1
|
Emmerson R, Catoni M. The role of mobile DNA elements in the dynamics of plant genome plasticity. JOURNAL OF EXPERIMENTAL BOTANY 2025; 76:2433-2446. [PMID: 39792462 DOI: 10.1093/jxb/erae523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 01/08/2025] [Indexed: 01/12/2025]
Abstract
Plants host a range of DNA elements capable of self-replication. These molecules, usually associated with the activity of transposable elements or viruses, are found integrated in the genome or in the form of extrachromosomal DNA. The activity of these elements can impact genome plasticity by a variety of mechanisms, including the generation of structural variants, the shuffling of regulatory or coding DNA sequences across the genome, and DNA endoduplication. This plasticity can dynamically alter gene expression and genome stability, ultimately affecting plant development or the response to environmental changes. While the activation of these elements is often considered deleterious to the genome, their role in creating variation is important in adaptation and evolution. Moreover, the mechanisms by which mobile DNA proliferates have been exploited for plant engineering, or contributed to understand how desirable traits can be generated in crops. In this review, we discuss the origins and the roles of mobile DNA element activity on genome plasticity and plant biology, as well as their potential function and current application in plant biotechnology.
Collapse
Affiliation(s)
- Robyn Emmerson
- School of Biosciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Marco Catoni
- School of Biosciences, University of Birmingham, Birmingham B15 2TT, UK
| |
Collapse
|
2
|
Ren C, Comes HP, Zhu S, Zhang X, Jiang W, Fu C, Chen J, Ma Y, Qiu Y. Genome-wide patterns of local adaptation associated with transposable elements in Tetrastigma hemsleyanum (Vitaceae). THE NEW PHYTOLOGIST 2025. [PMID: 40448394 DOI: 10.1111/nph.70264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Accepted: 05/12/2025] [Indexed: 06/02/2025]
Abstract
The mobility of transposable elements (TEs) partly drives genome evolution, potentially leading to either adaptive or deleterious effects. However, it remains far from clear whether and how TEs contribute to adaptation to changing environments, especially in plants. We analyzed whole-genome sequencing data from 29 ecologically diverse Tetrastigma hemsleyanum populations to infer the species' demographic history and its impact on TE polymorphisms. Integrated selective sweep and genome-environment association (GEA) approaches were employed to examine the contribution of TEs to environmental adaptation. The ancestor of T. hemsleyanum diverged during the late Miocene/Pliocene, forming two lineages that further split into four sublineages. These (sub)lineages underwent periodic population declines and recoveries during the late-Pleistocene climatic oscillations, with most polymorphic TEs transposing during the last glacial period. A small fraction of these TEs (0.033-0.40%) showed signatures of positive selection, while a broader subset (0.081-0.76%) correlated significantly with climatic variables. Notably, these selected or climate-linked TE polymorphisms were preferentially retained in gene-poor regions and frequently linked to genes involved in organ development and stress/defense response. Our findings demonstrate that TEs played a key regulatory and adaptive role in T. hemsleyanum's response to environmental change, underscoring their importance in better understanding the genomic mechanisms underlying adaptation.
Collapse
Affiliation(s)
- Chaoqian Ren
- Systematic & Evolutionary Botany and Biodiversity Laboratory, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China
- State Key Laboratory of Plant Diversity and Specialty Crops, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, Hubei, 430074, China
| | - Hans Peter Comes
- Department of Environment & Biodiversity, Salzburg University, Salzburg, A-5020, Austria
| | - Shanshan Zhu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang, 315211, China
| | - Xinyi Zhang
- State Key Laboratory of Plant Diversity and Specialty Crops, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, Hubei, 430074, China
| | - Weimei Jiang
- Systematic & Evolutionary Botany and Biodiversity Laboratory, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Chengxin Fu
- Systematic & Evolutionary Botany and Biodiversity Laboratory, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Jun Chen
- Systematic & Evolutionary Botany and Biodiversity Laboratory, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Yazhen Ma
- State Key Laboratory of Plant Diversity and Specialty Crops, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, Hubei, 430074, China
| | - Yingxiong Qiu
- State Key Laboratory of Plant Diversity and Specialty Crops, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, Hubei, 430074, China
| |
Collapse
|
3
|
Huang W, Wang S, Mao C, Xiang L, Zhang X, Jiang F, Cheng Y, Li T. Integrative Analyses of Metabolome and Transcriptome Reveal Scion-Stock Asymmetry Reduction and Shift of Sugar Metabolism During Graft Junction Formation in Malus Domestica ('Hanfu') Homograft. Int J Mol Sci 2025; 26:5290. [PMID: 40508097 PMCID: PMC12155446 DOI: 10.3390/ijms26115290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2025] [Revised: 03/25/2025] [Accepted: 04/03/2025] [Indexed: 06/16/2025] Open
Abstract
Grafting is widely used as a breeding method to enhance productivity and resilience. However, the mechanisms of graft healing remain poorly understood. In this study, we performed Malus domestica ('Hanfu') homograft and observed morphological and anatomical changes during the healing process in the graft junction within 40 days after grafting (DAG). The results showed that the healing process was divided into two phases: 0-20 days (callus proliferation phase) and 20-40 days (vascular bundle reconnection phase). During the early stage (20 DAG), gene expression exhibited asymmetry between the scion and rootstock, whereas synchronization occurred in the late stage (40 DAG). Transcriptomic and metabolomic analyses of the scion and rootstock during these two critical phases identified that differentially expressed genes (DEGs) were enriched in "Carbon fixation by Calvin cycle" and "photosynthesis-related pathways", while differentially expressed metabolites (DEMs) were clustered in "Galactose metabolism", implying a critical role of carbohydrates in grafting. Genes encoding enzymes involved in sugar biosynthesis, such as amylase (MdAMY), invertase (MdINV), galactinol synthase (MdGS), raffinose synthase (MdRS), and stachyose synthase (MdSS), were generally more highly expressed during Phase I than Phase II. In contrast, genes encoding enzymes related to sugar consumption, such as fructose kinases (MdSUS), cellulose synthases (MdCESA), and galacturonosyltransferase (MdGAUT), showed weak expression in Phase I but were strongly activated in Phase II. Glucose, sucrose, galactose, and melibiose levels increased significantly at 20 DAG compared with 0 DAG and subsequently decreased by 40 DAG. Exogenous application of 0.5% sucrose, raffinose, or melibiose significantly enhanced vascular bundle reconnection rates at 7 DAG compared with the control group (p < 0.01), confirming the pivotal role of sugar metabolism in graft healing.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Tianzhong Li
- College of Horticulture, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian District, Beijing 100193, China; (W.H.); (S.W.); (C.M.); (L.X.); (X.Z.); (F.J.); (Y.C.)
| |
Collapse
|
4
|
Merkulov P, Latypova A, Tiurin K, Serganova M, Kirov I. DNA Methylation and Alternative Splicing Safeguard Genome and Transcriptome After a Retrotransposition Burst in Arabidopsis thaliana. Int J Mol Sci 2025; 26:4816. [PMID: 40429956 PMCID: PMC12112155 DOI: 10.3390/ijms26104816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2025] [Revised: 05/10/2025] [Accepted: 05/14/2025] [Indexed: 05/29/2025] Open
Abstract
Transposable elements (TEs) are major drivers of plant genome plasticity, but the immediate molecular consequences of new TE insertions remain poorly understood. In this study, we generated a wild-type Arabidopsis thaliana population with novel insertions of ONSEN retrotransposon to investigate early epigenomic and transcriptomic changes using whole-genome and cDNA nanopore sequencing. We found that novel ONSEN insertions were distributed non-randomly, with a strong preference for genic regions, particularly in chromatin enriched for H2A.Z, H3K27me3, and H3K4me2. Most full-length ONSEN insertions within genes were rapidly recognized and spliced out as new introns (intronization), thereby mitigating potential deleterious effects on transcript isoforms. In some cases, ONSEN insertions provided alternative transcription start or termination sites, generating novel transcript isoforms. Genome-wide methylation analysis revealed that new ONSEN copies were efficiently and precisely targeted by DNA methylation. Independently on the location of the original ONSEN element, the euchromatic and heterochromatic insertions display distinct methylation signatures, reflecting the action of different epigenetic pathways. In conclusion, our results demonstrate that DNA methylation and alternative splicing are effective control mechanisms safeguarding the plant genome and transcriptome integrity after retrotransposition burst.
Collapse
Affiliation(s)
- Pavel Merkulov
- All-Russia Research Institute of Agricultural Biotechnology, Timiryazevskaya Str. 42, 127550 Moscow, Russia; (P.M.); (A.L.); (K.T.); (M.S.)
- Moscow Center for Advanced Studies, Kulakova Str. 20, 123592 Moscow, Russia
| | - Anastasiia Latypova
- All-Russia Research Institute of Agricultural Biotechnology, Timiryazevskaya Str. 42, 127550 Moscow, Russia; (P.M.); (A.L.); (K.T.); (M.S.)
- Moscow Center for Advanced Studies, Kulakova Str. 20, 123592 Moscow, Russia
| | - Kirill Tiurin
- All-Russia Research Institute of Agricultural Biotechnology, Timiryazevskaya Str. 42, 127550 Moscow, Russia; (P.M.); (A.L.); (K.T.); (M.S.)
- Moscow Center for Advanced Studies, Kulakova Str. 20, 123592 Moscow, Russia
| | - Melania Serganova
- All-Russia Research Institute of Agricultural Biotechnology, Timiryazevskaya Str. 42, 127550 Moscow, Russia; (P.M.); (A.L.); (K.T.); (M.S.)
- Moscow Center for Advanced Studies, Kulakova Str. 20, 123592 Moscow, Russia
| | - Ilya Kirov
- All-Russia Research Institute of Agricultural Biotechnology, Timiryazevskaya Str. 42, 127550 Moscow, Russia; (P.M.); (A.L.); (K.T.); (M.S.)
- Moscow Center for Advanced Studies, Kulakova Str. 20, 123592 Moscow, Russia
| |
Collapse
|
5
|
Zhang T, Mhamed M, Zhang Q, Yang L, Xiaohui Z, Haiyan G, Zhang Z. Apple varieties, diseases, and distinguishing between fresh and rotten through deep learning approaches. PLoS One 2025; 20:e0322586. [PMID: 40373081 PMCID: PMC12080815 DOI: 10.1371/journal.pone.0322586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 03/24/2025] [Indexed: 05/17/2025] Open
Abstract
Apples are one of the most productive fruits in the world, in addition to their nutritional and health advantages for humans. Even with the continuous development of AI in agriculture in general and apples in particular, automated systems continue to encounter challenges identifying rotten fruit and variations within the same apple category, as well as similarity in type, color, and shape of different fruit varieties. These issues, in addition to apple diseases, substantially impact the economy, productivity, and marketing quality. In this paper, we first provide a novel comprehensive collection named Apple Fruit Varieties Collection (AFVC) with 29,750 images through 85 classes. Second, we distinguish fresh and rotten apples with Apple Fruit Quality Categorization (AFQC), which has 2,320 photos. Third, an Apple Diseases Extensive Collection (ADEC), comprised of 2,976 images with seven classes, was offered. Fourth, following the state of the art, we develop an Optimized Apple Orchard Model (OAOM) with a new loss function named measured focal cross-entropy (MFCE), which assists in improving the proposed model's efficiency. The proposed OAOM gives the highest performance for apple varieties identification with AFVC; accuracy was 93.85%. For the apples rotten recognition with AFQC, accuracy was 98.28%. For the identification of the diseases via ADEC, it was 99.66%. OAOM works with high efficiency and outperforms the baselines. The suggested technique boosts apple system automation with numerous duties and outstanding effectiveness. This research benefits the growth of apple's robotic vision, development policies, automatic sorting systems, and decision-making enhancement.
Collapse
Affiliation(s)
- Tao Zhang
- Department of Materials and Architectural Engineering, Hebei Institute of Mechanical and Electrical Technology, Xingtai, China
| | - Mustafa Mhamed
- Department of Materials and Architectural Engineering, Hebei Institute of Mechanical and Electrical Technology, Xingtai, China
- Key Laboratory of Smart Agriculture System Integration, Ministry of Education, Beijing, China
- Key Laboratory of Agricultural Information Acquisition Technology, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing, China
- College of Information and Electrical Engineering, China Agricultural University, Beijing, China
- Research Institute of Agricultural Mechanization, Xinjiang Academy of Agricultural Sciences, Urumqi, China
| | - Qu Zhang
- Key Laboratory of Smart Agriculture System Integration, Ministry of Education, Beijing, China
- Key Laboratory of Agricultural Information Acquisition Technology, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing, China
- College of Information and Electrical Engineering, China Agricultural University, Beijing, China
| | - Liling Yang
- Research Institute of Agricultural Mechanization, Xinjiang Academy of Agricultural Sciences, Urumqi, China
| | - Z.H.A.O. Xiaohui
- International Office, China Agricultural University, Beijing, China
| | - Gu Haiyan
- Information Engineering College, Shandong Business Institute, Yantai, Shandong, China
| | - Zhao Zhang
- Key Laboratory of Smart Agriculture System Integration, Ministry of Education, Beijing, China
- Key Laboratory of Agricultural Information Acquisition Technology, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing, China
- College of Information and Electrical Engineering, China Agricultural University, Beijing, China
| |
Collapse
|
6
|
Meng J, Li Z, Wang H, Miao R, Liu X, Miao D, Zhao C, Wang G, Cheng T, Zhang Q, Sun L. Haplotype-resolved genome assembly provides new insights into the genomic origin of purple colour in Prunus mume. PLANT BIOTECHNOLOGY JOURNAL 2025; 23:1416-1436. [PMID: 39901356 PMCID: PMC12018819 DOI: 10.1111/pbi.14595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 12/18/2024] [Accepted: 12/20/2024] [Indexed: 02/05/2025]
Abstract
Prunus mume, an important ornamental woody plant in the Rosaceae family, contains many interspecific hybridizations. Purple colour is a breeding trait of aesthetic value for P. mume, but little is known about the origin and genetic architecture of this trait. Here we address these issues by producing a haplotype-resolved genome from an interspecific hybrid cultivar of P. mume (M) and P. cerasifera 'Pissardii' (C), named P. mume 'Meiren', followed by a detailed molecular characterization. The final length of the diploid genome is 499.47 Mb, with 250.66 Mb of haplotype M (HM) and 248.79 Mb of haplotype C (HC). Approximately 95.42% (476.61 Mb) of the phased assembly is further anchored to 16 homologous chromosomes. Based on the genomic variation, we identify a 1.8 Mb large-fragmented inversion (INV) on chromosome 1b of HC, which co-segregates with purple colour traits of 'Meiren' inherited from its purple C parent 'Pissardii'. We find that a MYB transcription factor, PmmMYB10.5b, resides at the distal breakpoint of the INV, which displays consistent allele-specific expression (ASE). By directly binding to the promoter of anthocyanin synthetic alleles, PmmMYB10.5b serves as a co-activator to promote anthocyanin accumulation in 'Meiren' organs. Notably, the INV identified in 'Meiren' is generated from 'Pissardii' rather than P. cerasifera, which alters the promoter sequence of PmmMYB10.5b, activates its expression and results in the purple colour trait. Results from this study shed light on the evolutionary origin of purple colour in 'Meiren' and could potentially provide guidance on the genetic improvement of colour traits in ornamental woody plants.
Collapse
Affiliation(s)
- Juan Meng
- State Key Laboratory of Efficient Production of Forest Resources, Beijing Key Laboratory of Ornamental Plants Germplasm Innovation and Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, School of Landscape ArchitectureBeijing Forestry UniversityBeijingChina
| | - Ziwei Li
- State Key Laboratory of Efficient Production of Forest Resources, Beijing Key Laboratory of Ornamental Plants Germplasm Innovation and Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, School of Landscape ArchitectureBeijing Forestry UniversityBeijingChina
| | - Haoning Wang
- State Key Laboratory of Efficient Production of Forest Resources, Beijing Key Laboratory of Ornamental Plants Germplasm Innovation and Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, School of Landscape ArchitectureBeijing Forestry UniversityBeijingChina
| | - Runtian Miao
- State Key Laboratory of Efficient Production of Forest Resources, Beijing Key Laboratory of Ornamental Plants Germplasm Innovation and Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, School of Landscape ArchitectureBeijing Forestry UniversityBeijingChina
| | - Xu Liu
- State Key Laboratory of Efficient Production of Forest Resources, Beijing Key Laboratory of Ornamental Plants Germplasm Innovation and Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, School of Landscape ArchitectureBeijing Forestry UniversityBeijingChina
| | - Dapeng Miao
- State Key Laboratory of Efficient Production of Forest Resources, Beijing Key Laboratory of Ornamental Plants Germplasm Innovation and Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, School of Landscape ArchitectureBeijing Forestry UniversityBeijingChina
| | - Chunxu Zhao
- State Key Laboratory of Efficient Production of Forest Resources, Beijing Key Laboratory of Ornamental Plants Germplasm Innovation and Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, School of Landscape ArchitectureBeijing Forestry UniversityBeijingChina
| | - Guijia Wang
- State Key Laboratory of Efficient Production of Forest Resources, Beijing Key Laboratory of Ornamental Plants Germplasm Innovation and Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, School of Landscape ArchitectureBeijing Forestry UniversityBeijingChina
| | - Tangren Cheng
- State Key Laboratory of Efficient Production of Forest Resources, Beijing Key Laboratory of Ornamental Plants Germplasm Innovation and Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, School of Landscape ArchitectureBeijing Forestry UniversityBeijingChina
| | - Qixiang Zhang
- State Key Laboratory of Efficient Production of Forest Resources, Beijing Key Laboratory of Ornamental Plants Germplasm Innovation and Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, School of Landscape ArchitectureBeijing Forestry UniversityBeijingChina
| | - Lidan Sun
- State Key Laboratory of Efficient Production of Forest Resources, Beijing Key Laboratory of Ornamental Plants Germplasm Innovation and Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, School of Landscape ArchitectureBeijing Forestry UniversityBeijingChina
| |
Collapse
|
7
|
Bousios A, Kakutani T, Henderson IR. Centrophilic Retrotransposons of Plant Genomes. ANNUAL REVIEW OF PLANT BIOLOGY 2025; 76:579-604. [PMID: 39952673 DOI: 10.1146/annurev-arplant-083123-082220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/17/2025]
Abstract
The centromeres of eukaryotic chromosomes are required to load CENH3/CENP-A variant nucleosomes and the kinetochore complex, which connects to spindle microtubules during cell division. Despite their conserved function, plant centromeres show rapid sequence evolution within and between species and a range of monocentric, holocentric, and polymetacentric architectures, which vary in kinetochore numbers and spacing. Plant centromeres are commonly composed of tandem satellite repeat arrays, which are invaded by specific families of centrophilic retrotransposons, whereas in some species the entire centromere is composed of such retrotransposons. We review the diversity of plant centrophilic retrotransposons and their mechanisms of integration, together with how epigenetic information and small RNAs control their proliferation. We discuss models for rapid centromere sequence evolution and speculate on the roles that centrophilic retrotransposons may play in centromere dynamics. We focus on plants but draw comparisons with animal and fungal centromeric transposons to highlight conserved and divergent themes across the eukaryotes.
Collapse
Affiliation(s)
| | - Tetsuji Kakutani
- Department of Biological Sciences, University of Tokyo, Tokyo, Japan
| | - Ian R Henderson
- Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom;
| |
Collapse
|
8
|
Li W, Chu C, Zhang T, Sun H, Wang S, Liu Z, Wang Z, Li H, Li Y, Zhang X, Geng Z, Wang Y, Li Y, Zhang H, Fan W, Wang Y, Xu X, Cheng L, Zhang D, Xiong Y, Li H, Zhou B, Guan Q, Deng CH, Han Y, Ma H, Han Z. Pan-genome analysis reveals the evolution and diversity of Malus. Nat Genet 2025; 57:1274-1286. [PMID: 40240877 DOI: 10.1038/s41588-025-02166-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 03/14/2025] [Indexed: 04/18/2025]
Abstract
Malus Mill., a genus of temperate perennial trees with great agricultural and ecological value, has diversified through hybridization, polyploidy and environmental adaptation. Limited genomic resources for wild Malus species have hindered the understanding of their evolutionary history and genetic diversity. We sequenced and assembled 30 high-quality Malus genomes, representing 20 diploids and 10 polyploids across major evolutionary lineages and geographical regions. Phylogenomic analyses revealed ancient gene duplications and conversions, while six newly defined genome types, including an ancestral type shared by polyploid species, facilitated the detection of strong signals for extensive introgressions. The graph-based pan-genome captured shared and species-specific structural variations, facilitating the development of a molecular marker for apple scab resistance. Our pipeline for analyzing selective sweep identified a mutation in MdMYB5 having reduced cold and disease resistance during domestication. This study advances Malus genomics, uncovering genetic diversity and evolutionary insights while enhancing breeding for desirable traits.
Collapse
Affiliation(s)
- Wei Li
- Institute for Horticultural Plants, China Agricultural University, Beijing, China
| | - Chong Chu
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA.
| | - Taikui Zhang
- Department of Biology, Eberly College of Science and Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA, USA
| | - Haochen Sun
- Institute for Horticultural Plants, China Agricultural University, Beijing, China
| | - Shiyao Wang
- Institute for Horticultural Plants, China Agricultural University, Beijing, China
| | - Zeyuan Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, China
| | - Zijun Wang
- Institute for Horticultural Plants, China Agricultural University, Beijing, China
| | - Hui Li
- Institute for Horticultural Plants, China Agricultural University, Beijing, China
| | - Yuqi Li
- Institute for Horticultural Plants, China Agricultural University, Beijing, China
| | - Xingtan Zhang
- Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Zhiqiang Geng
- College of Information Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Youqing Wang
- College of Information Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Yi Li
- Department of Plant Science and Landscape Architecture, University of Connecticut, Storrs, CT, USA
| | - Hengtao Zhang
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China
| | - Weishu Fan
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Yi Wang
- Institute for Horticultural Plants, China Agricultural University, Beijing, China
| | - Xuefeng Xu
- Institute for Horticultural Plants, China Agricultural University, Beijing, China
| | - Lailiang Cheng
- Section of Horticulture, School of Integrative Plant Science, Cornell University, Ithaca, NY, USA
| | - Dehui Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, China
| | - Yao Xiong
- Institute for Horticultural Plants, China Agricultural University, Beijing, China
| | - Huixia Li
- Institute for Horticultural Plants, China Agricultural University, Beijing, China
- Department of Plant Science and Landscape Architecture, University of Connecticut, Storrs, CT, USA
| | - Bowen Zhou
- Institute for Horticultural Plants, China Agricultural University, Beijing, China
| | - Qingmei Guan
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, China.
| | - Cecilia H Deng
- The New Zealand Institute for Plant and Food Research Limited (Plant and Food Research), Auckland, New Zealand.
| | - Yongming Han
- College of Information Science and Technology, Beijing University of Chemical Technology, Beijing, China.
| | - Hong Ma
- Department of Biology, Eberly College of Science and Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA, USA.
| | - Zhenhai Han
- Institute for Horticultural Plants, China Agricultural University, Beijing, China.
| |
Collapse
|
9
|
Spengler RN, Tang L, Dal Corso M, Gillis RE, Oliveira HR, Makhamad BM. Seeking consensus on the domestication concept. Philos Trans R Soc Lond B Biol Sci 2025; 380:20240188. [PMID: 40370016 PMCID: PMC12079131 DOI: 10.1098/rstb.2024.0188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 09/02/2024] [Accepted: 10/11/2024] [Indexed: 05/16/2025] Open
Abstract
The domestication of plants and animals permitted the development of cities and social hierarchies, as well as fostering cultural changes that ultimately led humanity into the modern world. Despite the importance of this set of related evolutionary phenomena, scholars have not reached a consensus on what the earliest steps in the domestication process looked like, how long the seminal portions of the process took to unfold, or whether humans played a conscious role in parts or all of it. Likewise, many scholars find it difficult to disentangle the cultural processes of cultivation from the biological processes of domestication. Over the past decade, the prevailing views among scholars have begun to shift towards unconscious and protracted models of early domestication; however, the nomenclature used to discuss these changes has been stagnant. Discussions of early domestication remain bound up in prevailing definitions and preconceived ideas of what the process looked like. In this paper, we seek to break down definitions of domestication and to construct a definition that serves equal utility regardless of the views that researchers hold about the process.This article is part of the theme issue 'Unravelling domestication: multi-disciplinary perspectives on human and non-human relationships in the past, present and future'.
Collapse
Affiliation(s)
- Robert N. Spengler
- Domestication and Anthropogenic Evolution Research Group, Max Planck Institute for Geoanthropology, 07745 Jena, Germany
| | - Li Tang
- Domestication and Anthropogenic Evolution Research Group, Max Planck Institute for Geoanthropology, 07745 Jena, Germany
| | - Marta Dal Corso
- Department of Geosciences, Università degli Studi di Padova, 35131 Padova, Italy
| | - Rosalind Emma Gillis
- Referat Naturwissenschaften, Deutsches Archäologisches Institut, 14199 Berlin, Germany
| | | | - Basira Mir Makhamad
- Domestication and Anthropogenic Evolution Research Group, Max Planck Institute for Geoanthropology, 07745 Jena, Germany
| |
Collapse
|
10
|
Ji XL, Zhao LL, Liu B, Yuan YB, Han Y, You CX, An JP. MdZFP7 integrates JA and GA signals via interaction with MdJAZ2 and MdRGL3a in regulating anthocyanin biosynthesis and undergoes degradation by the E3 ubiquitin ligase MdBRG3. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2025; 67:1339-1363. [PMID: 39936840 DOI: 10.1111/jipb.13862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Accepted: 01/10/2025] [Indexed: 02/13/2025]
Abstract
Jasmonic acid (JA) and gibberellin (GA) coordinate many aspects of plant growth and development, including anthocyanin biosynthesis. However, the crossover points of JA and GA signals and the pathways through which they interact to regulate anthocyanin biosynthesis are poorly understood. Here, we investigated the molecular mechanism by which the zinc finger protein (ZFP) transcription factor Malus domestica ZFP7 (MdZFP7) regulates anthocyanin biosynthesis by integrating JA and GA signals at the transcriptional and post-translational levels. MdZFP7 is a positive regulator of anthocyanin biosynthesis, which fulfills its role by directly activating the expression of MdMYB1 and enhancing the transcriptional activation of MdWRKY6 on the target genes MdDFR and MdUF3GT. MdZFP7 integrates JA and GA signals by interacting with the JA repressor apple JASMONATE ZIM-DOMAIN2 (MdJAZ2) and the GA repressor apple REPRESSOR-of-ga1-3-like 3a (MdRGL3a). MdJAZ2 weakens the transcriptional activation of MdMYB1 by MdZFP7 and disrupts the MdZFP7-MdWRKY6 interaction, thereby reducing the anthocyanin biosynthesis promoted by MdZFP7. MdRGL3a contributes to the stimulation of anthocyanin biosynthesis by MdZFP7 by sequestering MdJAZ2 from the MdJAZ2-MdZFP7 complex. The E3 ubiquitin ligase apple BOI-related E3 ubiquitin-protein ligase 3 (MdBRG3), which is antagonistically regulated by JA and GA, targets the ubiquitination degradation of MdZFP7. The MdBRG3-MdZFP7 module moves the crosstalk of JA and GA signals from the realm of transcriptional regulation and into the protein post-translational modification. In conclusion, this study not only elucidates the node-role of MdZFP7 in the integration of JA and GA signals, but also describes the transcriptional and post-translational regulatory network of anthocyanin biosynthesis with MdZFP7 as the hub.
Collapse
Affiliation(s)
- Xing-Long Ji
- College of Horticulture, Qingdao Agricultural University, Qingdao, 266109, China
| | - Ling-Ling Zhao
- Yantai Academy of Agricultural Sciences, Yantai, 265599, China
| | - Baoyou Liu
- Yantai Academy of Agricultural Sciences, Yantai, 265599, China
| | - Yong-Bing Yuan
- College of Horticulture, Qingdao Agricultural University, Qingdao, 266109, China
| | - Yuepeng Han
- State Key Laboratory of Plant Diversity and Specialty Crops, CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden of Chinese Academy of Sciences, Wuhan, 430074, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| | - Chun-Xiang You
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, 271018, China
| | - Jian-Ping An
- State Key Laboratory of Plant Diversity and Specialty Crops, CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden of Chinese Academy of Sciences, Wuhan, 430074, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| |
Collapse
|
11
|
Xiao Y, Li M, Wang J. Epigenetic modification brings new opportunities for gene capture by transposable elements in allopolyploid Brassica napus. HORTICULTURE RESEARCH 2025; 12:uhaf028. [PMID: 40224332 PMCID: PMC11986588 DOI: 10.1093/hr/uhaf028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Accepted: 01/17/2025] [Indexed: 04/15/2025]
Abstract
Polyploids are widespread in plants and are important drivers for evolution and biodiversity. Allopolyploidy activates transposable elements (TEs) and causes genomic shock. Plant genomes can regulate gene expression by changing the epigenetic modification of TEs, but the mechanism for TEs to capture genes remains to be explored. Helitron TEs used the 'peel-and-paste' mechanism to achieve gene capture. We identified 3156 capture events and 326 donor genes of Helitron TEs in Brassica napus (AnAnCnCn). The donor genes captured by TEs were related to the number, length, and location of their exons. The gene-capturing TEs carrying donor gene fragments were evenly distributed on the genome, and more than half of them were involved in the construction of pseudogenes, becoming the reserve force for polyploid evolution. Gene fragment copies enhanced information storage, providing opportunities for gene mutation and the formation of new genes. Simultaneously, the siRNAs targeting TEs may act on the donor genes due to siRNA crosstalk, and the gene methylation levels increased and the expression levels decreased. The genome sought a balance between sacrificing donor gene expression and silencing TEs, allowing TEs to hide in the genome. In addition, epigenetic modifications may temporarily relax the control of gene capture during allopolyploidization. Our study identified and characterized gene capture events in B. napus, analyzed the effects of DNA methylation and siRNA on gene capture events, and explored the regulation mechanism of gene expression by TE epigenetic modification during allopolyploidization, which will contribute to understanding the formation and evolution mechanism of allopolyploidy.
Collapse
Affiliation(s)
- Yafang Xiao
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Mengdi Li
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Jianbo Wang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| |
Collapse
|
12
|
Huo W, Liu S, Chen X, Gu T, Wang Z, Xu X, Liu D, Zhang Y, Jiang S. Combined analysis of lncRNAs and mRNAs associated with coloration and wax formation during 'Fumei' Apple development. BMC PLANT BIOLOGY 2025; 25:498. [PMID: 40259233 PMCID: PMC12010529 DOI: 10.1186/s12870-025-06545-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Accepted: 04/11/2025] [Indexed: 04/23/2025]
Abstract
'Fumei' apple is characterized by high anthocyanin content and thick wax layer. Long non-coding RNAs (lncRNAs) play essential roles in the growth and development of various plants via regulation of gene expression. This study explored the potential mechanism underlying anthocyanin accumulation and cuticular wax formation during the development of 'Fumei' apple fruit. The results demonstrated that anthocyanin accumulation correlates with fruit coloration, while wax content drives wax layer formation. A total of 6039 and 3410 differentially expressed genes (DEGs), as well as 230 and 131 differentially expressed lncRNAs (DELs) were identified in the M1/M2 and M2/M3 pairs, respectively, by using RNA-seq. In the M1/M2 pair, the DEGs were mainly enriched in the 'photosynthesis' and 'flavonoid biosynthesis' pathways; in the M2/M3 pair, the DEGs were significantly enriched in the 'photosynthesis' and 'cutin, suberine and wax biosynthesis' pathways. Furthermore, the structural and regulatory genes involved in anthocyanin and cuticular wax biosynthesis were investigated, and the potential lncRNAs and genes that may control the anthocyanin and cuticular wax biosynthesis were identified. This study provides candidate lncRNAs and potential regulatory genes associated with both the regulation of anthocyanins and wax during apple development.
Collapse
Affiliation(s)
- Wenping Huo
- College of Horticulture, Engineering Laboratory of Genetic Improvement of Horticultural Crops of Shandong Province, Qingdao Agricultural University, Qingdao, Shandong, China
| | - Shasha Liu
- College of Horticulture, Engineering Laboratory of Genetic Improvement of Horticultural Crops of Shandong Province, Qingdao Agricultural University, Qingdao, Shandong, China
| | - Xiao Chen
- College of Agronomy, Qingdao Agricultural University, Qingdao, Shandong, China
| | - Tingting Gu
- College of Agricultural Sciences and Technology, Shandong Agriculture And Engineering University, Jinan, Shandong, China
| | - Zhongkang Wang
- College of Horticulture, Engineering Laboratory of Genetic Improvement of Horticultural Crops of Shandong Province, Qingdao Agricultural University, Qingdao, Shandong, China
- College of Agronomy, Qingdao Agricultural University, Qingdao, Shandong, China
| | - Xiaolong Xu
- College of Horticulture, Engineering Laboratory of Genetic Improvement of Horticultural Crops of Shandong Province, Qingdao Agricultural University, Qingdao, Shandong, China
- College of Agronomy, Qingdao Agricultural University, Qingdao, Shandong, China
| | - Daliang Liu
- College of Horticulture, Engineering Laboratory of Genetic Improvement of Horticultural Crops of Shandong Province, Qingdao Agricultural University, Qingdao, Shandong, China
- Yantai Academy of Agricultural Sciences in Shandong Province, Yantai, Shandong, China
| | - Yugang Zhang
- College of Horticulture, Engineering Laboratory of Genetic Improvement of Horticultural Crops of Shandong Province, Qingdao Agricultural University, Qingdao, Shandong, China.
| | - Shenghui Jiang
- College of Horticulture, Engineering Laboratory of Genetic Improvement of Horticultural Crops of Shandong Province, Qingdao Agricultural University, Qingdao, Shandong, China.
| |
Collapse
|
13
|
Tao XY, Feng SL, Yuan L, Li YJ, Li XJ, Guan XY, Chen ZH, Xu SC. Harnessing transposable elements for plant functional genomics and genome engineering. TRENDS IN PLANT SCIENCE 2025:S1360-1385(25)00067-6. [PMID: 40240259 DOI: 10.1016/j.tplants.2025.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 03/04/2025] [Accepted: 03/17/2025] [Indexed: 04/18/2025]
Abstract
Transposable elements (TEs) constitute a large portion of many plant genomes and play important roles in regulating gene expression and in driving genome evolution and crop domestication. Despite advances in understanding the functions and mechanisms of TEs, a comprehensive review of their integrated knowledge and cutting-edge biotechnological applications of TEs is still needed. We provide a thorough overview that connects discoveries, mechanisms, and technologies associated with plant TEs. We discuss the identification and function of TEs driven by functional genomics, epigenetic regulation of TEs, and utilization of active TEs in plant functional genomics and genome engineering. In summary, expanding the knowledge and application of TEs will be beneficial to crop breeding and plant synthetic biology in the future.
Collapse
Affiliation(s)
| | | | - Lu Yuan
- Xianghu Laboratory, Hangzhou 311231, China
| | - Yan-Jun Li
- Xianghu Laboratory, Hangzhou 311231, China
| | - Xin-Jia Li
- Xianghu Laboratory, Hangzhou 311231, China
| | - Xue-Ying Guan
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Zhong-Hua Chen
- School of Science, Western Sydney University, Penrith, NSW, Australia; School of Agriculture, Food and Wine, The University of Adelaide, Glen Osmond, 5064 SA, Australia.
| | - Sheng-Chun Xu
- Xianghu Laboratory, Hangzhou 311231, China; Institute of Digital Agriculture, Zhejiang Academy of Agricultural Science, Hangzhou, China.
| |
Collapse
|
14
|
Li X, Dai X, He H, Chen W, Qian Q, Shang L, Guo L, He W. Uncovering the breeding contribution of transposable elements from landraces to improved varieties through pan-genome-wide analysis in rice. FRONTIERS IN PLANT SCIENCE 2025; 16:1573546. [PMID: 40297728 PMCID: PMC12034714 DOI: 10.3389/fpls.2025.1573546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2025] [Accepted: 03/21/2025] [Indexed: 04/30/2025]
Abstract
Introduction The rice improvement process, driven by modern breeding techniques, represents the second revolutionary advancement in rice agronomic traits, following domestication. Advances in pan-genomes and enhanced capacity for analyzing structural variations have increasingly highlighted their role in rice genetic improvement. Transposable element (TE) variants have been previously reported to influence rice genomic diversity during the domestication, but their contribution to the improvement from landraces to improved varieties remains unclear. Methods Here, we combined a high-quality pan-TE variation map, transcriptome profiles, and phenotypic data for 100 landraces and 92 improved varieties to investigate the contribution of TE variations to phenotypic improvement in rice. Results The total number and length of TE variations in improved varieties were significantly greater than those in rice landraces, particularly for Ty3-retrotransposons, LTR Copia and Helitron elements. Comparing landraces and improved varieties, 4,334 selective TEs were detected within or near 3,070 genes that were enriched in basic metabolism and development and stress resistance. Among the 14,076 differentially expressed genes between the two groups, the expression level of 3,480 (24.7%) genes were significantly associated with TE variations. Combining with haplotype analysis, we demonstrated potential patterns of how TEs affect gene expression variation and thereby participate in the improvement of important agronomic traits in rice. Discussion Collectively, our results highlight the contributions of TE variations to rice improvement in shaping the genetic basis of modern rice varieties and will facilitate the exploration of superior genes and advance molecular breeding efforts in rice.
Collapse
Affiliation(s)
- Xiaoxia Li
- Rice Research Institute, Shenyang Agricultural University, Shenyang, China
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Xiaofan Dai
- Rice Research Institute, Shenyang Agricultural University, Shenyang, China
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Huiying He
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Wu Chen
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Qian Qian
- Yazhouwan National Laboratory, Sanya, Hainan, China
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou, China
| | - Lianguang Shang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
- Yazhouwan National Laboratory, Sanya, Hainan, China
| | - Longbiao Guo
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou, China
| | - Wenchuang He
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| |
Collapse
|
15
|
Xiao X, Ran Z, Yan C, Gu W, Li Z. Mitochondrial genome assembly of the Chinese endemic species of Camellia luteoflora and revealing its repetitive sequence mediated recombination, codon preferences and MTPTs. BMC PLANT BIOLOGY 2025; 25:435. [PMID: 40186100 PMCID: PMC11971748 DOI: 10.1186/s12870-025-06461-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2025] [Accepted: 03/25/2025] [Indexed: 04/07/2025]
Abstract
Camellia luteoflora Y.K. Li ex Hung T. Chang & F.A. Zeng belongs to the Camellia L. genus (Theaceae Mirb.). As an endemic, rare, and critically endangered species in China, it holds significant ornamental and economic value, garnering global attention due to its ecological rarity. Despite its conservation importance, genomic investigations on this species remain limited, particularly in organelle genomics, hindering progress in phylogenetic classification and population identification. In this study, we employed high-throughput sequencing to assemble the first complete mitochondrial genome of C. luteoflora and reannotated its chloroplast genome. Through integrated bioinformatics analyses, we systematically characterized the mitochondrial genome's structural organization, gene content, interorganellar DNA transfer, sequence variation, and evolutionary relationships.Key findings revealed a circular mitochondrial genome spanning 587,847 bp with a GC content of 44.63%. The genome harbors70 unique functional genes, including 40 protein-coding genes (PCGs), 27 tRNA genes, and 3 rRNA genes. Notably, 9 PCGs contained 22 intronic regions. Codon usage analysis demonstrated a pronounced A/U bias in synonymous codon selection. Structural features included 506 dispersed repeats and 240 simple sequence repeats. Comparative genomics identified 19 chloroplast-derived transfer events, contributing 29,534 bp (3.77% of total mitochondrial DNA). RNA editing prediction revealed 539 C-to-T conversion events across PCGs. Phylogenetic reconstruction using mitochondrial PCGs positioned C. luteoflora in closest evolutionary proximity to Camellia sinensis var. sinensis. Selection pressure analysis (Ka/Ks ratios < 1 for 11 PCGs) and nucleotide diversity assessment (Pi values: 0-0.00711) indicated strong purifying selection and low sequence divergence.This study provides the first comprehensive mitochondrial genomic resource for C. luteoflora, offering critical insights for germplasm conservation, comparative organelle genomics, phylogenetic resolution, and evolutionary adaptation studies in Camellia species.
Collapse
Affiliation(s)
- Xu Xiao
- College of Forestry, Guizhou University, Guiyang, 550025, China
| | - Zhaohui Ran
- College of Forestry, Guizhou University, Guiyang, 550025, China
| | - Chao Yan
- College of Forestry, Guizhou University, Guiyang, 550025, China
| | - Weihao Gu
- College of Forestry, Guizhou University, Guiyang, 550025, China
| | - Zhi Li
- College of Forestry, Guizhou University, Guiyang, 550025, China.
| |
Collapse
|
16
|
Du X, Xu Z, Lu J, Chen Y, Gao X, Zhang J, He C, Huang L, Guo W, Cui Y, Wang X, Ai J, Li L, Cui Y, Liu Y, Fu J, Gu R, Wang J, Wang G. A LTR retrotransposon insertion leads to leafy phenotype in maize by elevating ZmOM66 expression. Nat Commun 2025; 16:3152. [PMID: 40175370 PMCID: PMC11965440 DOI: 10.1038/s41467-025-57811-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 03/04/2025] [Indexed: 04/04/2025] Open
Abstract
Leafy (Lfy1) is a classical dominant mutant showing more leaf number above primary ear and later flowering time in maize, but the causal gene together with its underlying genetic mechanism are unknown. Here, we report the cloning of Lfy1 mutant, and find that a retrotransposon insertion leads to leafy phenotype by elevating expression of its neighboring gene ZmOM66. ZmOM66 encodes an AAA+ ATPase that locate in mitochondria and interacts with itself. ZmOM66 overexpression affects the starch degradation, as well as contents of glucose, pyruvic acid, trehalose-6-phosphate, and TCA cycle related amino acids, and influences expression patterns of circadian clock genes. Moreover, expressions of floral related genes, including photoperiod regulated gene ZmPHYB1, integrator genes ZCN7, ZNC8 and ZCN12, and floral meristem identity genes ZMM4, ZMM15, and MASD67, are also significantly decreased by ZmOM66 overexpression. These results deepen our understanding of the regulatory mechanism of floral transition and leaf number in plant.
Collapse
Affiliation(s)
- Xuemei Du
- State Key Laboratory of Crop Gene Resources and Breeding, National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- State Key Laboratory of Maize Bio-Breeding, Frontiers Science Center for Molecular Design Breeding, Beijing Innovation Center for Crop Seed Technology, College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Zhuoyi Xu
- State Key Laboratory of Maize Bio-Breeding, Frontiers Science Center for Molecular Design Breeding, Beijing Innovation Center for Crop Seed Technology, College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Jiawen Lu
- State Key Laboratory of Maize Bio-Breeding, Frontiers Science Center for Molecular Design Breeding, Beijing Innovation Center for Crop Seed Technology, College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Yan Chen
- State Key Laboratory of Crop Gene Resources and Breeding, National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xinpeng Gao
- State Key Laboratory of Crop Gene Resources and Breeding, National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jie Zhang
- State Key Laboratory of Maize Bio-Breeding, Frontiers Science Center for Molecular Design Breeding, Beijing Innovation Center for Crop Seed Technology, College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Cheng He
- State Key Laboratory of Maize Bio-Breeding, Frontiers Science Center for Molecular Design Breeding, Beijing Innovation Center for Crop Seed Technology, College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Liying Huang
- State Key Laboratory of Maize Bio-Breeding, Frontiers Science Center for Molecular Design Breeding, Beijing Innovation Center for Crop Seed Technology, College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Wei Guo
- State Key Laboratory of Maize Bio-Breeding, Frontiers Science Center for Molecular Design Breeding, Beijing Innovation Center for Crop Seed Technology, College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Yangbo Cui
- State Key Laboratory of Maize Bio-Breeding, Frontiers Science Center for Molecular Design Breeding, Beijing Innovation Center for Crop Seed Technology, College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Xiaoli Wang
- State Key Laboratory of Crop Gene Resources and Breeding, National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Junmin Ai
- State Key Laboratory of Maize Bio-Breeding, Frontiers Science Center for Molecular Design Breeding, Beijing Innovation Center for Crop Seed Technology, College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Li Li
- State Key Laboratory of Maize Bio-Breeding, Frontiers Science Center for Molecular Design Breeding, Beijing Innovation Center for Crop Seed Technology, College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Yu Cui
- State Key Laboratory of Crop Gene Resources and Breeding, National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yunjun Liu
- State Key Laboratory of Crop Gene Resources and Breeding, National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Junjie Fu
- State Key Laboratory of Crop Gene Resources and Breeding, National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Riliang Gu
- State Key Laboratory of Maize Bio-Breeding, Frontiers Science Center for Molecular Design Breeding, Beijing Innovation Center for Crop Seed Technology, College of Agronomy and Biotechnology, China Agricultural University, Beijing, China.
| | - Jianhua Wang
- State Key Laboratory of Maize Bio-Breeding, Frontiers Science Center for Molecular Design Breeding, Beijing Innovation Center for Crop Seed Technology, College of Agronomy and Biotechnology, China Agricultural University, Beijing, China.
| | - Guoying Wang
- State Key Laboratory of Crop Gene Resources and Breeding, National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China.
| |
Collapse
|
17
|
Li Y, Song Z, Zhan X, Li X, Ye L, Lin M, Wang R, Huang H, Guo J, Sun L, Gu H, Chen J, Fang J, Qi X. Chromosome-level genome assembly assisting for dissecting mechanism of anthocyanin regulation in kiwifruit (Actinidia arguta). MOLECULAR HORTICULTURE 2025; 5:18. [PMID: 40165341 PMCID: PMC11959805 DOI: 10.1186/s43897-024-00139-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 12/26/2024] [Indexed: 04/02/2025]
Abstract
Actinidia arguta is a newly emerged, commercially cultivated Actinidia species. A. arguta has a beautiful appearance and is rich in anthocyanin, and is thus highly welcomed by consumers. However, the mechanism of anthocyanin regulation in A. arguta remains unclear. In this study, we assembled the nearly complete genome of the first red A. arguta cultivar, 'Tianyuanhong', with an N50 of 21 Mb. Comparative genome analysis revealed a role of the expansion/contraction of gene families in the species-specific trait formation of A. arguta. Through verification of transient overexpression and stable transformation, RNA-seq analysis revealed a key bHLH transcription factor, AaBEE1, which negatively regulates anthocyanin biosynthesis. DAP-seq analysis combined with Y1H, EMSA, Chip-qPCR and LUC suggested that AaBEE1 binds to the G-box of the AaLDOX promoter and suppresses its expression. Overall, we assembled the genome of A. arguta and clarified its AaBEE1-AaLDOX module-mediated molecular mechanism of anthocyanin regulation.
Collapse
Affiliation(s)
- Yukuo Li
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, 450009, China
- Zhongyuan Research Center, Chinese Academy of Agricultural Sciences, Xinxiang, 453500, China
| | - Zhe Song
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, 450009, China
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Xu Zhan
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, 450009, China
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang, 471000, China
| | - Xiaohan Li
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, 450009, China
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Lingshuai Ye
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, 450009, China
| | - Miaomiao Lin
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, 450009, China
- Zhongyuan Research Center, Chinese Academy of Agricultural Sciences, Xinxiang, 453500, China
| | - Ran Wang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, 450009, China
| | - Hailei Huang
- Shiyan Economic Crops Research Institute, Shiyan, 442099, China
| | - Jian Guo
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, 271018, China
| | - Leiming Sun
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, 450009, China
| | - Hong Gu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, 450009, China
| | - Jinyong Chen
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, 450009, China
| | - Jinbao Fang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, 450009, China.
| | - Xiujuan Qi
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, 450009, China.
- Zhongyuan Research Center, Chinese Academy of Agricultural Sciences, Xinxiang, 453500, China.
| |
Collapse
|
18
|
Qin M, Yuan R, Shen W, Min T, Yao JL, Lin Q. Transcription factor MdGTL1a accelerates starch degradation by promoting the MdBam8 expression in postharvest apple fruit. Int J Biol Macromol 2025; 302:140600. [PMID: 39900159 DOI: 10.1016/j.ijbiomac.2025.140600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 01/19/2025] [Accepted: 01/31/2025] [Indexed: 02/05/2025]
Abstract
Starch degradation plays a central role in fruit ripening. The β-amylase (Bam) catalysts starch degradation of apple fruit. However, the molecular mechanism regulating Bam gene expression in apples remains unclear. Using yeast one-hybrid library screening, we identified a transcription factor MdGTL1a that directly binds to the MdBam8 promoter. This bind was verified by using an electrophoretic mobility shift assay and confirmed to enhance the promotor activity of MdBam8 by promoter-β-glucuronidase transactivation assay. Transient over-expression of MdGTL1a activated MdBam8 expression and further enhanced starch degradation in apple flesh. Subcellular localization analyses in tobacco protoplasts demonstrated that the nucleus was the exclusive location of the MdGTL1a-GFP fusion protein. Exogenous salicylic acid treatment decreased MdGTL1a expression and resulted in higher starch content in apples, which was consistent with the fruit ripening. It is concluded that salicylic acid treatment could enhance apple storage quality by inhibiting starch degradation through a crucial transcription factor, MdGTL1a.
Collapse
Affiliation(s)
- Mian Qin
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Ruimin Yuan
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Wenzhu Shen
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Ting Min
- School of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Jia-Long Yao
- The New Zealand Institute for Plant and Food Research Limited, Auckland Mail Centre, Auckland 1142, New Zealand.
| | - Qiong Lin
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| |
Collapse
|
19
|
Wang X, Li Y, Li Z, Gu X, Wang Z, Qin X, Li Q. Investigating the Mechanisms of Adventitious Root Formation in Semi-Tender Cuttings of Prunus mume: Phenotypic, Phytohormone, and Transcriptomic Insights. Int J Mol Sci 2025; 26:2416. [PMID: 40141060 PMCID: PMC11941866 DOI: 10.3390/ijms26062416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 03/04/2025] [Accepted: 03/06/2025] [Indexed: 03/28/2025] Open
Abstract
Mei (Prunus mume Sieb. et Zucc.) is a rare woody species that flowers in winter, yet its large-scale propagation is limited by the variable ability of cuttings to form adventitious roots (ARs). In this study, two cultivars were compared: P. mume 'Xiangxue Gongfen' (GF), which roots readily, and P. mume 'Zhusha Wanzhaoshui' (ZS), which is more recalcitrant. Detailed anatomical observations revealed that following cutting, the basal region expanded within 7 days, callus tissues had appeared by 14 days, and AR primordia emerged between 28 and 35 days. Notably, compared to the recalcitrant cultivar ZS, the experimental cultivar GF exhibited significantly enhanced callus tissue formation and AR primordia differentiation. Physiological analyses showed that the initial IAA concentration was highest at day 0, whereas cytokinin (tZR) and gibberellin (GA1) levels peaked at 14 days, with ABA gradually decreasing over time, resulting in increased IAA/tZR and IAA/GA1 ratios during the rooting process. Transcriptomic profiling across these time points identified significant upregulation of key genes (e.g., PmPIN3, PmLOG2, PmCKX5, PmIAA13, PmLAX2, and PmGA2OX1) and transcription factors (PmWOX4, PmSHR, and PmNAC071) in GF compared to ZS. Moreover, correlation analyses revealed that PmSHR expression is closely associated with IAA and tZR levels. Overexpression of PmSHR in tobacco further validated its role in enhancing lateral root formation. Together, these findings provide comprehensive insights into the temporal, hormonal, and genetic regulation of AR formation in P. mume, offering valuable strategies for improving its propagation.
Collapse
Affiliation(s)
- Xiujun Wang
- School of Landscape Architecture, Beijing Forestry University, Beijing 100083, China; (X.W.); (Y.L.); (Z.L.); (X.G.); (Z.W.); (X.Q.)
- State Key Laboratory of Efficient Production of Forest Resources, Beijing 100083, China
| | - Yue Li
- School of Landscape Architecture, Beijing Forestry University, Beijing 100083, China; (X.W.); (Y.L.); (Z.L.); (X.G.); (Z.W.); (X.Q.)
| | - Zihang Li
- School of Landscape Architecture, Beijing Forestry University, Beijing 100083, China; (X.W.); (Y.L.); (Z.L.); (X.G.); (Z.W.); (X.Q.)
- State Key Laboratory of Efficient Production of Forest Resources, Beijing 100083, China
| | - Xiaowen Gu
- School of Landscape Architecture, Beijing Forestry University, Beijing 100083, China; (X.W.); (Y.L.); (Z.L.); (X.G.); (Z.W.); (X.Q.)
| | - Zixu Wang
- School of Landscape Architecture, Beijing Forestry University, Beijing 100083, China; (X.W.); (Y.L.); (Z.L.); (X.G.); (Z.W.); (X.Q.)
| | - Xiaotian Qin
- School of Landscape Architecture, Beijing Forestry University, Beijing 100083, China; (X.W.); (Y.L.); (Z.L.); (X.G.); (Z.W.); (X.Q.)
| | - Qingwei Li
- School of Landscape Architecture, Beijing Forestry University, Beijing 100083, China; (X.W.); (Y.L.); (Z.L.); (X.G.); (Z.W.); (X.Q.)
- State Key Laboratory of Efficient Production of Forest Resources, Beijing 100083, China
| |
Collapse
|
20
|
Gu C, Xu Y, Wu L, Wang X, Qi K, Qiao X, Wang Z, Li Q, He M, Zhang S. Long-read genome sequencing reveals the sequence characteristics of pear self-incompatibility locus. MOLECULAR HORTICULTURE 2025; 5:13. [PMID: 40022260 PMCID: PMC11871771 DOI: 10.1186/s43897-024-00132-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 12/02/2024] [Indexed: 03/03/2025]
Abstract
The S-RNase-based self-incompatibility locus (S-locus) in Petunia species contains 16-20 F-box genes, which collaboratively function in the recognition and subsequent degradation of non-self S-RNases, while distinguishing them from self S-RNase. However, the number of S-locus F-box genes (SFBBs) physically interacted with non-self S-RNases remains uncertain in Pyrus species. Utilizing Pacbio long-read sequencing, we successfully assembled the genome of pear cultivar 'Yali' (Pyrus bretschneideri), and identified 19 SFBBs from the Pyrus S17-locus spanning approximately 1.78 Mb. Additionally, we identified 17-21 SFBBs from other Pyrus and Malus S-loci spanning a range of 1.35 to 2.64 Mb. Based on the phylogenetic analysis, it was determined that Pyrus and Malus SFBBs could be classified into 22 groups, denoted as I to XXII. At amino acid level, SFBBs within a given group exhibited average identities ranged from 88.9% to 97.9%. Notably, all 19 SFBBs from the S17-locus co-segregated with S17-RNase, with 18 of them being specifically expressed in pollen. Consequently, these 18 pollen-specifically expressed SFBBs are considered potential candidates for the pollen-S determinant. Intriguingly, out of the 18 pollen-specifically expressed SFBBs, eight demonstrated interactions with at least one non-self S-RNase, while the remaining SFBBs failed to recognize any S-RNase. These findings provide compelling evidence supporting the existence of a collaborative non-self-recognition system governing self-incompatibility in pear species.
Collapse
Affiliation(s)
- Chao Gu
- Saya Institute of Nanjing Agricultural University, Nanjing Agricultural University, Nanjing, 211800, China.
| | - Ying Xu
- Saya Institute of Nanjing Agricultural University, Nanjing Agricultural University, Nanjing, 211800, China
| | - Lei Wu
- Saya Institute of Nanjing Agricultural University, Nanjing Agricultural University, Nanjing, 211800, China
| | - Xueping Wang
- Saya Institute of Nanjing Agricultural University, Nanjing Agricultural University, Nanjing, 211800, China
| | - Kaijie Qi
- Saya Institute of Nanjing Agricultural University, Nanjing Agricultural University, Nanjing, 211800, China
| | - Xin Qiao
- Saya Institute of Nanjing Agricultural University, Nanjing Agricultural University, Nanjing, 211800, China
| | - Zewen Wang
- Saya Institute of Nanjing Agricultural University, Nanjing Agricultural University, Nanjing, 211800, China
| | - Qionghou Li
- Saya Institute of Nanjing Agricultural University, Nanjing Agricultural University, Nanjing, 211800, China
| | - Min He
- Saya Institute of Nanjing Agricultural University, Nanjing Agricultural University, Nanjing, 211800, China
| | - Shaoling Zhang
- Saya Institute of Nanjing Agricultural University, Nanjing Agricultural University, Nanjing, 211800, China.
| |
Collapse
|
21
|
Wu W, Zeng Y, Huang Z, Peng H, Sun Z, Xu B. Transposable Element Landscape in the Monotypic Species Barthea barthei (Hance) Krass (Melastomataceae) and Its Role in Ecological Adaptation. Biomolecules 2025; 15:346. [PMID: 40149882 PMCID: PMC11939994 DOI: 10.3390/biom15030346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Revised: 02/21/2025] [Accepted: 02/25/2025] [Indexed: 03/29/2025] Open
Abstract
Transposable elements (TEs) are crucial for genome evolution and ecological adaptation, but their dynamics in non-model plants are poorly understood. Using genomic, transcriptomic, and population genomic approaches, we analyzed the TE landscape of Barthea barthei (Melastomataceae), a species distributed across tropical and subtropical southern China. We identified 64,866 TE copies (16.76% of a 235 Mb genome), dominated by Ty3/Gypsy retrotransposons (8.82%) and DNA/Mutator elements (2.7%). A genome-wide analysis revealed 13 TE islands enriched in genes related to photosynthesis, tryptophan metabolism, and stress response. We identified 3859 high-confidence TE insertion polymorphisms (TIPs), including 29 fixed insertions between red and white flower ecotypes, affecting genes involved in cell wall modification, stress response, and secondary metabolism. A transcriptome analysis of the flower buds identified 343 differentially expressed TEs between the ecotypes, 30 of which were near or within differentially expressed genes. The non-random distribution (primarily within 5 kb of genes) and association with adaptive traits suggest a significant role in B. barthei's successful colonization of diverse habitats. Our findings provide insights into how TEs contribute to plant genome evolution and ecological adaptation in tropical forests, particularly through their influence on regulatory networks governing stress response and development.
Collapse
Affiliation(s)
- Wei Wu
- College of Horticulture and Landscape Architecture, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China; (Y.Z.); (Z.H.); (H.P.); (Z.S.)
| | - Yuan Zeng
- College of Horticulture and Landscape Architecture, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China; (Y.Z.); (Z.H.); (H.P.); (Z.S.)
| | - Zecheng Huang
- College of Horticulture and Landscape Architecture, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China; (Y.Z.); (Z.H.); (H.P.); (Z.S.)
| | - Huiting Peng
- College of Horticulture and Landscape Architecture, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China; (Y.Z.); (Z.H.); (H.P.); (Z.S.)
| | - Zhanghai Sun
- College of Horticulture and Landscape Architecture, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China; (Y.Z.); (Z.H.); (H.P.); (Z.S.)
| | - Bin Xu
- Guangdong Provincial Key Laboratory of Silviculture, Protection and Utilization, Guangdong Academy of Forestry, Guangzhou 510520, China
| |
Collapse
|
22
|
Zhan X, Li Y, Song Z, Li X, Ye L, Lin M, Wang R, Sun L, Fang J, Chen D, Qi X. Comparative transcriptome analysis and transient assays revealed AaGST and AaBGAL, respectively, contribute to skin and flesh coloration in A. arguta. Gene 2025; 937:149143. [PMID: 39643145 DOI: 10.1016/j.gene.2024.149143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 11/06/2024] [Accepted: 12/03/2024] [Indexed: 12/09/2024]
Abstract
Actinidia arguta possesses different colors in the fruit skin and flesh, but the underlying mechanism has not yet been clarified. In this study, we conducted 36 samples RNA-seq to investigate the phenotypic expression of different fruit tissues (skin and flesh) in red and green A. arguta varieties during different coloring phases. GO and KEGG enrichment results of differentially expressed genes (DEGs) suggested that the red color of the skin and flesh was derived from anthocyanin transport and flesh softening, respectively. Weighted gene co-expression network analysis (WGCNA) revealed MEyellow and MEblack modules significantly correlated with skin and flesh coloration, and two genes, Glutathione S-transferases (AaGST) and β-galactosidases (AaBGAL), were identified as hub genes involved in different tissue-specific coloration. Transient overexpression in apples and kiwifruits confirmed the role of AaGST and AaBGAL in color formation. Our results preliminarily explore the mechanism of red color formation in different A. arguta fruit tissues and provide novel insights into red color formation.
Collapse
Affiliation(s)
- Xu Zhan
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang 471000, China; National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China
| | - Yukuo Li
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China; Zhongyuan Research Center, Chinese Academy of Agricultural Sciences, Xinxiang 453500, China
| | - Zhe Song
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China; School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Xiaohan Li
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China; School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Lingshuai Ye
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China
| | - Miaomiao Lin
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China; Zhongyuan Research Center, Chinese Academy of Agricultural Sciences, Xinxiang 453500, China
| | - Ran Wang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China
| | - Leiming Sun
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China
| | - Jinbao Fang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China
| | - Dixin Chen
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang 471000, China.
| | - Xiujuan Qi
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China; Zhongyuan Research Center, Chinese Academy of Agricultural Sciences, Xinxiang 453500, China.
| |
Collapse
|
23
|
Alser M, Eudine J, Mutlu O. Taming large-scale genomic analyses via sparsified genomics. Nat Commun 2025; 16:876. [PMID: 39837860 PMCID: PMC11751491 DOI: 10.1038/s41467-024-55762-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 12/20/2024] [Indexed: 01/23/2025] Open
Abstract
Searching for similar genomic sequences is an essential and fundamental step in biomedical research. State-of-the-art computational methods performing such comparisons fail to cope with the exponential growth of genomic sequencing data. We introduce the concept of sparsified genomics where we systematically exclude a large number of bases from genomic sequences and enable faster and memory-efficient processing of the sparsified, shorter genomic sequences, while providing comparable accuracy to processing non-sparsified sequences. Sparsified genomics provides benefits to many genomic analyses and has broad applicability. Sparsifying genomic sequences accelerates the state-of-the-art read mapper (minimap2) by 2.57-5.38x, 1.13-2.78x, and 3.52-6.28x using real Illumina, HiFi, and ONT reads, respectively, while providing comparable memory footprint, 2x smaller index size, and more correctly detected variations compared to minimap2. Sparsifying genomic sequences makes containment search through very large genomes and large databases 72.7-75.88x (1.62-1.9x when indexing is preprocessed) faster and 723.3x more storage-efficient than searching through non-sparsified genomic sequences (with CMash and KMC3). Sparsifying genomic sequences enables robust microbiome discovery by providing 54.15-61.88x (1.58-1.71x when indexing is preprocessed) faster and 720x more storage-efficient taxonomic profiling of metagenomic samples over the state-of-the-art tool (Metalign).
Collapse
Affiliation(s)
- Mohammed Alser
- Department of Information Technology and Electrical Engineering, ETH Zürich, Zurich, Switzerland.
- Department of Computer Science, Georgia State University, Atlanta, GA, USA.
- Department of Clinical Pharmacy, University of Southern California, LA, CA, USA.
| | - Julien Eudine
- Department of Information Technology and Electrical Engineering, ETH Zürich, Zurich, Switzerland
| | - Onur Mutlu
- Department of Information Technology and Electrical Engineering, ETH Zürich, Zurich, Switzerland
| |
Collapse
|
24
|
Su Q, Feng Y, Li X, Wang Z, Zhong Y, Zhao Z, Yang H. Allelic variation in an expansin, MdEXP-A1, contributes to flesh firmness at harvest in apples. MOLECULAR HORTICULTURE 2025; 5:3. [PMID: 39828743 PMCID: PMC11744834 DOI: 10.1186/s43897-024-00121-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 10/17/2024] [Indexed: 01/22/2025]
Abstract
Flesh firmness is a core quality trait in apple breeding because of its correlation with ripening and storage. Quantitative trait loci (QTLs) were analyzed through bulked segregant analysis sequence (BSA-seq) and comparative transcriptome analysis (RNA-seq) to explore the genetic basis of firmness formation. In this study, phenotypic data were collected at harvest from 251 F1 hybrids derived from 'Ruiyang' and 'Scilate', the phenotype values of flesh firmness at harvest were extensively segregated for two consecutive years. A total of 11 candidate intervals were identified on chromosomes 03, 05, 06, 07, 13, and 16 via BSA-seq analysis. We characterized a major QTL on chromosome 16 and selected a candidate gene encoding expansin MdEXP-A1 by combining RNA-seq analysis. Furthermore, the genotype of Del-1166 (homozygous deletion) in the MdEXP-A1 promoter was closely associated with the super-hard phenotype of F1 hybrids, which could be used as a functional marker for marker-assisted selection (MAS) in apple. Functional identification revealed that MdEXP-A1 positively expedited fruit softening in both apple fruits and tomatoes that overexpressed MdEXP-A1. Moreover, the promoter sequence of TE-1166 was experimentally validated containing two binding motifs of MdNAC1, and the absence of the MdEXP-A1 promoter fragment reduced its transcription activity. MdNAC1 also promotes the expression of MdEXP-A1, indicating its potential modulatory role in quality breeding. These findings provide novel insight into the genetic control of flesh firmness by MdEXP-A1.
Collapse
Affiliation(s)
- Qiufang Su
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Yifeng Feng
- College of Horticulture and Forestry, Tarim University, Alaer, 843300, Xinjiang, China
| | - Xianglu Li
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Zidun Wang
- Liaoning Institute of Pomology, Yingkou, 115009, China
| | - Yuanwen Zhong
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Zhengyang Zhao
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Huijuan Yang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| |
Collapse
|
25
|
Fang T, Zheng Y, Ma Q, Ren R, Xian H, Zeng L. Integrated Transcriptomic and Metabolomic Analysis Revealed Regulatory Mechanisms on Flavonoids Biosynthesis in the Skin of Passion Fruit ( Passiflora spp.). JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:967-978. [PMID: 39690798 DOI: 10.1021/acs.jafc.4c11116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2024]
Abstract
Passion fruit is one of the most famous fruit crops in tropical and subtropical regions due to its high edible, medicinal, and ornamental value. Flavonoids, a class of plant secondary metabolites, have important health-related roles. In this study, a total of 151 flavonoid metabolites were identified, of which 25 key metabolites may be the main contributors to the purple phenotype. Using RNA sequencing, 11,180 differentially expressed genes (DEGs) were identified. Among these, 48 flavonoid biosynthesis genes (PAL, 4CL, C4H, CHS, CHI, F3H, DFR, ANS, and UFGT) and 123 transcription factors were identified. Furthermore, 12 distinct modules were identified through weighted gene coexpression network analysis, of which the brown module displays a robust positive correlation with numerous flavonoid metabolites. Overexpression of PeMYB114 significantly promoted flavonoids accumulation in tobacco leaves. Our study provided a key candidate gene for molecular breeding to improve color traits in passion fruit.
Collapse
Affiliation(s)
- Ting Fang
- College of Horticulture, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Institute of Genetics and Breeding in Horticultural Plants, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yiping Zheng
- College of Horticulture, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Institute of Genetics and Breeding in Horticultural Plants, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Institute of Biotechnology, Fujian Academy of Agricultural Sciences, Fuzhou 350002, China
| | - Qicheng Ma
- College of Horticulture, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Institute of Genetics and Breeding in Horticultural Plants, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Rui Ren
- College of Horticulture, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Institute of Genetics and Breeding in Horticultural Plants, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Huimin Xian
- College of Horticulture, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Institute of Genetics and Breeding in Horticultural Plants, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Lihui Zeng
- College of Horticulture, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Institute of Genetics and Breeding in Horticultural Plants, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
26
|
Tegtmeier R, Švara A, Gritsenko D, Khan A. Malus sieversii: a historical, genetic, and conservational perspective of the primary progenitor species of domesticated apples. HORTICULTURE RESEARCH 2025; 12:uhae244. [PMID: 39802738 PMCID: PMC11718403 DOI: 10.1093/hr/uhae244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 08/22/2024] [Indexed: 01/16/2025]
Abstract
Apples are one of the most valued tree fruit crops around the world. Currently, a few highly popular and economically successful apple cultivars dominate the commercial production and serve as main genetic contributors to the development of new apple cultivars. This limited level of genetic diversity grown as a clonally propagated monoculture renders the apple industry vulnerable to the wide range of weather events, pests, and pathogens. Wild apple species are an excellent source of beneficial alleles for the wide range of biotic and abiotic stressors challenging apple production. However, the biological barriers of breeding with small-fruited wild apples greatly limit their use. Using a closely related wild species of apple such as Malus sieversii can improve the efficiency of breeding efforts and broaden the base of available genetics. M. sieversii is the main progenitor of the domesticated apple, native to Central Asia. The similarity of fruit morphology to domesticated apples and resistances to abiotic and biotic stresses makes it appealing for apple breeding programs. However, this important species is under threat of extinction in its native range. Preserving the wild apple forests in Central Asia is vital for ensuring the sustainable protection of this important genetic resource. The insufficient awareness about the complete range of challenges and opportunities associated with M. sieversii hinders the maximization of its potential benefits. This review aims to provide comprehensive information on the cultural and historical context of M. sieversii, current genetic knowledge for breeding, and the conservation challenges of wild apple forests.
Collapse
Affiliation(s)
- Richard Tegtmeier
- Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, Geneva, NY 14456, USA
| | - Anže Švara
- Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, Geneva, NY 14456, USA
| | - Dilyara Gritsenko
- Laboratory of Molecular Biology, Institute of Plant Biology and Biotechnology, Al-Farabi Kazakh National University, Almaty 050040, Kazakhstan
| | - Awais Khan
- Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, Geneva, NY 14456, USA
| |
Collapse
|
27
|
Zhou P, Jiang H, Li J, He X, Jin Q, Wang Y, Xu Y. A transposon DNA/hAT-Ac insertion promotes the formation of yellow tepals in lotus (Nelumbo). Int J Biol Macromol 2024; 283:137724. [PMID: 39577531 DOI: 10.1016/j.ijbiomac.2024.137724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 10/22/2024] [Accepted: 11/14/2024] [Indexed: 11/24/2024]
Abstract
Yellow tepal is a unique trait of the American lotus (Nelumbo lutea), and all yellow lotus cultivars in the market possess genetic material from the American lotus. However, the formation of yellow tepals in lotus and the genetic mechanism of their formation remain unclear. In this study, we identified a transposon DNA/hAT-Ac, located within the promoter region of an R2R3-MYB transcription factor, MYB12, by comparing the insertion patterns of transposons in the genomes of American and Asian lotus (Nelumbo nucifera). The transposon was found exclusively in yellow lotus cultivars and not in red or white lotus. The insertion of DNA/hAT-Ac facilitated the specific expression of MYB12 in the yellow lotus tepals. Transient expression in lotus tepals, dual-luciferase, and yeast one-hybrid assays demonstrated that MYB12 promotes the accumulation of carotenoids and flavonols by activating the expression of genes involved in carotenoid and flavonols biosynthesis, and it directly binds to the promoters of PSY and FLS. Our results indicated that the transposon DNA/hAT-Ac-mediated specific expression of MYB12 is crucial for the formation of yellow tepals in lotus, and the findings provide a theoretical basis for the breeding of yellow lotus cultivars.
Collapse
Affiliation(s)
- Ping Zhou
- Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China; Sanya Research Institute of Nanjing Agricultural University, Sanya 572000, China; College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China
| | - Huiyan Jiang
- Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China; Sanya Research Institute of Nanjing Agricultural University, Sanya 572000, China
| | - Jingwen Li
- Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China; Sanya Research Institute of Nanjing Agricultural University, Sanya 572000, China
| | - Xinrui He
- Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China; Sanya Research Institute of Nanjing Agricultural University, Sanya 572000, China
| | - Qijiang Jin
- Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China; Sanya Research Institute of Nanjing Agricultural University, Sanya 572000, China
| | - Yanjie Wang
- Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China; Sanya Research Institute of Nanjing Agricultural University, Sanya 572000, China
| | - Yingchun Xu
- Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China; Sanya Research Institute of Nanjing Agricultural University, Sanya 572000, China.
| |
Collapse
|
28
|
Lu Z, Wang X, Lin X, Mostafa S, Zou H, Wang L, Jin B. Plant anthocyanins: Classification, biosynthesis, regulation, bioactivity, and health benefits. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 217:109268. [PMID: 39520908 DOI: 10.1016/j.plaphy.2024.109268] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 10/27/2024] [Accepted: 11/03/2024] [Indexed: 11/16/2024]
Abstract
Anthocyanins are naturally water-soluble pigments of plants, which can be pink, orange, red, purple, or blue. Anthocyanins belong to a subcategory of flavonoids known as polyphenols and are consumed in plant-based foods. The antioxidant properties of anthocyanins benefit human health. However, there has been no comprehensive review of the classification, distribution, and biosynthesis of anthocyanins and their regulation in plants, along with their potential health benefits. In this review, we provide a systematic synthesis of recent progress in anthocyanin research, specifically focusing on the classification, biosynthetic pathways, regulatory mechanisms, bioactivity, and health benefits. We bridge the gaps in understanding anthocyanin biological significance and potential applications. Furthermore, we discuss future directions for anthocyanin research, such as biotechnology, bioavailability, and the integration of artificial intelligence. We highlight pivotal research questions that warrant further exploration in the field of anthocyanin research.
Collapse
Affiliation(s)
- Zhaogeng Lu
- College of Horticulture and Landscape, Yangzhou University, Yangzhou, 225009, China
| | - Xinwen Wang
- College of Horticulture and Landscape, Yangzhou University, Yangzhou, 225009, China
| | - Xinyi Lin
- College of Horticulture and Landscape, Yangzhou University, Yangzhou, 225009, China
| | - Salma Mostafa
- College of Horticulture and Landscape, Yangzhou University, Yangzhou, 225009, China
| | - Helin Zou
- College of Horticulture and Landscape, Yangzhou University, Yangzhou, 225009, China
| | - Li Wang
- College of Horticulture and Landscape, Yangzhou University, Yangzhou, 225009, China
| | - Biao Jin
- College of Horticulture and Landscape, Yangzhou University, Yangzhou, 225009, China; Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou, 225009, China.
| |
Collapse
|
29
|
Cai Y, Gao X, Mao J, Liu Y, Tong L, Chen X, Liu Y, Kou W, Chang C, Foster T, Yao J, Cornille A, Tahir MM, Liu Z, Yan Z, Lin S, Ma F, Ma J, Xing L, An N, Zuo X, Lv Y, Zhao Z, Li W, Li Q, Zhao C, Hu Y, Liu H, Wang C, Shi X, Ma D, Fei Z, Jiang Y, Zhang D. Genome sequencing of 'Fuji' apple clonal varieties reveals genetic mechanism of the spur-type morphology. Nat Commun 2024; 15:10082. [PMID: 39572540 PMCID: PMC11582680 DOI: 10.1038/s41467-024-54428-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 11/11/2024] [Indexed: 11/24/2024] Open
Abstract
Somatic variations can give rise to bud sports with advantageous traits, serving as the foundation for bud sport breeding in perennial plants. Here, we report a fully phased genome assembly of 'Fuji' apple, enabling comprehensive identification of somatic variants across 74 clonally propagated 'Fuji' varieties. Phylogenetic analysis indicates that spur-type and early-maturation traits in 'Fuji' sport varieties arise from multiple independent events. Several putative functional somatic variants have been identified, including a spur-type-specific deletion in the promoter of the TCP transcription factor gene MdTCP11. DNA methylation level of the deletion-associated miniature inverted-repeat transposable element is lower in spur-type varieties compared to standard-type varieties, while the expression of MdTCP11 is significantly higher. Overexpression of MdTCP11 in apple decreases plant height, highlighting its important role in the development of spur-type apple varieties. This study sheds light on the cloning history of 'Fuji' and provides valuable resources for apple breeding.
Collapse
Affiliation(s)
- Yudong Cai
- College of Horticulture, Yangling Sub-Center of National Center for Apple Improvement, State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Northwest A&F University, Yangling, 712100, Shaanxi, P. R. China
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, P. R. China
| | - Xiuhua Gao
- College of Horticulture, Yangling Sub-Center of National Center for Apple Improvement, State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Northwest A&F University, Yangling, 712100, Shaanxi, P. R. China
| | - Jiangping Mao
- College of Horticulture, Yangling Sub-Center of National Center for Apple Improvement, State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Northwest A&F University, Yangling, 712100, Shaanxi, P. R. China.
| | - Yu Liu
- College of Horticulture, Yangling Sub-Center of National Center for Apple Improvement, State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Northwest A&F University, Yangling, 712100, Shaanxi, P. R. China
| | - Lu Tong
- College of Horticulture, Yangling Sub-Center of National Center for Apple Improvement, State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Northwest A&F University, Yangling, 712100, Shaanxi, P. R. China
| | - Xilong Chen
- College of Horticulture, Yangling Sub-Center of National Center for Apple Improvement, State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Northwest A&F University, Yangling, 712100, Shaanxi, P. R. China
| | - Yandong Liu
- College of Horticulture, Yangling Sub-Center of National Center for Apple Improvement, State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Northwest A&F University, Yangling, 712100, Shaanxi, P. R. China
| | - Wenyan Kou
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, P. R. China
| | - Chuanjun Chang
- College of Horticulture, Yangling Sub-Center of National Center for Apple Improvement, State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Northwest A&F University, Yangling, 712100, Shaanxi, P. R. China
| | - Toshi Foster
- The New Zealand Institute for Plant and Food Research Ltd, Private Bag 92169, Auckland, 1142, New Zealand
| | - Jialong Yao
- The New Zealand Institute for Plant and Food Research Ltd, Private Bag 92169, Auckland, 1142, New Zealand
| | - Amandine Cornille
- Université Paris Saclay, INRAE, CNRS, AgroParisTech, GQE-Le Moulon, Gif-sur-Yvette, France
| | - Muhammad Mobeen Tahir
- College of Horticulture, Yangling Sub-Center of National Center for Apple Improvement, State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Northwest A&F University, Yangling, 712100, Shaanxi, P. R. China
| | - Zhi Liu
- Liaoning Institute of Polomogy, Yingkou, 115009, Liaoning, P. R. China
| | - Zhongye Yan
- Liaoning Institute of Polomogy, Yingkou, 115009, Liaoning, P. R. China
| | - Siyi Lin
- College of Horticulture, Yangling Sub-Center of National Center for Apple Improvement, State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Northwest A&F University, Yangling, 712100, Shaanxi, P. R. China
| | - Fengwang Ma
- College of Horticulture, Yangling Sub-Center of National Center for Apple Improvement, State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Northwest A&F University, Yangling, 712100, Shaanxi, P. R. China
| | - Juanjuan Ma
- College of Horticulture, Yangling Sub-Center of National Center for Apple Improvement, State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Northwest A&F University, Yangling, 712100, Shaanxi, P. R. China
| | - Libo Xing
- College of Horticulture, Yangling Sub-Center of National Center for Apple Improvement, State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Northwest A&F University, Yangling, 712100, Shaanxi, P. R. China
| | - Na An
- College of Horticulture, Yangling Sub-Center of National Center for Apple Improvement, State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Northwest A&F University, Yangling, 712100, Shaanxi, P. R. China
| | - Xiya Zuo
- College of Horticulture, Yangling Sub-Center of National Center for Apple Improvement, State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Northwest A&F University, Yangling, 712100, Shaanxi, P. R. China
| | - Yanrong Lv
- College of Horticulture, Yangling Sub-Center of National Center for Apple Improvement, State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Northwest A&F University, Yangling, 712100, Shaanxi, P. R. China
| | - Zhengyang Zhao
- College of Horticulture, Yangling Sub-Center of National Center for Apple Improvement, State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Northwest A&F University, Yangling, 712100, Shaanxi, P. R. China
| | - Wenqiang Li
- China Apple Research System Xian Guoyou Association, Qianxian, 713300, Shaanxi, P. R. China
| | - Qianjin Li
- Apple Industry R&D Center of Luochuan County, Luochuan, 727400, Shaanxi, P. R. China
| | - Caiping Zhao
- College of Horticulture, Yangling Sub-Center of National Center for Apple Improvement, State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Northwest A&F University, Yangling, 712100, Shaanxi, P. R. China
| | - Yanan Hu
- College of Horticulture, Yangling Sub-Center of National Center for Apple Improvement, State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Northwest A&F University, Yangling, 712100, Shaanxi, P. R. China
| | - Hangkong Liu
- College of Horticulture, Yangling Sub-Center of National Center for Apple Improvement, State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Northwest A&F University, Yangling, 712100, Shaanxi, P. R. China
| | - Chao Wang
- College of Horticulture, Yangling Sub-Center of National Center for Apple Improvement, State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Northwest A&F University, Yangling, 712100, Shaanxi, P. R. China
| | - Xueyan Shi
- College of Horticulture, Yangling Sub-Center of National Center for Apple Improvement, State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Northwest A&F University, Yangling, 712100, Shaanxi, P. R. China
| | - Doudou Ma
- College of Horticulture, Yangling Sub-Center of National Center for Apple Improvement, State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Northwest A&F University, Yangling, 712100, Shaanxi, P. R. China
| | - Zhangjun Fei
- Boyce Thompson Institute, Cornell University, Ithaca, NY, 14853, USA.
- US Department of Agriculture-Agricultural Research Service, Robert W. Holley Center for Agriculture and Health, Ithaca, NY, 14853, USA.
| | - Yu Jiang
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, P. R. China.
| | - Dong Zhang
- College of Horticulture, Yangling Sub-Center of National Center for Apple Improvement, State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Northwest A&F University, Yangling, 712100, Shaanxi, P. R. China.
| |
Collapse
|
30
|
Su Q, Yang H, Li X, Zhong Y, Feng Y, Li H, Tahir MM, Zhao Z. Upregulation of PECTATE LYASE5 by a NAC transcription factor promotes fruit softening in apple. PLANT PHYSIOLOGY 2024; 196:1887-1907. [PMID: 39158080 DOI: 10.1093/plphys/kiae428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 06/06/2024] [Accepted: 06/28/2024] [Indexed: 08/20/2024]
Abstract
Flesh firmness is a critical breeding trait that determines consumer selection, shelf life, and transportation. The genetic basis controlling firmness in apple (Malus × domestica Borkh.) remains to be fully elucidated. We aimed to decipher genetic variance for firmness at harvest and develop potential molecular markers for marker-assisted breeding. Maturity firmness for 439 F1 hybrids from a cross of "Cripps Pink" and "Fuji" was determined in 2016 and 2017. The phenotype segregated extensively, with a Gaussian distribution. In a combined bulked segregant analysis (BSA) and RNA-sequencing analysis, 84 differentially expressed genes were screened from the 10 quantitative trait loci regions. Interestingly, next-generation re-sequencing analysis revealed a Harbinger-like transposon element insertion upstream of the candidate gene PECTATE LYASE5 (MdPL5); the genotype was associated with flesh firmness at harvest. The presence of this transposon repressed MdPL5 expression and was closely linked to the extra-hard phenotype. MdPL5 was demonstrated to promote softening in apples and tomatoes. Subsequently, using the MdPL5 promoter as bait, MdNAC1-L was identified as a transcription activator that positively regulates ripening and softening in the developing fruit. We also demonstrated that MdNAC1-L could induce the up-regulation of MdPL5, MdPG1, and the ethylene-related genes MdACS1 and MdACO1. Our findings provide insight into TE-related genetic variation and the PL-mediated regulatory network for the firmness of apple fruit.
Collapse
Affiliation(s)
- Qiufang Su
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Huijuan Yang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xianglu Li
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yuanwen Zhong
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yifeng Feng
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Hongfei Li
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Muhammad Mobeen Tahir
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Zhengyang Zhao
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
- Shaanxi Research Center of Apple Engineering and Technology, Yangling, shaanxi 712100, China
| |
Collapse
|
31
|
Yan R, Yang K, Zhang T, Sharif R, Yang S, Li S, Wang N, Liu J, Zhao S, Wang W, Zhang X, Dong Q, Luan H, Guo S, Wang Y, Qi G, Jia P. Comprehensive analysis of AHL genes in Malus domestica reveals the critical role of MdAHL6 in flowering induction. Int J Biol Macromol 2024; 281:136387. [PMID: 39389506 DOI: 10.1016/j.ijbiomac.2024.136387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 10/04/2024] [Accepted: 10/05/2024] [Indexed: 10/12/2024]
Abstract
AT-hook motif nuclear localized (AHL) genes are crucial in various biological processes, yet the AHL gene family in apples has remained largely unexplored. In this study, we isolated 36 MdAHL genes from the apple genome and grouped them into two distinct clades. We characterized the gene structure, conserved motifs, protein biochemical properties, and promoter regions of the MdAHL genes. Transcriptional analysis revealed that MdAHL genes are preferentially and predominantly expressed in flowers and leaves. Notably, during the floral induction phase, the MdAHL6 gene exhibited remarkably high transcriptional activity. Overexpression of MdAHL6 resulted in shortened hypocotyls and delayed flowering by regulating hypocotyl- and floral-related genes. Y1H, EMSA, GUS activity, and molecular docking assays revealed that MdAHL6 directly binds to AT-rich regions, inhibiting the expression of FLOWERING LOCUS T (MdFT). Furthermore, Y2H, pull-down, and BiFC assays demonstrated a physical interaction between MdAHL6 and the class II knotted-like transcription factor MdKNOX19, which significantly enhances the inhibitory effect of MdAHL6 on MdFT expression. This comprehensive initial analysis unveils the critical role of the MdKNOX19-MdAHL6-MdFT module in flowering induction and lays a theoretical foundation for future functional exploration.
Collapse
Affiliation(s)
- Rui Yan
- College of Forestry, Hebei Agricultural University, Baoding 071000, China
| | - Kaiyu Yang
- College of Forestry, Hebei Agricultural University, Baoding 071000, China
| | - Tianle Zhang
- College of Forestry, Hebei Agricultural University, Baoding 071000, China
| | - Rahat Sharif
- Key Laboratory of Horticultural Crop Biology and Germplasm Innovation in South China, Ministry of Agriculture, College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Siyu Yang
- College of Forestry, Hebei Agricultural University, Baoding 071000, China
| | - Siyu Li
- College of Forestry, Hebei Agricultural University, Baoding 071000, China
| | - Ning Wang
- College of Forestry, Hebei Agricultural University, Baoding 071000, China
| | - Jiale Liu
- College of Forestry, Hebei Agricultural University, Baoding 071000, China
| | - Shengnan Zhao
- College of Forestry, Hebei Agricultural University, Baoding 071000, China
| | - Wenxiu Wang
- College of Forestry, Hebei Agricultural University, Baoding 071000, China
| | - Xuemei Zhang
- College of Forestry, Hebei Agricultural University, Baoding 071000, China
| | - Qinglong Dong
- College of Forestry, Hebei Agricultural University, Baoding 071000, China
| | - Haoan Luan
- College of Forestry, Hebei Agricultural University, Baoding 071000, China
| | - Suping Guo
- College of Forestry, Hebei Agricultural University, Baoding 071000, China
| | - Yuan Wang
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding 071000, China.
| | - Guohui Qi
- College of Forestry, Hebei Agricultural University, Baoding 071000, China.
| | - Peng Jia
- College of Forestry, Hebei Agricultural University, Baoding 071000, China.
| |
Collapse
|
32
|
Wang D, Wang G, Lu X, Liu Z, Sun S, Guo H, Tian W, Li Z, Wang L, Li L, Gao Y, Wang K. Identification and Mining of Functional Components of Polyphenols in Fruits of Malus Germplasm Resources Based on Multivariate Analysis. Foods 2024; 13:3465. [PMID: 39517249 PMCID: PMC11545546 DOI: 10.3390/foods13213465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 10/24/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024] Open
Abstract
Polyphenols are important functional components that have anti-cancer and anti-inflammatory effects. Apple fruit is rich in polyphenols and is one of the dietary sources of polyphenols. The polyphenol components and contents of the peel and pulp of 74 Malus sieversii (Led.) Roem. and 26 Chinese Malus germplasm resources were determined using ultra-high-phase chromatography (UPLC) and liquid chromatography-mass spectrometry (LC-MS). The results showed that 34 components were detected in the peel and 30 in the flesh, and that the polyphenol components and contents of the different germplasm resources were significantly different; the polyphenol content of Malus sieversii (Led.) Roem. was significantly higher than that of the other local varieties, and the polyphenol content in the peel was also higher than that in the flesh. Rutin, quercetin 3-O-arabopyranoside, kaempferol 3-O-rutinoside, and peonidin 3-O-galactoside were detected only in the peel. The total polyphenol content in the peel ranged from 949.76 to 5840.06 mg/kg, and the polyphenol content in the pulp ranged from 367.31 to 5123.10 mg/kg. The cluster analysis of polyphenol components and contents in peel and pulp showed that 100 Malus germplasm resources could be grouped into four categories. Principal component analysis of 34 kinds and 30 kinds of polyphenols in peel and pulp of 100 resources was performed. If the eigenvalue is greater than 1, eight and seven principal components are extracted, respectively. Five Malus resources with high polyphenol content in the peel and pulp were selected: 'XY-77' (peel: 5840.06 mg/kg, pulp: 5123.10 mg/kg; 'LF-09' (peel: 4692.63 mg/kg, pulp: 3729.79 mg/kg); '2012-5' (peel: 4377.61 mg/kg, pulp: 3847.54 mg/kg); '29028' (peel: 5088.05 mg/kg, pulp: 3994.61 mg/kg); and '11-01' (peel: 5154.45 mg/kg, pulp: 3616.15 mg/kg). These results provide us with information regarding the polyphenol composition and content of the wild apple resources and local cultivars. The high polyphenol content resources obtained by screening can be used as raw materials for the extraction of polyphenol components and functional fruit juice processing and can also be used as parents for functional fruit creation and variety breeding.
Collapse
Affiliation(s)
- Dajiang Wang
- Research Institute of Pomology, Chinese Academy of Agricultural Sciences (CAAS), Key Laboratory of Horticulture Crops Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Xingcheng 125100, China; (D.W.); (G.W.); (X.L.); (Z.L.); (S.S.); (H.G.); (W.T.); (Z.L.); (L.W.); (L.L.); (Y.G.)
| | - Guangyi Wang
- Research Institute of Pomology, Chinese Academy of Agricultural Sciences (CAAS), Key Laboratory of Horticulture Crops Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Xingcheng 125100, China; (D.W.); (G.W.); (X.L.); (Z.L.); (S.S.); (H.G.); (W.T.); (Z.L.); (L.W.); (L.L.); (Y.G.)
| | - Xiang Lu
- Research Institute of Pomology, Chinese Academy of Agricultural Sciences (CAAS), Key Laboratory of Horticulture Crops Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Xingcheng 125100, China; (D.W.); (G.W.); (X.L.); (Z.L.); (S.S.); (H.G.); (W.T.); (Z.L.); (L.W.); (L.L.); (Y.G.)
- Agricultural College of Shihezi University, Xinjiang Production and Construction Corps Key Laboratory of Special Fruits and Vegetables Cultivation Physiology and Germplasm Resources Utilization, Shihezi 832003, China
| | - Zhao Liu
- Research Institute of Pomology, Chinese Academy of Agricultural Sciences (CAAS), Key Laboratory of Horticulture Crops Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Xingcheng 125100, China; (D.W.); (G.W.); (X.L.); (Z.L.); (S.S.); (H.G.); (W.T.); (Z.L.); (L.W.); (L.L.); (Y.G.)
- Agricultural College of Shihezi University, Xinjiang Production and Construction Corps Key Laboratory of Special Fruits and Vegetables Cultivation Physiology and Germplasm Resources Utilization, Shihezi 832003, China
| | - Simiao Sun
- Research Institute of Pomology, Chinese Academy of Agricultural Sciences (CAAS), Key Laboratory of Horticulture Crops Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Xingcheng 125100, China; (D.W.); (G.W.); (X.L.); (Z.L.); (S.S.); (H.G.); (W.T.); (Z.L.); (L.W.); (L.L.); (Y.G.)
| | - Hanxin Guo
- Research Institute of Pomology, Chinese Academy of Agricultural Sciences (CAAS), Key Laboratory of Horticulture Crops Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Xingcheng 125100, China; (D.W.); (G.W.); (X.L.); (Z.L.); (S.S.); (H.G.); (W.T.); (Z.L.); (L.W.); (L.L.); (Y.G.)
| | - Wen Tian
- Research Institute of Pomology, Chinese Academy of Agricultural Sciences (CAAS), Key Laboratory of Horticulture Crops Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Xingcheng 125100, China; (D.W.); (G.W.); (X.L.); (Z.L.); (S.S.); (H.G.); (W.T.); (Z.L.); (L.W.); (L.L.); (Y.G.)
- Agricultural College of Shihezi University, Xinjiang Production and Construction Corps Key Laboratory of Special Fruits and Vegetables Cultivation Physiology and Germplasm Resources Utilization, Shihezi 832003, China
| | - Zichen Li
- Research Institute of Pomology, Chinese Academy of Agricultural Sciences (CAAS), Key Laboratory of Horticulture Crops Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Xingcheng 125100, China; (D.W.); (G.W.); (X.L.); (Z.L.); (S.S.); (H.G.); (W.T.); (Z.L.); (L.W.); (L.L.); (Y.G.)
| | - Lin Wang
- Research Institute of Pomology, Chinese Academy of Agricultural Sciences (CAAS), Key Laboratory of Horticulture Crops Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Xingcheng 125100, China; (D.W.); (G.W.); (X.L.); (Z.L.); (S.S.); (H.G.); (W.T.); (Z.L.); (L.W.); (L.L.); (Y.G.)
| | - Lianwen Li
- Research Institute of Pomology, Chinese Academy of Agricultural Sciences (CAAS), Key Laboratory of Horticulture Crops Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Xingcheng 125100, China; (D.W.); (G.W.); (X.L.); (Z.L.); (S.S.); (H.G.); (W.T.); (Z.L.); (L.W.); (L.L.); (Y.G.)
| | - Yuan Gao
- Research Institute of Pomology, Chinese Academy of Agricultural Sciences (CAAS), Key Laboratory of Horticulture Crops Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Xingcheng 125100, China; (D.W.); (G.W.); (X.L.); (Z.L.); (S.S.); (H.G.); (W.T.); (Z.L.); (L.W.); (L.L.); (Y.G.)
| | - Kun Wang
- Research Institute of Pomology, Chinese Academy of Agricultural Sciences (CAAS), Key Laboratory of Horticulture Crops Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Xingcheng 125100, China; (D.W.); (G.W.); (X.L.); (Z.L.); (S.S.); (H.G.); (W.T.); (Z.L.); (L.W.); (L.L.); (Y.G.)
| |
Collapse
|
33
|
Feng J, Zhang W, Chen C, Liang Y, Li T, Wu Y, Liu H, Wu J, Lin W, Li J, He Y, He J, Luan A. The pineapple reference genome: Telomere-to-telomere assembly, manually curated annotation, and comparative analysis. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2024; 66:2208-2225. [PMID: 39109967 DOI: 10.1111/jipb.13748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 06/27/2024] [Accepted: 07/03/2024] [Indexed: 10/19/2024]
Abstract
Pineapple is the third most crucial tropical fruit worldwide and available in five varieties. Genomes of different pineapple varieties have been released to date; however, none of them are complete, with all exhibiting substantial gaps and representing only two of the five pineapple varieties. This significantly hinders the advancement of pineapple breeding efforts. In this study, we sequenced the genomes of three varieties: a wild pineapple variety, a fiber pineapple variety, and a globally cultivated edible pineapple variety. We constructed the first gap-free reference genome (Ref) for pineapple. By consolidating multiple sources of evidence and manually revising each gene structure annotation, we identified 26,656 protein-coding genes. The BUSCO evaluation indicated a completeness of 99.2%, demonstrating the high quality of the gene structure annotations in this genome. Utilizing these resources, we identified 7,209 structural variations across the three varieties. Approximately 30.8% of pineapple genes were located within ±5 kb of structural variations, including 30 genes associated with anthocyanin synthesis. Further analysis and functional experiments demonstrated that the high expression of AcMYB528 aligns with the accumulation of anthocyanins in the leaves, both of which may be affected by a 1.9-kb insertion fragment. In addition, we developed the Ananas Genome Database, which offers data browsing, retrieval, analysis, and download functions. The construction of this database addresses the lack of pineapple genome resource databases. In summary, we acquired a seamless pineapple reference genome with high-quality gene structure annotations, providing a solid foundation for pineapple genomics and a valuable reference for pineapple breeding.
Collapse
Affiliation(s)
- Junting Feng
- National Key Laboratory for Tropical Crop Breeding, Laboratory of Crop Gene Resources and Germplasm Enhancement in South China, Ministry of Agriculture and Rural Affairs, Key Laboratory of Tropical Crops Germplasm Resources Genetic Improvement and Innovation of Hainan Province, Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China
- National Key Laboratory for Tropical Crop Breeding, Sanya Research Institute, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, 572024, China
| | - Wei Zhang
- National Key Laboratory for Tropical Crop Breeding, Laboratory of Crop Gene Resources and Germplasm Enhancement in South China, Ministry of Agriculture and Rural Affairs, Key Laboratory of Tropical Crops Germplasm Resources Genetic Improvement and Innovation of Hainan Province, Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China
| | - Chengjie Chen
- National Key Laboratory for Tropical Crop Breeding, Laboratory of Crop Gene Resources and Germplasm Enhancement in South China, Ministry of Agriculture and Rural Affairs, Key Laboratory of Tropical Crops Germplasm Resources Genetic Improvement and Innovation of Hainan Province, Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China
| | - Yinlong Liang
- National Key Laboratory for Tropical Crop Breeding, Laboratory of Crop Gene Resources and Germplasm Enhancement in South China, Ministry of Agriculture and Rural Affairs, Key Laboratory of Tropical Crops Germplasm Resources Genetic Improvement and Innovation of Hainan Province, Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in South China, Ministry of Agriculture and Rural Affairs, College of Horticulture, South China Agricultural University, Guangzhou, 510642, China
| | - Tangxiu Li
- Nanfan Research Institute of Hainan University, Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresource, Tropical Agriculture and Forestry, Hainan University, Sanya, 572025, China
| | - Ya Wu
- National Key Laboratory for Tropical Crop Breeding, Laboratory of Crop Gene Resources and Germplasm Enhancement in South China, Ministry of Agriculture and Rural Affairs, Key Laboratory of Tropical Crops Germplasm Resources Genetic Improvement and Innovation of Hainan Province, Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China
| | - Hui Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in South China, Ministry of Agriculture and Rural Affairs, College of Horticulture, South China Agricultural University, Guangzhou, 510642, China
| | - Jing Wu
- National Key Laboratory for Tropical Crop Breeding, Laboratory of Crop Gene Resources and Germplasm Enhancement in South China, Ministry of Agriculture and Rural Affairs, Key Laboratory of Tropical Crops Germplasm Resources Genetic Improvement and Innovation of Hainan Province, Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in South China, Ministry of Agriculture and Rural Affairs, College of Horticulture, South China Agricultural University, Guangzhou, 510642, China
| | - Wenqiu Lin
- South Subtropical Crop Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, 524091, China
| | - Jiawei Li
- National Key Laboratory for Tropical Crop Breeding, Laboratory of Crop Gene Resources and Germplasm Enhancement in South China, Ministry of Agriculture and Rural Affairs, Key Laboratory of Tropical Crops Germplasm Resources Genetic Improvement and Innovation of Hainan Province, Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China
| | - Yehua He
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in South China, Ministry of Agriculture and Rural Affairs, College of Horticulture, South China Agricultural University, Guangzhou, 510642, China
| | - Junhu He
- National Key Laboratory for Tropical Crop Breeding, Laboratory of Crop Gene Resources and Germplasm Enhancement in South China, Ministry of Agriculture and Rural Affairs, Key Laboratory of Tropical Crops Germplasm Resources Genetic Improvement and Innovation of Hainan Province, Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China
| | - Aiping Luan
- National Key Laboratory for Tropical Crop Breeding, Laboratory of Crop Gene Resources and Germplasm Enhancement in South China, Ministry of Agriculture and Rural Affairs, Key Laboratory of Tropical Crops Germplasm Resources Genetic Improvement and Innovation of Hainan Province, Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China
| |
Collapse
|
34
|
Sun H, Abeli P, Campoy JA, Rütjes T, Krause K, Jiao WB, Beaudry R, Schneeberger K. The identification and analysis of meristematic mutations within the apple tree that developed the RubyMac sport mutation. BMC PLANT BIOLOGY 2024; 24:912. [PMID: 39350074 PMCID: PMC11443920 DOI: 10.1186/s12870-024-05628-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 09/24/2024] [Indexed: 10/04/2024]
Abstract
BACKGROUND Understanding the molecular basis of sport mutations in fruit trees has the potential to accelerate generation of improved cultivars. RESULTS For this, we analyzed the genome of the apple tree that developed the RubyMac phenotype through a sport mutation that led to the characteristic fruit coloring of this variety. Overall, we found 46 somatic mutations that distinguished the mutant and wild-type branches of the tree. In addition, we found 54 somatic gene conversions (i.e., loss-of-heterozygosity mutations) that also distinguished the two parts of the tree. Approximately 20% of the mutations were specific to individual cell lineages, suggesting that they originated from the corresponding meristematic layers. Interestingly, the de novo mutations were enriched for GC = > AT transitions while the gene conversions showed the opposite bias for AT = > GC transitions, suggesting that GC-biased gene conversions have the potential to counteract the AT-bias of de novo mutations. By comparing the gene expression patterns in fruit skins from mutant and wild-type branches, we found 56 differentially expressed genes including 18 involved in anthocyanin biosynthesis. While none of the differently expressed genes harbored a somatic mutation, we found that some of them in regions of the genome that were recently associated with natural variation in fruit coloration. CONCLUSION Our analysis revealed insights in the characteristics of somatic change, which not only included de novo mutations but also gene conversions. Some of these somatic changes displayed strong candidate mutations for the change in fruit coloration in RubyMac.
Collapse
Affiliation(s)
- Hequan Sun
- School of Automation Science and Engineering, Faculty of Electronic and Information Engineering, Xi'an Jiaotong University, Xi'an, 710049, China.
- Faculty of Biology, LMU Munich, Großhaderner Str. 2, 82152, Planegg-Martinsried, Germany.
- Department of Chromosome Biology, Max Planck Institute for Plant Breeding Research, Carl-Von-Linné-Weg 10, 50829, Cologne, Germany.
| | - Patrick Abeli
- Department of Horticulture, Michigan State University, East Lansing, MI, 48824, USA
| | - José Antonio Campoy
- Department of Chromosome Biology, Max Planck Institute for Plant Breeding Research, Carl-Von-Linné-Weg 10, 50829, Cologne, Germany
| | - Thea Rütjes
- Institute for Plant Genetics, Heinrich Heine University Düsseldorf, University Street 1, 40225, Düsseldorf, Germany
| | - Kristin Krause
- Department of Chromosome Biology, Max Planck Institute for Plant Breeding Research, Carl-Von-Linné-Weg 10, 50829, Cologne, Germany
- Illumina Solutions Center Berlin, Berlin, Germany
| | - Wen-Biao Jiao
- Department of Chromosome Biology, Max Planck Institute for Plant Breeding Research, Carl-Von-Linné-Weg 10, 50829, Cologne, Germany
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan, China
| | - Randy Beaudry
- Department of Horticulture, Michigan State University, East Lansing, MI, 48824, USA.
| | - Korbinian Schneeberger
- Faculty of Biology, LMU Munich, Großhaderner Str. 2, 82152, Planegg-Martinsried, Germany.
- Department of Chromosome Biology, Max Planck Institute for Plant Breeding Research, Carl-Von-Linné-Weg 10, 50829, Cologne, Germany.
- Cluster of Excellence On Plant Sciences, Heinrich-Heine University, Universitätsstraße 1, Düsseldorf, 40225, Germany.
| |
Collapse
|
35
|
Xu Z, Wei H, Li M, Qiu Y, Li L, Xu KW, Guo Z. Impact of Chromosomal Fusion and Transposable Elements on the Genomic Evolution and Genetic Diversity of Ilex Species. PLANTS (BASEL, SWITZERLAND) 2024; 13:2649. [PMID: 39339625 PMCID: PMC11435385 DOI: 10.3390/plants13182649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/19/2024] [Accepted: 09/20/2024] [Indexed: 09/30/2024]
Abstract
The genus Ilex belongs to the sole family and is the single genus within the order Aquifoliales, exhibiting significant phenotypic diversity. However, the genetic differences underlying these phenotypic variations have rarely been studied. In this study, collinearity analyses of three Ilex genomes, Ilex latifolia Thunb., Ilex polyneura (Hand.-Mazz.) S. Y. Hu, and Ilex asprella Champ. ex Benth., indicated a recent fusion event contributing to the reduction of chromosomes in I. asprella. Comparative genome analyses showed slight differences in gene annotation among the three species, implying a minimal disruption of genes following chromosomal fusion in I. asprella. Comprehensive annotation of transposable elements (TEs) revealed that TEs constitute a significant portion of the Ilex genomes, with LTR transposons being predominant. TEs exhibited an inverse relationship with gene density, potentially influencing gene regulation and chromosomal architecture. TE insertions were shown to affect the conformation and binding sites of key genes such as 7-deoxyloganetin glucosyltransferase and transmembrane kinase (TMK) genes, highlighting potential functional impacts. The structural variations caused by TE insertions suggest significant roles in the evolutionary dynamics, leading to either loss or gain of gene function. This study underscores the importance of TEs in shaping the genomic landscape and evolutionary trajectories of Ilex species.
Collapse
Affiliation(s)
- Zhenxiu Xu
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Life Sciences, Nanjing Forestry University, Nanjing 210037, China; (Z.X.); (H.W.)
| | - Haikun Wei
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Life Sciences, Nanjing Forestry University, Nanjing 210037, China; (Z.X.); (H.W.)
| | - Mingyue Li
- Peter O’Donnell Jr. School of Public Health, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX 75390, USA
| | - Yingjie Qiu
- Peter O’Donnell Jr. School of Public Health, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX 75390, USA
| | - Lei Li
- National Key Laboratory of Wheat Improvement, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences at Weifang, Weifang 261000, China
| | - Ke-Wang Xu
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Life Sciences, Nanjing Forestry University, Nanjing 210037, China; (Z.X.); (H.W.)
| | - Zhonglong Guo
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Life Sciences, Nanjing Forestry University, Nanjing 210037, China; (Z.X.); (H.W.)
| |
Collapse
|
36
|
Wu Y, Wang F, Lyu K, Liu R. Comparative Analysis of Transposable Elements in the Genomes of Citrus and Citrus-Related Genera. PLANTS (BASEL, SWITZERLAND) 2024; 13:2462. [PMID: 39273946 PMCID: PMC11397423 DOI: 10.3390/plants13172462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 08/28/2024] [Accepted: 09/01/2024] [Indexed: 09/15/2024]
Abstract
Transposable elements (TEs) significantly contribute to the evolution and diversity of plant genomes. In this study, we explored the roles of TEs in the genomes of Citrus and Citrus-related genera by constructing a pan-genome TE library from 20 published genomes of Citrus and Citrus-related accessions. Our results revealed an increase in TE content and the number of TE types compared to the original annotations, as well as a decrease in the content of unclassified TEs. The average length of TEs per assembly was approximately 194.23 Mb, representing 41.76% (Murraya paniculata) to 64.76% (Citrus gilletiana) of the genomes, with a mean value of 56.95%. A significant positive correlation was found between genome size and both the number of TE types and TE content. Consistent with the difference in mean whole-genome size (39.83 Mb) between Citrus and Citrus-related genera, Citrus genomes contained an average of 34.36 Mb more TE sequences than Citrus-related genomes. Analysis of the estimated insertion time and half-life of long terminal repeat retrotransposons (LTR-RTs) suggested that TE removal was not the primary factor contributing to the differences among genomes. These findings collectively indicate that TEs are the primary determinants of genome size and play a major role in shaping genome structures. Principal coordinate analysis (PCoA) of Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) identifiers revealed that the fragmented TEs were predominantly derived from ancestral genomes, while intact TEs were crucial in the recent evolutionary diversification of Citrus. Moreover, the presence or absence of intact TEs near the AdhE superfamily was closely associated with the bitterness trait in the Citrus species. Overall, this study enhances TE annotation in Citrus and Citrus-related genomes and provides valuable data for future genetic breeding and agronomic trait research in Citrus.
Collapse
Affiliation(s)
- Yilei Wu
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Center for Agroforestry Mega Data Science, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Fusheng Wang
- National Citrus Engineering Research Center, Citrus Research Institute, Southwest University, Chongqing 400712, China
| | - Keliang Lyu
- Center for Agroforestry Mega Data Science, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Renyi Liu
- Center for Agroforestry Mega Data Science, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
37
|
Li X, Xu Q, Gulinuer A, Tian J, Zheng J, Chang G, Gao J, Tian Z, Liang Y. AcMYB96 promotes anthocyanin accumulation in onion (Allium cepa L) without forming the MBW complex. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 214:108965. [PMID: 39067107 DOI: 10.1016/j.plaphy.2024.108965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 06/21/2024] [Accepted: 07/22/2024] [Indexed: 07/30/2024]
Abstract
Anthocyanins are major flavonoid compounds with established health benefits. Although the molecular mechanisms of MYB transcription factors (TFs) within the MYB-basic helix-loop-helix (bHLH)-WD-repeat protein (MBW) complex in anthocyanin biosynthesis have been revealed, the functions of other MYB TFs that are unable to form the MBW complex in this process remain unclear. In this study, we uncovered and extensively characterized an R2R3-MYB TF in onion (Allium cepa L.), named AcMYB96, which was identified as a potential anthocyanin activator. AcMYB96 was classified into subgroup 1 of the R2R3-MYB TF family and lacked the conserved sequences required for interactions with bHLH IIIf TFs. Consistently, yeast two-hybrid assays showed that AcMYB96 did not interact with any bHLH IIIf TFs examined, including AcB2 and AtTT8. The transcription pattern of AcMYB96 correlated with the level of anthocyanin accumulation, and its role in activating anthocyanin biosynthesis was confirmed through overexpression in the epithelial cells of onion bulbs and Arabidopsis. Yeast one-hybrid, electrophoretic mobility shift, and promoter transactivation assays further demonstrated that AcMYB96 promoted anthocyanin biosynthesis by binding to the promoters of the chalcone synthase (AcCHS1), anthocyanidin synthase (AcANS), and UDP-glucose-flavonoid 3-O-glucosyltransferase (AcUFGT) genes, thereby activating their expression independent of bHLH IIIf TFs. These results demonstrate that AcMYB96 activates anthocyanin biosynthesis without forming the MBW complex, providing a theoretical foundation to further enrich the gene resources for promoting anthocyanin accumulation and breeding red onions with high anthocyanin content.
Collapse
Affiliation(s)
- Xiaojie Li
- National Engineering Research Center for Vegetables, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China; State Key Laboratory of Vegetable Biobreeding, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China; Beijing Key Laboratory of Vegetable Germplasm Improvement, Beijing, 100097, China.
| | - Qijiang Xu
- School of Laboratory Medicine, Youjiang Medical University for Nationalities, Baise, Guangxi 533000, China
| | | | - Jiaxing Tian
- National Engineering Research Center for Vegetables, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China; State Key Laboratory of Vegetable Biobreeding, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China; Beijing Key Laboratory of Vegetable Germplasm Improvement, Beijing, 100097, China
| | - Junwei Zheng
- Zhengzhou Academy of Agricultural Science and Technology, Zhengzhou, 450015, China
| | - Guojun Chang
- Jiuquan Academy of Agricultural Sciences, Jiuquan, 735000, China
| | - Jie Gao
- College of Horticulture, Xinjiang Agricultural University, Urumqi, 830052, China
| | - Zhaohui Tian
- Zhengzhou Academy of Agricultural Science and Technology, Zhengzhou, 450015, China.
| | - Yi Liang
- National Engineering Research Center for Vegetables, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China; State Key Laboratory of Vegetable Biobreeding, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China; Beijing Key Laboratory of Vegetable Germplasm Improvement, Beijing, 100097, China.
| |
Collapse
|
38
|
Yuan T, Gao X, Xiang N, Wei P, Zhang G. The genome assembly of Carex breviculmis provides evidence for its phylogenetic localization and environmental adaptation. ANNALS OF BOTANY 2024; 134:467-484. [PMID: 38822911 PMCID: PMC11341672 DOI: 10.1093/aob/mcae085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 05/27/2024] [Indexed: 06/03/2024]
Abstract
BACKGROUND AND AIMS Carex breviculmis is a perennial herb with good resistance and is widely used for forage production and turf management. It is important in ecology, environmental protection and biodiversity conservation, but faces several challenges due to human activities. However, the absence of genome sequences has limited basic research and the improvement of wild plants. METHODS We annotated the genome of C. breviculmis and conducted a systematic analysis to explore its resistance to harsh environments. We also conducted a comparative analysis of Achnatherum splendens, which is similarly tolerant to harsh environments. KEY RESULTS The assembled the genome comprises 469.01 Mb, revealing 37 372 genes with a BUSCO completeness score of 99.0 %. The genome has 52.03 % repetitive sequences, primarily influenced by recent LTR insertions that have contributed to its expansion. Phylogenetic analysis suggested that C. breviculmis diverged from C. littledalei ~6.61 million years ago. Investigation of repetitive sequences and expanded gene families highlighted a rapid expansion of tandem duplicate genes, particularly in areas related to sugar metabolism, synthesis of various amino acids, and phenylpropanoid biosynthesis. Additionally, our analysis identified crucial genes involved in secondary metabolic pathways, such as glycolysis, phenylpropanoid biosynthesis and amino acid metabolism, which have undergone positive selection. We reconstructed the sucrose metabolic pathway and identified significant gene expansions, including 16 invertase, 9 sucrose phosphate synthase and 12 sucrose synthase genes associated with sucrose metabolism, which showed varying levels of expansion. CONCLUSIONS The expansion of these genes, coupled with subsequent positive selection, contributed to the ability of C. breviculmis to adapt to environmental stressors. This study lays the foundation for future research on the evolution of Carex plants, their environmental adaptations, and potential genetic breeding.
Collapse
Affiliation(s)
- Tao Yuan
- School of Ecology and Environment, Tibet University, Lhasa 850000, China
- State Key Laboratory of Hybrid Rice, Laboratory of Plant Systematics and Evolutionary Biology, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Xiaoman Gao
- School of Ecology and Environment, Tibet University, Lhasa 850000, China
| | - Niyan Xiang
- School of Ecology and Environment, Tibet University, Lhasa 850000, China
| | - Pei Wei
- State Key Laboratory of Hybrid Rice, Laboratory of Plant Systematics and Evolutionary Biology, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Guiyu Zhang
- State Key Laboratory of Hybrid Rice, Laboratory of Plant Systematics and Evolutionary Biology, College of Life Sciences, Wuhan University, Wuhan 430072, China
| |
Collapse
|
39
|
Wang B, Xiao Y, Yan M, Fan W, Zhu Y, Li W, Li T. Gene Duplication and Functional Diversification of MADS-Box Genes in Malus × domestica following WGD: Implications for Fruit Type and Floral Organ Evolution. Int J Mol Sci 2024; 25:8962. [PMID: 39201650 PMCID: PMC11354807 DOI: 10.3390/ijms25168962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 08/12/2024] [Accepted: 08/14/2024] [Indexed: 09/02/2024] Open
Abstract
The evolution of the MADS-box gene family is essential for the rapid differentiation of floral organs and fruit types in angiosperms. Two key processes drive the evolution of gene families: gene duplication and functional differentiation. Duplicated copies provide the material for variation, while advantageous mutations can confer new functions on gene copies. In this study, we selected the Rosaceae family, which includes a variety of fruit types and flower organs, as well as species that existed before and after whole-genome duplication (WGD). The results indicate that different fruit types are associated with different copies of MADS-box gene family duplications and WGD events. While most gene copies derived from WGD have been lost, MADS-box genes not only retain copies derived from WGD but also undergo further gene duplication. The sequences, protein structures, and expression patterns of these gene copies have undergone significant differentiation. This work provides a clear example of MADS-box genes in the context of gene duplication and functional differentiation, offering new insights into the evolution of fruit types and floral organs.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Tianzhong Li
- College of Horticulture, China Agricultural University, Beijing 100193, China; (B.W.); (Y.X.); (M.Y.); (W.F.); (Y.Z.); (W.L.)
| |
Collapse
|
40
|
Skytte Af Sätra J, Garkava-Gustavsson L, Ingvarsson PK. Why we thrive beneath a northern sky - genomic signals of selection in apple for adaptation to northern Sweden. Heredity (Edinb) 2024; 133:67-77. [PMID: 38834867 PMCID: PMC11286948 DOI: 10.1038/s41437-024-00693-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 05/16/2024] [Accepted: 05/16/2024] [Indexed: 06/06/2024] Open
Abstract
Good understanding of the genomic regions underlying adaptation of apple to boreal climates is needed to facilitate efficient breeding of locally adapted apple cultivars. Proper infrastructure for phenotyping and evaluation is essential for identification of traits responsible for adaptation, and dissection of their genetic composition. However, such infrastructure is costly and currently not available for the boreal zone of northern Sweden. Therefore, we used historical pomological data on climate adaptation of 59 apple cultivars and whole genome sequencing to identify genomic regions that have undergone historical selection among apple cultivars recommended for cultivation in northern Sweden. We found the apple collection to be composed of two ancestral groups that are largely concordant with the grouping into 'hardy' and 'not hardy' cultivars based on the pomological literature. Using a number of genome-wide scans for signals of selection, we obtained strong evidence of positive selection at a genomic region around 29 MbHFTH1 of chromosome 1 among apple cultivars in the 'hardy' group. Using phased genotypic data from the 20 K apple Infinium® SNP array, we identified haplotypes associated with the two cultivar groups and traced transmission of these haplotypes through the pedigrees of some apple cultivars. This demonstrates that historical data from pomological literature can be analyzed by population genomic approaches as a step towards revealing the genomic control of a key property for a horticultural niche market. Such knowledge is needed to facilitate efficient breeding strategies for development of locally adapted apple cultivars in the future. The current study illustrates the response to a very strong selective pressure imposed on tree crops by climatic factors, and the importance of genetic research on this topic and feasibility of breeding efforts in the light of the ongoing climate change.
Collapse
Affiliation(s)
- J Skytte Af Sätra
- Department of Plant Breeding, Swedish University of Agricultural Sciences, Alnarp, Sweden.
| | - L Garkava-Gustavsson
- Department of Plant Breeding, Swedish University of Agricultural Sciences, Alnarp, Sweden
| | - P K Ingvarsson
- Department of Plant Biology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| |
Collapse
|
41
|
Li X, Chen Y, Zhang Z, He Q, Tian T, Jiao Y, Cao L. Genome-wide identification of starch phosphorylase gene family in Rosa chinensis and expression in response to abiotic stress. Sci Rep 2024; 14:13917. [PMID: 38886497 PMCID: PMC11183051 DOI: 10.1038/s41598-024-64937-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 06/14/2024] [Indexed: 06/20/2024] Open
Abstract
Chinese rose (Rosa chinensis) is an important ornamental plant, with economic, cultural, and symbolic significance. During the application of outdoor greening, adverse environments such as high temperature and drought are often encountered, which affect its application scope and ornamental quality. The starch phosphorylase (Pho) gene family participate in the synthesis and decomposition of starch, not only related to plant energy metabolism, but also plays an important role in plant stress resistance. The role of Pho in combating salinity and high temperature stress in R. chinensis remains unknown. In this work, 4 Phos from R. chinensis were detected with Pfam number of Pho (PF00343.23) and predicted by homolog-based prediction (HBP). The Phos are characterized by sequence lengths of 821 to 997 bp, and the proteins are predicted to subcellularly located in the plastid and cytoplasm. The regulatory regions of the Phos contain abundant stress and phytohormone-responsive cis-acting elements. Based on transcriptome analysis, the Phos were found to respond to abiotic stress factors such as drought, salinity, high temperature, and plant phytohormone of jasmonic acid and salicylic acid. The response of Phos to abiotic stress factors such as salinity and high temperature was confirmed by qRT-PCR analysis. To evaluate the genetic characteristics of Phos, a total of 69 Phos from 17 species were analyzed and then classified into 3 groups in phylogenetic tree. The collinearity analysis of Phos in R. chinensis and other species was conducted for the first time. This work provides a view of evolution for the Pho gene family and indicates that Phos play an important role in abiotic stress response of R. chinensis.
Collapse
Affiliation(s)
- Xu Li
- Hunan Provincial Key Laboratory of Dong Medicine, Ethnic Medicine Research Center, Hunan University of Medicine, Huaihua, 418000, China
| | - Yang Chen
- Hunan Provincial Key Laboratory of Dong Medicine, Ethnic Medicine Research Center, Hunan University of Medicine, Huaihua, 418000, China
| | - Zaiqi Zhang
- Hunan Provincial Key Laboratory of Dong Medicine, Ethnic Medicine Research Center, Hunan University of Medicine, Huaihua, 418000, China.
| | - Qin He
- Hunan Provincial Key Laboratory of Dong Medicine, Ethnic Medicine Research Center, Hunan University of Medicine, Huaihua, 418000, China
| | - Tingting Tian
- Hunan Provincial Key Laboratory of Dong Medicine, Ethnic Medicine Research Center, Hunan University of Medicine, Huaihua, 418000, China
| | - Yangmiao Jiao
- Hunan Provincial Key Laboratory of Dong Medicine, Ethnic Medicine Research Center, Hunan University of Medicine, Huaihua, 418000, China.
| | - Liang Cao
- Hunan Provincial Key Laboratory of Dong Medicine, Ethnic Medicine Research Center, Hunan University of Medicine, Huaihua, 418000, China.
| |
Collapse
|
42
|
Peng H, Yi Y, Li J, Qing Y, Zhai X, Deng Y, Tian J, Zhang J, Hu Y, Qin X, Lu Y, Yao Y, Wang S, Zheng Y. A haplotype-resolved genome assembly of Malus domestica 'Red Fuji'. Sci Data 2024; 11:592. [PMID: 38844753 PMCID: PMC11156929 DOI: 10.1038/s41597-024-03401-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 05/21/2024] [Indexed: 06/09/2024] Open
Abstract
The 'Red Fuji' apple (Malus domestica), is one of the most important and popular economic crops worldwide in the fruit industry. Using PacBio HiFi long reads and Hi-C reads, we assembled a high-quality haplotype-resolved genome of 'Red Fuji', with sizes of 668.7 and 668.8 Mb, and N50 sizes of 34.1 and 31.4 Mb. About 97.2% of sequences were anchored in 34 chromosomes. We annotated both haploid genomes, identifying a total of 95,439 protein-coding genes in the two haplotype genomes, with 98% functional annotation. The haplotype-resolved genome of 'Red Fuji' apple stands as a precise benchmark for an array of analyses, such as comparative genomics, transcriptomics, and allelic expression studies. This comprehensive resource is paramount in unraveling variations in allelic expression, advancing quality improvements, and refining breeding efforts.
Collapse
Affiliation(s)
- Haixu Peng
- Beijing Key Laboratory for Agriculture Application and New Technique, Colege of Plant Science and Technology, Bejing University of Agriculture, Bejing, 102206, China
- Bioinformatics Center, Bejing University of Agriculture, Bejing, 102206, China
| | - Yating Yi
- Beijing Key Laboratory for Agriculture Application and New Technique, Colege of Plant Science and Technology, Bejing University of Agriculture, Bejing, 102206, China
- Bioinformatics Center, Bejing University of Agriculture, Bejing, 102206, China
| | - Jinrong Li
- Beijing Key Laboratory for Agriculture Application and New Technique, Colege of Plant Science and Technology, Bejing University of Agriculture, Bejing, 102206, China
- Bioinformatics Center, Bejing University of Agriculture, Bejing, 102206, China
| | - You Qing
- Beijing Key Laboratory for Agriculture Application and New Technique, Colege of Plant Science and Technology, Bejing University of Agriculture, Bejing, 102206, China
- Bioinformatics Center, Bejing University of Agriculture, Bejing, 102206, China
| | - Xuyang Zhai
- Beijing Key Laboratory for Agriculture Application and New Technique, Colege of Plant Science and Technology, Bejing University of Agriculture, Bejing, 102206, China
- Bioinformatics Center, Bejing University of Agriculture, Bejing, 102206, China
| | - Yulin Deng
- Beijing Key Laboratory for Agriculture Application and New Technique, Colege of Plant Science and Technology, Bejing University of Agriculture, Bejing, 102206, China
- Bioinformatics Center, Bejing University of Agriculture, Bejing, 102206, China
| | - Ji Tian
- Beijing Key Laboratory for Agriculture Application and New Technique, Colege of Plant Science and Technology, Bejing University of Agriculture, Bejing, 102206, China
| | - Jie Zhang
- Beijing Key Laboratory for Agriculture Application and New Technique, Colege of Plant Science and Technology, Bejing University of Agriculture, Bejing, 102206, China
| | - Yujing Hu
- Beijing Key Laboratory for Agriculture Application and New Technique, Colege of Plant Science and Technology, Bejing University of Agriculture, Bejing, 102206, China
| | - Xiaoxiao Qin
- Beijing Key Laboratory for Agriculture Application and New Technique, Colege of Plant Science and Technology, Bejing University of Agriculture, Bejing, 102206, China
| | - Yanfen Lu
- Beijing Key Laboratory for Agriculture Application and New Technique, Colege of Plant Science and Technology, Bejing University of Agriculture, Bejing, 102206, China
| | - Yuncong Yao
- Beijing Key Laboratory for Agriculture Application and New Technique, Colege of Plant Science and Technology, Bejing University of Agriculture, Bejing, 102206, China
| | - Sen Wang
- Beijing Key Laboratory for Agriculture Application and New Technique, Colege of Plant Science and Technology, Bejing University of Agriculture, Bejing, 102206, China.
- Bioinformatics Center, Bejing University of Agriculture, Bejing, 102206, China.
| | - Yi Zheng
- Beijing Key Laboratory for Agriculture Application and New Technique, Colege of Plant Science and Technology, Bejing University of Agriculture, Bejing, 102206, China.
- Bioinformatics Center, Bejing University of Agriculture, Bejing, 102206, China.
| |
Collapse
|
43
|
Li X, Dai X, He H, Lv Y, Yang L, He W, Liu C, Wei H, Liu X, Yuan Q, Wang X, Wang T, Zhang B, Zhang H, Chen W, Leng Y, Yu X, Qian H, Zhang B, Guo M, Zhang Z, Shi C, Zhang Q, Cui Y, Xu Q, Cao X, Chen D, Zhou Y, Qian Q, Shang L. A pan-TE map highlights transposable elements underlying domestication and agronomic traits in Asian rice. Natl Sci Rev 2024; 11:nwae188. [PMID: 38962716 PMCID: PMC11221428 DOI: 10.1093/nsr/nwae188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 05/01/2024] [Accepted: 05/23/2024] [Indexed: 07/05/2024] Open
Abstract
Transposable elements (TEs) are ubiquitous genomic components and hard to study due to being highly repetitive. Here we assembled 232 chromosome-level genomes based on long-read sequencing data. Coupling the 232 genomes with 15 existing assemblies, we developed a pan-TE map comprising both cultivated and wild Asian rice. We detected 177 084 high-quality TE variations and inferred their derived state using outgroups. We found TEs were one source of phenotypic variation during rice domestication and differentiation. We identified 1246 genes whose expression variation was associated with TEs but not single-nucleotide polymorphisms (SNPs), such as OsRbohB, and validated OsRbohB's relative expression activity using a dual-Luciferase (LUC) reporter assays system. Our pan-TE map allowed us to detect multiple novel loci associated with agronomic traits. Collectively, our findings highlight the contributions of TEs to domestication, differentiation and agronomic traits in rice, and there is massive potential for gene cloning and molecular breeding by the high-quality Asian pan-TE map we generated.
Collapse
Affiliation(s)
- Xiaoxia Li
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
- Rice Research Institute, Shenyang Agricultural University, Shenyang 110866, China
| | - Xiaofan Dai
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
- Rice Research Institute, Shenyang Agricultural University, Shenyang 110866, China
| | - Huiying He
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Yang Lv
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
- Rice Research Institute, Shenyang Agricultural University, Shenyang 110866, China
| | - Longbo Yang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Wenchuang He
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Congcong Liu
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
- Yazhouwan National Laboratory, Sanya 572024, China
| | - Hua Wei
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Xiangpei Liu
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Qiaoling Yuan
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Xianmeng Wang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Tianyi Wang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Bintao Zhang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Hong Zhang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Wu Chen
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Yue Leng
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Xiaoman Yu
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China
| | - Hongge Qian
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Bin Zhang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
- Yazhouwan National Laboratory, Sanya 572024, China
| | - Mingliang Guo
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Zhipeng Zhang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Chuanlin Shi
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Qianqian Zhang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Yan Cui
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Qiang Xu
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Xinglan Cao
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Dandan Chen
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Yongfeng Zhou
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
- National Key Laboratory of Tropical Crop Breeding, Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Qian Qian
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
- Yazhouwan National Laboratory, Sanya 572024, China
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China
| | - Lianguang Shang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
- Yazhouwan National Laboratory, Sanya 572024, China
| |
Collapse
|
44
|
Castanera R, de Tomás C, Ruggieri V, Vicient C, Eduardo I, Aranzana MJ, Arús P, Casacuberta JM. A phased genome of the highly heterozygous 'Texas' almond uncovers patterns of allele-specific expression linked to heterozygous structural variants. HORTICULTURE RESEARCH 2024; 11:uhae106. [PMID: 38883330 PMCID: PMC11179849 DOI: 10.1093/hr/uhae106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 04/01/2024] [Indexed: 06/18/2024]
Abstract
The vast majority of traditional almond varieties are self-incompatible, and the level of variability of the species is very high, resulting in a high-heterozygosity genome. Therefore, information on the different haplotypes is particularly relevant to understand the genetic basis of trait variability in this species. However, although reference genomes for several almond varieties exist, none of them is phased and has genome information at the haplotype level. Here, we present a phased assembly of genome of the almond cv. Texas. This new assembly has 13% more assembled sequence than the previous version of the Texas genome and has an increased contiguity, in particular in repetitive regions such as the centromeres. Our analysis shows that the 'Texas' genome has a high degree of heterozygosity, both at SNPs, short indels, and structural variants level. Many of the SVs are the result of heterozygous transposable element insertions, and in many cases, they also contain genic sequences. In addition to the direct consequences of this genic variability on the presence/absence of genes, our results show that variants located close to genes are often associated with allele-specific gene expression, which highlights the importance of heterozygous SVs in almond.
Collapse
Affiliation(s)
- Raúl Castanera
- Centre for Research in Agricultural Genomics, CRAG (CSIC-IRTA-UAB-UB), Campus UAB, 08193, Cerdanyola del Vallès, Barcelona, Spain
| | - Carlos de Tomás
- Centre for Research in Agricultural Genomics, CRAG (CSIC-IRTA-UAB-UB), Campus UAB, 08193, Cerdanyola del Vallès, Barcelona, Spain
| | | | - Carlos Vicient
- Centre for Research in Agricultural Genomics, CRAG (CSIC-IRTA-UAB-UB), Campus UAB, 08193, Cerdanyola del Vallès, Barcelona, Spain
| | - Iban Eduardo
- Centre for Research in Agricultural Genomics, CRAG (CSIC-IRTA-UAB-UB), Campus UAB, 08193, Cerdanyola del Vallès, Barcelona, Spain
- IRTA (Institut de Recerca i Tecnologia Agroalimentàries), 08140, Caldes de Montbui, Barcelona, Spain
| | - Maria José Aranzana
- Centre for Research in Agricultural Genomics, CRAG (CSIC-IRTA-UAB-UB), Campus UAB, 08193, Cerdanyola del Vallès, Barcelona, Spain
- IRTA (Institut de Recerca i Tecnologia Agroalimentàries), 08140, Caldes de Montbui, Barcelona, Spain
| | - Pere Arús
- Centre for Research in Agricultural Genomics, CRAG (CSIC-IRTA-UAB-UB), Campus UAB, 08193, Cerdanyola del Vallès, Barcelona, Spain
- IRTA (Institut de Recerca i Tecnologia Agroalimentàries), 08140, Caldes de Montbui, Barcelona, Spain
| | - Josep M Casacuberta
- Centre for Research in Agricultural Genomics, CRAG (CSIC-IRTA-UAB-UB), Campus UAB, 08193, Cerdanyola del Vallès, Barcelona, Spain
| |
Collapse
|
45
|
Yu Z, Li J, Wang H, Ping B, Li X, Liu Z, Guo B, Yu Q, Zou Y, Sun Y, Ma F, Zhao T. Transposable elements in Rosaceae: insights into genome evolution, expression dynamics, and syntenic gene regulation. HORTICULTURE RESEARCH 2024; 11:uhae118. [PMID: 38919560 PMCID: PMC11197308 DOI: 10.1093/hr/uhae118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 04/17/2024] [Indexed: 06/27/2024]
Abstract
Transposable elements (TEs) exert significant influence on plant genomic structure and gene expression. Here, we explored TE-related aspects across 14 Rosaceae genomes, investigating genomic distribution, transposition activity, expression patterns, and nearby differentially expressed genes (DEGs). Analyses unveiled distinct long terminal repeat retrotransposon (LTR-RT) evolutionary patterns, reflecting varied genome size changes among nine species over the past million years. In the past 2.5 million years, Rubus idaeus showed a transposition rate twice as fast as Fragaria vesca, while Pyrus bretschneideri displayed significantly faster transposition compared with Crataegus pinnatifida. Genes adjacent to recent TE insertions were linked to adversity resistance, while those near previous insertions were functionally enriched in morphogenesis, enzyme activity, and metabolic processes. Expression analysis revealed diverse responses of LTR-RTs to internal or external conditions. Furthermore, we identified 3695 pairs of syntenic DEGs proximal to TEs in Malus domestica cv. 'Gala' and M. domestica (GDDH13), suggesting TE insertions may contribute to varietal trait differences in these apple varieties. Our study across representative Rosaceae species underscores the pivotal role of TEs in plant genome evolution within this diverse family. It elucidates how these elements regulate syntenic DEGs on a genome-wide scale, offering insights into Rosaceae-specific genomic evolution.
Collapse
Affiliation(s)
- Ze Yu
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jiale Li
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Hanyu Wang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Boya Ping
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xinchu Li
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Zhiguang Liu
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Bocheng Guo
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Qiaoming Yu
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yangjun Zou
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yaqiang Sun
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Fengwang Ma
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Tao Zhao
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| |
Collapse
|
46
|
Yang Y, Liu JF, Jiang XF. A chromosome-level genome assembly of Chinese quince ( Pseudocydonia sinensis). FRONTIERS IN PLANT SCIENCE 2024; 15:1368861. [PMID: 38887462 PMCID: PMC11180997 DOI: 10.3389/fpls.2024.1368861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 05/06/2024] [Indexed: 06/20/2024]
Abstract
Introduction Pseudocydonia sinensis, also known as Chinese quince, is a perennial shrub or small tree highly valued for its edibility and medicinal properties. Method This study presents the first chromosome-level genome assembly of P. sinensis, achieved using HiFi sequencing and Hi-C scaffolding technology. Results The assembly resulted in a high-quality genome of 576.39 Mb in size. The genome was anchored to 17 pseudo-chromosomes, with a contig N50 of 27.6 Mb and a scaffold N50 of 33.8 Mb. Comprehensive assessment using BUSCO, CEGMA and BWA tools indicates the high completeness and accuracy of the genome assembly. Our analysis identified 116 species-specific genes, 1196 expanded genes and 1109 contracted genes. Additionally, the distribution of 4DTv values suggests that the most recent duplication event occurred before the divergence of P. sinensis from both Chaenomeles pinnatifida and Pyrus pyrifolia. Discussion The assembly of this high-quality genome provides a valuable platform for the genetic breeding and cultivation of P. sinensis, as well as for the comparison of the genetic complexity of P. sinensis with other important crops in the Rosaceae family.
Collapse
Affiliation(s)
- Ying Yang
- College of Agriculture and Biological Science, Dali University, Dali, Yunnan, China
| | - Jin Feng Liu
- College of Agriculture and Biological Science, Dali University, Dali, Yunnan, China
| | - Xian Feng Jiang
- College of Agriculture and Biological Science, Dali University, Dali, Yunnan, China
- Co-Innovation Center for Cangshan Mountain and Erhai Lake Integrated Protection and Green Development of Yunnan Province, Dali University, Dali, Yunnan, China
| |
Collapse
|
47
|
Li J, Cai H, Peng H, Deng Y, Zhou S, Tian J, Zhang J, Hu Y, Qin X, Yao Y, Zheng Y, Wang S. The chromosome-level genome assembly of the dwarfing apple interstock Malus hybrid 'SH6'. Sci Data 2024; 11:552. [PMID: 38811578 PMCID: PMC11136958 DOI: 10.1038/s41597-024-03405-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 05/22/2024] [Indexed: 05/31/2024] Open
Abstract
Malus hybrid 'SH6' (M. honanensis × M. domestica)is a commonly used apple interstock in China, known for its excellent dwarfing characteristics and cold tolerance. In this study, a combined strategy utilizing PacBio HiFi, Hi-C and parental resequencing data were employed to assemble two haploid genomes for 'SH6'. After chromosome anchoring, the final hapH genome size was 596.63 Mb, with a contig N50 of 34.38 Mb. The hapR genome was 649.37 Mb, with a contig N50 of 36.84 Mb. Further analysis predicted that repeated sequences made up 59.69% and 62.52% of the entire genome, respectively. Gene annotations revealed 45,435 genes for hapH and 48,261 genes for hapR. Combined with genomic synteny we suggest that the hapR genome originates from its maternal parent M. domestica cv. Ralls Janet, while the hapH genome comes from its paternal parent, M. honanensis. The assembled genome significantly contributes to the discovery of genes associated with apple dwarfing and the molecular mechanisms governing them.
Collapse
Affiliation(s)
- Jinrong Li
- Beijing Key Laboratory for Agriculture Application and New Technique, College of Plant Science and Technology, Beijing University of Agriculture, Beijing, 102206, China
- Bioinformatics Center, Beijing University of Agriculture, Beijing, 102206, China
| | - Huacheng Cai
- Pomology Institute, Shanxi Agricultural University, Taigu, 030801, China
- Shanxi Key Laboratory of Germplasm Improvement and Utilization in Pomology, Taiyuan, 030031, China
| | - Haixu Peng
- Beijing Key Laboratory for Agriculture Application and New Technique, College of Plant Science and Technology, Beijing University of Agriculture, Beijing, 102206, China
- Bioinformatics Center, Beijing University of Agriculture, Beijing, 102206, China
| | - Yulin Deng
- Beijing Key Laboratory for Agriculture Application and New Technique, College of Plant Science and Technology, Beijing University of Agriculture, Beijing, 102206, China
- Bioinformatics Center, Beijing University of Agriculture, Beijing, 102206, China
| | - Shijie Zhou
- Beijing Key Laboratory for Agriculture Application and New Technique, College of Plant Science and Technology, Beijing University of Agriculture, Beijing, 102206, China
- Bioinformatics Center, Beijing University of Agriculture, Beijing, 102206, China
| | - Ji Tian
- Beijing Key Laboratory for Agriculture Application and New Technique, College of Plant Science and Technology, Beijing University of Agriculture, Beijing, 102206, China
| | - Jie Zhang
- Beijing Key Laboratory for Agriculture Application and New Technique, College of Plant Science and Technology, Beijing University of Agriculture, Beijing, 102206, China
| | - Yujing Hu
- Beijing Key Laboratory for Agriculture Application and New Technique, College of Plant Science and Technology, Beijing University of Agriculture, Beijing, 102206, China
| | - Xiaoxiao Qin
- Beijing Key Laboratory for Agriculture Application and New Technique, College of Plant Science and Technology, Beijing University of Agriculture, Beijing, 102206, China
| | - Yuncong Yao
- Beijing Key Laboratory for Agriculture Application and New Technique, College of Plant Science and Technology, Beijing University of Agriculture, Beijing, 102206, China
| | - Yi Zheng
- Beijing Key Laboratory for Agriculture Application and New Technique, College of Plant Science and Technology, Beijing University of Agriculture, Beijing, 102206, China.
- Bioinformatics Center, Beijing University of Agriculture, Beijing, 102206, China.
- Ancient Tree Health and Culture Engineering Technology Research Center, National Forestry and Grassland Administration, Beijing, 100013, China.
| | - Sen Wang
- Beijing Key Laboratory for Agriculture Application and New Technique, College of Plant Science and Technology, Beijing University of Agriculture, Beijing, 102206, China.
- Bioinformatics Center, Beijing University of Agriculture, Beijing, 102206, China.
- Ancient Tree Health and Culture Engineering Technology Research Center, National Forestry and Grassland Administration, Beijing, 100013, China.
| |
Collapse
|
48
|
Wang Q, Wang Y, Wu X, Shi W, Chen N, Pang Y, Zhang L. Sequence and epigenetic variations of R2R3-MYB transcription factors determine the diversity of taproot skin and flesh colors in different cultivated types of radish (Raphanus sativus L.). TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2024; 137:133. [PMID: 38753199 DOI: 10.1007/s00122-024-04631-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 04/20/2024] [Indexed: 06/09/2024]
Abstract
KEY MESSAGE This study found that three paralogous R2R3-MYB transcription factors exhibit functional divergence among different subspecies and cultivated types in radish. Cultivated radish taproots exhibit a wide range of color variations due to unique anthocyanin accumulation patterns in various tissues. This study investigated the universal principles of taproot color regulation that developed during domestication of different subspecies and cultivated types. The key candidate genes RsMYB1 and RsMYB2, which control anthocyanin accumulation in radish taproots, were identified using bulked segregant analysis in two genetic populations. We introduced the RsMYB1-RsF3'H-RsMYB1Met genetic model to elucidate the complex and unstable genetic regulation of taproot flesh color in Xinlimei radish. Furthermore, we analyzed the expression patterns of three R2R3-MYB transcription factors in lines with different taproot colors and investigated the relationship between RsMYB haplotypes and anthocyanin accumulation in a natural population of 56 germplasms. The results revealed that three paralogous RsMYBs underwent functional divergence during radish domestication, with RsMYB1 regulating the red flesh of Xinlimei radish, and RsMYB2 and RsMYB3 regulating the red skin of East Asian big long radish (R. sativus var. hortensis) and European small radish (R. sativus var. sativus), respectively. Moreover, RsMYB1-H1, RsMYB2-H10, and RsMYB3-H6 were identified as the primary haplotypes exerting regulatory functions on anthocyanin synthesis. These findings provide an understanding of the genetic mechanisms regulating anthocyanin synthesis in radish and offer a potential strategy for early prediction of color variations in breeding programs.
Collapse
Affiliation(s)
- Qingbiao Wang
- State Key Laboratory of Vegetable Biobreeding, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Science, Beijing, 100097, China
- National Engineering Research Center for Vegetables, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Science, Beijing, 100097, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture and Rural Affairs of the People's Republic of China, Beijing, 100097, China
- Beijing Key Laboratory of Vegetable Germplasm Improvement, Beijing, 100097, China
| | - Yanping Wang
- State Key Laboratory of Vegetable Biobreeding, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Science, Beijing, 100097, China
- National Engineering Research Center for Vegetables, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Science, Beijing, 100097, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture and Rural Affairs of the People's Republic of China, Beijing, 100097, China
- Beijing Key Laboratory of Vegetable Germplasm Improvement, Beijing, 100097, China
| | - Xiangyu Wu
- State Key Laboratory of Vegetable Biobreeding, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Science, Beijing, 100097, China
- National Engineering Research Center for Vegetables, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Science, Beijing, 100097, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture and Rural Affairs of the People's Republic of China, Beijing, 100097, China
- Beijing Key Laboratory of Vegetable Germplasm Improvement, Beijing, 100097, China
| | - Wenyu Shi
- State Key Laboratory of Vegetable Biobreeding, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Science, Beijing, 100097, China
- National Engineering Research Center for Vegetables, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Science, Beijing, 100097, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture and Rural Affairs of the People's Republic of China, Beijing, 100097, China
- Beijing Key Laboratory of Vegetable Germplasm Improvement, Beijing, 100097, China
| | - Ningjie Chen
- State Key Laboratory of Vegetable Biobreeding, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Science, Beijing, 100097, China
- National Engineering Research Center for Vegetables, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Science, Beijing, 100097, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture and Rural Affairs of the People's Republic of China, Beijing, 100097, China
- Beijing Key Laboratory of Vegetable Germplasm Improvement, Beijing, 100097, China
| | - Yuanting Pang
- State Key Laboratory of Vegetable Biobreeding, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Science, Beijing, 100097, China
- National Engineering Research Center for Vegetables, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Science, Beijing, 100097, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture and Rural Affairs of the People's Republic of China, Beijing, 100097, China
- Beijing Key Laboratory of Vegetable Germplasm Improvement, Beijing, 100097, China
| | - Li Zhang
- State Key Laboratory of Vegetable Biobreeding, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Science, Beijing, 100097, China.
- National Engineering Research Center for Vegetables, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Science, Beijing, 100097, China.
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture and Rural Affairs of the People's Republic of China, Beijing, 100097, China.
- Beijing Key Laboratory of Vegetable Germplasm Improvement, Beijing, 100097, China.
| |
Collapse
|
49
|
Fang T, Wang M, He R, Chen Q, He D, Chen X, Li Y, Ren R, Yu W, Zeng L. A 224-bp Indel in the Promoter of PeMYB114 Accounts for Anthocyanin Accumulation of Skin in Passion Fruit ( Passiflora spp.). JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:10138-10148. [PMID: 38637271 DOI: 10.1021/acs.jafc.4c00839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/20/2024]
Abstract
Passion fruit (Passiflora spp.) is an important fruit tree in the family Passifloraceae. The color of the fruit skin, a significant agricultural trait, is determined by the content of anthocyanin in passion fruit. However, the regulatory mechanisms behind the accumulation of anthocyanin in different passion fruit skin colors remain unclear. In the study, we identified and characterized a R2R3-MYB transcription factor, PeMYB114, which functions as a transcriptional activator in anthocyanin biosynthesis. Yeast one-hybrid system and dual-luciferase analysis showed that PeMYB114 could directly activate the expression of anthocyanin structural genes (PeCHS and PeDFR). Furthermore, a natural variation in the promoter region of PeMYB114 alters its expression. PeMYB114purple accessions with the 224-bp insertion have a higher anthocyanin level than PeMYB114yellow accessions with the 224-bp deletion. The findings enhance our understanding of anthocyanin accumulation in fruits and provide genetic resources for genome design for improving passion fruit quality.
Collapse
Affiliation(s)
- Ting Fang
- College of Horticulture, Institute of Genetics and Breeding in Horticultural Plants, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Mengzhen Wang
- College of Horticulture, Institute of Genetics and Breeding in Horticultural Plants, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Ruijie He
- College of Horticulture, Institute of Genetics and Breeding in Horticultural Plants, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Qiaowen Chen
- College of Horticulture, Institute of Genetics and Breeding in Horticultural Plants, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Dayi He
- College of Horticulture, Institute of Genetics and Breeding in Horticultural Plants, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xuerong Chen
- College of Horticulture, Institute of Genetics and Breeding in Horticultural Plants, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yongkang Li
- College of Horticulture, Institute of Genetics and Breeding in Horticultural Plants, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Rui Ren
- College of Horticulture, Institute of Genetics and Breeding in Horticultural Plants, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Weijun Yu
- College of Horticulture, Institute of Genetics and Breeding in Horticultural Plants, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Lihui Zeng
- College of Horticulture, Institute of Genetics and Breeding in Horticultural Plants, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
50
|
Meng K, Liao W, Wei S, Chen S, Li M, Ma Y, Fan Q. Chromosome-scale genome assembly and annotation of Cotoneaster glaucophyllus. Sci Data 2024; 11:406. [PMID: 38649372 PMCID: PMC11035681 DOI: 10.1038/s41597-024-03246-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 04/10/2024] [Indexed: 04/25/2024] Open
Abstract
Cotoneaster glaucophyllus is a semi-evergreen plant that blossoms in late summer, producing dense, attractive, fragrant white flowers with significant ornamental and ecological value. Here, a chromosome-scale genome assembly was obtained by integrating PacBio and Illumina sequencing data with the aid of Hi-C technology. The genome assembly was 563.3 Mb in length, with contig N50 and scaffold N50 values of ~6 Mb and ~31 Mb, respectively. Most (95.59%) of the sequences were anchored onto 17 pseudochromosomes (538.4 Mb). We predicted 35,856 protein-coding genes, 1,401 miRNAs, 655 tRNAs, 425 rRNAs, and 795 snRNAs. The functions of 34,967 genes (97.52%) were predicted. The availability of this chromosome-level genome will provide valuable resources for molecular studies of this species, facilitating future research on speciation, functional genomics, and comparative genomics within the Rosaceae family.
Collapse
Affiliation(s)
- Kaikai Meng
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
- Guangxi Key Laboratory of Quality and Safety Control for Subtropical Fruits, Guangxi Subtropical Crops Research Institute, Nanning, 530001, China
| | - Wenbo Liao
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Shaolong Wei
- Guangxi Key Laboratory of Quality and Safety Control for Subtropical Fruits, Guangxi Subtropical Crops Research Institute, Nanning, 530001, China
| | - Sufang Chen
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Mingwan Li
- College of Forestry, Henan Agricultural University, Zhengzhou, 450002, China
| | - Yongpeng Ma
- State Key Laboratory of Plant Diversity and Specialty Crops, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China.
| | - Qiang Fan
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China.
| |
Collapse
|