue Zheng
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China.
| |
Collapse
|
5
|
Yang J, Shao Z, Zhao X, Zhang W, Zhang Y, Li L, Gao Y, Shao Q, Cao C, Li H, Cui R, Liu H, Gan J. Structures of African swine fever virus topoisomerase complex and their implications. Nat Commun 2024; 15:6484. [PMID: 39090127 PMCID: PMC11294524 DOI: 10.1038/s41467-024-50981-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 07/26/2024] [Indexed: 08/04/2024] Open
Abstract
African swine fever virus (ASFV) is the causal agent of African swine fever (ASF), which is contagious and highly lethal to domestic pigs and wild boars. The genome of ASFV encodes many proteins important for ASFV life cycle. The functional importance of topoisomerase AsfvTopII has been confirmed by in vivo and in vitro assays, but the structure of AsfvTopII is poorly studied. Here, we report four AsfvTopII complex structures. The ATPase domain structures reveal the detailed basis for ATP binding and hydrolysis, which is shared by AsfvTopII and eukaryotic TopIIs. The DNA-bound structures show that AsfvTopII follows conserved mechanism in G-DNA binding and cleavage. Besides G-DNA, a T-DNA fragment is also captured in one AsfvTopII structure. Mutagenesis and in vitro assays confirm that Pro852 and the T-DNA-binding residue Tyr744 are important for the function of AsfvTopII. Our study not only advances the understanding on the biological function of AsfvTopII, but also provides a solid basis for the development of AsfvTopII-specific inhibitors.
Collapse
Affiliation(s)
- Jie Yang
- Shanghai Sci-Tech Inno Center for Infection & Immunity, State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Department of Biochemistry and Biophysics, School of Life Sciences, Fudan University, Shanghai, PR China
| | - Zhiwei Shao
- Shanghai Sci-Tech Inno Center for Infection & Immunity, State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Department of Biochemistry and Biophysics, School of Life Sciences, Fudan University, Shanghai, PR China
| | - Xin Zhao
- Shanghai Sci-Tech Inno Center for Infection & Immunity, State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Department of Biochemistry and Biophysics, School of Life Sciences, Fudan University, Shanghai, PR China
| | - Weizhen Zhang
- Shanghai Sci-Tech Inno Center for Infection & Immunity, State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Department of Biochemistry and Biophysics, School of Life Sciences, Fudan University, Shanghai, PR China
| | - Yixi Zhang
- Shanghai Sci-Tech Inno Center for Infection & Immunity, State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Department of Biochemistry and Biophysics, School of Life Sciences, Fudan University, Shanghai, PR China
| | - Linxi Li
- Shanghai Sci-Tech Inno Center for Infection & Immunity, State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Department of Biochemistry and Biophysics, School of Life Sciences, Fudan University, Shanghai, PR China
| | - Yanqing Gao
- Shanghai Sci-Tech Inno Center for Infection & Immunity, State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Department of Biochemistry and Biophysics, School of Life Sciences, Fudan University, Shanghai, PR China
| | - Qiyuan Shao
- Shanghai Sci-Tech Inno Center for Infection & Immunity, State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Department of Biochemistry and Biophysics, School of Life Sciences, Fudan University, Shanghai, PR China
| | - Chulei Cao
- Shanghai Sci-Tech Inno Center for Infection & Immunity, State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Department of Biochemistry and Biophysics, School of Life Sciences, Fudan University, Shanghai, PR China
| | - Huili Li
- Shanghai Sci-Tech Inno Center for Infection & Immunity, State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Department of Biochemistry and Biophysics, School of Life Sciences, Fudan University, Shanghai, PR China
| | - Ruixue Cui
- Department of Geriatrics, Medical Center on Aging of Shanghai Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Hehua Liu
- Shanghai Sci-Tech Inno Center for Infection & Immunity, State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Department of Biochemistry and Biophysics, School of Life Sciences, Fudan University, Shanghai, PR China
| | - Jianhua Gan
- Shanghai Sci-Tech Inno Center for Infection & Immunity, State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Department of Biochemistry and Biophysics, School of Life Sciences, Fudan University, Shanghai, PR China.
| |
Collapse
|
6
|
Deng H, Cao H, Wang Y, Li J, Dai J, Li LF, Qiu HJ, Li S. Viral replication organelles: the highly complex and programmed replication machinery. Front Microbiol 2024; 15:1450060. [PMID: 39144209 PMCID: PMC11322364 DOI: 10.3389/fmicb.2024.1450060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Accepted: 07/15/2024] [Indexed: 08/16/2024] Open
Abstract
Viral infections usually induce the rearrangement of cellular cytoskeletal proteins and organelle membrane structures, thus creating independent compartments [termed replication organelles (ROs)] to facilitate viral genome replication. Within the ROs, viral replicases, including polymerases, helicases, and ligases, play functional roles during viral replication. These viral replicases are pivotal in the virus life cycle, and numerous studies have demonstrated that the viral replicases could be the potential targets for drugs development. Here, we summarize primarily the key replicases within viral ROs and emphasize the advancements of antiviral drugs targeting crucial viral replicases, providing novel insights into the future development of antiviral strategies.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Hua-Ji Qiu
- State Key Laboratory for Animal Disease Control and Prevention, National African Swine Fever Para-reference Laboratory, National High Containment Facilities for Animal Diseases Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Su Li
- State Key Laboratory for Animal Disease Control and Prevention, National African Swine Fever Para-reference Laboratory, National High Containment Facilities for Animal Diseases Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| |
Collapse
|
7
|
Li N, Ma J, Fu H, Yang Z, Xu C, Li H, Zhao Y, Zhao Y, Chen S, Gou L, Zhang X, Zhang S, Li M, Hou X, Zhang L, Lu Y. Four Parallel Pathways in T4 Ligase-Catalyzed Repair of Nicked DNA with Diverse Bending Angles. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2401150. [PMID: 38582512 PMCID: PMC11220639 DOI: 10.1002/advs.202401150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/08/2024] [Indexed: 04/08/2024]
Abstract
The structural diversity of biological macromolecules in different environments contributes complexity to enzymological processes vital for cellular functions. Fluorescence resonance energy transfer and electron microscopy are used to investigate the enzymatic reaction of T4 DNA ligase catalyzing the ligation of nicked DNA. The data show that both the ligase-AMP complex and the ligase-AMP-DNA complex can have four conformations. This finding suggests the parallel occurrence of four ligation reaction pathways, each characterized by specific conformations of the ligase-AMP complex that persist in the ligase-AMP-DNA complex. Notably, these complexes have DNA bending angles of ≈0°, 20°, 60°, or 100°. The mechanism of parallel reactions challenges the conventional notion of simple sequential reaction steps occurring among multiple conformations. The results provide insights into the dynamic conformational changes and the versatile attributes of T4 DNA ligase and suggest that the parallel multiple reaction pathways may correspond to diverse T4 DNA ligase functions. This mechanism may potentially have evolved as an adaptive strategy across evolutionary history to navigate complex environments.
Collapse
Affiliation(s)
- Na Li
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed MatterSchool of PhysicsXi'an Jiaotong UniversityXi'an710049China
| | - Jianbing Ma
- Beijing National Laboratory for Condensed Matter PhysicsInstitute of PhysicsChinese Academy of SciencesBeijing100190China
| | - Hang Fu
- Beijing National Laboratory for Condensed Matter PhysicsInstitute of PhysicsChinese Academy of SciencesBeijing100190China
- University of Chinese Academy of SciencesBeijing100049China
- Wenzhou InstituteUniversity of Chinese Academy of SciencesWenzhouZhejiang325011China
| | - Zhiwei Yang
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed MatterSchool of PhysicsXi'an Jiaotong UniversityXi'an710049China
| | - Chunhua Xu
- Beijing National Laboratory for Condensed Matter PhysicsInstitute of PhysicsChinese Academy of SciencesBeijing100190China
| | - Haihong Li
- College of Life SciencesNorthwest A&F UniversityYangling712100China
| | - Yimin Zhao
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed MatterSchool of PhysicsXi'an Jiaotong UniversityXi'an710049China
| | - Yizhen Zhao
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed MatterSchool of PhysicsXi'an Jiaotong UniversityXi'an710049China
| | - Shuyu Chen
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed MatterSchool of PhysicsXi'an Jiaotong UniversityXi'an710049China
| | - Lu Gou
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed MatterSchool of PhysicsXi'an Jiaotong UniversityXi'an710049China
| | - Xinghua Zhang
- Hubei Key Laboratory of Cell HomeostasisCollege of Life SciencesWuhan UniversityWuhan430072China
| | - Shengli Zhang
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed MatterSchool of PhysicsXi'an Jiaotong UniversityXi'an710049China
| | - Ming Li
- Beijing National Laboratory for Condensed Matter PhysicsInstitute of PhysicsChinese Academy of SciencesBeijing100190China
- University of Chinese Academy of SciencesBeijing100049China
- Songshan Lake Materials LaboratoryDongguanGuangdong523808China
| | - Ximiao Hou
- College of Life SciencesNorthwest A&F UniversityYangling712100China
| | - Lei Zhang
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed MatterSchool of PhysicsXi'an Jiaotong UniversityXi'an710049China
| | - Ying Lu
- Beijing National Laboratory for Condensed Matter PhysicsInstitute of PhysicsChinese Academy of SciencesBeijing100190China
- University of Chinese Academy of SciencesBeijing100049China
- Songshan Lake Materials LaboratoryDongguanGuangdong523808China
| |
Collapse
|
8
|
Chen S, Wang T, Luo R, Lu Z, Lan J, Sun Y, Fu Q, Qiu HJ. Genetic Variations of African Swine Fever Virus: Major Challenges and Prospects. Viruses 2024; 16:913. [PMID: 38932205 PMCID: PMC11209373 DOI: 10.3390/v16060913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 05/26/2024] [Accepted: 05/30/2024] [Indexed: 06/28/2024] Open
Abstract
African swine fever (ASF) is a contagious viral disease affecting pigs and wild boars. It typically presents as a hemorrhagic fever but can also manifest in various forms, ranging from acute to asymptomatic. ASF has spread extensively globally, significantly impacting the swine industry. The complex and highly variable character of the ASFV genome makes vaccine development and disease surveillance extremely difficult. The overall trend in ASFV evolution is towards decreased virulence and increased transmissibility. Factors such as gene mutation, viral recombination, and the strain-specificity of virulence-associated genes facilitate viral variations. This review deeply discusses the influence of these factors on viral immune evasion, pathogenicity, and the ensuing complexities encountered in vaccine development, disease detection, and surveillance. The ultimate goal of this review is to thoroughly explore the genetic evolution patterns and variation mechanisms of ASFV, providing a theoretical foundation for advancement in vaccine and diagnostic technologies.
Collapse
Affiliation(s)
- Shengmei Chen
- College of Life Science and Engineering, Foshan University, Foshan 528231, China
- State Key Laboratory for Animal Disease Control and Prevention, National African Swine Fever Para-Reference Laboratory, National High Containment Facilities for Animal Diseases Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Tao Wang
- State Key Laboratory for Animal Disease Control and Prevention, National African Swine Fever Para-Reference Laboratory, National High Containment Facilities for Animal Diseases Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Rui Luo
- State Key Laboratory for Animal Disease Control and Prevention, National African Swine Fever Para-Reference Laboratory, National High Containment Facilities for Animal Diseases Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Zhanhao Lu
- State Key Laboratory for Animal Disease Control and Prevention, National African Swine Fever Para-Reference Laboratory, National High Containment Facilities for Animal Diseases Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Jing Lan
- State Key Laboratory for Animal Disease Control and Prevention, National African Swine Fever Para-Reference Laboratory, National High Containment Facilities for Animal Diseases Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
- College of Animal Sciences, Yangtze University, Jingzhou 434023, China
| | - Yuan Sun
- State Key Laboratory for Animal Disease Control and Prevention, National African Swine Fever Para-Reference Laboratory, National High Containment Facilities for Animal Diseases Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Qiang Fu
- College of Life Science and Engineering, Foshan University, Foshan 528231, China
| | - Hua-Ji Qiu
- College of Life Science and Engineering, Foshan University, Foshan 528231, China
- State Key Laboratory for Animal Disease Control and Prevention, National African Swine Fever Para-Reference Laboratory, National High Containment Facilities for Animal Diseases Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
- College of Animal Sciences, Yangtze University, Jingzhou 434023, China
| |
Collapse
|
9
|
Macalalad MAB, Orosco FL. In silico identification of multi-target inhibitors from medicinal fungal metabolites against the base excision repair pathway proteins of African swine fever virus. RSC Adv 2024; 14:10039-10055. [PMID: 38533097 PMCID: PMC10964135 DOI: 10.1039/d4ra00819g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 03/20/2024] [Indexed: 03/28/2024] Open
Abstract
African swine fever virus (ASFV) has emerged as a serious threat to the pork industry resulting in significant economic losses and heightened concerns about food security. With no known cure presently available, existing control measures center on animal quarantine and culling. Considering the severity and challenges posed by ASFV, it is imperative to discover new treatment strategies and implement additional measures to prevent its further spread. This study recognized the potential of 1830 fungal metabolites from medicinal fungi as antiviral compounds against base excision repair (BER) proteins of ASFV, specifically ASFVAP, ASFVPolX, and ASFVLig. A wide array of computer-aided drug discovery techniques were employed to carry out the virtual screening process: ADMET profiling revealed 319 molecules with excellent bioavailability and toxicity properties; consensus docking identified the 10 best-scoring ligands against all targets; molecular dynamics simulation elucidated the stability of the protein-ligand complexes; and MM/PB(GB)SA energy calculations predicted the binding energies of the compounds as well as the key residues integral to binding. Through in silico methods, we identified two theoretical lead candidates against ASFVAP, four against ASFVLig, and five against ASFVPolX. Two compounds, methyl ganoderate E and antcamphin M, exhibited potential multi-target inhibitory characteristics against ASFVPolX and ASFVLig, while compound cochlactone A showed promising antagonistic results against all three BER proteins. It is recommended to prioritize these hit compounds in future in vitro and in vivo studies to validate their potential as antiviral drugs against ASFV.
Collapse
Affiliation(s)
- Mark Andrian B Macalalad
- Virology and Vaccine Research and Development Program, Department of Science and Technology - Industrial Technology Development Institute Taguig Metro Manila 1632 Philippines
| | - Fredmoore L Orosco
- Virology and Vaccine Research and Development Program, Department of Science and Technology - Industrial Technology Development Institute Taguig Metro Manila 1632 Philippines
- S&T Fellows Program, Department of Science and Technology Taguig Metro Manila 1632 Philippines
- Department of Biology, College of Arts and Sciences, University of the Philippines Manila Manila Metro Manila 1000 Philippines
| |
Collapse
|
10
|
Lv C, Yang J, Zhao L, Zou Z, Kang C, Zhang Q, Wu C, Yang L, Cheng C, Zhao Y, Liao Q, Hu X, Li C, Sun X, Jin M. Bacillus subtilis partially inhibits African swine fever virus infection in vivo and in vitro based on its metabolites arctiin and genistein interfering with the function of viral topoisomerase II. J Virol 2023; 97:e0071923. [PMID: 37929962 PMCID: PMC10688316 DOI: 10.1128/jvi.00719-23] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 07/21/2023] [Indexed: 11/07/2023] Open
Abstract
IMPORTANCE African swine fever virus (ASFV) is a highly fatal swine disease that severely affects the pig industry. Although ASFV has been prevalent for more than 100 years, effective vaccines or antiviral strategies are still lacking. In this study, we identified four Bacillus subtilis strains that inhibited ASFV proliferation in vitro. Pigs fed with liquid biologics or powders derived from four B. subtilis strains mixed with pellet feed showed reduced morbidity and mortality when challenged with ASFV. Further analysis showed that the antiviral activity of B. subtilis was based on its metabolites arctiin and genistein interfering with the function of viral topoisomerase II. Our findings offer a promising new strategy for the prevention and control of ASFV that may significantly alleviate the economic losses in the pig industry.
Collapse
Affiliation(s)
- Changjie Lv
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
| | - Jingyu Yang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, College of Life Sciences, Hubei University, Wuhan, China
| | - Li Zhao
- State Key Laboratory of Biocatalysis and Enzyme Engineering, College of Life Sciences, Hubei University, Wuhan, China
| | - Zhong Zou
- Research Institute of Wuhan Keqian Biology Co., Ltd, Wuhan, China
| | - Chao Kang
- Research Institute of Wuhan Keqian Biology Co., Ltd, Wuhan, China
| | - Qiang Zhang
- College of Biomedicine and Health, Huazhong Agricultural University, Wuhan, China
| | - Chao Wu
- Research Institute of Wuhan Keqian Biology Co., Ltd, Wuhan, China
| | - Li Yang
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
| | - Chuxing Cheng
- Research Institute of Wuhan Keqian Biology Co., Ltd, Wuhan, China
| | - Ya Zhao
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
| | - Qi Liao
- Research Institute of Wuhan Keqian Biology Co., Ltd, Wuhan, China
| | - Xiaotong Hu
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
| | - Chengfei Li
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
| | - Xiaomei Sun
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
| | - Meilin Jin
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
11
|
Shao Z, Su S, Yang J, Zhang W, Gao Y, Zhao X, Zhang Y, Shao Q, Cao C, Li H, Liu H, Zhang J, Lin J, Ma J, Gan J. Structures and implications of the C962R protein of African swine fever virus. Nucleic Acids Res 2023; 51:9475-9490. [PMID: 37587714 PMCID: PMC10516667 DOI: 10.1093/nar/gkad677] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 07/01/2023] [Accepted: 08/09/2023] [Indexed: 08/18/2023] Open
Abstract
African swine fever virus (ASFV) is highly contagious and can cause lethal disease in pigs. Although it has been extensively studied in the past, no vaccine or other useful treatment against ASFV is available. The genome of ASFV encodes more than 170 proteins, but the structures and functions for the majority of the proteins remain elusive, which hindered our understanding on the life cycle of ASFV and the development of ASFV-specific inhibitors. Here, we report the structural and biochemical studies of the highly conserved C962R protein of ASFV, showing that C962R is a multidomain protein. The N-terminal AEP domain is responsible for the DNA polymerization activity, whereas the DNA unwinding activity is catalyzed by the central SF3 helicase domain. The middle PriCT2 and D5_N domains and the C-terminal Tail domain all contribute to the DNA unwinding activity of C962R. C962R preferentially works on forked DNA, and likely functions in Base-excision repair (BER) or other repair pathway in ASFV. Although it is not essential for the replication of ASFV, C962R can serve as a model and provide mechanistic insight into the replicative primase proteins from many other species, such as nitratiruptor phage NrS-1, vaccinia virus (VACV) and other viruses.
Collapse
Affiliation(s)
- Zhiwei Shao
- Shanghai Public Health Clinical Center, State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Department of Biochemistry and Biophysics, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Shichen Su
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Department of Biochemistry and Biophysics, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Jie Yang
- Shanghai Public Health Clinical Center, State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Department of Biochemistry and Biophysics, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Weizhen Zhang
- Shanghai Public Health Clinical Center, State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Department of Biochemistry and Biophysics, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Yanqing Gao
- Shanghai Public Health Clinical Center, State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Department of Biochemistry and Biophysics, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Xin Zhao
- Shanghai Public Health Clinical Center, State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Department of Biochemistry and Biophysics, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Yixi Zhang
- Shanghai Public Health Clinical Center, State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Department of Biochemistry and Biophysics, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Qiyuan Shao
- Shanghai Public Health Clinical Center, State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Department of Biochemistry and Biophysics, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Chulei Cao
- Shanghai Public Health Clinical Center, State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Department of Biochemistry and Biophysics, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Huili Li
- Shanghai Public Health Clinical Center, State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Department of Biochemistry and Biophysics, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Hehua Liu
- Shanghai Public Health Clinical Center, State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Department of Biochemistry and Biophysics, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Jinru Zhang
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Department of Biochemistry and Biophysics, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Jinzhong Lin
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Department of Biochemistry and Biophysics, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Jinbiao Ma
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Department of Biochemistry and Biophysics, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Jianhua Gan
- Shanghai Public Health Clinical Center, State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Department of Biochemistry and Biophysics, School of Life Sciences, Fudan University, Shanghai 200438, China
| |
Collapse
|
12
|
Shao Z, Yang J, Gao Y, Zhang Y, Zhao X, Shao Q, Zhang W, Cao C, Liu H, Gan J. Structural and functional studies of PCNA from African swine fever virus. J Virol 2023; 97:e0074823. [PMID: 37534905 PMCID: PMC10506467 DOI: 10.1128/jvi.00748-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 06/16/2023] [Indexed: 08/04/2023] Open
Abstract
Proliferating cell nuclear antigen (PCNA) belongs to the DNA sliding clamp family. Via interacting with various partner proteins, PCNA plays critical roles in DNA replication, DNA repair, chromatin assembly, epigenetic inheritance, chromatin remodeling, and many other fundamental biological processes. Although PCNA and PCNA-interacting partner networks are conserved across species, PCNA of a given species is rarely functional in heterologous systems, emphasizing the importance of more representative PCNA studies. Here, we report two crystal structures of PCNA from African swine fever virus (ASFV), which is the only member of the Asfarviridae family. Compared to the eukaryotic and archaeal PCNAs and the sliding clamp structural homologs from other viruses, AsfvPCNA possesses unique sequences and/or conformations at several regions, such as the J-loop, interdomain-connecting loop (IDCL), P-loop, and C-tail, which are involved in partner recognition or modification of sliding clamps. In addition to double-stranded DNA binding, we also demonstrate that AsfvPCNA can modestly enhance the ligation activity of the AsfvLIG protein. The unique structural features of AsfvPCNA can serve as a potential target for the development of ASFV-specific inhibitors and help combat the deadly virus. IMPORTANCE Two high-resolution crystal structures of African swine fever virus proliferating cell nuclear antigen (AsfvPCNA) are presented here. Structural comparison revealed that AsfvPCNA is unique at several regions, such as the J-loop, the interdomain-connecting loop linker, and the P-loop, which may play important roles in ASFV-specific partner selection of AsfvPCNA. Unlike eukaryotic and archaeal PCNAs, AsfvPCNA possesses high double-stranded DNA-binding affinity. Besides DNA binding, AsfvPCNA can also modestly enhance the ligation activity of the AsfvLIG protein, which is essential for the replication and repair of ASFV genome. The unique structural features make AsfvPCNA a potential target for drug development, which will help combat the deadly virus.
Collapse
Affiliation(s)
- Zhiwei Shao
- Shanghai Public Health Clinical Center, State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, School of Life Sciences, Fudan University, Shanghai, China
| | - Jie Yang
- Shanghai Public Health Clinical Center, State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, School of Life Sciences, Fudan University, Shanghai, China
| | - Yanqing Gao
- Shanghai Public Health Clinical Center, State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, School of Life Sciences, Fudan University, Shanghai, China
| | - Yixi Zhang
- Shanghai Public Health Clinical Center, State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, School of Life Sciences, Fudan University, Shanghai, China
| | - Xin Zhao
- Shanghai Public Health Clinical Center, State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, School of Life Sciences, Fudan University, Shanghai, China
| | - Qiyuan Shao
- Shanghai Public Health Clinical Center, State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, School of Life Sciences, Fudan University, Shanghai, China
| | - Weizhen Zhang
- Shanghai Public Health Clinical Center, State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, School of Life Sciences, Fudan University, Shanghai, China
| | - Chulei Cao
- Shanghai Public Health Clinical Center, State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, School of Life Sciences, Fudan University, Shanghai, China
| | - Hehua Liu
- Shanghai Public Health Clinical Center, State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, School of Life Sciences, Fudan University, Shanghai, China
| | - Jianhua Gan
- Shanghai Public Health Clinical Center, State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, School of Life Sciences, Fudan University, Shanghai, China
| |
Collapse
|
13
|
Wang Q, Hu J, Lou T, Li Y, Shi Y, Hu H. Integrated agronomic, physiological, microstructure, and whole-transcriptome analyses reveal the role of biomass accumulation and quality formation during Se biofortification in alfalfa. FRONTIERS IN PLANT SCIENCE 2023; 14:1198847. [PMID: 37546260 PMCID: PMC10400095 DOI: 10.3389/fpls.2023.1198847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Accepted: 06/12/2023] [Indexed: 08/08/2023]
Abstract
Se-biofortified agricultural products receive considerable interest due to the worldwide severity of selenium (Se) deficiency. Alfalfa (Medicago sativa L.), the king of forage, has a large biomass, a high protein content, and a high level of adaptability, making it a good resource for Se biofortification. Analyses of agronomic, quality, physiological, and microstructure results indicated the mechanism of biomass increase and quality development in alfalfa during Se treatment. Se treatment effectively increased Se content, biomass accumulation, and protein levels in alfalfa. The enhancement of antioxidant capacity contributes to the maintenance of low levels of reactive oxygen species (ROS), which, in turn, serves to increase alfalfa's stress resistance and the stability of its intracellular environment. An increase in the rate of photosynthesis contributes to the accumulation of biomass in alfalfa. To conduct a more comprehensive investigation of the regulatory networks induced by Se treatment, the transcriptome sequencing of non-coding RNA (ncRNA) was employed to compare 100 mg/kg Se treatment and control groups. The analysis identified 1,414, 62, and 5 genes as DE-long non-coding RNAs (DE-lncRNA), DE-microRNAs (DE-miRNA), and DE-circular RNA (DE-circRNA), respectively. The function of miRNA-related regulatory networks during Se biofortification in alfalfa was investigated. Subsequent enrichment analysis revealed significant involvement of transcription factors, DNA replication and repair mechanisms, photosynthesis, carbohydrate metabolism, and protein processing. The antioxidant capacity and protein accumulation of alfalfa were regulated by the modulation of signal transduction, the glyoxalase pathway, proteostasis, and circRNA/lncRNA-related regulatory networks. The findings offer new perspectives on the regulatory mechanisms of Se in plant growth, biomass accumulation, and stress responses, and propose potential strategies for enhancing its utilization in the agricultural sector.
Collapse
Affiliation(s)
- Qingdong Wang
- School of Life Sciences, Zhengzhou University, Zhengzhou, Henan, China
- Henan University of Animal Husbandry and Economy, Zhengzhou, Henan, China
- Henan Key Laboratory of Bioactive Macromolecules, Zhengzhou, Henan, China
| | - Jinke Hu
- School of Life Sciences, Zhengzhou University, Zhengzhou, Henan, China
- Henan University of Animal Husbandry and Economy, Zhengzhou, Henan, China
- Henan Key Laboratory of Bioactive Macromolecules, Zhengzhou, Henan, China
| | - Tongbo Lou
- School of Life Sciences, Zhengzhou University, Zhengzhou, Henan, China
- Henan University of Animal Husbandry and Economy, Zhengzhou, Henan, China
- Henan Key Laboratory of Bioactive Macromolecules, Zhengzhou, Henan, China
| | - Yan Li
- School of Life Sciences, Zhengzhou University, Zhengzhou, Henan, China
- Henan University of Animal Husbandry and Economy, Zhengzhou, Henan, China
- Henan Key Laboratory of Bioactive Macromolecules, Zhengzhou, Henan, China
| | - Yuhua Shi
- School of Life Sciences, Zhengzhou University, Zhengzhou, Henan, China
- Henan University of Animal Husbandry and Economy, Zhengzhou, Henan, China
- Henan Key Laboratory of Bioactive Macromolecules, Zhengzhou, Henan, China
| | - Huafeng Hu
- Henan University of Animal Husbandry and Economy, Zhengzhou, Henan, China
- Henan Key Laboratory of Bioactive Macromolecules, Zhengzhou, Henan, China
- Henan Grass and Animal Engineering Technology Research Center, Zhengzhou, Henan, China
| |
Collapse
|
14
|
Zhang Y, Wang Q, Zhu Z, Wang S, Tu S, Zhang Y, Zou Y, Liu Y, Liu C, Ren W, Zheng D, Zhao Y, Hu Y, Li L, Shi C, Ge S, Lin P, Xu F, Ma J, Wu X, Ma H, Wang Z, Bao J. Tracing the Origin of Genotype II African Swine Fever Virus in China by Genomic Epidemiology Analysis. Transbound Emerg Dis 2023; 2023:4820809. [PMID: 40303812 PMCID: PMC12017148 DOI: 10.1155/2023/4820809] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 02/20/2023] [Accepted: 02/22/2023] [Indexed: 05/02/2025]
Abstract
The pandemic spread of African swine fever (ASF) has caused serious effects on the global pig industry. Virus genome sequencing and genomic epidemiology analysis play an important role in tracking the outbreaks of the disease and tracing the transmission of the virus. Here we obtained the full-length genome sequence of African swine fever virus (ASFV) in the first outbreak of ASF in China on August 3rd, 2018 and compared it with other published genotype II ASFV genomes including 9 genomes collected in China from September 2018 to October 2020. Phylogenetic analysis on genomic sequences revealed that genotype II ASFV has evolved into different genetic clusters with temporal and spatial correlation since being introduced into Europe and then Asia. There was a strong support for the monophyletic grouping of all the ASFV genome sequences from China and other Asian countries, which shared a common ancestor with those from the Central or Eastern Europe. An evolutionary rate of 1.312 × 10-5 nucleotide substitutions per site per year was estimated for genotype II ASFV genomes. Eight single nucleotide variations which located in MGF110-1L, MGF110-7L, MGF360-10L, MGF505-5R, MGF505-9R, K145R, NP419L, and I267L were identified as anchor mutations that defined genetic clusters of genotype II ASFV in Europe and Asia. This study expanded our knowledge of the molecular epidemiology of ASFV and provided valuable information for effective control of the disease.
Collapse
Affiliation(s)
- Yong Zhang
- China Animal Health and Epidemiology Center, Qingdao 266032, China
- Lars Bolund Institute of Regenerative Medicine, Qingdao-Europe Advanced Institute for Life Sciences, BGI-Qingdao, BGI-Shenzhen, Qingdao 266555, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 518083, China
| | - Qinghua Wang
- China Animal Health and Epidemiology Center, Qingdao 266032, China
| | - Zhongyi Zhu
- Pathogenesis Pharmaceutical Technology, BGI-Shenzhen, Shenzhen 518083, China
| | - Shujuan Wang
- China Animal Health and Epidemiology Center, Qingdao 266032, China
| | - Shuyang Tu
- National Facility for Protein Science in Shanghai, Zhangjiang Laboratory, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China
| | - Yongqiang Zhang
- China Animal Health and Epidemiology Center, Qingdao 266032, China
| | - Yanli Zou
- China Animal Health and Epidemiology Center, Qingdao 266032, China
| | - Yutian Liu
- China Animal Health and Epidemiology Center, Qingdao 266032, China
| | - Chunju Liu
- China Animal Health and Epidemiology Center, Qingdao 266032, China
| | - Weijie Ren
- China Animal Health and Epidemiology Center, Qingdao 266032, China
| | - Dongxia Zheng
- China Animal Health and Epidemiology Center, Qingdao 266032, China
| | - Yunling Zhao
- China Animal Health and Epidemiology Center, Qingdao 266032, China
| | - Yongxin Hu
- China Animal Health and Epidemiology Center, Qingdao 266032, China
| | - Lin Li
- China Animal Health and Epidemiology Center, Qingdao 266032, China
| | - Chuan Shi
- China Animal Health and Epidemiology Center, Qingdao 266032, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 518083, China
- BGI-Qingdao, BGI-Shenzhen, Qingdao 266555, China
| | - Shengqiang Ge
- China Animal Health and Epidemiology Center, Qingdao 266032, China
| | - Peng Lin
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 518083, China
- BGI-Qingdao, BGI-Shenzhen, Qingdao 266555, China
| | - Fengping Xu
- Lars Bolund Institute of Regenerative Medicine, Qingdao-Europe Advanced Institute for Life Sciences, BGI-Qingdao, BGI-Shenzhen, Qingdao 266555, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 518083, China
| | - Jinmin Ma
- Pathogenesis Pharmaceutical Technology, BGI-Shenzhen, Shenzhen 518083, China
| | - Xiaodong Wu
- China Animal Health and Epidemiology Center, Qingdao 266032, China
| | - Hongchao Ma
- China Animal Health and Epidemiology Center, Qingdao 266032, China
| | - Zhiliang Wang
- China Animal Health and Epidemiology Center, Qingdao 266032, China
| | - Jingyue Bao
- China Animal Health and Epidemiology Center, Qingdao 266032, China
| |
Collapse
|
15
|
Gulkis M, Tang Q, Petrides M, Çağlayan M. Structures of LIG1 active site mutants reveal the importance of DNA end rigidity for mismatch discrimination. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.21.533718. [PMID: 36993234 PMCID: PMC10055324 DOI: 10.1101/2023.03.21.533718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
Abstract
ATP-dependent DNA ligases catalyze phosphodiester bond formation in the conserved three-step chemical reaction of nick sealing. Human DNA ligase I (LIG1) finalizes almost all DNA repair pathways following DNA polymerase-mediated nucleotide insertion. We previously reported that LIG1 discriminates mismatches depending on the architecture of the 3'-terminus at a nick, however the contribution of conserved active site residues to faithful ligation remains unknown. Here, we comprehensively dissect the nick DNA substrate specificity of LIG1 active site mutants carrying Ala(A) and Leu(L) substitutions at Phe(F)635 and Phe(F)F872 residues and show completely abolished ligation of nick DNA substrates with all 12 non-canonical mismatches. LIG1 EE/AA structures of F635A and F872A mutants in complex with nick DNA containing A:C and G:T mismatches demonstrate the importance of DNA end rigidity, as well as uncover a shift in a flexible loop near 5'-end of the nick, which causes an increased barrier to adenylate transfer from LIG1 to the 5'-end of the nick. Furthermore, LIG1 EE/AA /8oxoG:A structures of both mutants demonstrated that F635 and F872 play critical roles during steps 1 or 2 of the ligation reaction depending on the position of the active site residue near the DNA ends. Overall, our study contributes towards a better understanding of the substrate discrimination mechanism of LIG1 against mutagenic repair intermediates with mismatched or damaged ends and reveals the importance of conserved ligase active site residues to maintain ligation fidelity.
Collapse
|
16
|
Lu G, Ou K, Jing Y, Zhang H, Feng S, Yang Z, Shen G, Liu J, Wu C, Wei S. The Structural Basis of African Swine Fever Virus pS273R Protease Binding to E64 through Molecular Dynamics Simulations. Molecules 2023; 28:1435. [PMID: 36771101 PMCID: PMC9920524 DOI: 10.3390/molecules28031435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 01/21/2023] [Accepted: 01/22/2023] [Indexed: 02/05/2023] Open
Abstract
Identification of novel drugs for anti-African swine fever (ASF) applications is of utmost urgency, as it negatively affects pig farming and no effective vaccine or treatment is currently available. African swine fever virus (ASFV) encoded pS273R is a cysteine protease that plays an important role in virus replication. E64, acting as an inhibitor of cysteine protease, has been established as exerting an inhibitory effect on pS273R. In order to obtain a better understanding of the interaction between E64 and pS273R, common docking, restriction docking, and covalent docking were employed to analyze the optimal bonding position between pS273R-E64 and its bonding strength. Additionally, three sets of 100 ns molecular dynamics simulations were conducted to examine the conformational dynamics of pS273R and the dynamic interaction of pS273R-E64, based on a variety of analytical methods including root mean square deviation (RMSD), root mean square fluctuation (RMSF), free energy of ligand (FEL), principal component analysis (PCA), and molecular mechanics/Poisson-Boltzmann surface area (MM/PBSA) analysis. The results show that E64 and pS273R exhibited close binding degrees at the activity center of ASFV pS273R protease. The data of these simulations indicate that binding of E64 to pS273R results in a reduction in flexibility, particularly in the ARM region, and a change in the conformational space of pS273R. Additionally, the ability of E64 to interact with polar amino acids such as ASN158, SER192, and GLN229, as well as charged amino acids such as LYS167 and HIS168, seems to be an important factor in its inhibitory effect. Finally, Octet biostratigraphy confirmed the binding of E64 and pS273R with a KD value of 903 uM. Overall, these findings could potentially be utilized in the development of novel inhibitors of pS273R to address the challenges posed by ASFV.
Collapse
Affiliation(s)
- Gen Lu
- Key Laboratory of Livestock Infectious Diseases, Ministry of Education, Shenyang Agricultural University, No. 120, Dongling Road, Shenhe District, Shenyang 110866, China
| | - Kang Ou
- Key Laboratory of Livestock Infectious Diseases, Ministry of Education, Shenyang Agricultural University, No. 120, Dongling Road, Shenhe District, Shenyang 110866, China
| | - Yiwen Jing
- Key Laboratory of Livestock Infectious Diseases, Ministry of Education, Shenyang Agricultural University, No. 120, Dongling Road, Shenhe District, Shenyang 110866, China
| | - Huan Zhang
- Key Laboratory of Livestock Infectious Diseases, Ministry of Education, Shenyang Agricultural University, No. 120, Dongling Road, Shenhe District, Shenyang 110866, China
| | - Shouhua Feng
- Key Laboratory of Livestock Infectious Diseases, Ministry of Education, Shenyang Agricultural University, No. 120, Dongling Road, Shenhe District, Shenyang 110866, China
| | - Zuofeng Yang
- The Preventive and Control Center of Animal Disease of Liaoning Province, Liaoning Agricultural Development Service Center, No. 95, Renhe Road, Shenbei District, Shenyang 110164, China
| | - Guoshun Shen
- Key Laboratory of Livestock Infectious Diseases, Ministry of Education, Shenyang Agricultural University, No. 120, Dongling Road, Shenhe District, Shenyang 110866, China
| | - Jinling Liu
- Key Laboratory of Livestock Infectious Diseases, Ministry of Education, Shenyang Agricultural University, No. 120, Dongling Road, Shenhe District, Shenyang 110866, China
| | - Changde Wu
- Key Laboratory of Livestock Infectious Diseases, Ministry of Education, Shenyang Agricultural University, No. 120, Dongling Road, Shenhe District, Shenyang 110866, China
| | - Shu Wei
- The Preventive and Control Center of Animal Disease of Liaoning Province, Liaoning Agricultural Development Service Center, No. 95, Renhe Road, Shenbei District, Shenyang 110164, China
| |
Collapse
|
17
|
Peng Q, Xie Y, Kuai L, Wang H, Qi J, Gao GF, Shi Y. Structure of monkeypox virus DNA polymerase holoenzyme. Science 2023; 379:100-105. [PMID: 36520947 DOI: 10.1126/science.ade6360] [Citation(s) in RCA: 49] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The World Health Organization declared mpox (or monkeypox) a public health emergency of international concern in July 2022, and prophylactic and therapeutic measures are in urgent need. The monkeypox virus (MPXV) has its own DNA polymerase F8, together with the processive cofactors A22 and E4, constituting the polymerase holoenzyme for genome replication. Here, we determined the holoenzyme structure in complex with DNA using cryo-electron microscopy at the global resolution of ~2.8 angstroms. The holoenzyme possesses an architecture that suggests a "forward sliding clamp" processivity mechanism for viral DNA replication. MPXV polymerase has a DNA binding mode similar to that of other B-family DNA polymerases from different species. These findings reveal the mechanism of the MPXV genome replication and may guide the development of anti-poxvirus drugs.
Collapse
Affiliation(s)
- Qi Peng
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yufeng Xie
- Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Lu Kuai
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Han Wang
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China.,College of Future Technology, Peking University, Beijing 100871, China
| | - Jianxun Qi
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - George F Gao
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China.,Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing 100084, China.,Savaid Medical School, University of Chinese Academy of Sciences, Beijing 100049, China.,Center for Influenza Research and Early-warning (CASCIRE), CAS-TWAS Center of Excellence for Emerging Infectious Disease (CEEID), Chinese Academy of Sciences, Beijing 100101, China.,Research Unit of Adaptive Evolution and Control of Emerging Viruses, Chinese Academy of Medical Sciences, Beijing 100052, China
| | - Yi Shi
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China.,Center for Influenza Research and Early-warning (CASCIRE), CAS-TWAS Center of Excellence for Emerging Infectious Disease (CEEID), Chinese Academy of Sciences, Beijing 100101, China.,Research Unit of Adaptive Evolution and Control of Emerging Viruses, Chinese Academy of Medical Sciences, Beijing 100052, China
| |
Collapse
|
18
|
Complete Structural Predictions of the Proteome of African Swine Fever Virus Strain Georgia 2007. Microbiol Resour Announc 2022; 11:e0088122. [DOI: 10.1128/mra.00881-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Here, we announce the predicted structures of the 193 proteins encoded by African swine fever virus (ASFV) strain Georgia 2007 (ASFV-G). Previously, only the structures of 16 ASFV proteins were elucidated.
Collapse
|
19
|
Duan X, Ru Y, Yang W, Ren J, Hao R, Qin X, Li D, Zheng H. Research progress on the proteins involved in African swine fever virus infection and replication. Front Immunol 2022; 13:947180. [PMID: 35935977 PMCID: PMC9353306 DOI: 10.3389/fimmu.2022.947180] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 06/28/2022] [Indexed: 12/02/2022] Open
Abstract
African swine fever (ASF) is an acute, hemorrhagic and highly contagious infectious disease caused by African swine fever virus (ASFV), which infects domestic pigs or wild boars. It is characterized by short course of disease, high fever and hemorrhagic lesions, with mortality of up to 100% from acute infection. Up to now, the lack of commercial vaccines and effective drugs has seriously threatened the healthy economic development of the global pig industry. ASFV is a double-stranded DNA virus and genome varies between about 170-194 kb, which encodes 150-200 viral proteins, including 68 structural proteins and more than 100 non-structural proteins. In recent years, although the research on structure and function of ASFV-encoded proteins has been deepened, the structure and infection process of ASFV are still not clear. This review summarizes the main process of ASFV infection, replication and functions of related viral proteins to provide scientific basis and theoretical basis for ASFV research and vaccine development.
Collapse
Affiliation(s)
- Xianghan Duan
- State Key Laboratory of Veterinary Etiological Biology and OIE/National Foot and Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Yi Ru
- State Key Laboratory of Veterinary Etiological Biology and OIE/National Foot and Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Wenping Yang
- State Key Laboratory of Veterinary Etiological Biology and OIE/National Foot and Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Jingjing Ren
- State Key Laboratory of Veterinary Etiological Biology and OIE/National Foot and Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Rongzeng Hao
- State Key Laboratory of Veterinary Etiological Biology and OIE/National Foot and Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Xiaodong Qin
- State Key Laboratory of Veterinary Etiological Biology and OIE/National Foot and Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Dan Li
- State Key Laboratory of Veterinary Etiological Biology and OIE/National Foot and Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
- State Key Laboratory of Veterinary Etiological Biology, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Haixue Zheng
- State Key Laboratory of Veterinary Etiological Biology and OIE/National Foot and Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
- State Key Laboratory of Veterinary Etiological Biology, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
- *Correspondence: Haixue Zheng,
| |
Collapse
|
20
|
Tang Q, Gulkis M, McKenna R, Çağlayan M. Structures of LIG1 that engage with mutagenic mismatches inserted by polβ in base excision repair. Nat Commun 2022; 13:3860. [PMID: 35790757 PMCID: PMC9256674 DOI: 10.1038/s41467-022-31585-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 06/23/2022] [Indexed: 11/09/2022] Open
Abstract
DNA ligase I (LIG1) catalyzes the ligation of the nick repair intermediate after gap filling by DNA polymerase (pol) β during downstream steps of the base excision repair (BER) pathway. However, how LIG1 discriminates against the mutagenic 3'-mismatches incorporated by polβ at atomic resolution remains undefined. Here, we determine the X-ray structures of LIG1/nick DNA complexes with G:T and A:C mismatches and uncover the ligase strategies that favor or deter the ligation of base substitution errors. Our structures reveal that the LIG1 active site can accommodate a G:T mismatch in the wobble conformation, where an adenylate (AMP) is transferred to the 5'-phosphate of a nick (DNA-AMP), while it stays in the LIG1-AMP intermediate during the initial step of the ligation reaction in the presence of an A:C mismatch at the 3'-strand. Moreover, we show mutagenic ligation and aberrant nick sealing of dG:T and dA:C mismatches, respectively. Finally, we demonstrate that AP-endonuclease 1 (APE1), as a compensatory proofreading enzyme, removes the mismatched bases and interacts with LIG1 at the final BER steps. Our overall findings provide the features of accurate versus mutagenic outcomes coordinated by a multiprotein complex including polβ, LIG1, and APE1 to maintain efficient repair.
Collapse
Affiliation(s)
- Qun Tang
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, FL, 32610, USA
| | - Mitchell Gulkis
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, FL, 32610, USA
| | - Robert McKenna
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, FL, 32610, USA
| | - Melike Çağlayan
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, FL, 32610, USA.
| |
Collapse
|
21
|
Structural Insight into Molecular Inhibitory Mechanism of InsP 6 on African Swine Fever Virus mRNA-Decapping Enzyme g5Rp. J Virol 2022; 96:e0190521. [PMID: 35481780 PMCID: PMC9131872 DOI: 10.1128/jvi.01905-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Removal of 5′ cap on cellular mRNAs by the African swine fever virus (ASFV) decapping enzyme g5R protein (g5Rp) is beneficial to viral gene expression during the early stages of infection. As the only nucleoside diphosphate-linked moiety X (Nudix) decapping enzyme encoded in the ASFV genome, g5Rp works in both the degradation of cellular mRNA and the hydrolyzation of the diphosphoinositol polyphosphates. Here, we report the structures of dimeric g5Rp and its complex with inositol hexakisphosphate (InsP6). The two g5Rp protomers interact head to head to form a dimer, and the dimeric interface is formed by extensive polar and nonpolar interactions. Each protomer is composed of a unique N-terminal helical domain and a C-terminal classic Nudix domain. As g5Rp is an mRNA-decapping enzyme, we identified key residues, including K8, K94, K95, K98, K175, R221, and K243 located on the substrate RNA binding interfaces of g5Rp which are important to RNA binding and decapping enzyme activity. Furthermore, the g5Rp-mediated mRNA decapping was inhibited by InsP6. The g5Rp-InsP6 complex structure showed that the InsP6 molecules occupy the same regions that primarily mediate g5Rp-RNA interaction, elucidating the roles of InsP6 in the regulation of the viral decapping activity of g5Rp in mRNA degradation. Collectively, these results provide the structural basis of interaction between RNA and g5Rp and highlight the inhibitory mechanism of InsP6 on mRNA decapping by g5Rp. IMPORTANCE ASF is a highly contagious hemorrhagic viral disease in domestic pigs which causes high mortality. Currently, there are still no effective vaccines or specific drugs available against this particular virus. The protein g5Rp is the only viral mRNA-decapping enzyme, playing an essential role in the machinery assembly of mRNA regulation and translation initiation. In this study, we solved the crystal structures of g5Rp dimer and complex with InsP6. Structure-based mutagenesis studies revealed critical residues involved in a candidate RNA binding region, which also play pivotal roles in complex with InsP6. Notably, InsP6 can inhibit g5Rp activity by competitively blocking the binding of substrate mRNA to the enzyme. Our structure-function studies provide the basis for potential anti-ASFV inhibitor designs targeting the critical enzyme.
Collapse
|
22
|
Wang G, Xie M, Wu W, Chen Z. Structures and Functional Diversities of ASFV Proteins. Viruses 2021; 13:v13112124. [PMID: 34834930 PMCID: PMC8619059 DOI: 10.3390/v13112124] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 10/18/2021] [Accepted: 10/19/2021] [Indexed: 11/16/2022] Open
Abstract
African swine fever virus (ASFV), the causative pathogen of the recent ASF epidemic, is a highly contagious double-stranded DNA virus. Its genome is in the range of 170~193 kbp and encodes 68 structural proteins and over 100 non-structural proteins. Its high pathogenicity strains cause nearly 100% mortality in swine. Consisting of four layers of protein shells and an inner genome, its structure is obviously more complicated than many other viruses, and its multi-layered structures play different kinds of roles in ASFV replication and survival. Each layer possesses many proteins, but very few of the proteins have been investigated at a structural level. Here, we concluded all the ASFV proteins whose structures were unveiled, and explained their functions from the view of structures. Those structures include ASFV AP endonuclease, dUTPases (E165R), pS273R protease, core shell proteins p15 and p35, non-structural proteins pA151R, pNP868R (RNA guanylyltransferase), major capsid protein p72 (gene B646L), Bcl-2-like protein A179L, histone-like protein pA104R, sulfhydryl oxidase pB119L, polymerase X and ligase. These novel structural features, diverse functions, and complex molecular mechanisms promote ASFV to escape the host immune system easily and make this large virus difficult to control.
Collapse
|
23
|
Wang F, Zhang H, Hou L, Yang C, Wen Y. Advance of African swine fever virus in recent years. Res Vet Sci 2021; 136:535-539. [PMID: 33882382 DOI: 10.1016/j.rvsc.2021.04.004] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 04/09/2021] [Accepted: 04/12/2021] [Indexed: 12/14/2022]
Abstract
African swine fever (ASF) is one of the most devastating hemorrhagic infectious diseases that affect pigs and wild suids due to the lack of a vaccine or an effective treatment. The large dsDNA genome of African swine fever virus (ASFV) contains up to 167 ORFs that are predicted to encode proteins. Since its introduction to China in 2018, this genome has aroused the enthusiasm of researchers throughout the world. Here, we review the research progress on ASFV in recent years. Given the importance of this disease, this review will highlight recent discoveries in basic virology, focusing mainly on epidemiology, virulence, pathogenic mechanisms, diagnosis, vaccine development, and treatment; this will help in understanding virus-host interactions and disease prevention regarding ASFV.
Collapse
Affiliation(s)
- Fengxue Wang
- College of Veterinary Medicine, Key Laboratory for Clinical Diagnosis and Treatment of Animal Diseases at the Ministry of Agriculture, Inner Mongolia Agricultural University, Inner Mongolia Autonomous Region, Huhhot 010018, People's Republic of China.
| | - He Zhang
- College of Veterinary Medicine, Key Laboratory for Clinical Diagnosis and Treatment of Animal Diseases at the Ministry of Agriculture, Inner Mongolia Agricultural University, Inner Mongolia Autonomous Region, Huhhot 010018, People's Republic of China
| | - Lina Hou
- College of Veterinary Medicine, Key Laboratory for Clinical Diagnosis and Treatment of Animal Diseases at the Ministry of Agriculture, Inner Mongolia Agricultural University, Inner Mongolia Autonomous Region, Huhhot 010018, People's Republic of China
| | - Chao Yang
- College of Veterinary Medicine, Key Laboratory for Clinical Diagnosis and Treatment of Animal Diseases at the Ministry of Agriculture, Inner Mongolia Agricultural University, Inner Mongolia Autonomous Region, Huhhot 010018, People's Republic of China
| | - Yongjun Wen
- College of Veterinary Medicine, Key Laboratory for Clinical Diagnosis and Treatment of Animal Diseases at the Ministry of Agriculture, Inner Mongolia Agricultural University, Inner Mongolia Autonomous Region, Huhhot 010018, People's Republic of China
| |
Collapse
|
24
|
Williamson A, Leiros HKS. Structural insight into DNA joining: from conserved mechanisms to diverse scaffolds. Nucleic Acids Res 2020; 48:8225-8242. [PMID: 32365176 PMCID: PMC7470946 DOI: 10.1093/nar/gkaa307] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 04/14/2020] [Accepted: 04/20/2020] [Indexed: 12/26/2022] Open
Abstract
DNA ligases are diverse enzymes with essential functions in replication and repair of DNA; here we review recent advances in their structure and distribution and discuss how this contributes to understanding their biological roles and technological potential. Recent high-resolution crystal structures of DNA ligases from different organisms, including DNA-bound states and reaction intermediates, have provided considerable insight into their enzymatic mechanism and substrate interactions. All cellular organisms possess at least one DNA ligase, but many species encode multiple forms some of which are modular multifunctional enzymes. New experimental evidence for participation of DNA ligases in pathways with additional DNA modifying enzymes is defining their participation in non-redundant repair processes enabling elucidation of their biological functions. Coupled with identification of a wealth of DNA ligase sequences through genomic data, our increased appreciation of the structural diversity and phylogenetic distribution of DNA ligases has the potential to uncover new biotechnological tools and provide new treatment options for bacterial pathogens.
Collapse
Affiliation(s)
- Adele Williamson
- School of Science, University of Waikato, Hamilton 3240, New Zealand.,Department of Chemistry, UiT The Arctic University of Norway, Tromsø N-9037, Norway
| | | |
Collapse
|
25
|
Çağlayan M. The ligation of pol β mismatch insertion products governs the formation of promutagenic base excision DNA repair intermediates. Nucleic Acids Res 2020; 48:3708-3721. [PMID: 32140717 PMCID: PMC7144901 DOI: 10.1093/nar/gkaa151] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 02/18/2020] [Accepted: 02/26/2020] [Indexed: 02/07/2023] Open
Abstract
DNA ligase I and DNA ligase III/XRCC1 complex catalyze the ultimate ligation step following DNA polymerase (pol) β nucleotide insertion during base excision repair (BER). Pol β Asn279 and Arg283 are the critical active site residues for the differentiation of an incoming nucleotide and a template base and the N-terminal domain of DNA ligase I mediates its interaction with pol β. Here, we show inefficient ligation of pol β insertion products with mismatched or damaged nucleotides, with the exception of a Watson–Crick-like dGTP insertion opposite T, using BER DNA ligases in vitro. Moreover, pol β N279A and R283A mutants deter the ligation of the promutagenic repair intermediates and the presence of N-terminal domain of DNA ligase I in a coupled reaction governs the channeling of the pol β insertion products. Our results demonstrate that the BER DNA ligases are compromised by subtle changes in all 12 possible noncanonical base pairs at the 3′-end of the nicked repair intermediate. These findings contribute to understanding of how the identity of the mismatch affects the substrate channeling of the repair pathway and the mechanism underlying the coordination between pol β and DNA ligase at the final ligation step to maintain the BER efficiency.
Collapse
Affiliation(s)
- Melike Çağlayan
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, FL 32610, USA
| |
Collapse
|
26
|
Chen Y, Chen X, Huang Q, Shao Z, Gao Y, Li Y, Yang C, Liu H, Li J, Wang Q, Ma J, Zhang YZ, Gu Y, Gan J. A unique DNA-binding mode of African swine fever virus AP endonuclease. Cell Discov 2020; 6:13. [PMID: 32194979 PMCID: PMC7076025 DOI: 10.1038/s41421-020-0146-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 02/13/2020] [Indexed: 12/31/2022] Open
Abstract
African swine fever virus (ASFV) is highly contagious and can cause lethal disease in pigs. ASFV is primarily replicated in the cytoplasm of pig macrophages, which is oxidative and caused constant damage to ASFV genome. ASFV AP endonuclease (AsfvAP) catalyzes DNA cleavage reaction at the abasic site and is a key enzyme of ASFV base excision repair (BER) system. Although it plays an essential role in ASFV survival in host cells, the basis underlying substrate binding and cleavage by AsfvAP remains unclear. Here, we reported the structural and functional studies of AsfvAP, showing that AsfvAP adopts a novel DNA-binding mode distinct from other APs. AsfvAP possesses many unique structural features, including one narrower nucleotide-binding pocket at the active site, the C16-C20 disulfide bond-containing region, and histidine-rich loop. As indicated by our mutagenesis, in vitro binding and cleavage assays, these features are important for AsfvAP to suit the acidic and oxidative environment. Owing to their functional importance, these unique features could serve as targets for designing small molecule inhibitors that could disrupt the repair process of ASFV genome and help fight against this deadly virus in the future.
Collapse
Affiliation(s)
- Yiqing Chen
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Shanghai Public Health Clinical Center, School of Life Sciences, Fudan University, 200438 Shanghai, China
| | - Xi Chen
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Shanghai Public Health Clinical Center, School of Life Sciences, Fudan University, 200438 Shanghai, China
| | - Qi Huang
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Shanghai Public Health Clinical Center, School of Life Sciences, Fudan University, 200438 Shanghai, China
| | - Zhiwei Shao
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Shanghai Public Health Clinical Center, School of Life Sciences, Fudan University, 200438 Shanghai, China
| | - Yanqing Gao
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Shanghai Public Health Clinical Center, School of Life Sciences, Fudan University, 200438 Shanghai, China
| | - Yangyang Li
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Shanghai Public Health Clinical Center, School of Life Sciences, Fudan University, 200438 Shanghai, China
| | - Chun Yang
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Shanghai Public Health Clinical Center, School of Life Sciences, Fudan University, 200438 Shanghai, China
| | - Hehua Liu
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Shanghai Public Health Clinical Center, School of Life Sciences, Fudan University, 200438 Shanghai, China
| | - Jixi Li
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Shanghai Public Health Clinical Center, School of Life Sciences, Fudan University, 200438 Shanghai, China
| | - Qiyao Wang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 200237 Shanghai, China
| | - Jinbiao Ma
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Shanghai Public Health Clinical Center, School of Life Sciences, Fudan University, 200438 Shanghai, China
| | - Yong-Zhen Zhang
- Shanghai Public Health Clinical Center, School of Life Sciences, Fudan University, 200438 Shanghai, China
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Changping, 102206 Beijing, China
| | - Yijun Gu
- National Center for Protein Science Shanghai, Shanghai Advanced Research Institute, Chinese Academy of Sciences, 201210 Shanghai, China
| | - Jianhua Gan
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Shanghai Public Health Clinical Center, School of Life Sciences, Fudan University, 200438 Shanghai, China
| |
Collapse
|
27
|
Liu JC, Xiao H, Li J. Constructing High-Loading Single-Atom/Cluster Catalysts via an Electrochemical Potential Window Strategy. J Am Chem Soc 2020; 142:3375-3383. [DOI: 10.1021/jacs.9b06808] [Citation(s) in RCA: 92] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Jin-Cheng Liu
- Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Hai Xiao
- Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Jun Li
- Department of Chemistry, Tsinghua University, Beijing 100084, China
- Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| |
Collapse
|
28
|
Williamson A, Leiros HKS. Structural intermediates of a DNA-ligase complex illuminate the role of the catalytic metal ion and mechanism of phosphodiester bond formation. Nucleic Acids Res 2019; 47:7147-7162. [PMID: 31312841 PMCID: PMC6698739 DOI: 10.1093/nar/gkz596] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 06/24/2019] [Accepted: 07/05/2019] [Indexed: 01/17/2023] Open
Abstract
DNA ligases join adjacent 5' phosphate (5'P) and 3' hydroxyl (3'OH) termini of double-stranded DNA via a three-step mechanism requiring a nucleotide cofactor and divalent metal ion. Although considerable structural detail is available for the first two steps, less is known about step 3 where the DNA-backbone is joined or about the cation role at this step. We have captured high-resolution structures of an adenosine triphosphate (ATP)-dependent DNA ligase from Prochlorococcus marinus including a Mn-bound pre-ternary ligase-DNA complex poised for phosphodiester bond formation, and a post-ternary intermediate retaining product DNA and partially occupied AMP in the active site. The pre-ternary structure unambiguously identifies the binding site of the catalytic metal ion and confirms both its role in activating the 3'OH terminus for nucleophilic attack on the 5'P group and stabilizing the pentavalent transition state. The post-ternary structure indicates that DNA distortion and most enzyme-AMP contacts remain after phosphodiester bond formation, implying loss of covalent linkage to the DNA drives release of AMP, rather than active site rearrangement. Additionally, comparisons of this cyanobacterial DNA ligase with homologs from bacteria and bacteriophage pose interesting questions about the structural origin of double-strand break joining activity and the evolution of these ATP-dependent DNA ligase enzymes.
Collapse
Affiliation(s)
- Adele Williamson
- Department of Chemistry, UiT The Arctic University of Norway, Tromsø, N-9037, Norway.,School of Science, University of Waikato, Hamilton 3240, New Zealand
| | - Hanna-Kirsti S Leiros
- Department of Chemistry, UiT The Arctic University of Norway, Tromsø, N-9037, Norway
| |
Collapse
|