1
|
Ryzhikova OV, Churkina AS, Sedenkova KN, Savchenkova DV, Shakhov AS, Lavrushkina SV, Grishin YK, Zefirov NA, Zefirova ON, Gracheva YA, Milaeva ER, Alieva IB, Averina EB. Mono- and bis(steroids) containing a cyclooctane core: Synthesis, antiproliferative activity, and action on cell cytoskeleton microtubules. Arch Pharm (Weinheim) 2024; 357:e2400483. [PMID: 39079938 DOI: 10.1002/ardp.202400483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/12/2024] [Accepted: 07/15/2024] [Indexed: 11/06/2024]
Abstract
Steroid dimers of natural and synthetic origin possess an unusual and complex molecular architecture that may lead to the realization of peculiar effects in biological systems, in particular in different cancer cell lines. In the present work, diastereoselective ring-opening of mono- and polyoxiranes, containing a cyclooctane core, by azide-anion was performed to yield a series of azidoalcohols with different types of symmetry. The products were involved in copper-catalyzed azyde-alkyne cycloaddition (CuAAC) reaction with ethinylestradiol and ethinyltestosterone, and the resulting steroids and steroid dimers with triazole linkers were screened for their antiproliferative activity via (3-(4,5-dimethylthiazol-2-yl)2,5-diphenyl tetrazolium bromide) assay. All the compounds revealed cytotoxicity toward several cancer cell lines. The effect of the most potent compound, containing two estradiol moieties, on the microtubules (MT) dynamics was investigated by immunofluorescent microscopy. The disruption of the majority of interphase cell cytoplasmic MT and mitotic event disturbances in the presence of the studied compound were observed. The latter effect caused the appearance of numerous multinucleated cells.
Collapse
Affiliation(s)
- Olga V Ryzhikova
- Department of Chemistry, Lomonosov Moscow State University, Moscow, Russia
| | - Aleksandra S Churkina
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | | | | | - Anton S Shakhov
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Svetlana V Lavrushkina
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Yuri K Grishin
- Department of Chemistry, Lomonosov Moscow State University, Moscow, Russia
| | - Nikolay A Zefirov
- Department of Chemistry, Lomonosov Moscow State University, Moscow, Russia
| | - Olga N Zefirova
- Department of Chemistry, Lomonosov Moscow State University, Moscow, Russia
| | - Yulia A Gracheva
- Department of Chemistry, Lomonosov Moscow State University, Moscow, Russia
| | - Elena R Milaeva
- Department of Chemistry, Lomonosov Moscow State University, Moscow, Russia
| | - Irina B Alieva
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Elena B Averina
- Department of Chemistry, Lomonosov Moscow State University, Moscow, Russia
| |
Collapse
|
2
|
Das V, Miller JH, Alladi CG, Annadurai N, De Sanctis JB, Hrubá L, Hajdúch M. Antineoplastics for treating Alzheimer's disease and dementia: Evidence from preclinical and observational studies. Med Res Rev 2024; 44:2078-2111. [PMID: 38530106 DOI: 10.1002/med.22033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 02/15/2024] [Accepted: 03/04/2024] [Indexed: 03/27/2024]
Abstract
As the world population ages, there will be an increasing need for effective therapies for aging-associated neurodegenerative disorders, which remain untreatable. Dementia due to Alzheimer's disease (AD) is one of the leading neurological diseases in the aging population. Current therapeutic approaches to treat this disorder are solely symptomatic, making the need for new molecular entities acting on the causes of the disease extremely urgent. One of the potential solutions is to use compounds that are already in the market. The structures have known pharmacokinetics, pharmacodynamics, toxicity profiles, and patient data available in several countries. Several drugs have been used successfully to treat diseases different from their original purposes, such as autoimmunity and peripheral inflammation. Herein, we divulge the repurposing of drugs in the area of neurodegenerative diseases, focusing on the therapeutic potential of antineoplastics to treat dementia due to AD and dementia. We briefly touch upon the shared pathological mechanism between AD and cancer and drug repurposing strategies, with a focus on artificial intelligence. Next, we bring out the current status of research on the development of drugs, provide supporting evidence from retrospective, clinical, and preclinical studies on antineoplastic use, and bring in new areas, such as repurposing drugs for the prion-like spreading of pathologies in treating AD.
Collapse
Affiliation(s)
- Viswanath Das
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacký University and University Hospital Olomouc, Olomouc, Czech Republic
- Czech Advanced Technologies and Research Institute (CATRIN), Institute of Molecular and Translational Medicine, Palacký University Olomouc, Olomouc, Czech Republic
| | - John H Miller
- School of Biological Sciences and Centre for Biodiscovery, Victoria University of Wellington, Wellington, New Zealand
| | - Charanraj Goud Alladi
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacký University and University Hospital Olomouc, Olomouc, Czech Republic
| | - Narendran Annadurai
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacký University and University Hospital Olomouc, Olomouc, Czech Republic
| | - Juan Bautista De Sanctis
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacký University and University Hospital Olomouc, Olomouc, Czech Republic
- Czech Advanced Technologies and Research Institute (CATRIN), Institute of Molecular and Translational Medicine, Palacký University Olomouc, Olomouc, Czech Republic
| | - Lenka Hrubá
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacký University and University Hospital Olomouc, Olomouc, Czech Republic
- Czech Advanced Technologies and Research Institute (CATRIN), Institute of Molecular and Translational Medicine, Palacký University Olomouc, Olomouc, Czech Republic
| | - Marián Hajdúch
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacký University and University Hospital Olomouc, Olomouc, Czech Republic
- Czech Advanced Technologies and Research Institute (CATRIN), Institute of Molecular and Translational Medicine, Palacký University Olomouc, Olomouc, Czech Republic
| |
Collapse
|
3
|
Chmielewski NN, Limoli CL. Sex Differences in Taxane Toxicities. Cancers (Basel) 2022; 14:3325. [PMID: 35884386 PMCID: PMC9317669 DOI: 10.3390/cancers14143325] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 06/28/2022] [Accepted: 06/29/2022] [Indexed: 02/01/2023] Open
Abstract
The taxane family of microtubule poisons and chemotherapeutics have been studied for over 50 years and are among the most frequently used antineoplastic agents today. Still, limited research exists characterizing taxane-induced sex-specific mechanisms of action and toxicities in cancer and non-cancerous tissue. Such research is important to advance cancer treatment outcomes as well as to address clinically observed sex-differences in short- and long-term taxane-induced toxicities that have disproportionate effects on female and male cancer patients. To gain more insight into these underlying differences between the sexes, the following review draws from pre-clinical and clinical paclitaxel and taxane oncology literature, examines sex-discrepancies, and highlights uncharacterized sex-dependent mechanisms of action and clinical outcomes. To our knowledge, this is the first literature review to provide a current overview of the basic and clinical sex dimorphisms of taxane-induced effects. Most importantly, we hope to provide a starting point for improving and advancing sex-specific personalized chemotherapy and cancer treatment strategies as well as to present a novel approach to review sex as a biological variable in basic and clinical biology.
Collapse
|
4
|
Huang Yang CP, Horwitz SB, McDaid HM. Utilization of Photoaffinity Labeling to Investigate Binding of Microtubule Stabilizing Agents to P-Glycoprotein and β-Tubulin. JOURNAL OF NATURAL PRODUCTS 2022; 85:720-728. [PMID: 35240035 PMCID: PMC9484556 DOI: 10.1021/acs.jnatprod.2c00106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Photoaffinity labeling approaches have historically been used in pharmacology to identify molecular targets. This methodology has played a pivotal role in identifying drug-binding domains and searching for novel compounds that may interact at these domains. In this review we focus on studies of microtubule stabilizing agents of natural product origin, specifically taxol (paclitaxel). Taxol and other microtubule interacting agents bind to both P-glycoprotein (ABCB1), a drug efflux pump that reduces intracellular drug accumulation, and the tubulin/microtubule system. Both binding relationships modulate drug efficacy and are of immense interest to basic and translational scientists, primarily because of their association with drug resistance for this class of molecules. We present this body of work and acknowledge its value as fundamental to understanding the mechanisms of taxol and elucidation of the taxol pharmacophore. Furthermore, we highlight the ability to multiplex photoaffinity approaches with other technologies to further enhance our understanding of pharmacologic interactions at an atomic level. Thus, photoaffinity approaches offer a relatively inexpensive and robust technique that will continue to play an important role in drug discovery for the foreseeable future.
Collapse
Affiliation(s)
- Chia-Ping Huang Yang
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York 10461, United States
- Department of Obstetrics and Gynecology and Women's Health, Division of Gynecologic Oncology, Albert Einstein College of Medicine, Bronx, New York 10461, United States
| | - Susan Band Horwitz
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York 10461, United States
| | - Hayley M McDaid
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York 10461, United States
- Department of Medicine, Albert Einstein College of Medicine, Bronx, New York 10461, United States
| |
Collapse
|
5
|
Munisamy M, Mukherjee N, Thomas L, Pham AT, Shakeri A, Zhao Y, Kolesar J, Rao PPN, Rangnekar VM, Rao M. Therapeutic opportunities in cancer therapy: targeting the p53-MDM2/MDMX interactions. Am J Cancer Res 2021; 11:5762-5781. [PMID: 35018225 PMCID: PMC8727821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 10/22/2021] [Indexed: 06/14/2023] Open
Abstract
Ubiquitination is a key enzymatic post-translational modification that influences p53 stability and function. p53 protein regulates the expression of MDM2 (mouse double-minute 2 protein) E3 ligase and MDMX (double-minute 4 protein), through proteasome-based degradation. Exploration of targeting the ubiquitination pathway offers a potentially promising strategy for precision therapy in a variety of cancers. The p53-MDM2-MDMX pathway provides multiple molecular targets for small molecule screening as potential therapies for wild-type p53. As a result of its effect on molecular carcinogenesis, a personalized therapeutic approach based on the wild-type and mutant p53 protein is desirable. We highlighted the implications of p53 mutations in cancer, p53 ubiquitination mechanistic details, targeting p53-MDM2/MDMX interactions, significant discoveries related to MDM2 inhibitor drug development, MDM2 and MDMX dual target inhibitors, and clinical trials with p53-MDM2/MDMX-targeted drugs. We also investigated potential therapeutic repurposing of selective estrogen receptor modulators (SERMs) in targeting p53-MDM2/MDMX interactions. Molecular docking studies of SERMs were performed utilizing the solved structures of the p53/MDM2/MDMX proteins. These studies identified ormeloxifene as a potential dual inhibitor of p53/MDM2/MDMX interaction, suggesting that repurposing SERMs for dual targeting of p53/MDM2 and p53/MDMX interactions is an attractive strategy for targeting wild-type p53 tumors and warrants further preclinical research.
Collapse
Affiliation(s)
- Murali Munisamy
- Department of Translational Medicine Centre, All India Institute of Medical SciencesBhopal, Madhya Pradesh 462020, India
- Department of Pharmacy Practice, Center for Translational Research, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher EducationManipal, Karnataka 576104, India
| | - Nayonika Mukherjee
- Department of Pharmacy Practice, Center for Translational Research, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher EducationManipal, Karnataka 576104, India
| | - Levin Thomas
- Department of Pharmacy Practice, Center for Translational Research, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher EducationManipal, Karnataka 576104, India
| | - Amy Trinh Pham
- Medicinal and Bioorganic Chemistry Lab, School of Pharmacy, Health Sciences Campus, 200 University Avenue West, University of WaterlooWaterloo, ON N2L 3G1, Canada
| | - Arash Shakeri
- Medicinal and Bioorganic Chemistry Lab, School of Pharmacy, Health Sciences Campus, 200 University Avenue West, University of WaterlooWaterloo, ON N2L 3G1, Canada
| | - Yusheng Zhao
- Medicinal and Bioorganic Chemistry Lab, School of Pharmacy, Health Sciences Campus, 200 University Avenue West, University of WaterlooWaterloo, ON N2L 3G1, Canada
| | - Jill Kolesar
- Department of Pharmacy Practice & Science, University of Kentucky567 TODD Building, 789 South Limestone Street, Lexington, Kentucky 40539-0596, USA
| | - Praveen P N Rao
- Medicinal and Bioorganic Chemistry Lab, School of Pharmacy, Health Sciences Campus, 200 University Avenue West, University of WaterlooWaterloo, ON N2L 3G1, Canada
| | - Vivek M Rangnekar
- Markey Cancer Center, University of KentuckyLexington, Kentucky 40536, USA
| | - Mahadev Rao
- Department of Pharmacy Practice, Center for Translational Research, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher EducationManipal, Karnataka 576104, India
| |
Collapse
|
6
|
Larson HG, Zakharov AV, Sarkar S, Yang SM, Rai G, Larner JM, Simeonov A, Martinez NJ. A Genome-Edited ERα-HiBiT Fusion Reporter Cell Line for the Identification of ERα Modulators Via High-Throughput Screening and CETSA. Assay Drug Dev Technol 2021; 19:539-549. [PMID: 34662221 DOI: 10.1089/adt.2021.059] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
The estrogen receptor α (ERα) is a target of intense pharmacological intervention and toxicological biomonitoring. Current methods to directly quantify cellular levels of ERα involve antibody-based assays, which are labor-intensive and of limited throughput. In this study, we generated a post-translational reporter cell line, referred to as MCF7-ERα-HiBiT, by fusing a small pro-luminescent nanoluciferase (NLuc) tag (HiBiT) to the C-terminus of endogenous ERα in MCF7 cells. The tag allows the luminescent detection and quantification of endogenous ERα protein by addition of the complementary NLuc enzyme fragment. This MCF7-ERα-HiBiT cell line was optimized for quantitative high-throughput screening (qHTS) to identify compounds that reduce ERα levels. In addition, the same cell line was optimized for a qHTS cellular thermal shift assay to identify compounds that bind and thermally stabilize ERα. Here, we interrogated the MCF7-ERα-HiBiT assay against the NCATS Pharmacological Collection (NPC) of 2,678 approved drugs and identified compounds that potently reduce and thermally stabilize ERα. Our novel post-translational reporter cell line provides a unique opportunity for profiling large pharmacological and toxicological compound libraries for their effect on ERα levels as well as for assessing direct compound binding to the receptor, thus facilitating mechanistic studies by which compounds exert their biological effects on ERα.
Collapse
Affiliation(s)
- Hunter G Larson
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland, USA
| | - Alexey V Zakharov
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland, USA
| | - Sukumar Sarkar
- Department of Radiation Oncology, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - Shyh-Ming Yang
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland, USA
| | - Ganesha Rai
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland, USA
| | - James M Larner
- Department of Radiation Oncology, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - Anton Simeonov
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland, USA
| | - Natalia J Martinez
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland, USA
| |
Collapse
|
7
|
Zhou X, Liu J, Meng J, Fu Y, Wu Z, Ouyang G, Wang Z. Discovery of facile amides-functionalized rhodanine-3-acetic acid derivatives as potential anticancer agents by disrupting microtubule dynamics. J Enzyme Inhib Med Chem 2021; 36:1996-2009. [PMID: 34525898 PMCID: PMC8451688 DOI: 10.1080/14756366.2021.1975695] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Microtubule dynamics are crucial for multiple cell functions, and cancer cells are particularly sensitive to microtubule-modulating agents. Here, we describe the design and synthesis of a series of (Z)-2-(5-benzylidene-4-oxo-2-thioxothiazolidin-3-yl)-N-phenylacetamide derivatives and evaluation of their microtubule-modulating and anticancer activities in vitro. Proliferation assays identified I20 as the most potent of the antiproliferative compounds, with 50% inhibitory concentrations ranging from 7.0 to 20.3 µM with A549, PC-3, and HepG2 human cancer cell lines. Compound I20 also disrupted cancer A549 cell migration in a concentration-dependent manner. Immunofluorescence microscopy, transmission electron microscopy, and tubulin polymerisation assays suggested that compound I20 promoted protofilament assembly. In support of this possibility, computational docking studies revealed a strong interaction between compound I20 and tubulin Arg β369, which is also the binding site for the anticancer drug Taxol. Our results suggest that (Z)-2-(5-benzylidene-4-oxo-2-thioxothiazolidin-3-yl)-N-phenylacetamide derivatives could have utility for the development of microtubule-stabilising therapeutic agents.
Collapse
Affiliation(s)
- Xiang Zhou
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guiyang, People's Republic of China.,College of Pharmacy, Guizhou University, Guiyang, People's Republic of China
| | - Jiamin Liu
- College of Pharmacy, Guizhou University, Guiyang, People's Republic of China
| | - Jiao Meng
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guiyang, People's Republic of China
| | - Yihong Fu
- College of Pharmacy, Guizhou University, Guiyang, People's Republic of China
| | - Zhibin Wu
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guiyang, People's Republic of China
| | - Guiping Ouyang
- College of Pharmacy, Guizhou University, Guiyang, People's Republic of China
| | - Zhenchao Wang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guiyang, People's Republic of China.,College of Pharmacy, Guizhou University, Guiyang, People's Republic of China
| |
Collapse
|
8
|
Núñez-Iglesias MJ, Novio S, García C, Pérez-Muñuzuri ME, Martínez MC, Santiago JL, Boso S, Gago P, Freire-Garabal M. Co-Adjuvant Therapy Efficacy of Catechin and Procyanidin B2 with Docetaxel on Hormone-Related Cancers In Vitro. Int J Mol Sci 2021; 22:7178. [PMID: 34281228 PMCID: PMC8268784 DOI: 10.3390/ijms22137178] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 06/25/2021] [Accepted: 06/28/2021] [Indexed: 01/16/2023] Open
Abstract
Prostate (PC) and breast cancer (BC) are heterogeneous hormonal cancers. Treatment resistance and adverse effects are the main limitations of conventional chemotherapy treatment. The use of sensitizing agents could improve the effectiveness of chemotherapeutic drugs as well as obviate these limitations. This study analyzes the effect of single catechin (CAT), procyanidin B2 (ProB2) treatment as well as the co-adjuvant treatment of each of these compounds with docetaxel (DOCE). We used PC- and BC-derived cell lines (PC3, DU-145, T47D, MCF-7 and MDA-MB-231). The short and long-term pro-apoptotic, anti-proliferative and anti-migratory effects were analyzed. RT-qPCR was used to discover molecular bases of the therapeutic efficacy of these compounds. ProB2 treatment induced a two- to five-fold increase in anti-proliferative and pro-apoptotic effects compared to single DOCE treatment, and also had a more sensitizing effect than DOCE on DU145 cells. Regarding BC cells, ProB2- and CAT-mediated sensitization to DOCE anti-proliferative and pro-apoptotic effects was cell-independent and cell-dependent, respectively. Combined treatment led to high-efficacy effects on MCF-7 cells, which were associated to the up-regulation of CDKN1A, BAX, caspase 9 and E-cadherin mRNA under combined treatment compared to single DOCE treatment. CAT and ProB2 can enhance the efficacy of DOCE therapy on PC and BC cells by the sensitizing mechanism.
Collapse
Affiliation(s)
- Mª Jesús Núñez-Iglesias
- SNL Laboratory, School of Medicine and Dentistry, University of Santiago de Compostela, c/San Francisco, s/n, Santiago de Compostela, 15782 A Coruña, Spain; (M.J.N.-I.); (C.G.); (M.E.P.-M.); (M.F.-G.)
| | - Silvia Novio
- SNL Laboratory, School of Medicine and Dentistry, University of Santiago de Compostela, c/San Francisco, s/n, Santiago de Compostela, 15782 A Coruña, Spain; (M.J.N.-I.); (C.G.); (M.E.P.-M.); (M.F.-G.)
| | - Carlota García
- SNL Laboratory, School of Medicine and Dentistry, University of Santiago de Compostela, c/San Francisco, s/n, Santiago de Compostela, 15782 A Coruña, Spain; (M.J.N.-I.); (C.G.); (M.E.P.-M.); (M.F.-G.)
| | - Mª Elena Pérez-Muñuzuri
- SNL Laboratory, School of Medicine and Dentistry, University of Santiago de Compostela, c/San Francisco, s/n, Santiago de Compostela, 15782 A Coruña, Spain; (M.J.N.-I.); (C.G.); (M.E.P.-M.); (M.F.-G.)
| | - María-Carmen Martínez
- Group of Viticulture, Olive and Rose (VIOR), Misión Biológica de Galicia, Consejo Superior de Investigaciones Científicas (CSIC), Carballeira 8, 36143 Salcedo, Spain; (M.-C.M.); (J.-L.S.); (S.B.); (P.G.)
| | - José-Luis Santiago
- Group of Viticulture, Olive and Rose (VIOR), Misión Biológica de Galicia, Consejo Superior de Investigaciones Científicas (CSIC), Carballeira 8, 36143 Salcedo, Spain; (M.-C.M.); (J.-L.S.); (S.B.); (P.G.)
| | - Susana Boso
- Group of Viticulture, Olive and Rose (VIOR), Misión Biológica de Galicia, Consejo Superior de Investigaciones Científicas (CSIC), Carballeira 8, 36143 Salcedo, Spain; (M.-C.M.); (J.-L.S.); (S.B.); (P.G.)
| | - Pilar Gago
- Group of Viticulture, Olive and Rose (VIOR), Misión Biológica de Galicia, Consejo Superior de Investigaciones Científicas (CSIC), Carballeira 8, 36143 Salcedo, Spain; (M.-C.M.); (J.-L.S.); (S.B.); (P.G.)
| | - Manuel Freire-Garabal
- SNL Laboratory, School of Medicine and Dentistry, University of Santiago de Compostela, c/San Francisco, s/n, Santiago de Compostela, 15782 A Coruña, Spain; (M.J.N.-I.); (C.G.); (M.E.P.-M.); (M.F.-G.)
| |
Collapse
|
9
|
Shuai W, Wang G, Zhang Y, Bu F, Zhang S, Miller DD, Li W, Ouyang L, Wang Y. Recent Progress on Tubulin Inhibitors with Dual Targeting Capabilities for Cancer Therapy. J Med Chem 2021; 64:7963-7990. [PMID: 34101463 DOI: 10.1021/acs.jmedchem.1c00100] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Microtubules play a crucial role in multiple cellular functions including mitosis, cell signaling, and organelle trafficking, which makes the microtubule an important target for cancer therapy. Despite the great successes of microtubule-targeting agents in the clinic, the development of drug resistance and dose-limiting toxicity restrict their clinical efficacy. In recent years, multitarget therapy has been considered an effective strategy to achieve higher therapeutic efficacy, in particular dual-target drugs. In terms of the synergetic effect of tubulin and other antitumor agents such as receptor tyrosine kinases inhibitors, histone deacetylases inhibitors, DNA-damaging agents, and topoisomerase inhibitors in combination therapy, designing dual-target tubulin inhibitors is regarded as a promising approach to overcome these limitations and improve therapeutic efficacy. In this Perspective, we discussed rational target combinations, design strategies, structure-activity relationships, and future directions of dual-target tubulin inhibitors.
Collapse
Affiliation(s)
- Wen Shuai
- State Key Laboratory of Biotherapy and Cancer Center, Department of Respiratory and Critical Care Medicine, Innovation Center of Nursing Research, National Clinical Research Center for Geriatrics, West China Hospital, and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu 610041, Sichuan, China
| | - Guan Wang
- State Key Laboratory of Biotherapy and Cancer Center, Department of Respiratory and Critical Care Medicine, Innovation Center of Nursing Research, National Clinical Research Center for Geriatrics, West China Hospital, and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu 610041, Sichuan, China
| | - Yiwen Zhang
- State Key Laboratory of Biotherapy and Cancer Center, Department of Respiratory and Critical Care Medicine, Innovation Center of Nursing Research, National Clinical Research Center for Geriatrics, West China Hospital, and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu 610041, Sichuan, China
| | - Faqian Bu
- State Key Laboratory of Biotherapy and Cancer Center, Department of Respiratory and Critical Care Medicine, Innovation Center of Nursing Research, National Clinical Research Center for Geriatrics, West China Hospital, and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu 610041, Sichuan, China
| | - Sicheng Zhang
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee 38163, United States
| | - Duane D Miller
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee 38163, United States
| | - Wei Li
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee 38163, United States
| | - Liang Ouyang
- State Key Laboratory of Biotherapy and Cancer Center, Department of Respiratory and Critical Care Medicine, Innovation Center of Nursing Research, National Clinical Research Center for Geriatrics, West China Hospital, and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu 610041, Sichuan, China
| | - Yuxi Wang
- State Key Laboratory of Biotherapy and Cancer Center, Department of Respiratory and Critical Care Medicine, Innovation Center of Nursing Research, National Clinical Research Center for Geriatrics, West China Hospital, and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu 610041, Sichuan, China.,Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China.,Precision Medicine Key Laboratory of Sichuan Province & Precision Medicine Center, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| |
Collapse
|
10
|
Arsenic hexoxide has differential effects on cell proliferation and genome-wide gene expression in human primary mammary epithelial and MCF7 cells. Sci Rep 2021; 11:3761. [PMID: 33580144 PMCID: PMC7881197 DOI: 10.1038/s41598-021-82551-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 01/21/2021] [Indexed: 02/06/2023] Open
Abstract
Arsenic is reportedly a biphasic inorganic compound for its toxicity and anticancer effects in humans. Recent studies have shown that certain arsenic compounds including arsenic hexoxide (AS4O6; hereafter, AS6) induce programmed cell death and cell cycle arrest in human cancer cells and murine cancer models. However, the mechanisms by which AS6 suppresses cancer cells are incompletely understood. In this study, we report the mechanisms of AS6 through transcriptome analyses. In particular, the cytotoxicity and global gene expression regulation by AS6 were compared in human normal and cancer breast epithelial cells. Using RNA-sequencing and bioinformatics analyses, differentially expressed genes in significantly affected biological pathways in these cell types were validated by real-time quantitative polymerase chain reaction and immunoblotting assays. Our data show markedly differential effects of AS6 on cytotoxicity and gene expression in human mammary epithelial normal cells (HUMEC) and Michigan Cancer Foundation 7 (MCF7), a human mammary epithelial cancer cell line. AS6 selectively arrests cell growth and induces cell death in MCF7 cells without affecting the growth of HUMEC in a dose-dependent manner. AS6 alters the transcription of a large number of genes in MCF7 cells, but much fewer genes in HUMEC. Importantly, we found that the cell proliferation, cell cycle, and DNA repair pathways are significantly suppressed whereas cellular stress response and apoptotic pathways increase in AS6-treated MCF7 cells. Together, we provide the first evidence of differential effects of AS6 on normal and cancerous breast epithelial cells, suggesting that AS6 at moderate concentrations induces cell cycle arrest and apoptosis through modulating genome-wide gene expression, leading to compromised DNA repair and increased genome instability selectively in human breast cancer cells.
Collapse
|
11
|
High-resolution X-ray structure of three microtubule-stabilizing agents in complex with tubulin provide a rationale for drug design. Biochem Biophys Res Commun 2020; 534:330-336. [PMID: 33272565 DOI: 10.1016/j.bbrc.2020.11.082] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Accepted: 11/19/2020] [Indexed: 02/05/2023]
Abstract
Microtubule is a key component of cytoskeleton and has been considered as an important target for the treatment of cancer. In particular, the tubulin taxane-site inhibitors such as taxol analogs and epothilones have achieved great success in clinical trials. However, the structural basis of many taxane-site inhibitors is still lacking in exploring their mechanism of action. We here reported crystal complex structures for three taxane-site inhibitors, Ixabepilone, Epothilone B, and Epothilone D, which were determined to 2.4 Å, 2.4 Å, and 2.85 Å, respectively. The crystal structures revealed that these taxane-site inhibitors possess similar binding modes to that of Epothilone A at the taxane site, e.g. making critical hydrogen-bonding interactions with multiple residues on the M-loop, which facilitating the tubulin polymerization. Furthermore, we summarized the binding modes of almost all taxane-site inhibitors and identified novel taxane-site ligands with simpler chemical structures through virtual screening. On this basis, new derivatives with higher binding affinity to tubulin were designed and developed, which can form additional hydrogen bond interactions with tubulin. Overall, this work determined the mechanism of action of epothilones and provided a structural basis to design reasonably novel taxane-site inhibitors with simpler structure and improved pharmacokinetic properties.
Collapse
|
12
|
Galindo I, Garaigorta U, Lasala F, Cuesta-Geijo MA, Bueno P, Gil C, Delgado R, Gastaminza P, Alonso C. Antiviral drugs targeting endosomal membrane proteins inhibit distant animal and human pathogenic viruses. Antiviral Res 2020; 186:104990. [PMID: 33249093 PMCID: PMC7690281 DOI: 10.1016/j.antiviral.2020.104990] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 11/17/2020] [Accepted: 11/23/2020] [Indexed: 01/18/2023]
Abstract
The endocytic pathway is a common strategy that several highly pathogenic viruses use to enter into the cell. To demonstrate the usefulness of this pathway as a common target for the development of broad-spectrum antivirals, the inhibitory effect of drug compounds targeting endosomal membrane proteins were investigated. This study entailed direct comparison of drug effectiveness against animal and human pathogenic viruses, namely Ebola (EBOV), African swine fever virus (ASFV), and the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). A panel of experimental and FDA-approved compounds targeting calcium channels and PIKfyve at the endosomal membrane caused potent reductions of entry up to 90% in SARS-CoV-2 S-protein pseudotyped retrovirus. Similar inhibition was observed against transduced EBOV glycoprotein pseudovirus and ASFV. SARS-CoV-2 infection was potently inhibited by selective estrogen receptor modulators in cells transduced with pseudovirus, among them Raloxifen inhibited ASFV with very low 50% inhibitory concentration. Finally, the mechanism of the inhibition caused by the latter in ASFV infection was analyzed. Overall, this work shows that cellular proteins related to the endocytic pathway can constitute suitable cellular targets for broad range antiviral compounds.
Collapse
Affiliation(s)
- I Galindo
- Dpt. Biotechnology, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Ctra. de la Coruña Km 7.5, 28040, Madrid, Spain
| | - U Garaigorta
- Centro Nacional de Biotecnología CSIC, Calle Darwin 3, 28049, Madrid, Spain
| | - F Lasala
- Instituto de Investigación Biomédica Hospital, 12 de Octubre S/n, 28041, Madrid, Spain
| | - M A Cuesta-Geijo
- Dpt. Biotechnology, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Ctra. de la Coruña Km 7.5, 28040, Madrid, Spain; Centro de Investigaciones Biológicas Margarita Salas (CSIC), Ramiro de Maeztu 9, 28040, Madrid, Spain
| | - P Bueno
- Instituto de Investigación Biomédica Hospital, 12 de Octubre S/n, 28041, Madrid, Spain
| | - C Gil
- Centro de Investigaciones Biológicas Margarita Salas (CSIC), Ramiro de Maeztu 9, 28040, Madrid, Spain
| | - R Delgado
- Instituto de Investigación Biomédica Hospital, 12 de Octubre S/n, 28041, Madrid, Spain
| | - P Gastaminza
- Centro Nacional de Biotecnología CSIC, Calle Darwin 3, 28049, Madrid, Spain
| | - C Alonso
- Dpt. Biotechnology, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Ctra. de la Coruña Km 7.5, 28040, Madrid, Spain.
| |
Collapse
|
13
|
Mu X, Liu J, Yuan L, Huang Y, Qian L, Wang C. The pigmentation interference of bisphenol F and bisphenol A. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 266:115139. [PMID: 32663677 DOI: 10.1016/j.envpol.2020.115139] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 06/24/2020] [Accepted: 06/27/2020] [Indexed: 06/11/2023]
Abstract
Bisphenol A (BPA) and bisphenol F (BPF) are widely distributed in the environment and daily consumptions, leading to exposure toward human and environmental animals. The potential risk of bisphenol analogs on pigment and skin health is not well documented. In this study, we found that 0.05 mg/L BPF (tolerated daily intake (TDI) value of BPA) affected the particle size and color density of zebrafish melanin. While BPA caused less depigmentation effect toward zebrafish with effective concentration of 5.0 mg/L. The downregulation of melanin synthases induced by BPF is associated with the reduction in melanin. Molecular dynamics indicated that both BPF and BPA could act as ligands of zebrafish and human Tyr family proteins; however, these compounds have completely different energetics and spatial steric effects, potentially explaining their varying depigmentation effects. Additionally, an in vitro assay using A375 melanoma cells demonstrated that the inhibitory effect of BPF on human melanin production was primarily attributed to Tyr inhibition. These findings provide an important basis for understanding the molecular mechanisms of BPF and BPA in melanin inhibition, and the results reflect the skin pigmentation interference risk of these compounds, which are ubiquitous in everyday personal products.
Collapse
Affiliation(s)
- Xiyan Mu
- Fishery Resource and Environment Research Center, Chinese Academy of Fishery Sciences, Beijing, People's Republic of China.
| | - Jia Liu
- Fishery Resource and Environment Research Center, Chinese Academy of Fishery Sciences, Beijing, People's Republic of China; College of Sciences, China Agricultural University, Beijing, People's Republic of China
| | - Lilai Yuan
- Fishery Resource and Environment Research Center, Chinese Academy of Fishery Sciences, Beijing, People's Republic of China
| | - Ying Huang
- Fishery Resource and Environment Research Center, Chinese Academy of Fishery Sciences, Beijing, People's Republic of China
| | - Le Qian
- College of Sciences, China Agricultural University, Beijing, People's Republic of China
| | - Chengju Wang
- College of Sciences, China Agricultural University, Beijing, People's Republic of China
| |
Collapse
|
14
|
Rodrigues-Ferreira S, Moindjie H, Haykal MM, Nahmias C. Predicting and Overcoming Taxane Chemoresistance. Trends Mol Med 2020; 27:138-151. [PMID: 33046406 DOI: 10.1016/j.molmed.2020.09.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 09/11/2020] [Accepted: 09/15/2020] [Indexed: 01/01/2023]
Abstract
Taxanes are microtubule-targeting drugs used as cytotoxic chemotherapy to treat most solid tumors. The development of resistance to taxanes is a major cause of therapeutic failure and overcoming chemoresistance remains an important challenge to improve patient's outcome. Extensive efforts have been made recently to identify predictive biomarkers to select populations of patients who will benefit from taxane-based chemotherapy and avoid inefficient treatment of patients with innate resistance. This, together with the discovery of new mechanisms of resistance that include metabolic reprogramming and dialogue between tumor and its microenvironment, pave the way to a new era of personalized medicine. In this review, we recapitulate recent insights into taxane resistance and present promising emerging strategies to overcome chemoresistance in the future.
Collapse
Affiliation(s)
- Sylvie Rodrigues-Ferreira
- Université Paris-Saclay, Institut Gustave Roussy, Inserm U981, Biomarqueurs prédictifs et nouvelles stratégies thérapeutiques en oncologie, 94800, Villejuif, France; LabEx LERMIT, Université Paris Saclay, 92296 Châtenay-Malabry, France; Inovarion, 75005 Paris, France.
| | - Hadia Moindjie
- Université Paris-Saclay, Institut Gustave Roussy, Inserm U981, Biomarqueurs prédictifs et nouvelles stratégies thérapeutiques en oncologie, 94800, Villejuif, France; LabEx LERMIT, Université Paris Saclay, 92296 Châtenay-Malabry, France
| | - Maria M Haykal
- Université Paris-Saclay, Institut Gustave Roussy, Inserm U981, Biomarqueurs prédictifs et nouvelles stratégies thérapeutiques en oncologie, 94800, Villejuif, France; LabEx LERMIT, Université Paris Saclay, 92296 Châtenay-Malabry, France
| | - Clara Nahmias
- Université Paris-Saclay, Institut Gustave Roussy, Inserm U981, Biomarqueurs prédictifs et nouvelles stratégies thérapeutiques en oncologie, 94800, Villejuif, France; LabEx LERMIT, Université Paris Saclay, 92296 Châtenay-Malabry, France.
| |
Collapse
|
15
|
Farooq S, Qayum A, Nalli Y, Lauro G, Chini MG, Bifulco G, Chaubey A, Singh SK, Riyaz-Ul-Hassan S, Ali A. Discovery of a Secalonic Acid Derivative from Aspergillus aculeatus, an Endophyte of Rosa damascena Mill., Triggers Apoptosis in MDA-MB-231 Triple Negative Breast Cancer Cells. ACS OMEGA 2020; 5:24296-24310. [PMID: 33015446 PMCID: PMC7528173 DOI: 10.1021/acsomega.0c02505] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 09/04/2020] [Indexed: 05/04/2023]
Abstract
A new secalonic acid derivative, F-7 (1), was isolated from the endophytic Aspergillus aculeatus MBT 102, associated with Rosa damascena. The planar structure of 1 was established on the basis of 1D and 2D NMR and ESI-TOF-MS spectra. The relative configuration of 1 was determined applying a combined quantum mechanical/NMR approach and, afterward, the comparison of calculated and experimental electronic circular dichroism spectra determined the assignment of its absolute configuration. The compound possesses strong cytotoxic activity against triple negative breast cancer (TNBC) cells. It was found to induce apoptosis, as evidenced by scanning electron microscopy and phase contrast microscopy. Furthermore, flow cytometry analyses demonstrated that 1 induced mitochondrial damage and reactive oxygen species mediated apoptosis, arresting the G1 phase of the cells in a dose-dependent manner. Also, the compound causes significant microtubule disruption in TNBC cells. Subsequently, 1 restricted the cell migration leading to the concomitant increase in expression of cleaved caspase and PARP.
Collapse
Affiliation(s)
- Sadaqat Farooq
- Microbial Biotechnology Division, CSIR-Indian Institute of Integrative Medicine, Sanat Nagar, Srinagar 190 005, India
- Academy of Scientific
and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Arem Qayum
- Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu Tawi 180 001, India
- Academy of Scientific
and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Yedukondalu Nalli
- Natural Product Division, CSIR-Indian Institute
of Integrative Medicine, Canal Road, Jammu Tawi 180 001, India
| | - Gianluigi Lauro
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, Fisciano 84084, Italy
| | - Maria Giovanna Chini
- Department of Biosciences and Territory, University of Molise, Contrada Fonte Lappone, Pesche, Isernia I-86090, Italy
| | - Giuseppe Bifulco
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, Fisciano 84084, Italy
| | - Asha Chaubey
- Fermentation Division, CSIR-Indian
Institute of Integrative Medicine, Canal Road, Jammu Tawi 180 001, India
- Academy of Scientific
and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Shashank K. Singh
- Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu Tawi 180 001, India
- Academy of Scientific
and Innovative Research (AcSIR), Ghaziabad 201002, India
- . Phone: +91-11-47011291, +91-11-2569222
| | - Syed Riyaz-Ul-Hassan
- Microbial Biotechnology Division, CSIR-Indian Institute of Integrative Medicine, Sanat Nagar, Srinagar 190 005, India
- Academy of Scientific
and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Asif Ali
- Natural Product Division, CSIR-Indian Institute
of Integrative Medicine, Canal Road, Jammu Tawi 180 001, India
- Academy of Scientific
and Innovative Research (AcSIR), Ghaziabad 201002, India
- ,
| |
Collapse
|
16
|
Mahmud F, Deng S, Chen H, Miller DD, Li W. Orally available tubulin inhibitor VERU-111 enhances antitumor efficacy in paclitaxel-resistant lung cancer. Cancer Lett 2020; 495:76-88. [PMID: 32920198 DOI: 10.1016/j.canlet.2020.09.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 08/28/2020] [Accepted: 09/03/2020] [Indexed: 12/11/2022]
Abstract
Lung cancer is the most common cause of cancer associated mortality. Chemotherapeutic agents, such as paclitaxel, are important treatment options but drug resistance often develops upon prolonged use. We report here the preclinical evaluation of a new orally available tubulin inhibitor, VERU-111, which can overcome several ABC-transporters mediated multi-drug resistance associated with taxane treatment. In vitro, VERU-111 prevents cell proliferation, invasion, migration and colony formation in both paclitaxel-sensitive and paclitaxel-resistant A549 lung cancer cells. VERU-111 effectively inhibits tubulin polymerization, arrests cells in G2/M phase, and induces cancer cell apoptosis. Further evaluation of various apoptotic proteins revealed that treatment of VERU-111 increases the expression of cleaved-PARP, cleaved-caspase-3 and p-histone H3 proteins. In vivo, orally administered VERU-111 in a paclitaxel-sensitive A549 xenograft model strongly inhibits tumor growth in a dose-dependent manner and is equally potent with paclitaxel. When tested in a highly paclitaxel-resistant A549/TxR tumor model, VERU-111 is as effective as the parental A549 model in significantly reducing the tumor volume, whereas paclitaxel is essentially ineffective. Collectively, this study showed that VERU-111 is a promising new generation of anti-tubulin agent for the treatment of taxane-resistant lung cancer.
Collapse
Affiliation(s)
- Foyez Mahmud
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Shanshan Deng
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Hao Chen
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Duane D Miller
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Wei Li
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN, 38163, USA.
| |
Collapse
|
17
|
Mu J, Zhong H, Zou H, Liu T, Yu N, Zhang X, Xu Z, Chen Z, Guo S. Acid-sensitive PEGylated paclitaxel prodrug nanoparticles for cancer therapy: Effect of PEG length on antitumor efficacy. J Control Release 2020; 326:265-275. [PMID: 32687940 DOI: 10.1016/j.jconrel.2020.07.022] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 06/30/2020] [Accepted: 07/13/2020] [Indexed: 12/27/2022]
Abstract
Paclitaxel is one of the most widely used anticancer agents, but strong side effects and low bioavailability limit its clinical efficacy. The use of tumor microenvironment-responsive prodrugs is promising to solve these problems, and a smart linkage is crucial to achieve the efficient release of paclitaxel from such prodrugs in tumor. Herein, an acid-responsive acetone-based acyclic ketal linkage is used to construct paclitaxel prodrugs with different length of poly(ethylene glycol) (PEG). The PEGylated acetone-based acyclic-ketal-linked prodrugs of paclitaxel (PKPs) self-assembled into nanoparticles that were stable in normal physiological environment but released paclitaxel rapidly in mildly acidic environment in tumor. The length of PEG had considerable impact on size and critical micelle concentration of PKP nanoparticles, thereby affecting prodrug hydrolysis kinetics, pharmacokinetics, biodistribution, and antitumor activity for PKP nanoparticles. In an A2780 xenograft mouse model, PKP nanoparticles displayed improved pharmacokinetics and superior antitumor efficacy against Taxol. Our results demonstrate that acyclic-ketal-based prodrugs are useful for the development of acid-responsive anticancer nanomedicines.
Collapse
Affiliation(s)
- Jingqing Mu
- Key Laboratory of Functional Polymer Materials of Ministry of Education, State Key Laboratory of Medicinal Chemical Biology and Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Haiping Zhong
- Key Laboratory of Functional Polymer Materials of Ministry of Education, State Key Laboratory of Medicinal Chemical Biology and Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Hui Zou
- Key Laboratory of Functional Polymer Materials of Ministry of Education, State Key Laboratory of Medicinal Chemical Biology and Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Tao Liu
- Key Laboratory of Functional Polymer Materials of Ministry of Education, State Key Laboratory of Medicinal Chemical Biology and Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Na Yu
- Key Laboratory of Functional Polymer Materials of Ministry of Education, State Key Laboratory of Medicinal Chemical Biology and Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Xi Zhang
- Key Laboratory of Functional Polymer Materials of Ministry of Education, State Key Laboratory of Medicinal Chemical Biology and Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Zunkai Xu
- Key Laboratory of Functional Polymer Materials of Ministry of Education, State Key Laboratory of Medicinal Chemical Biology and Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Ziqi Chen
- Key Laboratory of Functional Polymer Materials of Ministry of Education, State Key Laboratory of Medicinal Chemical Biology and Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Shutao Guo
- Key Laboratory of Functional Polymer Materials of Ministry of Education, State Key Laboratory of Medicinal Chemical Biology and Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China..
| |
Collapse
|
18
|
Rensi S, Keys A, Lo YC, Derry A, McInnes G, Liu T, Altman R. Homology modeling of TMPRSS2 yields candidate drugs that may inhibit entry of SARS-CoV-2 into human cells. CHEMRXIV : THE PREPRINT SERVER FOR CHEMISTRY 2020:12009582. [PMID: 32511288 PMCID: PMC7263764 DOI: 10.26434/chemrxiv.12009582] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 03/20/2020] [Indexed: 04/16/2023]
Abstract
The most rapid path to discovering treatment options for the novel coronavirus SARS-CoV-2 is to find existing medications that are active against the virus. We have focused on identifying repurposing candidates for the transmembrane serine protease family member II (TMPRSS2), which is critical for entry of coronaviruses into cells. Using known 3D structures of close homologs, we created seven homology models. We also identified a set of serine protease inhibitor drugs, generated several conformations of each, and docked them into our models. We used three known chemical (non-drug) inhibitors and one validated inhibitor of TMPRSS2 in MERS as benchmark compounds and found six compounds with predicted high binding affinity in the range of the known inhibitors. We also showed that a previously published weak inhibitor, Camostat, had a significantly lower binding score than our six compounds. All six compounds are anticoagulants with significant and potentially dangerous clinical effects and side effects. Nonetheless, if these compounds significantly inhibit SARS-CoV-2 infection, they could represent a potentially useful clinical tool.
Collapse
Affiliation(s)
- Stefano Rensi
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Allison Keys
- Department of Computer Science, Stanford University, CA, USA
| | - Yu-Chen Lo
- Pediatrics, Bass Center for Childhood Cancer, Stanford School of Medicine, Stanford, CA, USA
| | - Alexander Derry
- Department of Biomedical Data Science, Stanford University, Stanford, CA, USA
| | - Greg McInnes
- Department of Biomedical Data Science, Stanford University, Stanford, CA, USA
| | - Tianyun Liu
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Russ Altman
- Department of Bioengineering, Stanford University, Stanford, CA, USA
- Department of Computer Science, Stanford University, CA, USA
- Department of Biomedical Data Science, Stanford University, Stanford, CA, USA
- Departments of Genetics, Stanford University, Stanford, CA, USA
| |
Collapse
|
19
|
Lafront C, Germain L, Weidmann C, Audet-Walsh É. A Systematic Study of the Impact of Estrogens and Selective Estrogen Receptor Modulators on Prostate Cancer Cell Proliferation. Sci Rep 2020; 10:4024. [PMID: 32132580 PMCID: PMC7055213 DOI: 10.1038/s41598-020-60844-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 02/17/2020] [Indexed: 01/10/2023] Open
Abstract
The estrogen signaling pathway has been reported to modulate prostate cancer (PCa) progression through the activity of estrogen receptors α and β (ERα and ERβ). Given that selective estrogen receptor modulators (SERMs) are used to treat breast cancer, ERs have been proposed as attractive therapeutic targets in PCa. However, many inconsistencies regarding the expression of ERs and the efficacy of SERMs for PCa treatment exist, notably due to the use of ERβ antibodies lacking specificity and treatments with high SERM concentrations leading to off-target effects. To end this confusion, our objective was to study the impact of estrogenic and anti-estrogenic ligands in well-studied in vitro PCa models with appropriate controls, dosages, and ER subtype-specific antibodies. When using physiologically relevant concentrations of nine estrogenic/anti-estrogenic compounds, including five SERMs, we observed no significant modulation of PCa cell proliferation. Using RNA-seq and validated antibodies, we demonstrate that these PCa models do not express ERs. In contrast, RNA-seq from PCa samples from patients have detectable expression of ERα. Overall, our study reveals that commonly used PCa models are inappropriate to study ERs and indicate that usage of alternative models is essential to properly assess the roles of the estrogen signaling pathway in PCa.
Collapse
Affiliation(s)
- Camille Lafront
- Department of molecular medicine, Faculty of Medicine, Université Laval, Québec City, G1V 0A6, Canada
- Endocrinology - Nephrology Research Axis, Centre de recherche du CHU de Québec - Université Laval, Québec City, Canada
- Centre de recherche sur le cancer (CRC) of Université Laval, Québec City, Canada
| | - Lucas Germain
- Endocrinology - Nephrology Research Axis, Centre de recherche du CHU de Québec - Université Laval, Québec City, Canada
- Centre de recherche sur le cancer (CRC) of Université Laval, Québec City, Canada
- Department of biochemistry, microbiology and bioinformatics, Faculty of Sciences and Engineering, Université Laval, Québec City, G1V 0A6, Canada
| | - Cindy Weidmann
- Endocrinology - Nephrology Research Axis, Centre de recherche du CHU de Québec - Université Laval, Québec City, Canada
- Centre de recherche sur le cancer (CRC) of Université Laval, Québec City, Canada
| | - Étienne Audet-Walsh
- Department of molecular medicine, Faculty of Medicine, Université Laval, Québec City, G1V 0A6, Canada.
- Endocrinology - Nephrology Research Axis, Centre de recherche du CHU de Québec - Université Laval, Québec City, Canada.
- Centre de recherche sur le cancer (CRC) of Université Laval, Québec City, Canada.
| |
Collapse
|
20
|
Torng W, Altman RB. Graph Convolutional Neural Networks for Predicting Drug-Target Interactions. J Chem Inf Model 2019; 59:4131-4149. [DOI: 10.1021/acs.jcim.9b00628] [Citation(s) in RCA: 126] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Wen Torng
- Deparment of Bioengineering, Stanford University, Stanford, California 94305, United States
| | - Russ B. Altman
- Deparment of Bioengineering, Stanford University, Stanford, California 94305, United States
- Department of Genetics, Stanford University, Stanford, California 94305, United States
| |
Collapse
|